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COMPLETENESS AND THE OPEN
MAPPING THEOREM;

BY

VLASTIMIL PTAR,
(Praha).

1. Introduction. — In the present paper we intend to give an account of
some investigations concerned with the open mapping theorem. The starting
point of these investigations was the natural desire to understand what is at
the back of this theorem which, undoubtedly, is one of the deepest in
functional analysis. Their final aim is to clear this result of unnecessary
assumptions — especially that of the metrizability of the spaces in question
— and to extend it to as wide a class of topological linear spaces as possible.

These investigations have led quite naturally to the introduction of what
we believe to be an interesting notion — namely the notion of ^-complete-
ness, which coincides with ordinary completeness in metrizable spaces and
which is strong enough to ensure the validity of the open mapping theorem
in the general case.

This has been done by the author in a paper entitled On complete topo-
logical linear spaces published in the Czechoslovak Mathematical Journal
in 1953. The greater part of the present article is devoted to results obtained
there. Of course, some proofs have been simplified and some results given
a more general form. We reproduce here only those parts of our original
work which have, at least for the present time, obtained their definitive
form.

Let us try now to give a sketch of the ideas that have led the author to the
notion of ^-completeness and to make clear the meaning of the results
obtained in the main text.

Let us recall first the classical open mapping theorem. Under some slight
restrictions, it assumes the following form :

Let E be a complete normed linear space. Let cp be a continuous linear
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mapping of E onto a normed space F. Let F be of the second category
in itself. In these conditions^ the mapping cp is open and the space F is
complete.

A simple analysis of the proof shows that the essential point lies in the
following property of complete normed linear spaces : the image of the unit
sphere of E is either nondense in F or a neighbourhood of zero in F.

Let us examine more closely what is essential in these considerations. It
is the following alternative. Let E be a complete normed linear space and
co a continuous linear mapping of E onto a normed space F. Let us denote
by U the unit sphere of E and let us consider the set ^ ( U ) . We have then
the following situation :

Either not even the closure of ^ ( U ) is a neighbourhood of zero in F or
the set ^ ( U ) itself is a neighbourhood of zero in F.

Or in other words : if the closure of 9 (U) is a neighbourhood of zero
in F^ then the set cp(^7) itself is a neighbourhood of zero.

It is thus natural to consider mappings with the following property.

Let T and V be two topological spaces and f a mapping of T onto V.
We shall call the mapping f nearly open^ if it has the following property.
If G is a neighbourhood of some point ^ then the closure of f(G) is a
neighbourhood off(to).

It will perhaps be useful to compare this notion with that of an open
mapping. By means of the interior operator the definition of an open
mapping may be given by the inclusion

f(mtM)cinif(M)

which is to be fulfilled by every subset M of T. Nearly open mappings are
characterised by almost the same inclusion, namely

/(intAf)cint/(A/)

to be fulfilled by every subset M of T.
It is easy to see that the theorem of Banach may now be formulated as

follows : let E be a complete normed linear space. Let cp be a continuous
linear mapping of E onto a normed space F. Let cp be nearly open. Then
cp is open.

Having thus found what we believe to be the substance of the open
mapping theorem, we may now formulate our problem. Let us replace
normed spaces by locally convex topological vector spaces. How is
completeness to be taken in this case so as to obtain the same result? We
shall investigate locally convex topological vector spaces E with the following
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property :

(2?). Let f be a continuous and nearly open linear mapping of E onto
some space F. Then f is open.

Spaces with property (2?) will be called ^-complete.
Spaces which fulfill the same condition with the restriction to one-to-one

mappings will be called ^-complete.
The most essential point in the further investigations is a simple result

which enables us to characterise the above condition by means of an
interesting property of the dual space. We find that the following condition
is necessary and sufficient for a space E to possess property (B) : If Q is
a subspace of E ' such that^ for every neighbourhood Uofzero in 27, the
intersection Qr\U° is closed^ then Q itself is closed.

Now this condition is surprisingly similar to a result of Banach in the
Theorie des operations lineaires. There is a well-known theorem which
affirms that, if Q is a subspace of the adjoint of a Banach space such
that Q is ' l transfiniment ferme", then Q is ^regulierement ferme". In
1942, KREIN and SMULYAN threw some more light on this matter by proving
the following result;

Let Q be a subspace of the adjoint of a Banach space. Suppose that the
intersection of Q with the closed unit sphere is weakly closed. Then Q itself
is weakly closed.

If we compare this result with the condition for ^-completeness obtained
above we see that this result can be used as another proof of the open
mapping theorem.

It is surprising that it has not been noticed before that these two results
actually mean the same thing.

Clearly it is to be expected that the open mapping theorem will be closely
connected with the notion of completeness even in the general case. It is
thus natural to try to obtain a similar characterization of complete spaces by
means of the structure of their duals. We find that the following condition
is necessary and sufficient for a space E to be complete :

If Q is a hyperplane in E' such that^ for every neighbourhood of zero
U in E^ the intersection Qr\ U° is closed^ then Q itself is closed.

If we compare this condition with that for ^-completeness, we see at
once their deep connection. The same condition is imposed, first on every
subspace, second on hyperplanes only.

In any case, we can say at once that completeness is necessary for a space
to be ZP-complete. The theorem of Krein and Smulyan shows the equivalence
of these two properties in the case of a normed linear space. Their
reasoning may be applied without essential changes to extend this result to
spaces with a countable system of pseudonorms. Does it subsist in the
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general case, too ? The author expected for some time a positive answer to
this question; the study of some concrete spaces, however, has revealed
several rather surprising facts, and has led to the discovery of a space which
is complete but not ^-complete.

We are not going to reproduce the original example in the present paper,
since we have obtained simple examples later. Nevertheless, we feel that the
original ideas have not lost their interest and we intend to give a sketch of
them here. We may return to them later.

If T is a completely regular topological space, we shall denote by C( T)
the linear space of all continuous functions on T in the compact-open
topology. It is natural enough to examine the connection of the structure
of T with the properties of C(T), such as completeness or ^-completeness.
These considerations are not without interest even from the standpoint of
general topology. First of all it is easy to see that C ( T ) will be complete
if and only if every function r denned on T and continuous on every compact
subset of T is continuous. At the same time it is possible to show that
for C( T) to be ^-complete, the following condition is necessary. If M is
a dense subset of T such that its intersection with every compact subset
of T is compact, then M-==. T. Now if -/^-completeness were a consequence
of completeness, we should have the following implication.

Suppose that T is a space where a function is continuous whenever it is
continuous on every compact subset of T. It would follow then that there
can be no dense set different from the whole space and such that its
intersection with every compact subset is compact.

This implication is not true, however, as may be shown by an example of
a suitable T. The corresponding C(T) is, consequently, complete but not
./^-complete.

The same method may be used to show another perversity of complete
spaces. We shall see that a quotient of a complete space need not be
complete. To see that, let us take a space T and a closed subset B of T.
The mapping which assigns to every element of C( T) its restriction to B as
an element of C(-B) is easily seen to be both continuous and open. It
maps C( T) onto a part of C ( B ) which consists exactly of those continuous
functions on B wich have a continuous extension to the whole of T. Now
it is not difficult to construct a space T with a closed subset B such that
both C( T) and C{B) are complete but not every function continuous on B
has a continuous extension to the whole of T. It follows that the complete
space C( T) is mapped on a dense subspace //of the complete space C(B).
Since ff is different from C{B)^ it cannot be complete.

Let us turn our attention now to the closed graph theorem. In the case
of normed spaces, this theorem is an immediate consequence of the open
mapping theorem. To understand this theorem in the general case it is
necessary first to clear up the meaning of the assumption that the graph of
the mapping is closed. This we owe to A. ROBERTSON and W. ROBERTSON [10].
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The closed graph theorem may then be extended to the general case without
difficulties if jS-completeness of the space in question is assumed.

To sum up : we feel that some progress towards understanding the open
mapping and closed graph theorems has been made and

(i) a connection between two classical theorems, namely the open mapping
theorem and the theorem on subspaces of the adjoint space has been disco-
vered ;

(i i) a suitable notion of completeness, which generalizes the metric
completeness, has be found;

(iii) the open mapping and closed graph theorems have been extended
to what is, perhaps, the natural boundary of their validity.

It may safely be said that — if ^-completeness is taken instead of metric
completeness — all results concerned with the open mapping and closed
graph theorems, known from the theory of Banach spaces are valid and
some of them even in a strengthened form.

We conclude with a few remarks of " historical " character. The discus-
ion of the open mapping theorem and of ./^-completeness is contained in
the paper of V. PTAK [8]. The notion of ^-completeness has been also
introduced independently by H. S. COLLINS [2] under the name of ^full
completeness ". COLLINS, however, does not discuss the connection of this
concept with the open mapping theorem which forms the natural starting
point and justification of oar definition. The paper of COLLINS has been
published two years after our own. Our example of a complete space which
is not ^-complete is the first published. There is an example due to
GROTHENDIECK, which can be used to show that ^-completeness is not a
consequence of completeness. This example has been constructed to illus-
trate some properties of ZjF-spaces, and has been published in [^].
We use this opportunity to state that the first example of a complete
space with a noncomplete quotient is due to G. KOTHE [6]. His example,
however, is not of the form C{ T).

