Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen
Séminaire de théorie spectrale et géométrie, Volume 28  (2009-2010), p. 63-107

The notion of i-bounded geometry generalises simultaneously bounded geometry and the geometry of punctured torus Kleinian groups. We show that the limit set of a surface Kleinian group of i-bounded geometry is locally connected by constructing a natural Cannon-Thurston map.

@article{TSG_2009-2010__28__63_0,
     author = {Mj, Mahan},
     title = {Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {28},
     year = {2009-2010},
     pages = {63-107},
     doi = {10.5802/tsg.279},
     language = {en},
     url = {http://www.numdam.org/item/TSG_2009-2010__28__63_0}
}
Mj, Mahan. Cannon-Thurston Maps, i-bounded Geometry and a Theorem of McMullen. Séminaire de théorie spectrale et géométrie, Volume 28 (2009-2010) , pp. 63-107. doi : 10.5802/tsg.279. http://www.numdam.org/item/TSG_2009-2010__28__63_0/

[1] Bowditch, Brian H. Relatively hyperbolic groups (preprint, Southampton, 1997)

[2] Bowditch, Brian H. The Cannon-Thurston map for punctured-surface groups, Math. Z., Tome 255 (2007) no. 1, pp. 35-76 | MR 2262721 | Zbl 1138.57020

[3] Cannon, James W.; Thurston, William P. Group invariant Peano curves, Geom. Topol., Tome 11 (2007), pp. 1315-1355 | MR 2326947 | Zbl 1136.57009

[4] Coornaert, M.; Delzant, T.; Papadopoulos, A. Géométrie et théorie des groupes, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1441 (1990) (Les groupes hyperboliques de Gromov. [Gromov hyperbolic groups], With an English summary) | MR 1075994 | Zbl 0727.20018

[5] Das, Shubhabrata; Mj, Mahan Addendum to Ending Laminations and Cannon-Thurston Maps: Parabolics (arXiv:1002.2090, 2010)

[6] Das, Shubhabrata; Mj, Mahan Semiconjugacies Between Relatively Hyperbolic Boundaries (arXiv:1007.2547, 2010)

[7] Farb, B. Relatively hyperbolic groups, Geom. Funct. Anal., Tome 8 (1998) no. 5, pp. 810-840 | MR 1650094 | Zbl 0985.20027

[8] Ghys, Étienne; De La Harpe, Pierre La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988), Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 83 (1990), pp. 165-187

[9] Gromov, M. Hyperbolic groups, Essays in group theory, Springer, New York (Math. Sci. Res. Inst. Publ.) Tome 8 (1987), pp. 75-263 | MR 919829 | Zbl 0634.20015

[10] Gromov, M. Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 182 (1993), pp. 1-295 | MR 1253544

[11] Hocking, John G.; Young, Gail S. Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London (1961) | MR 125557

[12] Klarreich, Erica Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math., Tome 121 (1999) no. 5, pp. 1031-1078 | MR 1713300 | Zbl 1011.30035

[13] Mcmullen, Curtis T. Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math., Tome 146 (2001) no. 1, pp. 35-91 | MR 1859018 | Zbl 1061.37025

[14] Minsky, Yair The classification of Kleinian surface groups. I. Models and bounds, Ann. of Math. (2), Tome 171 (2010) no. 1, pp. 1-107 | MR 2630036 | Zbl 1193.30063

[15] Minsky, Yair N. On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds, J. Amer. Math. Soc., Tome 7 (1994) no. 3, pp. 539-588 | MR 1257060 | Zbl 0808.30027

[16] Minsky, Yair N. The classification of punctured-torus groups, Ann. of Math. (2), Tome 149 (1999) no. 2, pp. 559-626 | MR 1689341 | Zbl 0939.30034

[17] Mitra, Mahan Cannon-Thurston maps for hyperbolic group extensions, Topology, Tome 37 (1998) no. 3, pp. 527-538 | MR 1604882 | Zbl 0907.20038

[18] Mitra, Mahan Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom., Tome 48 (1998) no. 1, pp. 135-164 | MR 1622603 | Zbl 0906.20023

[19] Mj, Mahan Cannon-Thurston Maps for Kleinian Groups (preprint, arXiv:math 1002.0996, 2010) | MR 2667569

[20] Mj, Mahan Cannon-Thurston Maps for Surface Groups (preprint, arXiv:math.GT/0607509, 2006) | MR 2667569

[21] Mj, Mahan Cannon-Thurston Maps for Surface Groups (preprint, arXiv:math.GT/0512539, 2005) | MR 2667569

[22] Mj, Mahan Ending Laminations and Cannon-Thurston Maps (submitted, arXiv:math.GT/0702162, 2007) | MR 2667569

[23] Mj, Mahan Cannon-Thurston maps for pared manifolds of bounded geometry, Geom. Topol., Tome 13 (2009) no. 1, pp. 189-245 | MR 2469517 | Zbl 1166.57009

[24] Mj, Mahan Cannon-Thurston maps and bounded geometry, Teichmüller theory and moduli problem, Ramanujan Math. Soc., Mysore (Ramanujan Math. Soc. Lect. Notes Ser.) Tome 10 (2010), pp. 489-511 | MR 2667569 | Zbl 1204.57014

[25] Thurston, William P. Three-dimensional geometry and topology. Vol. 1, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 35 (1997) (Edited by Silvio Levy) | MR 1435975 | Zbl 0873.57001