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1. Introduction. Integers, circle, line. — Throughout this paper X
will be a locally compact abelian group, with character group Y. For
technical convenience we shall always assume both JT and Y metrisable,
although none of our results, with the single exception of Theorem 4.2,
depend essentially on metrisability. The principal object of "abstract"
harmonic analysis has always been to describe the translation-invariant
vector subspaces of the important Banach spaces on ^T, especially the
subspaces of-Z^^T) and Z2 (JT) and L^ (^T). We propose to consider here
the translation-invariant subalgebras of the most important pointwise Banach
algebra on JT, namely Co(^T), which consists of all continuous complex-
valued functions vanishing at infinity. As usual, the Fourier transform
will be an essential tool. We shall study a uniformly closed translation-
invariant (henceforth called simply closed invariant) subalgebra A of Co (^T)
by studying its spectrum o"(^4), a certain closed subsemigroup of the dual
group Y.
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Allow us to emphasize the fact that Co {X) consists of complex functions
and that A will not in general be closed under complex conjugation. Indeed
the classification of all closed invariant subalgebras of a real Co(^T), or all
selfadjoint ones of a complex Co(^T), is quite trivial. Each such subalgebra
can be identified with Co { X / H ) for some quotient group X / H .

It will be useful first to look at the classical Fourier series situation,
X the reals mod 27: (or the circle) and Y the integers. We can easily
prove A invariant not only under translation but also under convolution by,
say, all integrable functions. Now let e^ be the exponential defined by

en(^)=ein•v and suppose A contains the function / having V a^ as

F'ourier series. Then A also contains all the exponentials that actually
appear in this Fourier series. For a^=^^/e^4; and if a^ o,
then e^^A. Furthermore the series is Fejer summable uniformly to /.
Hence the algebra A is completely determined by the exponentials it
contains. And since these exponentials are obviously closed under point
wise multiplication, they constitute a semigroup that can be identified with
a subsemigroup cr (A) of the integers. Conversely, it is clear that each
subsemigroup S of Y gives rise to a closed invariant subalgebra of Co(^T).
(And, in fact, the subsemigroups of the integers can be neatly described.
They are either cyclic subgroups or differ from some { nm: n > o } by a
finite number of elements.)

The above argument (except for the last parenthesis) applies with mere
notational changes to an arbitrary compact abelian X. The classification
of closed invariant subalgebras A of Co(X) reduces to the classification
of subsemigroups of the (discrete) dual jT, and as Fourier analysts we can
consider the problem solved. (We pass hastily over the quite unsolved
algebraic problem of finding all the subsemigroups of an arbitrary abelian
group Y. Even for concrete and reasonable groups, like the lattice points
in /i-space, it isn't easy.)

Returning to Fourier series, suppose we reverse the roles of X and Y.
An element/of the invariant algebra^ is now a double-ended sequence { < 2 ^ } ,
with lim a^==o. Because j a^} is countable, A always contains the

7l==± oo

complex conjugate sequence ( a ^ j . (See e. g. [9], p. 4o). Hence by
Weierstrass-Stone, A can be identified with Co(Q) for some quotient
space Q of X'. But because A is translation-invariant, and because each
{ ( X n } ^ A vanishes at infinity, Q must be X itself and A can be no less than
all of Co(X) ==all double-ended null sequences. Substantially the same
argument applies for any discrete X. Closed subalgebras A are self-adjoint,
and hence trivially classifiable. The spectrum of A is always the open
subgroup of Y orthogonal to the finite subgroup of X consisting of the
periods of the f^A. Using a less obvious method we shall prove in para-
graph 5 that closed invariant subalgebras of Co{X) are self-adjoint for any
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totally disconnected X. Hence, with respect to the theory of invariant
algebras, totally disconnected groups are totally uninteresting.