In this paper, we try to follow the ideas as they occurred to the author.
This way of publishing results — so carefully avoided by many authors —
is, we feel, the best for an article of this kind. The reader will find that,
in many cases, a shorter proof might have been given. Nevertheless, we
feel that even a longer proof is justified if it provides farther insight into
the matter.

2. Terminology and notation. — Terminology, as a rule, coincides with
that of Bourbaki. In some points, however, it will be necessary to introduce
notations different from those in general use. We intend to explain them in
this section. The reader will see for himself how far these changes are
justified.
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Let T be a nonvoid set, let u be a system of subsets of T with the following
properties :

1° the empty set and the set T belong to u\
2° the union of an arbitrary system of sets belonging to u belongs to u as

well;
3° the intersection of a finite number of sets belonging to u belongs to u

as well.

Then u is called a topology on T and (T, u) a topological space. The
topology is called a Hausdorff topology if, for every two distinct points ti € T^
/2 e T there exist two disjoint sets Gi € u, G^_ € u such that t^ € Gi and ^ € G.^
A set Miscalled a neighbourhood of t if there exists a G E M such tha t^€ GC U.
A system ^o of subsets of T is said to be a complete system of neighbourhoods
of a point ^oC T if the following conditions are fulfilled :

i° every member of UQ is a neighbourhood of to;
2° if V is an arbitrary neighbourhood of to, there exists a Uo € ^o such

that UoC V.

In the sequel, we shall have to compare closures af a given set in different
topologies. Since there must be something to remind us in which topology
the closure has been taken, we shall denote by uMthe closure of the set Me T
in the topology u.

Let if,i and u.^ be two topologies on T such that u^u.^. The topology Ui
is said to be finer than u.^ the topology u.^ coarser than u^. If M is a given
subset of T, we have UiMcu.^M. The finer topology gives smaller closures.

Suppose now that two topologies u and v on a set T are given. Let us
define a system c(^) of subsets of T in the following manner : a set ffc. T
will belong to c(^) if and. only if, for every t ^ H , there exists a U^. u such
that t^. 6'and vUcH. It is easy to see that v{u) is a topology on T as well
and that u3^(u). We are not going to discuss the properties of this topology
before the reader has seen the meaning of it. We shall return to it in the
main text after having shown a quite natural way to its introduction.

Let X be a real vector space. We shall denote by X* the linear space of
all linear forms defined on X. If /e X", the value of the form / at the
point x will be denoted by <( x^ /')>.

Suppose now that u is a locally convex topology defined on X. The
space of all linear forms on X continuous in the topology u is a subspace
ofJT* and will be denoted by (JT, u ) ' .

If E is a locally convex topological vector space with topology ^, we shall
sometimes write simply E ' for (77, u)' in the case that only one topology on Eis
considered and there is no danger of misunderstanding.

If there are different locally convex topologies on a vector space X to be
considered, there will be, in the general case, different dual spaces as w^ell.
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The usual notation for polarity is then not sufficient to distinguish in which
duality the polar set has been taken. This leads to the following convention :
if Q is a subspace of ^T* and A a subset of JT, we denote by A° the set

AV=E[yeQ,\^A,y^\^].
y

Here, of course, <( A, y^ is the set of all real numbers <( a, y ^ where a
runs over A. If B is a set of real numbers, the inequality B ̂ i stands for
the system of inequalities b ̂ i for every b^.B.

If E is a locally convex topological vector space, the term neighbourhood
of zero is taken to mean, unless the contrary is specified, a closed absolutely
convex neighbourhood of zero.

The topology of a locally convex topological linear space is always taken to
be a Hausdorff topology. For the sake of brevity, we use the term ' • ' • convex
space" instead of "locally convex HausdorfF topological vector space over
the real field".

If X is a linear space, a topology it on JT is said to be a convex topology
on X if (JT, u) is a convex space.

Suppose that Uy and u^ are two convex topologies on a linear space X'.
The topologies u^ and u^ are said to be equivalent if (^T, uC)'~=.^X^ u.^)'.
If u^ and M.2 are equivalent, we shall write Ui^i u.^.

The terms linear functional or linear mapping are taken in the sense of
algebra only with no condition of continuity whatsoever.

Let (£7, u) and (777, v) be two convex spaces. The points of the cartesian
product E x F will be denoted [^, j], where x^.E^ y ^ . F . The space
( E X F ) ' consists of all couples [sc1, y ' } where ^ € ( E , u ) ' , y ' ^ . ( F , r/ the
scalar product being defined by

<[^,j],[^,y]>=<^^>+<j,y>.

3. The open mapping theorem and the closed graph theorem for
one-to-one mappings. — The reader is requested to look through the
paragraph on terminology and notation. For the motivation of the defini-
tions below, see the introduction.

DEFINITION 1. — Let T and V be two topological spaces and f a mapping
of T into V. The mapping f will be called nearly open if it has the
following property. If G is a neighbourhood of some point ^o€ 77, then
the closure off(G) is a neighbourhood off(to) in f( T).

In the present paragraph we shall confine our attention to one-to-one
mappings. The general case may be obtained from this one by taking
quotients, which is a purely technical matter. This restriction has the
further advantage of presenting all the essential points of the theory without
troublesome technical details. At the same time, we can simplify matters
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by considering one space only with two topologies. Indeed, suppose we
have two topological spaces (77, u) and (T^, u^) and a one-to-one mapping/
of (77, u) onto (77!, ^i). It is easy to see that the system of all sets/-1^),
where G runs over u^ is a topology on T. We shall denote it by v. Clearly
every topological property of the mapping / may be expressed in terms of
the two topologies u and v. Thus, e. g., for / to be continuous it is
sufficient and necessary that v be coarser than u. Instead of considering a
continuous one-to-one mapping of (77, u) onto some other space it is thus
sufficient to consider another topology v on 77, coarser than u.

Let us suppose now that we have a set T with two topologies u and ^,
c coarser than u. The identical mapping of (77, u) onto (77, v) is thus
continuous. Suppose now that it is nearly open. How can this be
expressed by means of the two topologies ?

If U is a neighbourhood of to in (77, u), its image in (77, v) should be
dense in some neighbourhood of to in (T, v). It follows that the set vU
should be a (^-neighbourhood of to. If we recall the definition of the
topology v(u) in the preceding paragraph we may clearly reformulate this
fact in the following manner : the topology v(u) is coarser than v
or v(u) C.V.

We have the following proposition :

(3. i). — Let u and v be two convex topologies on a linear space X and
let u~^v. We have then u ~^v{u)'^v and v{u) is a convex topology as
well.

PROOF. — The inclusion u^v{u) is easily seen to hold for any two
topologies without any particular assumptions. Now let V be a set open in
the topology v and let t^. V. The topology v being completely regular there
exists a G^v such that t^G and vGc V. Since u 3 v, we have G^u. This
proves the inclusion v(u}^>v. The topology v being Hausdorff, it follows
from this inclusion that v{u) is Hausdorff as well. The rest is easy.

We have seen already that the identical mapping of (J", u) on (JT, v) is
nearly open if and only if v(u) C v. If u-^v, we have v(u)^>v according to
the preceding lemma. It follows that, in the case u~^v, the identical
mapping of (JT, u) onto (^T, v) is nearly open if and only if v{u) = v.

Our further considerations are based on the following proposition :

(3.2). — Let (E, u) be a convex space and let Y=: (E\ u ) ' . Let Y be
equipped vith the topology o-(.T, E). Now let v be another convex
topology on E^ coarser than u. Let us write Q= (E, v ) ' so that Qc Y.
The following two conditions are equivalent :
I ° V ( U) ̂  V ;

. 2° for every neighbourhood of zero U in (E, u), the intersection Qr\ UY

is closed in Y.



COMPLETENESS AND THE OPEN MAPPING THEOREM. 49

PROOF. — Suppose first that v(u) ~ v. It follows that, for every U, the
set vU is a neighbourhood of zero in the finest convex topology equivalent
to v. [In the notation of the French school, this topology would be denoted
byr(.£7, Q).] It follows that the set (yU)Q is compact in the topology cr((), E).
Since o-(^, E) and o-(J^, E) coincide on Q, the set {vU)Q^ considered as a
subset of -T, is weakly compact and, consequently, closed in Y.

The proof will be concluded if we show that, for every U, we have
Qr\ UV== {vU)Q. First of all, the set U being absolutely convex, its closure
is equal to its bipolar set, so that vU = U^. Hence (vU)^== U^Q^U^. It
follows immediately from the definition of polarity that W^QC^IJV. We
have thus

(vU)^== (U^)^= U^= Qr\UY

which completes the proof.
On the other hand, suppose that Qr\ UV is closed for every U. Since <71 is

compact in a ( Y , E) and Qr\UV is closed in ^/r, it follows that Q^\UY is
compact in o-( Y^ E) and, consequently, in o-(<^, E). Hence (Q^\UY)E is a
neighbourhood of zero in the topology T(/T, Q). Similarly as in the prece-
ding part of the proof we obtain

{Q^\UY)E={W)E=^vU.
We have thus obtained the inclusion T(.ZT, Q)~^v(u). Since v ( u ) ^ v

and P3o-(£7, ()), we have

T(^, <))3P(^)3^(^, Q)

which is the same as v{u) r>u v.

