Boundary approach filters for analytic functions
Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 187-213.

Soit H l’espace des fonctions bornées holomorphes dans D:|z|<1, et soit D¯ l’espace des idéaux maximaux de l’algèbre H, une compactification de D. On étudie les relations entre les fonctions de H et leurs valeurs limites sur D¯-D. Soit D1 le sous-ensemble de D¯ sur le point 1. Un sous-ensemble A de D1 est un “ensemble de Fatou” si tout f dans H a une limite en eiθA pour presque tout θ. Le sous-ensemble nontangentiel est un ensemble de Fatou d’après le théorème de Fatou. Il y a beaucoup d’ensembles de Fatou plus grands, par exemple le sous-ensemble de D1 des points fixes, mais il n’y a pas un ensemble de Fatou maximal. L’ensemble des points Q de D1 dont {Q} est un ensemble de Fatou est dense dans D1.

Let H be the class of bounded analytic functions on D:|z|<1, and let D¯ be the set of maximal ideals of the algebra H, a compactification of D. The relations between functions in H and their cluster values on D¯-D are studied. Let D1 be the subset of D¯ over the point 1. A subset A of D1 is a “Fatou set” if every f in H has a limit at eiθA for almost every θ. The nontangential subset of D1 is a Fatou set according to the Fatou theorem. There are many larger Fatou sets, for example the fine topology subset of D1 but there is no largest Fatou set. The set of those points of D1 which are Fatou singletons is dense in D1.

@article{AIF_1973__23_3_187_0,
     author = {Doob, J. L.},
     title = {Boundary approach filters for analytic functions},
     journal = {Annales de l'Institut Fourier},
     pages = {187--213},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     number = {3},
     year = {1973},
     doi = {10.5802/aif.476},
     mrnumber = {51 #3448},
     zbl = {0251.30034},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.476/}
}
TY  - JOUR
AU  - Doob, J. L.
TI  - Boundary approach filters for analytic functions
JO  - Annales de l'Institut Fourier
PY  - 1973
SP  - 187
EP  - 213
VL  - 23
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.476/
DO  - 10.5802/aif.476
LA  - en
ID  - AIF_1973__23_3_187_0
ER  - 
%0 Journal Article
%A Doob, J. L.
%T Boundary approach filters for analytic functions
%J Annales de l'Institut Fourier
%D 1973
%P 187-213
%V 23
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.476/
%R 10.5802/aif.476
%G en
%F AIF_1973__23_3_187_0
Doob, J. L. Boundary approach filters for analytic functions. Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 187-213. doi : 10.5802/aif.476. https://www.numdam.org/articles/10.5802/aif.476/

[1] M. Brelot and J.L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier, 13 (1963), 395-415. | Numdam | MR | Zbl

[2] J.L. Doob, Conditional Brownian motion and the boundary limits of harmonic functions, Bull. Soc. Math. France 85 (1957), 431-458. | Numdam | MR | Zbl

[3] Kenneth Hoffman, Banach spaces of analytic functions, Prentice Hall 1962. | Zbl

[4] Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. Math. 86 (1967), 74-111. | MR | Zbl

[5] L. Lumer-Naïm, Sur le rôle de la frontière de R.S. Martin dans la théorie du potentiel, Ann. Inst. Fourier 7 (1957), 183-281. | Numdam | MR | Zbl

[6] Gabriel Mokodobzki, Ultrafiltres rapides sur N. Construction d'une densité relative de deux potentiels comparables, Séminaire Théorie Potentiel Brelot-Choquet-Deny 1967/1968 Exp. 12. | Numdam | Zbl

[7] M. Rosenfeld and Max L. Weiss, A function algebra approach to a theorem of Lindelöf, J. London Math. Soc. (2) 2 (1970), 209-215. | Zbl

[8] M. Tsuji, Potential theory in modern function theory, Tokyo 1959. | MR | Zbl

  • Di Biase, Fausto; Krantz, Steven G. On the Differentiation of Integrals in Measure Spaces Along Filters, The Journal of Geometric Analysis, Volume 33 (2023) no. 1 | DOI:10.1007/s12220-022-01050-7
  • Di Biase, Fausto; Krantz, Steven G. Foundations of Fatou Theory and a Tribute to the Work of E. M. Stein on Boundary Behavior of Holomorphic Functions, The Journal of Geometric Analysis, Volume 31 (2021) no. 7, p. 7184 | DOI:10.1007/s12220-021-00618-z
  • Bliedtner, Jürgen; Loeb, Peter A. The Best Approach for Boundary Limits, Classical and Modern Potential Theory and Applications (1994), p. 105 | DOI:10.1007/978-94-011-1138-6_10

Cité par 3 documents. Sources : Crossref