The real line is not so trivial as the circle and the integers. On the
contrary, it displays all the complexities of an arbitrary locally compact
abelian group. It is natural to define the spectrum of an /€ Co as the
support of the Fourier transform f (in the sense of L. Schwartz's distribu-
tion theory) and the spectrum of an invariant subalgebra A as the union of
the o"(/) for f^A. The set (7(^4) is (i) perfect, (2) closed under addition,
and (3) locally a set of multiplicity (as defined in the uniqueness theory of
trigonometric series). Conversely any subset S of the real line having
these properties can appear as ff(A) for some invariant subalgebra A of Co.

But we do not know whether Ai-^-A^ implies v(Ai) ̂ a(A^). This is a
spectral synthesis problem, and it seems to be logically distinct from the
famous one solved by MALLIAVIN [6]. In effect, MALLIAVIN exhibits two
distinct weak* closed invariant subspaces of L^ {X) that have the same
spectrum. We have not been able to extract from his method two distinct
uniformly closed invariant subspaces of Co{X) that have the same spectrum
(although from such a pair of subspaces it would be trivial to construct a
corresponding counterexample with subalgebras). It is true that Malliavin's
basic function f actually belongs to Co- But to produce a closed invariant
subspace B such that (7(£)=a-(f) but/^:2?, one must be able to assert,
for instance, that o"(y) supports many "smooth" measures, i. e. measures
whose Fourier-Stieltjes transforms belong to Co- Such an assertion is true
for the more ancient L. SCHWARTZ counterexample [10] in vector groups of
dimension ̂  4? and hence we can show (Theorem ^.12) that o~(A) does not
determine A on these groups. It is natural to conjecture that such
subalgebra counterexamples exist for every group X that is neither compact
nor totally disconnected, since Malliavin's subspace counterexamples exist
for every X that is not compact.

In any event we cannot classify the totality of closed invariant algebras on
a general locally compact abelian X by classifying semigroups in the dual
group Y. We must instead look for some reasonable subclass of algebras,
and a corresponding subclass of semigroups, such that the correspondence
is one-one. In ^i-space, one interesting class of semigroups is the cones,
and another is Hille's angular semigroups. These classes are discussed
in paragraphs 6 and 8. Specialization to X = the real line yields a simple
characterization of the " Phragmen-Lindelof algebra" : all Co functions on
the real axis that extend continuously to be analytic and bounded in the
open upper half plane.

2. Notations. Definitions. Preliminaries.
X : Locally compact abelian group.
Y : Character group of X.
Both X and Y metrisable.
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Additive notation, zero element o. Same letter y for point of Y and
function it induces on X. Similarly with x. Hence y { x ) == ̂ (j). (But
note o € Y induces constant function i on X.)

Co(^) : Continuous functions vanishing at infinity.
C(^¥) : Continuous bounded functions.
L^{X) : Integrable functions (for Haar measure).

All functions take complex values.
3 : Fourier transform of trigonometric polynomial <?=aiji+...+a^j,,.

Denned as measure on Y concentrated at points ji, . . ., y^ with
values ai, . . ., a^.

f : Fourier transform of/€ Co (^T) or e C(^). (See § 3.)

g : Fourier transform Qig^L^X). g { y ) == ( yWgW dx.

o-(<?) : Spectrum of trigonometric polynomial. Finite point set
[y^ " " , y n \ -

o-(/) : Spectrum of/e Co(JT). {See § 3.)
o-(^) : Spectrum of ge.L^X). Support of g . Defined as closure

in r o f { j : ^ ( j ) ^ o j .
/: Complex conjugate. f{x) ==.f(^).
f : Reflection. f'{x) ==/(— x).
TV : Translate. (T^f) (^o) ==f(x + ̂ o).
^ : Pointwise multiplication, {fg) {x) =zf{x)g{x).

f - k g : Convolution. (f^g){x^= C f{x,—x) g{x) dx.

We collect below some formulas for g^L^ (^T).