(3.3). — Let (7^, u) be a convex space, let Y be the space (E\ u)' in the
topology o-(.r, E). The following properties of E are equivalent :

i° every continuous and nearly open one-to-one linear mapping of E
into some convex space F is open;

2° let v be a convex topology on E such that YC.U and v{u')r^v;
then v r>u u;

3° let v be a convex topology on E such that vCu and v(u)=v;
then v = u;

4° let v be a convex topology on E such that vCu and v{u)cv; then
v = u;

5° let Q be a dense subspace of Y; if every intersection Q n UY is closed
in jT, then Q itself is closed in Y (and^ consequently^ Q= Y),

PROOF. — The equivalence of properties i°, 3° and 4° is an immediate conse-
quence of the remarks preceding lemma (3. i) and of lemma (3. i) itself.

Suppose that 2° is fulfilled and let us have a convex topology v on E^
coarser than u and such that v(u) == v. It follows that v r^j u. It is easy to

BULL. SOC. MATH. — T. 86, FA9C. I. 4



50 V. PTAK.

see that v r^> u implies v(u) ==. u. This, together with v{u) == (^, gives v = it
so that 3° is established. Suppose that 3° is fulfilled and let Q be a dense
subspace of Y such that Qr[UY is closed in Y for every U. For every
^-neighbourhood of zero U^ let us consider the set Uo=3: (Qf\ U^. The
system of the sets Uo forms a complete system of neighbourhoods of zero in
a convex topology v. This is easy to prove with the exception, perhaps, of
the fact that v is Hausdorff. To see that, it is sufficient to show that the
intersection of the system Uo is the point zero. Now if a point XQ belongs to
every (() n ^^)£', wehave<(^ QC\ UV^^i for every U, sothat<^o, Q^ .-= o.
The space Q being dense in V, we have XQ= o, so that v is separated.

We have thus denned another convex topology v on E\ v is
coarser than u since Uo 3 U for every U. It follows that (E^ ^V C Y..
Clearly QC(E, v ) ' ' . On the other hand, let j€ {E, v ) ' . There exists
a U such that <( Uo^ y y ^i. This implies y^U^. We have, however

u^^r^u^

The set Q^\UY being closed, (Qr\ U1')1^^ Qr\ UY whence y€Qr\U¥, so
that (7^, P/== Q. We assert now that, for every ^7, we have Uo=^U. The
set U being absolutely convex, the closure vU coincides with the bipolar
set UQE^ w^hence

^^=^^==(^n^r)^=^o.

It follows that v(u)=v. This, together with 3°, implies that v -==. u so
that Q=(E, v ) ' = ( E , uy=z Fand 5° is established.

Suppose now that 5° holds and let v be a convex topology on E^ v c u
and v(u) ̂  v. If we denote by Q the space (E^ v} ' ' , the intersection Qc\ UY

is closed in Y for every ^/according to (3 .2) . The space Q is dense in Y.
Indeed, suppose there is an ^o^^such that x^ ^7Z o and ^^05 Q^>=-o. It
follows from the Hahn-Banach theorem that there exists a linear functional/
on E^ continuous in the topology p, with f(^o) 7^ o. Since/may be consi-
dered as an element of (), we have a contradiction with <(^o^ ^)>==o.
According to 5°, we have Q == Y whence v r^i u. The last implication is
thus established.

DEFINITION 2. — A convex space E is said to be Bj-complete if it fulfills
one of the conditions of the preceding proposition.

We are not going now to investigate more closely the class of ^.-com-
plete spaces. It will turn out later that it is properly contained in that of
complete spaces. In the rest of this section we shall endeavour to obtain
the most general form of the open mapping and closed graph theorems.

We have thus far restricted our attention to the behaviour of topologies
coarser than the given topology u of E. It is interesting and — as we shall
see la ter—useful to consider even the case where the assumption u~^v is
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dropped. It turns out, however, that in this general case the topology ^ ( ^ )
need not be Hausdorff.

[We recall that, in the preceding case, the fact that v(u) is Hausdorff was
a consequence of the inclusion v(u) 3 v which, in its turn, follows from u^v.\
We have the following proposition :

(3.4). — Let (E^ u) be a convex space. The following condition is
necessary and sufficient for (E', u) to be Br-complete : if v is a convex
topology on E such that v(u) is Hausdorff and v(u)Cv'> then v^u.

PROOF. — Suppose first that (E, u) is ^/.-complete. Let us denote by w
the topology v{u). We have thus w C u and w C v according to our assump-
tion. Let us form now the topology w(u). If Uis a given ^-neighbourhood
of zero in E^ we have vUcwU so that w = v(u) 3 w (u). The space (E, u)
being ^-complete, it follows from wCu and w(u)cw that w = u^
whence (0 w = u and the first implication is established.

The second implication follows immediately from the fact that our condi-
tion reduces to condition 3° of (3.3) if YC.U. Before giving this lemma an
interpretation in familiar terms it wdll be necessary to examine conditions
under which the topology v{u) is Hausdorff. We have the following
lemma :

(3.5). — Let E be a linear space, u and v two convex topologies on E.
The following conditions are equivalent :

i° the topology v(u) is Hausdorff;
2° for any two points x^ and x^_ of E, different from each other ^ there

exist a u-?zeighb our hood of zero U and a v-neighbourhood of zero V such
that x^ 4- U does not meet x.^ 4- V ;

3° the diagonal in (E^ u) x (E\ v) is closed;
4° the set H of those x' e. (E, u) which are continuous in the topology v^

is dense in (E^ u)'.

PROOF. — Suppose that i° holds and let x^-^x.,_. The topology v{u)
being Hausdorff, there exists a ^-neighbourhood of zero U such that x.^ does
not belong to ^i+ vU=z v(x^ + U). It follows that there exists a
^'-neighbourhood of zero ¥ such that ̂ + V does not meet ^i+ U and 2° is
established. The equivalence of 2° and 3° is obvious. Suppose that 3° is
fulfilled and that 4° fails. Then there exists an x^- o such that<(^ ff^=o.
The diagonal D being closed in (E, u) x (E^ v)^ there exist functio-
nals x ^ . ( E , u) and ye (A7, v ) ' such that

<A f^yD^o and <[^o, o], [^ ,y]>^o.

The first equation means that <^x, x ' ̂  + <^ x^ y ' ')> = o for every x^E so
that x ' is continuous on E both in u and v. Hence xe. H. We have



52 V. PTAK.

however
x,, ^>=--<[>o, o], [x ' , /]y^o

which is a contradiction, Let 4° ^e fulfilled and suppose that XQ belongs to
every vU where ^7 runs over all ^-neighbourhoods of zero. We are to show
that Xo=o. If this were not the case, there would be an x ' ^ . H with
<^oi ^)>>o. Let us denote by U the set of all x^.E which fulfill the
inequality

' X. X' \\ ^- - ( X^. X/ I — ^ \

Clearly Lis a ^/-neighbourhood of zero. Since x ' is continuous in the topo-
logy v as well, we have U==^U whence XQ € U which is a contradiction.
The proof is complete.

DEFINITION 3. — Let fbe a linear mapping of a convex space E into some
convex space F. The subset of E x F consisting of all points of the
form [.r, f{x) ] is called the graph of f.

Lemma (3.4) may now be given the following form :

(3.6). — Let E be a convex space. Then the following condition is
sufficient and necessary for E to be B^-complete.

Let f be a one-to-one linear mapping of E into some convex space F.
If the graph of f is closed in E x F and, iff is nearly open^ then f is
open.

We shall see later that this result is a special case of the closed graph
theorem. We shall need first the following simple lemma, a strengthening
of condition 4° of (3.5).

(3.7). — Let f be a linear mapping of a convex space E into some
convex space F. The graph G off is closed in E x F if and only if the
subspace H of F' consisting of those z1^F' for which ̂ f(x)^ z^ is conti-
nuous on E^ is dense in F''.

PROOF. — Suppose that the graph of / is closed in E x F and let
<(^o7 ffy= o for some ^ o ^ F . We are going to show that the point [o, Z o ]
belongs to the closure of G. Suppose not. Then there is a [x'', z ' } ^ E ' x F '
such that

<^, [^ ,^J>=:o and < | o , ^ o L K^]>^o.

It follows that <^^, ,^)> + <^/(.^),^ ^> := o for every x^E whence z ' e . H .
At the same time ^ z ' Q ^ z ' y - ^ - o which is a contradiction. Hence [o, Zy] € G^
so tha t^o==o. The density of If is thus established.

On the other hand suppose that // is dense in F ' . Suppose that the
point [XQ, joje-^ X F does not belong to G. It follows thatyo—/(-^o) ~^- o-
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Since H is dense in P', there is a y ^ . H such that O'o—/(^o)) V)^0-
Since y ' ^ H ^ there exists an x ' ^ . E ' such that <(^, ^ )> + <(/(^), y)> == o
for every x ^ E . We have thus <( ^, [^, j7] \ == o and

<[^j'o], [^,y]>==<^ ^>+<jo,y>
== < ̂  X1 > + </(^o), y > + <jo -/(^o), y > ̂  o

so that [«^o»Jo] does not belong even to the closure of G. The proof is
concluded.

DEFINITION i. — Let T and V be two topological spaces and/a mapping
of T into V. The mapping f will be called nearly continuous if it has
the following property. If ̂ e T and H is a neighbourhood of f(^-o)
in V^ then the closure of f-^H) is a neighbourhood of XQ.

