Suites de flots de Ricci en dimension 3 et applications
Séminaire de théorie spectrale et géométrie, Volume 28  (2009-2010), p. 121-145

In this article, we review some results of Miles Simon about the Ricci flow of some 3-dimensional metric spaces. These results are from [26] and [28]. We first explain the link between rigidity theorems and convergence of manifolds on an example from Berger and Durumeric. Then, we notice that in order to obtain such rigidity theorems using Ricci flow, one needs to build a Ricci flow for potentially non-smooth spaces. The last two sections expose how to construct such flows (following [26] and [28]) and give some geometric applications of this construction.

Dans cet article, on passe en revue certains résultats dus à Miles Simon sur le flot de Ricci de certains espaces métriques de dimension 3 exposés dans [28] et [26].

On commence par voir le lien entre théorèmes de rigidité et convergence des variétés sur un exemple dû à Berger et Durumeric. On remarque ensuite que pour obtenir de tels théorèmes de rigidité en utilisant le flot de Ricci, il faut être capable de construire le flot pour des espaces peu lisses.

Les deux dernières partie sont consacrées à une explication de la construction de tels flots (en suivant [28] et [26]) et à des applications géométriques de cette construction.

DOI : https://doi.org/10.5802/tsg.281
Classification:  53C44,  53C20,  53C23
Keywords: Ricci curvature bounded from below, Ricci flow, Gromov-Hausdorff convergence, dimension 3
@article{TSG_2009-2010__28__121_0,
     author = {Richard, Thomas},
     title = {Suites de flots de Ricci en dimension 3 et applications},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     year = {2009-2010},
     pages = {121-145},
     doi = {10.5802/tsg.281},
     language = {fr},
     url = {http://www.numdam.org/item/TSG_2009-2010__28__121_0}
}
Richard, Thomas. Suites de flots de Ricci en dimension 3 et applications. Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010) , pp. 121-145. doi : 10.5802/tsg.281. http://www.numdam.org/item/TSG_2009-2010__28__121_0/

[1] Abresch, Uwe; Meyer, Wolfgang T. A sphere theorem with a pinching constant below 1 4, J. Differential Geom., Tome 44 (1996) no. 2, pp. 214-261 | MR 1425576 | Zbl 0873.53024

[2] Anderson, Michael T.; Cheeger, Jeff Diffeomorphism finiteness for manifolds with Ricci curvature and L n/2 -norm of curvature bounded, Geom. Funct. Anal., Tome 1 (1991) no. 3, pp. 231-252 | MR 1118730 | Zbl 0764.53026

[3] Anderson, Michael T.; Cheeger, Jeff C α -compactness for manifolds with Ricci curvature and injectivity radius bounded below, J. Differential Geom., Tome 35 (1992) no. 2, pp. 265-281 | MR 1158336 | Zbl 0774.53021

[4] Berger, M. Les variétés Riemanniennes (1/4)-pincées, Ann. Scuola Norm. Sup. Pisa (3), Tome 14 (1960), pp. 161-170 | Numdam | MR 140054 | Zbl 0096.15502

[5] Berger, Marcel Sur les variétés riemanniennes pincées juste au-dessous de 1/4, Ann. Inst. Fourier (Grenoble), Tome 33 (1983) no. 2, p. 135-150 (loose errata) | Numdam | MR 699491 | Zbl 0497.53044

[6] Berger, Marcel A panoramic view of Riemannian geometry, Springer-Verlag, Berlin (2003) | MR 2002701 | Zbl 1038.53002

[7] Burago, Dmitri; Burago, Yuri; Ivanov, Sergei A course in metric geometry, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 33 (2001) | MR 1835418

[8] Cheeger, Jeff Finiteness theorems for Riemannian manifolds, Amer. J. Math., Tome 92 (1970), pp. 61-74 | MR 263092 | Zbl 0194.52902

[9] Cheeger, Jeff; Colding, Tobias H. On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., Tome 46 (1997) no. 3, pp. 406-480 | MR 1484888 | Zbl 0902.53034