^( j )==(j*^)(o) .
(^1*^2)"=^1^.2.(T^gr^xg.
{ygr= T^g.
^(^i*^)Ca(^)n<7(^)
^(T7^)^^^).
^(J^^JH-^^).
^(^)==^(^)=-^(^).

In proving a few of the preliminary lemmas in this section and in sec-
tions 3 and ^ we shall need to extend the above machinery by substituting
measures for g^.U{X}, or by substituting bounded measurable functions
for the/eC(^T). The modifications in definition are obvious, and the
formulas remain true. In any event, our excursion into greater generality
will be brief : in fact, the major purpose of Lemmas 4.5 and 4.6 will be to
show the adequacy of Z1 (^T) and C(A^) for all computations involving
invariant subspaces of Co(^T).
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LEMMA 2 . 1 . — Let B be a uniformly closed linear subspace of Co(v^).
Then in order that B be invariant under translation it is necessary and
sufficient that B be invariant under convolution by all g^L^^X).
(Notice that translation is convolution by point masses.)

PROOF. — Suppose B is translation-invariant, and suppose first that
g vanishes outside of some compact set Z'. Then for each f^ B^ convolu-
tion by g amounts to integrating the continuous 7?-valued function x -> T^f
over the compact set Z with respect to the measure g{— x) dx :

fi,g=.fT^fg{-x)dx.
^ z

By anyone's theory of vector-valued integration this puts f^g in B. For
the most general g ' ^ L 1 (^T), we can find a monotone sequence of compact Zn

such that j g'(^) ^x approaches zero. Then f T^fg{— x) dx con-
^x—z,, ^z,,

verges uniformly to / -^ g-
In proving the converse we need an approximate convolution unit. This

is a sequence gn^. L^(X) such that

( 1 ) ^n^ 0 ;( 2 ) y^=1 ;
(3) gn==o outside Vn-,

where } Vn} is a fundamental sequence of neighborhoods of o^.X. (See
also § 6.)

It is now an easy matter to finish Lemma 2.1 by proving for any /€ B
that (Tycgn) ^/converges uniformly to T^f.

LEMMA 2.2. — Let X° be the set of Fourier transforms of g^L^^X).
( 1 ) ^ is a uniformly dense sub algebra of Co (Y).
(2) X° is self-adjoint^ i. e. closed under complex conjugation.
(3) G is regular in the sense of Silov. That is^ for disjoint subsets Z^

compact and Zo closed^ there is some g -e ^ with §'=i on Zi and g= o
on ZQ.

(4) For /eCo(^),/^o, define 7V/.= {^eZ1 (^) :/* ̂ = o j. Then
the set SrCf= [g \g^.Nf \ is an ideal in X", and there is at least one point
y e Y at which all g e 9tf vanish.

(5) Suppose cpe^2^), cp real^ cp E=E a/ and cp == o outside some com-
pact K. Then c p ^ c p e ^ . In fact^ cp^cp==^- for some g^o,
and (J(g)CK + K.

Proofs, for instance, in LOOMIS [5]. Statement (4) is Wiener's Tauberian
theorem. We shall see in paragraph ^ that for/e Co(J^), X non-compact,
there are infinitely many y at which all g^9tf vanish.
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We list below three notions of convergence for functions in C(X)
orCo(^).

Define ||/[[z= sup |/(^) [, ̂ Z.
f^-> f uniformly means \\f^—f\\^-^o.
/v->/ narrowly means \\f^\\x—\\f\\x and ||/v-/|[^->o for each

compact ZCJT.

/v—/ weak* means j f^-> C f g for each ^eZ^^O-
^JC ^/ Y

^ fnr papL xrc /"!/1^6
^ ^X

Clearly uniform convergence implies narrow, and narrow convergence
implies weak*. Uniform convergence defines the only complete metrisable
topology compatible with multiplication and addition in C(JT). Weak*
convergence comes from the ordinary weak* topology on Z°°(^). Narrow
convergence also defines a topology, but it is one for which C{A) is not
even a topological group under addition (in fact, fn->f does not imply
/^+^-^/+^). Nonetheless, when Y is considered as a subset of C(JT),
the narrow topology induces on Y the given topology of Y.