(3.8). THEOREM. — Let F be a convex space and E a Bj-complete convex
space. Let f be a linear mapping of F into E the graph of which is closed
in F x E. Iffis nearly continuous^ then f is continuous.

PROOF. — The theorem will be proved if we show that/is weakly conti-
nuous. Indeed, we know that, for every neighbourhood of zero U in E^ the
closure of f~i(U) is a neighbourhood of zero in F. If / is weakly
continuous, the set/-1 ( U ) is closed for every U so that/is continuous.

To show that/is weakly continuous, let us consider the subspace Q of E '
consisting of those x ' ^ E ' for which the functional <^/(s), x ' )> is continuous
on F. The subspace Q is dense in E ' according to (3.7). Let us show now
that, for every neighbourhood of zero U in E^ the set Qr\U° is closed in E ' .
We note first that, for every neighbourhood of zero V in F^ the set/(I7)0 is
contained in Q. Indeed, if^e/^)0 the function <(/(^), x ' )> is continuous
since it is bounded on a neighbourhood of zero in F. Now let a neighbour-
hood of zero U in E be given. According to our assumption, the set/-1 (U)
is a neighbourhood of zero in F. Let us denote it by V. First of all, let us
prove the inclusion Qr\U°Cf(V)0. If x'^U^Q, the function </(^), x ' >
is continuous and <^ ^7, x ' ^ ^ i . Now ^/(/-j (£/)), x'^^i and, by conti-
nuity <(/(TO, x ' )>^i and our inclusion is established. We have now

QnU°cf(V)°cQ

whence Qr\ UO=f(V)or\ U° which is a closed set in E ' ' . It follows that
Q == E ' so that/is weakly continuous. The proof is complete.

(3.9) Let E be a Br-complete space, let E^ be a closed subspace of E.
Then E^ is Br-complete.

PROOF. — Let QQ be a dense subspace of E'^ such that QQ n U°Q is
o-(2^), Eo) closed for every neighbourhood of zero Uo in EQ. Let us denote
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by Q the set of all functionals x ' ^ . E ' such that their restriction ^ { x ' ) to E^
is a member of Qo. Suppose that we have <(^oi (P^^0 ^or some x^^E.
If XQ^EQ^ we have o==<(^o? ^Z^^^-^o ; ?(^)) ' ^or every q^Q^ so that
<(^o? (?o ^ ̂  ° whence .^o^o. If ^o non €-Z^o, there exists an x\ such

• that <^ A^o, ^o ^> == o and <^ x^^ x\ y == i. Now ^"o € (^ since cp (^) == o € Qo-
This is, however, a contradiction with <(^o? <?)>=o. It follows that ^ is
dense in E.

Now let U be an arbitrary neighbourhood of zero in E. We have
clearly

^oncp- l(<?o)C9- l((^n^o)on(?o)ccp- l(^)
whence

^on9- l(<?o)==^oncp- l((^n.£7o)on^o);

the set (Ur\Eo)°r\Qo being closed in E\, it follows that c?-1 ((Ur\Eo)°r\ Qo)
is closed in E \ hence ^7° n cp-1 (Qo) is closed in E. It follows that
cp-1 (^o) = E ' so that ^o== ^o- The proposition is established.

(3. 10). — Let P be a B^-complete space and Q a convex space. Let f
be a one-to-one linear mapping of a subspace PoCP into Q. Suppose
that the graph of f is closed in P x Q. Iff is nearly open^ then f is open.

PROOF. — Let us denote by F the space f(P). For every x^.F^ let us
define g-(^)^Po by the postulate that ^•(^)e^Po and f { g ( x ' ) ) = i x . The
graph of / being closed in P x Q^ the graph of g is closed in F X P.
Clearly g ' is nearly continuous on F. It follows from the preceding
theorem that g is continuous and, consequently, /open.

k. The open mapping" theorem. — We turn now to the general form of
the open mapping theorem without the restriction to one-to-one mappings.
We prove first a proposition analogous to (3.3).

(^. i). — Let (E^ u) be a convex space^ let Y be the space (E^ u)' in
the topology cr( Y^-E). The following properties of E are equivalent :

i° every continuous and nearly open linear mapping of E into some
convex space F is open;

2° let Q be a subspace of Y such that every intersection Qr\ U1 is closed
in Y"; then Q is closed in Y.

PROOF. — Suppose that i° is fulfilled and let Q be a subspace of Y such
that Q r\ UY is closed in Y for every neighbourhood of zero U in E. Let us
denote by / the canonical mapping of E onto F=:E/Q0. In F we define
a convex topology v by means of the sets f((Qr\U°)°) where U runs over
all neighbourhoods of zero in E. Since /-1 ( /((^U U°)°)) 3 (<?n U°)°^ U,
the mapping/is continuous. Clearly (E/0\ v ) ' ' - = Q. Since f(U)°== Qr\U°,
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we have
;./({/) =/((/)<?^=/((()n £/«)»)

•so that / is nearly open. It follows that f is open or, in other words,
that v is equal to the quotient topology, whence Q = 0°°.

On the other hand, suppose that 2° is fulfilled and let f be a continuous
•and nearly open linear mapping of E onto some convex space (F^ v).
Put Q = - f ' { F ' ) . It is easy to see that

Qr\U^f'(f(UY).

Since f(U)°=^ (^/(^))° and vf{U) is a neighbourhood of zero in (/^, P) ,
the set/(^7)°is compact in o^,/^, F). The mapping // being continuous in
the topologies o- ( F ' ' , 7<7) and o- (£7, E) the set f ' ( f (U) ° ) is compact in
o-^, 7T). It follows from our assumption that Q is closed in E ' ' . Let us
denote by w the convex topology on F defined by the sets f(U). Since/is
continuous, w is finer than v. We intend to show now that w r^j v. It is suf-
ficient to show that (F^ w)' C (F^ v ) ' . To see that, take a linear form g on F
such that^ is bounded on some setf(U). The linear form on E defined by
,§{f(^)) is thus continuous on E so that there exists an x ' ^ . E ' such that
g (f{x)) == <^ x^ x ' ^ for every x^E.

Suppose now that x ' non € <^. Since Q is closed in E\ there exists
an ^o C E such that

^05 Q^'==- ° ^d <C .̂ , ,-r' > ^_ o.

We have thus

<^ / / ( ^ / )>=o whence < / (^o) ,^>==o

so that f(^o) = o. On the other hand

^(/(^o))=<^o, ̂ >^o

which is a contradiction. It follows that x ' ^ Q ^ so that ^ • ^ / ' ( z ' ) for a
suitable z ' € F ' . Hence

S'(fW) = <^, //^) > = </(^), ^>

for every x^E so that g ( z ) =z <^z^ z ' ^ for every z ^ F . The equiva-
lence w ̂  p is thus established. This equivalence implies ^ ( w ) = = w . It
follows from our assumption that ^ ( w ) = = ( \ Hence v == w so that the
mapping/is open.

DEFINITION 5. — A convex space E is said to be B-complete if it fulfills
one of the conditions of the preceding proposition.

(h-. 2). — Let E be a B-complete convex space. Then E is Br-complete.
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PROOF. — This is an immediate consequence of (3.3) and ( 4 . i ) . It is
hardly to be expected that the converse is true.

(^ .3) . — Let (E^ u) be a convex space and let u^ be a finer convex
topology on E such that Ui^u u. If {E^ u) is B-complete^ then {E^ u^)
is B-complete. If {E^ u) is Br-comp lete^ then (-ZT, Ui) is Br-complete.

PROOF. — This is an immediate consequence of the dual characterizations
in (3.3) and ( 4 . i ) .

The proof of the second part of (^. i ) may be adapted to obtain a simple
property of permanence for ^-completeness. Although we have now
several different ways of proving it more directly, we choose the following
one on account of the further information it provides of the structure of the
dual space.

(4. 4). — Let f be a continuous and nearly open linear mapping of a
convex space E onto a convex space F. If E is B-complete then F is
B-complete.

PROOF. — Let Q be a subspace of F ' such that Qr\ VQ is (J(F^ F ) closed
for every neighbourhood of zero V in F. Let us examine the subspace
f ' { Q ) m E ' . We have

ff(Q)r\^==fr(f(U)O^Q)

for every neighbourhood of zero U in E. Now f{U)Q is the polar of a
neighbourhood of zero in F, so that f(U)°r\Q is compact in a ( F ' ^ F ) .
Hence / ' { Q ^ C ^ U ^ is weakly compact for every U so that f ' { Q ) is closed
in E ' ' . It follows that Q is closed in F1'.

(4. 5). — Let/be a one-to-one linear mapping of a convex space F onto
a closed subspace of a convex space E. Suppose that f is open and
nearly continuous. If E is Br-complete then F is Br-complete.

PROOF. — Let us denote by E^ the space f(F). According to our
assumption E\ is closed in E so that E^ is /^.-complete according to (3.9),
Let us denote by g the linear mapping from E-^ onto F which is inverse to/".
Clearly g is continuous and nearly open. It follows that g is open so that/
is both open and continuous. Hence F is both algebraically and topologi-
cally isomorphic to the 2^-complete space E^.

We are going now to prove the general form of the open mapping
theorem. We shall need first a simple lemma.

