The Geometry of Differential Harnack Estimates
[La géométrie des inégalités de Harnack différentielles]
Séminaire de théorie spectrale et géométrie, Tome 30 (2011-2012), pp. 77-89.

Dans cette note, nous espérons introduire rapidement les non-experts dans le monde des inégalités de Harnack différentielles, qui ont eu tant d’influence en analyse géométrique et en théorie des probabilités durant les dernières décennies. Au niveau le plus grossier, ce sont des inégalités d’apparence souvent mystérieuse, qui valent pour les solutions « positives » de certaines EDP paraboliques, et peuvent se vérifier rapidement en appliquant le principe du maximum. Dans cette note nous insistons sur la géométrie sous-jacente aux inégalités de Harnack, qui se révèlent souvent traduire la convexité d’un objet naturel. En guise d’application, nous expliquons comment l’inégalité de Harnack différentielle due à Hamilton pour le flot de la courbure moyenne d’une sous-variété de dimension n de n+1 , peut se voir comme une conséquence directe de la préservation bien connue de la convexité par le flot de la courbure moyenne, mais cette fois d’une sous-variété de dimension n+1 de n+2 . Nous passons également brièvement en revue les travaux antérieurs qui nous ont amenés à ces observations.

In this short note, we hope to give a rapid induction for non-experts into the world of Differential Harnack inequalities, which have been so influential in geometric analysis and probability theory over the past few decades. At the coarsest level, these are often mysterious-looking inequalities that hold for ‘positive’ solutions of some parabolic PDE, and can be verified quickly by grinding out a computation and applying a maximum principle. In this note we emphasise the geometry behind the Harnack inequalities, which typically turn out to be assertions of the convexity of some natural object. As an application, we explain how Hamilton’s Differential Harnack inequality for mean curvature flow of a n-dimensional submanifold of n+1 can be viewed as following directly from the well-known preservation of convexity under mean curvature flow, but this time of a (n+1)-dimensional submanifold of n+2 . We also briefly survey the earlier work that led us to these observations.

DOI : 10.5802/tsg.291
Classification : 53C44, 35K05, 35K08, 35K10, 35K55
Keywords: differential Harnack estimates, mean curvature flow, heat equation, log convexity, canonical solitons, self-similar solutions.
Mot clés : inégalités de Harnack différentielles, flot de la courbure moyenne, équation de la chaleur, log-convexité, solitons canoniques, solutions autosimilaires ?
Helmensdorfer, Sebastian 1 ; Topping, Peter 2

1 Sintzenichstr. 11, 81479 München, Germany
2 Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
@article{TSG_2011-2012__30__77_0,
     author = {Helmensdorfer, Sebastian and Topping, Peter},
     title = {The {Geometry} of {Differential} {Harnack} {Estimates}},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {77--89},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {30},
     year = {2011-2012},
     doi = {10.5802/tsg.291},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/tsg.291/}
}
TY  - JOUR
AU  - Helmensdorfer, Sebastian
AU  - Topping, Peter
TI  - The Geometry of Differential Harnack Estimates
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2011-2012
SP  - 77
EP  - 89
VL  - 30
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/tsg.291/
DO  - 10.5802/tsg.291
LA  - en
ID  - TSG_2011-2012__30__77_0
ER  - 
%0 Journal Article
%A Helmensdorfer, Sebastian
%A Topping, Peter
%T The Geometry of Differential Harnack Estimates
%J Séminaire de théorie spectrale et géométrie
%D 2011-2012
%P 77-89
%V 30
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/tsg.291/
%R 10.5802/tsg.291
%G en
%F TSG_2011-2012__30__77_0
Helmensdorfer, Sebastian; Topping, Peter. The Geometry of Differential Harnack Estimates. Séminaire de théorie spectrale et géométrie, Tome 30 (2011-2012), pp. 77-89. doi : 10.5802/tsg.291. http://archive.numdam.org/articles/10.5802/tsg.291/

[1] Andrews, B. Harnack inequalities for evolving hypersurfaces, Math. Z., Volume 217 (1994), pp. 179-197 | MR | Zbl

[2] Barles, G.; Biton, S.; Ley, O. A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Rat. Mech. An., Volume 162 (2002), pp. 287-325 | MR | Zbl

[3] Cabezas-Rivas, E.; Topping, P. The canonical expanding soliton and Harnack inequalities for Ricci flow, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 3001-3021 | MR | Zbl

[4] Chen, Y. G.; Giga, Y.; Goto, S. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Diff. Geom., Volume 33 (1991), pp. 749-786 | MR | Zbl

[5] Chow, B.; Chu, S. A geometric interpretation of Hamilton’s Harnack inequality for the Ricci flow, Math. Res. Let., Volume 2 (1995), pp. 701-718 | MR | Zbl

[6] Chow, B.; Chu, S. Space-time formulation of Harnack inequalities for curvature flows of hypersurfaces, J. Geom. An., Volume 11 (2001), pp. 219-231 | MR | Zbl

[7] Chow, B.; Knopf, D. New Li-Yau-Hamilton inequalities for the Ricci flow via the space-time approach, J. Diff. Geom., Volume 60 (2002), pp. 1-54 | MR | Zbl

[8] Ecker, K. Regularity theory for mean curvature flow, Birkhäuser, 2004 | MR | Zbl

[9] Ecker, K.; Huisken, G. Mean curvature evolution of entire graphs, Ann. Math., Volume 130 (1989), pp. 453-471 | MR | Zbl

[10] Evans, L. C.; Spruck, J. Motion of level sets by mean curvature I, J. Diff. Geom., Volume 33 (1991), pp. 635-681 | MR | Zbl

[11] Hamilton, R. A matrix Harnack estimate for the heat equation, Comm. Anal. Geom., Volume 1 (1993), pp. 113-126 | MR | Zbl

[12] Hamilton, R. The Harnack estimate for the Ricci flow, J. Diff. Geom., Volume 37 (1993), pp. 225-243 | MR | Zbl

[13] Hamilton, R. The Harnack estimate for the mean curvature flow, J. Diff. Geom., Volume 41 (1995), pp. 215-226 | MR | Zbl

[14] Huisken, G. Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom., Volume 20 (1984), pp. 237-266 | MR | Zbl

[15] Kotschwar, B. Harnack inequalities for evolving convex hypersurfaces from the space-time perspective, 2009 (preprint)

[16] Li, P.; Yau, S. T. On the parabolic kernel of the Schrödinger operator, Acta Math., Volume 156 (1986), pp. 153-201 | MR | Zbl

[17] Smoczyk, K. Harnack inequalities for curvature flows depending on mean curvature, N.Y. J. Math. (1997), pp. 103-118 | MR | Zbl

[18] Topping, P. Lectures on the Ricci flow, L.M.S. Lecture note series, 325, Cambridge University Press, 2006 | MR | Zbl

Cité par Sources :