[10] Chen, Bing-Long; Zhu, Xi-Ping Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom., Tome 74 (2006) no. 1, pp. 119-154 | MR 2260930 | Zbl 1104.53032

[11] Chow, Bennett; Knopf, Dan The Ricci flow : an introduction, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 110 (2004) | MR 2061425

[12] Chow, Bennett; Lu, Peng; Ni, Lei Hamilton’s Ricci flow, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 77 (2006) | MR 2274812

[13] Colding, Tobias H. Ricci curvature and volume convergence, Ann. of Math. (2), Tome 145 (1997) no. 3, pp. 477-501 | MR 1454700 | Zbl 0879.53030

[14] Durumeric, O. A generalization of Berger’s theorem on almost 1 4-pinched manifolds. II, J. Differential Geom., Tome 26 (1987) no. 1, pp. 101-139 | MR 892033 | Zbl 0599.53039

[15] Greene, R. E.; Wu, H. Lipschitz convergence of Riemannian manifolds, Pacific J. Math., Tome 131 (1988) no. 1, pp. 119-141 | MR 917868 | Zbl 0646.53038

[16] Gromov, Misha Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 152 (1999) (Based on the 1981 French original [ MR0682063 (85e :53051)], With appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by Sean Michael Bates) | MR 1699320 | Zbl 0953.53002

[17] Hamilton, Richard S. Three-manifolds with positive Ricci curvature, J. Differential Geom., Tome 17 (1982) no. 2, pp. 255-306 | MR 664497 | Zbl 0504.53034

[18] Hamilton, Richard S. A compactness property for solutions of the Ricci flow, Amer. J. Math., Tome 117 (1995) no. 3, pp. 545-572 | MR 1333936 | Zbl 0840.53029

[19] Klingenberg, Wilhelm Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comment. Math. Helv., Tome 35 (1961), pp. 47-54 | MR 139120 | Zbl 0133.15005

[20] Perelman, G. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (ArXiv Mathematics e-prints arXiv :math/0307245, 2003) | Zbl 1130.53003

[21] Perelman, G. Ricci flow with surgery on three-manifolds (ArXiv Mathematics e-prints arXiv :math/0303109, 2003) | Zbl 1130.53002

[22] Perelman, G. The entropy formula for the Ricci flow and its geometric applications (ArXiv Mathematics e-prints arXiv :math/0211159, 2002) | Zbl 1130.53001

[23] Perelman, G. Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, Comparison geometry (Berkeley, CA, 1993–94), Cambridge Univ. Press, Cambridge (Math. Sci. Res. Inst. Publ.) Tome 30 (1997), pp. 157-163 | MR 1452872 | Zbl 0890.53038

[24] Shi, Wan-Xiong Complete noncompact three-manifolds with nonnegative Ricci curvature, J. Differential Geom., Tome 29 (1989) no. 2, pp. 353-360 | MR 982179 | Zbl 0668.53026

[25] Shi, Wan-Xiong Deforming the metric on complete Riemannian manifolds, J. Differential Geom., Tome 30 (1989) no. 1, pp. 223-301 | MR 1001277 | Zbl 0676.53044

[26] Simon, M. Ricci flow of non-collapsed 3-manifolds whose Ricci curvature is bounded from below (ArXiv e-prints arXiv :math/0903.2142, 2009) | MR 2526789

[27] Simon, Miles Deformation of C 0 Riemannian metrics in the direction of their Ricci curvature, Comm. Anal. Geom., Tome 10 (2002) no. 5, pp. 1033-1074 | MR 1957662 | Zbl 1034.58008

[28] Simon, Miles Ricci flow of almost non-negatively curved three manifolds, J. Reine Angew. Math., Tome 630 (2009), pp. 177-217 | MR 2526789 | Zbl 1165.53046

[29] Weinstein, Alan On the homotopy type of positively-pinched manifolds, Arch. Math. (Basel), Tome 18 (1967), p. 523-524 | MR 220311 | Zbl 0166.17601