(4. 6). — Let E and F be two convex spaces. Let EQ be a dense
subspace of E, Let f be a linear mapping of EQ into F^ the graph of
which is closed in E x F. Then the subspace H of F' consisting of
those z' ̂ F' for which <^/(^), ^)> is continuous on EQ^ is dense in F''.
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PROOF. — Suppose that <(^ H^= o for some Zo^F. We are going to
show that the point [o, Zo] belongs to the closure of G. Suppose not.
Then there is a point [x ' ' , z ' ' } ^ E ' x F ' such that

< G, [ x', z'] > = o and < [o, ^], [^ z'] > ̂  o.

It follows that
<.r, ^>-+-</(^), ^>=o

for every x^Eo whence z'^ff. At the same time <^ZQ^ z ' ^ y ^ o which is a
contradiction. Hence [o, Zo]^G so that ZQ=O. The density of H is thus
established.

(4. 7). — THEOREM. — Let E be a B-complete convex space and F a
convex space. Let f be a linear mapping of a subspace EoCE into F^
the graph of which is closed in E x F. If f is nearly open^ then f
is open.

PROOF. — Let us denote by Ey the closure of Eo in E and by F^ the
space f(-Eo). Clearly the graph of /will be closed in E^xF^ The
space Ei is ^-complete according to (3.9). Hence it is sufficient to prove
our theorem under the additional assumption that Eo is dense in E and that
the mapping / is onto. Let us denote by H the 'set of all z ' ^ . F ' such that
<(/(^), z ' y is continuous on Eo. If z'^ff, there is an x ' ^ E ' such that
<^f(x), z ' )>==<( .a?, x ' y for every X^EQ. The space EQ being dense in E\
there is exactly one x ' of that property. We shall write x ' = = i f ' { z ' ) . We
have thus a mapping // of H into E ' . Let us denote by Q the subspace
f'(fI)C.Er. Clearly // is a continuous mapping of (77, o-(77, F ) )
onto ((), o-((?5 ^o))- Let U be an arbitrary neighbourhood of zero in E.
The mapping/being nearly open, the setf(Ur\Eo) is a neighbourhood of
zero in 7^ so that the setf(Ur\Eo)° is compact in ( j { F ' , F). \iz' ef(Ur\Eo)\
the linear form ^f(x), z ' ' ) > is bounded on UC\EQ so that z ' ^ . H . Hence
f(Uf\Eo)° C.H for every neighbourhood of zero in E. Further it is easy to
see that Qr\ U° ==f(f(Ur\Eo)°), so that Qr\U° is ( J ( E ' , E,) compact. The
topologies o-(.£7, Eo) and o-(£7, E) coincide, however, on ^7° so that Qr\U°
is a ( E ' , E) closed in E ' . The space E being ^-complete, the space Q is
closed in E ' . Let us denote by t the topology on F defined by the sets
f(Ur\Eo) where U runs over all neighbourhoods of zero in E. Let us
denote by w the topology on F defined by the sets f(Ur\Eo) where U runs
over all neighbourhoods of zero in E. Clearly tcw. Since If is dense
in F\ the topology t is Hausdorff so that both t and w are convex topologies
on F. Since ^ C w , we have (F,w)'^ ( F ^ t ) ' . We have seen already that
{ F , t ) ' = H .

We are going to show now that w ̂  /. To see that, let us take a linear
form g on F, bounded on some set f(Up[Eo). It follows that the function
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^{f(x)) is continuous on [EQ so that there • exists a point x ' ^ ^ E ' sucli
that g ( f ( ^ ) ) == ̂ ^i oc\ y for every x^E^. Suppose that x\ does not
belong to f ' { H ) . We know already that this subspace is closed in E ' .
It follows that there exists an x^ e E such that

^ x ^ f ' ( H ) ^ ^ o and < ^ o , ^ o > 7 ^ ° -

Suppose that ^o€ ^o, We have then

</(^),^>^<^/ /(^)>=o

so that f('Xo) ==• o, On the other hand,

^(/Oo))^^^ ^o)^0

wliich is a contradiction. It follows that XQ non ^EQ. The point [^"o? o]
does not belong to the graph of f. It follows that there exists a point
[ x\, z\ ] e E ' x F ' such that

<^ ,0+</(^), ̂ i>=o

for every X^.EQ and <^o? ^i )> 7^ °- Hence z ' ^ . H and x\^,f'(H) so
that ^^o? -^i )> == °' The contradiction obtained proves that x ' Q ^ f ' ( H ) .
The inclusion ( F , w)' c(E, 1)' is thus established.

We have thus, on F^ three convex topologies : the original topology v
and the two topologies w and t. We have tcw and tr^iw. The
mapping f being nearly open, we have tc.v. Since tC^i we have
t ( w ) c . ^ ( w ) . Since t r^ w^ -we have t ( w ) == w. We have, accordingly,

w = t(w) C ^ ( w ) == < C c so that wcc .

This inclusion shows that the mappingyis open. The proof is complete.
We may remark here that another proof of the preceding theorem may be

obtained in the following manner. We prove first the following lemma.
Let E and F be two convex spaces, let f be a linear mapping of a subspace
E^cE into F. Suppose that the graph o f / is closed in ExF. Let us
denote by Z the set of all XQ^.EQ with /(^o) = o. Then Z is closed in E.
To prove this lemma, take a point ZQ^E which belongs to the closure of Z.
We are going to show that the point [^o? o] belongs to the closure of the
graph of y. Indeed, if U is an arbitrary neighbourhood of zero in E and
V an arbitrary neighbourhood of zero in F^ there exists a point XQ e Z such
that XQ e So 4- U. We have thus

XQ^ZO-{-U and /(^o) == °€ V.
Hence

z^Eo and / (^o)==o.

We may form now the quotient E / Z which is ^-complete according
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to ( ^ . 4 ) - Let us denote by A tlie canonical mapping of E onto E f Z .
There exists a one-to-one linear mapping g of E^Z onto / ( E ^ ) such that
J^go.k. We show next that g is nearly open and that its graph is closed
in E / Z x F. The rest is a consequence of (3.10). The resulting proof is,
perhaps, more simple tlian the preceding one; it is, however, less direct and
certainly longer.

We shall need the following lemma.

(^.8). — Let E and F be two convex spaces. Let F be a t-space
{espace tonnele). L e t / b e a linear mapping of F into E^ let g be a
linear mapping of E onto F. Then f is nearly continuous and g nearly
-open.

PROOF. — This is an immediate consequence of the definition ofa^-space.
Many of the preceding results have interesting corollaries based on this

lemma. We formulate the following two consequences of (3.8) and (^.7).

(4.9). — THEOREM. — Let F be a convex t-space^ let E be a Br-complete
-convex space. Let f be a linear mapping of F into E the graph of which
.is closed in F x E. Then f is continuous.

(^. 10). — THEOREM. — Let E be a B-complete convex space, let F be a
-convex t-space. Let be a linear mapping of a sub space EQ<^.E onto F.
Suppose that the graph off is closed in E x F. Then f is open.

5. Complete convex spaces. — One cannot help noticing a striking
similarity between the dual condition for ^-completeness and a property of
normed spaces discovered by Banach. Indeed, we find, on page 129 of the
Theorie des operations lineaires^ essentially the following result :

Let E be a complete normed linear space. Let Q be a subspace of E'
such that the intersection of Q with the closed unit sphere of E is weakly
closed. Then Q itself is weakly closed.

If we compare this result with the condition for /^-completeness obtained
above we see at once this result can be used as another proof of the open
mapping theorem. These two results have always been treated separately
.and it has not been noticed before that they actually mean the same thing.

The above result of Banach shows that, in the case of normed spaces, B-
completeness is a consequence of completeness. It is to be expected that
^-completeness will be closely connected with the notion of completeness
even in the general case. This suggests the following way of clearing up the
connection between these two properties : Let us try to give a similar cha-
racterization of complete convex spaces by means of the structure of their
duals.
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We begin by recapitulating some definitions.

DEFINITION 6. — Let (E^ u) be a convex space. A system el of subsets of
(L\ u) is said to be a Cauchy system in (7^, u) if if fulfills the following
conditions :

i° every A € ̂  is closed in {E^ u);
2° the system (^.possesses the finite intersection property ;
3° for every neighbourhood of zero U in (E\ u) there exists an A € CX

such that AC a-}- U for every a € A.

DEFINITION 7. — A convex space (7^, u) is called complete if'every Cauchy
system in (7^, u) has a nonvoid intersection.

DEFINITION 8. — A convex space (7T, u) is said to be absolutely closed if
it is closed in every convex space in which it is contained.

(5 .1) . — Let (7?, u) be a complete convex space. Then (7^, u) is
absolutely closed.

PROOF : Obvious.
We know from the theory of general uniform structures that even tlie

converse of (5 . i ) is true. We are not going to use the theory of uniform
structures here since we need a much more precise result for which the
convex structure of E is essential.. The equivalence of completeness and
the property of being absolutely closed will then follow as a simple corollary.
We may thus expect the following result : a convex space (7^, u) will be
noncomplete if and only if there exists a bigger convex space in which E is
contained as a dense subset. Let us adopt this equivalence as a heuristic
principle to guide us in our further work.

Let (7^, u) be a convex space, let (7?, u^) be a convex space, such that
(7^, ^)c(7?, u^) and that E is dense in 7?. Let x ' be a continuous linear
functional on (7^, u). Then x ' may be extended in a unique way to a
continuous linear functional s(^) on (7?, u^). On the other hand, let / be
a continuous linear functional on (7?, u^). The restriction of f to E is
easily seen to be a member of (77, u ) ' ' . Let us denote it by x ' ; we have
thusy== i{x'). The mapping £ is thus seen to be a one-to-one linear corre-
spondence between E ' and R ' . The bilinear functional <( x^ x ' ^> on E x E '
may thus be extended to 7? x E ' if we write simply <( /', x ' ^ for <^ /', s(a/)^>.
In this scalar product, the space E ' may serve as dual for both E and 7?.
Especially, we may consider on E ' the topology cr(7^, 7?).

(5.2). — Let (7^, u) be a convex space, let(R^Un) be a convex space such
that (7^, u) c (7?, u^) and that E is dense in 7?. Let Ube a neighbourhood
of zero in E. Then the topologies o-(E1, E) and v(E\ R) coincide on the
set U\
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PROOF. — Let U be an arbitrary neighbourhood of zero in E. Since E is
dense in 7?, the closure u^U of U in R will be a neighbourhood of zero in 7?.
It follows that the set (u^U)0 is v ( E ' , R) compact and the set U° compact
in < T { E ' , E). Since clearly U°= (^R^/)°, it follows that U° is compact both
in ( 7 ( E ' , R) and v ( E ' , E). We have thus a set with tw^o Hausdorff compact
topologies on it, one finer than the other. It follows from a general theorem
that these two topologies are identical. The proof is concluded.

Suppose now that we have a convex space (JE\ u). Suppose further that
there exists a convex space (7?, u^) such that E is dense in (7?, UR) but
different from 7?. Let us consider on E ' the two topologies ^(T^, E) and
o-(E^ R). Take now a point r^R which does not belong to E and consider
the hyperplane Z ( r ) of all x ' ^ . E ' for which < r, ^)>==o. Since r^R but
not r^.E, the hyperplane Z ( r ) is closed in o - ( E ' , 7?), but not in o-fT^, E ) .
If U is an arbitrary neighbourhood of zero in 7T, it follows from the prece-
ding lemma that Z(r)^\UQ is cr(/^, R) compact and, consequently a-(E\ E )
compact. It follows that Z ( r ) is a hyperplane in E which is not closed
in E ' but which has a closed intersection with every U°. Let us examine more
closely hyperplanes with this property. We have the following lemma.

(5.3). — Let (E, u) be a convex space. Let r be a linear form defined
on T~= (E\ u)'. The following-properties of r are equivalent :

i° for every neighbourhood of zero U, the intersection Z(r)r\U^ is
closed in Y in the topology o-( Y^ E) ;

2° for every neighbourhood of zero U the function r is continuous on
I'° in the topology <r( Y ̂  E).

PROOF. — Suppose that i° holds. For every real number a, let us denote
by ()(a) the set of those x ' e Y for which <(•/-, x ' ^> == a so that Q(o) == Z(r).
We show first that 0(a) n U° is cr( Y, E) closed in Yfor every a and every U.
This is clear if Q(^)r\U° is empty. If there is an je <?(a) n U\ we find
easily that

<?(a)n6^0=(J+2((?(o)n^o))n^70

which is an intersection of two closed sets.
Now let jo € U° and let s be an arbitrary positive number. The set

^ :=(^«^J'o>-3)n^o)u(^«^Jo>+£)n£/u)

is closed in Y and jo does not belong to W. Hence there exists a neigh-
bourhood of zero V in the topology <j{Y, E) such thatjo-+- V does not
meet W. We are going to show that j€ U° and j€jo + V implies

K ^ J > — < ^ J o > ^£.

Indeed, suppose that there exists a

JC^nCTo+F) such that |< / " . J-Jo > | > £.
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Let
£ ,A = ———————— so that o <: A << i.

1<^ J—Jo>|

The set ^70n(J /o+ ^) being convex, we have

ro+^(j-jo)e^°n(jo+ V).

The value of /' in this point is

<^Jo+^J-^o)>=<^Jo>+£——-4——^.
I \ r-! } — — J O / |

It follows that jo+^( .7—Jo)€ IV which is a contradiction. The conti-
nuity of r is thus established.

The other implication being obvious, the proof is concluded.
Now let (7T, u) be a given convex space. Let us consider the linear

space R consisting of all linear forms /' denned on E ' such tliat Z ( r ) r\ U° is
v(E\ E) closed for every neighbourhood of zero U in E. If x^.E^ the
hyperplane Z{x) is o'(7T\ E) closed in E ' . It is thus possible to consider^
as a subspace of B. Tlie inclusion EC.R is, however, not only a set-
theoretical one, as may be seen from the following theorem.

(5.4). — Let {E^ u) be a convex space. Let R~^E be the space des-
cribed above. Then there exists a convex topology u^ defined on R with
the following properties :

1° the space (7?, iin) is complete;
2° the topology UR induces the original topology u on E;
3° E is dense in (7?, iin).

PROOF. — For every neighbourhood of zero U in 7T, consider the set
1^=17^. We liave

UnC^E^ U^^E-^ U^^ U

for every U. Suppose that /'o € R belongs to every Uj^ and that J\ -^ o.
Then there exists an x\ € Y with

i3==<(ro , ^o>> °-

Let us denote by U the set of those x^. E for which

I / T T \ ' ̂  -l QI \ JL 1 UL/ 0 / i ^= P •

Clearly U is a neighbourhood of zero in E. Now j\ € VR so that

<ro,^->^i.
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Since - x\ € U1, we have

/ 2 / \
\ 7 " ^ x o /'-\ ^ 0 •) Q ^ 0 / ^—- ^ 7

whence

(5=</••o,^>^ I(3
<4

which is a contradiction. It follows that r^=zo so that UR is a convex
topology on 7?. Since U^r\E=z U for every ^7, the topology UR induces the
topology u on E.

Let us denote now by S the space (7?, M^y. Let x ' e (7T, u)' and let U be
a neighbourhood of zero such that x ' € U1". It follows that [ <( U^ x ' ^ |^i
so that ^ may be considered as an element of S. We have thus
(E, ^yc(7?, u^y. We intend to show now that (E, u)'==: (7?, u ^ ) ' . To
see that, take an arbitrary z ' e S. There exists a Up such that <^ U^ z ' ' y ^_ i.
Let us consider the set UY. This set is compact in the weak topology corres-
ponding to E. It follows easily from lemma (5.3) that it is also compact
in the weak topology corresponding to 7?. Suppose now that z'non^U^.
Since UY is absolutely convex and o"(<S\ R) closed in S^ there exists
an FQ ̂  jR such that

<(/ 'o, ^vy^i and < ( r o , ^ ) > > i .

According to the first inequality we have /'o € ^/?. We obtain thus a
contradiction with <( UR, z ' ^ ^ i . Hence z ' e . U Y C ( E , u)^ so that
(E\ ^y==:(7?, un)'. It follows that E is dense in (7?, uj^). To show-that
(7?, ^p) is complete, let us take an arbitrary Cauchy system Cl in (7?, Up).
For every x ' ^ . Y ^ consider the system Ci{x') of subsets of the real line
consisting of the closures of the sets <(^4, ^)>, where A runs over Cl.
Clearly d ^ x ' ) is a Cauchy system on the real line and has, consequently,
a one-point intersection which will be denoted bv <( /'o, x ' )>. Clearly j\ is
a linear form denned on Y.

Let us prove now the following proposition : Let U be an arbitrary neigh-
bourhood of zero aud let s be an arbitrary positive number. Then there
exists an A € CX such that

] <( /' — 7-0, U°^ [ ̂  £ for every r e A.

To see that, it is sufficient to take an A € ^C such that for every r ^ A we
have Acr-^-eU^. It follows that, for every x ' ^ U 9 ^ the diameter of the
set <(^4, x'^ is at most £. Take an arbitrary r^A. The number <( r, x ' y
belongs to the set <(^4, ^)>, the value <(/-o, x'^ to its closure. It follows
that

K/- - / -O, ^>|^£.
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Since x ' was arbitrary, we have

| < ^ r — / - o , ^7°)>[^£ for every / 'e^.

First of all, it follows from this proposition that r^B. Indeed, if we
consider a fixed ^7°, the function FQ may be approximated arbitrarily well on
U° by the continuous functions r. The function /-o is, consequently,
continuous on U° so that ^oCT?.

We are going to show now that r^ belongs to every A^d. Take an
arbitrary A € Cl and a arbitrary U. According to the preceding proposition,
there exists an Au^.0. such that

K 7 1 -— 7 ^ U°y ^i for every r^A^j.

Now there exists an r(=,Ar\Au. It follows that / -€7-o+ Un. Since ^7 was
arbitrary, it follows that r^ belongs to the closure of A, so that ̂ e A. The
proof is complete.

(5.5). — Let {E, u) be a convex space. Then (E, u) is complete if and
only if it is absolutely closed.

PROOF. — The ^only if" part is obvious. To prove the ^ i f " part, take
an absolutely closed convex space (E\ u) and construct the corresponding
complete space 7?. Since E is both dense and closed in 7?, we have E=R
so that E is complete.

(5.6). — Let (E, u) be a convex space. Then (E, u) is complete if
and only if the following- condition is fulfilled :

Let Q be a hyperplane in E ' such that Qr\U° is v ( E ' , E) closed for
every neighbourhood of zero U in E; then Q is closed in E ' .

PROOF. — First of all, let (E, u) be complete. Then (E, u) is closed in
every convex space in which it is contained. Since E is dense in 7?, we
have E=R so that our condition is fulfilled. If {E, u) is not complete,
then there exists an r^.R which does not belong to E. If Qz=Z(r), we
have Q n U° closed in E ' for every U but Q is not closed in E ' since r non e E.

(5.7). — Let (E^ u) be a B,-complete convex space. Then (E, u) is
complete.

PROOF. -- Let Q be a hyperplane in E ' such that Qr\ U° is o-(^, E) closed
for every U. Suppose that Q is dense in E ' ' . It would follow then from (3.3)
that Q=E' which is a contradiction. Hence Q is closed in E ' and the
proposition is proved.

We shall see later that the converse is not true.
Let {E, u) be a convex space and let (7?, ^) be the convex space described

in (5.3). Let us consider the space E ' in the topology o-(7^, E). We
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have seen already that there is, on E ' ' , a finer topology v ( E ' ^ R) which
coincides with v ( E ' , E) on all sets U°. It thus natural to try to describe
the finest convex topology w on E ' which coincides with o - ( E ' ^ E) on all
sets U°. It is not difficult to give a complete description of the topology
w. We begin with a simple lemma.

(5.8). — Let (E, u) be a convex space and U a neighbourhood of zero
in E. Let F be a finite subset ofE and let M be the union of the sets x -4- £/,
where x^F. Then there exists a finite set A cE such that the absolutely
convex envelope of M is contained in the union of the sets a -\- 2 ^7,
where a € A.

PROOF. — Let x^ x.^ . . ., Xn be the points of F. There exist positive

numbers a; such that a^-e - U. For every ;', choose a natural number n^

such that ^;a;> i. Let us denote by A the set consisting of all sums of the
n

form V^a^ where ^ are integers fulfilling
i=\

ki ^,nj-\-i.

Suppose now thai x belongs to the absolutely convex envelope of M. It
follows that

where

For every ;, let

ki= —' so that | ki \ ̂  n,; + j .
L^-J

Let

a=^^ki^iXi so that a^.A.

We have then

x — a== u 4-^(^— ki^Xi.
;'==i

Clearly

| ̂  — ki a, | ̂  a/, whence V (/;• — ki a,) Xi € U.
1=1

BULL. SOC. MATH. — T. 86, FASC. I. 5
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Hence x — a€ 2 U and the proof is complete.
We may return now to the topology w. A complete description of it is

contained in the following theorem.

(5.9). — Let (2 ,̂ u) be a convex space. Let us denote by W the set of
all convex topologies on E' which coincide with o- (E^E) on every U°.
Then there exists a convex topology w^W which is finer than any
w'^W. The topology w may be described as follows : Let W be an
absolutely convex subset of E' such that W generates the whole of E'.
Then W is a neighbourhood of zero in the topology w if and only if the
following conditions are fulfilled :

T° the intersection Wr\U° is (7(E^ E) closed/or every U;
2° the polar W13 is a praecompact subset of (E^ u).

PROOF. — i° Let w''e'W and let W be a w'-neighbourhood of zero in E ' .
The set Wr\U° is w ' closed in U°. It follows that it is cr(E^ E) compact
and therefore ( j { E ' E) closed in E ' so that condition i° of our theorem is
fulfilled.

2° Let w'e'W and let W be a neighbourhood of zero in the topology w ' ' .
Let us show that WQ is a praecompact subset of (E^ u). Let U be a given
neighbourhood of zero in E. Since W is a neighbourhood of zero in the top-
ology w\ the set WC\ U° is o-(E^ E) compact and there exists a finite selEcE
consisting of the points x^ .. ., Xn such that F° n U° C W. It follows that
W^ is contained in the closed absolutely convex envelope of E\j U. Let us
denote by M the set U\j{x^-{- U)\J . . . u(^/z+ U). Accordingto (0.8), there
exists a finite set A such that the absolutely convex envelope of M is a subset

of the union S == ̂ J (a + 2 U). It follows that the absolutely convex
a<6^

envelope of E\j U is contained in *S'. Since S is a closed set, we have W° C S.
Since U was arbitrary, it follows that W° is praecompact in (E^ u).

3° Now let W be a set fulfilling the conditions of our theorem. We
intend to show that there exists, for every £/, a o'(E^ E) neighbourhood of
zero V such that Vr\U°C W. To see that, take a fixed neighbourhood of
zero U\n E. The set W° being praecompact in (E^ u)^ there exist n points
•TI, . . . , x^^. E such that

3 Fir°c(^i4- U)\j... u(^+ U).
Let us denote by F the set consisting of the points Xi. The set F°° consists
of all linear combinations

n n

^ ̂  Xi•, where ^ | ̂  [ ̂  i .
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Let us denote by P the convex envelope of the union F°°\jU. I f^e W°,
we have

^=^(^/-t-^)

for some j and some u^U. It follows that x^P so that W°cP. Since
^/cP, we have W°\jUcP.

]Now we have

(T^n U0)0^ closed convex envelope of W° U U,
whence

(FFn^^cP00 .
It follows that

P^^WnU0)00^: Wr\U°.
But

po^f^pQovjuy^zF^u0

It follows that F° (^ U°cW and the proof of our assertion is complete.

4° To complete the proof it is sufficient to show that a set W fulfilling the
conditions of our theorem is w-closed. To see that, take a point y o ^ E '
which does not belong to W. Let us denote by U the set of all x^E iov
which | ^ x^ yoY ] ̂  i so that U is a neighbourhood of zero in E. The set U°
clearly consists of all points of the form lyy^ where — i ^ ^ ^ i . The
intersection lVf\U° being d ( E ' ^ E) closed it follows that there exists a
number o << co << i such that ^y^^W implies [7|^ci). Suppose that

J o € — — — W . It follows that ———Y^W which is a contradiction

since ——— >> co. Hence y^ does not belong to W = ——— W. According

to the Hahn-Banach theorem there exists a nonzero linear form / denned
on E ' such that /( W)^f(yo). Since W is absolutely convex and gene-
rates E ' ^ the value <^/, y^ must be positive. We have now

""?</, »Q-r^up</, ̂ >^-^</,^>«y,^>.

If we show that/belongs to 7?, the set W will be o-(£7', 7?) closed and,
consequently, w-closed. We may clearly assume that sup<^/, W^=i.
Let U be a given neighbourhood of zero in E and s an arbitrary positive
number. According to the preceding section of the proof, there exists

r\

a ^ ( E ' ^ E) neighbourhood of zero V such that Vr\-U°CW. Suppose
now that

Ji,J-2e^0 and j ^—j^eeF .
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We have then

^Cri-jOe rn^°C FT, whence //, ^ (j,-j,)) | ̂ r

so that
!</. Jj >--</. j2> | ̂ £.

It follows that / is continuous on U° in the topology a - ( E ' E) so that/e7?.
The proof is complete.

(5.io). — Let (E, u) be a convex space. Let us consider on E ' the
following three convex topologies :

( 1 ) the finest convex topology t^ coinciding with v(E'^ E) on every
set U°;

(2) the convex topology tc defined by the sets polar to absolutely convex
compact subsets of (E^ u);

(3) the convex topology tp defined by the sets polar to prae compact
subsets of (E^ u).

We have
t R ' ^ t p ~ ^ t c and t c { t ^ ) — t p .

PROOF. — Let Fbe a tp neighbourhood of zero. Then F=rP°, where P
is a praecompact subset of (E^ u). Now tc^v{E\ E) so that^Fzz: V.
Since V is a t^ neighbourhood of zero and V=tcV^ we have tpCtc(tn}.
Now let W be a tn neighbourhood of zero. Since t c ^ ^ ( E ' ^ E), we
hoivetcW= W00 so that tc W is a ̂ neighbourhood of zero. Hence tc(tn)C tp
and the proof is complete.

According to the above inclusion, we have

E=(E^ tcVc{E', tp)rC(Ef, t^'=B.

Clearly (E^ t p ) ' coincides with the union of all sets P where P is a praecompact
subset of (E^ u)^ the closure being taken in 7?. It may be shown on examples
that ( E ' , t p ) ' may be different both from E and 7?.

(5.n). — Let (E, u) be a convex space and P a praecompact subset
of (E^ u). Then P00 is praecompact as well.

PROOF. — Let U be a given neighbourhood of zero in (E^ u). There

exists a finite set F such that P is contained in the union M of the sets x 4- - U
2

where x^F. It follows from (5.8) that the absolutely convex envelope

of M is contained in a set S == U (a + U), where A is a finite subset ofE.
a^A

The absolutely convex envelope of P is thus contained in -S'. Since S is
closed, we have P°°cS and the proof is complete.
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(5 .12) . — Let (£7, u) be a complete convex space. Then the topologies tp
and tc of the space E' are identical.

PROOF. — If P is a praecompact subset of {E^ iz), the set P°° is both
praecompact and closed in the complete space (7^, u). Hence P00 is compact.
It follows that tpCtc^ whence tp= tc the inclusion tcCtp being obvious.

Let us conclude this section with another property of complete spaces
which, at the same time, illustrates the usefulness of the topology v{u).

(5 .13 ) . — Let (E^ v) be a complete convex space. Let u be another
convex topology on E^ finer then v. Then E is complete in the topology v (u).

PROOF. — According to lemma (3 . i ) , we have the following inclusions
^0^(^)3^. Now let <fl be a Cauchy system in the topology v(u). Since
^(^)3^ , the system d3 consisting of the sets vA where A runs over (fl, is a
Cauchy system in the topology v. Hence there exists a point XQ which
belongs to every vA. Choose an arbitrary A € <^t and a neighbourhood of
zero U in E. There exists a set AQ^^L such that AoCao-^- vU for every
OQ^AQ. Choose OQ ̂ A r\Ao. It follows that

XQ e v AQ c OQ 4- v U^ whence a^ e A r\ (xo + v U).

It follows that XQ belongs to the (^(^)-closure of every A € ̂ . The sets A
being closed in P (^ ) , we have x^^A for every A and the proof is complete.

6. Completeness and ^-completeness. — In this section we shall
endeavour to describe more closely the class of ^-complete convex spaces.
We know already from (5.7) that it is contained in the class of complete
convex spaces. We shall give an example which shows that the class of
/^-complete convex spaces is a proper subclass of that of complete convex
spaces. We shall also describe two important classes of convex spaces
which enjoy the property of being ^-complete.

We shall need first the following simple result :

(6.1). — Let E be a linear space ̂  let E" be the linear space of all linear
forms defined on E. Then E is complete in the topology r(j57, E*).

PROOF. — Let bt(f^ T) be an algebraic basis of E. Let j^(P€ T) be the
system of y ^ ^ E ^ denned by the postulate <^ b^ y^^-^iv- Suppose now
that ro belongs to the completion of (E, T(^, E^)). Let us denote by K the
subset of T consisting of those t^T for which <( ro, y^ ̂  o. If K-/^- o, let
us put, for every x^E

<^,^>l
PW=SUP-\Yrv\[teK [ \^o, yt)>\

Clearly p is a pseudonorm on E. Since i\ belongs to the completion of E,
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there exists an x^E such that

^ 1<^^>-<^.^>s u p — — — — — — . . ^ ' ^-.^ K^o,j<>| "~ 2
It follows that

I < ̂  yt> - < ̂ o, j^> I ̂  I < /-o, j<> |

for every t^K. Hence <^, j^ ̂  o for every t^K. It follows that A' is
finite.

We have thus shown the existence of a point x^^.E such that

^o, y^=^^y^) for every v^.T.

Let us denote by Q the subspace of E* spanned by the yi.
We have thus <( 7-0, j^> == ^^o? j)> tor every J€<?. Now letjo€^* be

given. The set consisting of those y ^ E " which falfill the inequality.

K^j>l^l<^jo>|
for every te T is clearly a U°. Clearly Q is dense in U°. Since r is conti-
nuous on U° and equals x^ on a dense subset of U°^ we have r==^o on ^7°
so that, in particular, <( r, j^^^.z'o, jo^>- Since jo was arbitrary, we
have r==^o and the proof is complete. The preceding result has been
proved first by S. Kaplan [5].

DEFINITION 9. — We say that a convex space E is an Fy-space if its
topology may be defined by a countable system of pseudonorms.

(6.2). — Let E be an F^-space and f a linear mapping of E onto some
convex space F. Suppose that f is both open and continuous. If E is
complete then F is complete.

PROOF. — Let Un be a countable complete system of neighbourhoods of
zero in E. We may clearly suppose that Un~^ Un+\ tor every natural n.
Let Zn be a Cauchy sequence of points Zn € F, There exists a subsequence z'^
such that

^-^€=^/?)

for every natural n. There exist r^e -^ Un such that

f^n)==S'n+l—^n-

Take a point x^^.E such that f{x^)=z\. We define now, for n >i ,
the points

Xn=x^^- r\-\-.. .4- rn-\ so that f(^n) ~==-^n
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for every natural n. If m > n^ we have

•a^— ̂ /i^ ̂ + ̂ +1 + . . • 4- r,n-i € ̂  Un + ̂ ^- /̂i+i + . . . C ̂ ^ ^4.

It follows that Xn is a Cauchy sequence in E. Hence there exists an XQ^E
such that

lim^==^o, whence lim^==lim/(^) =zf(xo).

It follows that the sequence ̂  is convergent and the proof is complete.

(6.3). — Let (E^ u) be an Fo-space. If (E, u) is complete^ then (E, u)
is Bj-complete.

PROOF. — Let P be another convex topology on E coarser than u and
such that v(u)==v. Let U be an arbitrary neighbourhood of zero in E.
Let x^.vU. Since E is an .Fo-space, there exists a countable complete
system Un of neighbourhoods of zero in E. We may clearly suppose
that U^ Un for every n and that Un 3 Un+i for every n. We shall put Uo == U.

Since -vUy is a (^-neighbourhood of zero, there exists an

XY € Uo n ( x + - v Ui ) so that x — x^ e ^ v L\.

There exists an

x^ e - Ui n ( x — Xi + — v U^ \ so that x — x^ — x., e —; v U^.
2 \ 22 / 2-

Suppose now that we have already defined the points a-i, ^.2, . . . , Xn
so that

(i) x^-^U^

and
/^

(ii) ^—^^•^^^^5
i==l

then there exists an

i / n i \^+ie^^n^-^^4-^-^.4-i 1 .
\ z=l /

It follows that
n+l

^-^xte^vUn^.
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Let now
n

^ =_:V Xi so that x — Sn e -^ v Un.
;=1

It follows that x == ^ lim^. \i p <^q^ we have

^-^,== ̂ +,+... +^€ ̂  ^,-+- -^ ^+i+. • • c ^rr Up.

It follows that A^ is a Cauchy sequence in the topology u. Hence

x == u lim.?,;.
We have, for every natural n^

S,,=z X^ + . . . 4- Xn € U-^r- l- Ui + -^ U. + . . . C 2 U.
2 22 "

It follows that
x -==. u lim Sri. € 2 ^7.

Since ^? was an arbitrary point of vU, we have Uc^Uc^U so that v=.u.
The proof is complete.

(6.4). — Let E be an Fo-space. Then E is B-complete if and only if
it is complete.

PROOF. — If E is complete, it follows from (6 .2) and (6.3) that every
quotient of E is ^/.-complete, so that E is ^-complete. If E is ^-complete,
it is complete according to (5.7) and (4 - 2) .

(6.5). — Let E be a Frechet space. Let us denote by tc the convex
topology on E ' defined by the polars to absolutely convex and compact
subsets of E. Then E' is B-complete under any convex topology finer
then tc and coarser than T(E'\ E).

PROOF. — With wiew to (^ .3) it is sufficient to show that {E ' ' , tc) is
^-complete. Let Q be a subspace of E such that, for every ^-neighbour-
hood of zero V in E ' ^ the intersection <^n V° is closed in E. Let XQ^.E
belong to the closure of Q. Then there exists a sequence c/n^-Q such
that qn->x^. The sequence qn. being convergent, the set P consisting of
the points q,i is praecompact. It follows that P°° is compact and, conse-
quently, a V°. Since ^e<?nP00 and q,^ ^o, we have ^o€ Qr^P00^ Q.
Hence Q is closed and the proof is complete.

We conclude this section with the discussion of an example. Let us
denote by E the linear space of all sequences x == [ x^} of real numbers

such that^ | xy,-\ << oo . Let us denote by A the set of all sequences a == j a ^ {
k==l
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of real numbers with the following properties :

i° i ̂  q^. > o for every k;
2° a^-^a^+i for every k\
3° lini a^=: o.

For every a €^4, let us define a pseudonorm yj>a w A in the following
anner :manner :

py.{x) =^Ctk\^k\'

Let us denote by w the convex topology on E denned by the family of
pseudonorms7?a^ where a runs over A. Let v be the topology on E denned

by the norm \x\-=='^ Xk\. Let us denote by u the topology r(^, E * ) .
k=i

Clearly v is coarser than u. We have, further, py.^oc')^\x for every a.
It follows that v 3 w. We have thus u 3 v 3 w. Now let us denote by V the
subspace of E^ consisting of those f^E* for which there exist a bounded
sequence yk of real numbers such that

<^,/>=:^^j/,

for every x^.E. Let W be the subspace of E* consisting of those f^. E* for
which exists a sequence yk of real numbers converging to zero such that

<^,/>==V^A-JA:

for every x^.E. Clearly (E\ ^)'=V arid (E^ w)'==-W. The inclusions
E^^V^W being proper ones, it follows that w is properly coarser than v
and that v is properly coarser than u. If W is equipped with the norm
| j ] = = m a x [ j ^ - [ , it becomes a complete normed space. It is easy to see
that (7^, w) may be identified with (W', tc)' It follows from (6.5)
that (2T, w) is ^-complete. Since (E^ v) is a complete normed space, it
follows from (6.4) that (E^ v) is ^-complete and an espace tonnele.
According to (6.1) the space (E\ u) is complete. The identical mapping
of (E^ u) onto {E^ v) is a continuous mapping onto an espace tonnele.
If (E\ u) were ^/-complete, this mapping would have to be open, or the
topologies u and v identical. Since v is properly coarser than M, the
space (E^ u) cannot be ^.-complete. Hence (E^ u) is an example of a com-
plete convex space which is not /^.-complete. Tlie identical mapping of (E^ v}
onto (E^ w) is an example of a continuous on-to-one linear mapping of a
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Z?-complete convex space onto another 2?-complete convex space the
inverse of which is not continuous.

We intend to return later to further interesting questions connected with
the notion of ^-completeness.
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