The following lemma shows that we need not always specify the topology
on C{X).

LEMMA 2.3. — Let B be an invariant linear subspace of Co(^). Let B

be the uniform closure, B the narrow closure, and B the weak* closure,

all taken within Co(^T). Then B equals B equals B.

PROOF. — Clearly it is sufficient to assume B already uniformly closed

and to prove B equals B. Suppose B is a proper subspace of B. Since
both subspaces are uniformly closed, then by Hahn-Banach there exists
some integrable Radon measure ^ on X that is orthogonal to all of B but

not orthogonal to all of B. Suppose f f ( x ) d^{— x) ̂  o, for some f^.B.

Then the bounded (continuous) function f ̂  ^ is not identically zero.
Hence by duality there is some g^L^{X} such that

f(f-k^)Wg(-x)dx^<

This integral also can be written

: 0.

ffW(^-k^{-^dx^o.

Suppose now /a -> f weak*, f^B. Since ̂ ^eZ1^), then

//a(^^y-^/(^*^y^o.
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But

f /a(^^^y=f( /a*^)^=o because f^-kg^B.

Contradiction.

LEMMA 2.^. — Let fn->fi narrowly in C(^). Then/or each f^C{X\
fnf—fifnarrowly. And/or each /€ ^o(-^), /n/->/i/ uniformly.

Proof straightforward.

COROLLARY 2.5. — Let the points y^G, Y converge to the zero point of Y.
Then for each f^C{X), ynf->f narrowly. And for each /eCo(^T),
ynf->f uniformly.

3. Spectrum of a function. — This section summarizes certain well-known
facts about spectral synthesis and spectral analysis.

If we want to define the spectrum o-(/) for an f^Co(^) as the support
of /, first we must define the Fourier transform f. In this paper we shall
use the [transpose of the already defined ^Fourier transform on Z^JT).
Specifically, /^is denned as an element of the dual space of the algebra J? of
ordinary Fourier transforms by the rule

(3 .1 ) (/,^)=r/(-^(^)^.
Now we say that /" vanishes identically " on an open subset V of Y if
<^ /^ )>=o whenever o-(^)CF", and we define the spectrum a(f) for
j'^Co(^Y) as the complement of the largest -open subset of Y on which
/Vanishes identically. [Later, in order to make use of spectral analysis and
synthesis, we shall adopt the same definitions of f and o"(/) for bounded
continuous/.^ Notice that the spectrum of/as used in this paper has little to
do with the spectrum in the sense of Banach algebras. There is an ancient
historical connection between the two uses, but this connection is irrelevant
for us here.

We list below some easily verified formulas for the spectrum of/€ Co(^T),
or/€ (7(^T), like the formulas listed in paragraph 2 for g € L1 (^T).

^(/i/2) Cclosureof[^(/)+a(/ ,)] .
^(V^) C closure of [cr(/) +(T(^)].
^(/*^)c^(/)n^)•
(7(7V)=(7(/).

^(j/) ^.y+^C/')-
^(f) =a(/)=-^(/).
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Lemmas 3.2, 3.3, 3.^ below stale that our definition of the spectrum for
a bounded continuous function is not in conflict with previously defined
spectra for other kinds of functions. The proofs are straightforward.

LEMMA 3.2. - lff^C^X^g^U{X) andf^g^ then ̂ f)^^(g).

LEMMA 3.3. — ///€ C(Ar), e is a trigonometric polynomial, and f== e
thena(f)=a(e). p J ^ J ^

LEMMA 3.^. - If^eL^(Y), if^=, o outside a closed subset K of Y, and
if ̂  is the ' c inverse Fourier transform "

^W=f^(y)^(y)cty,

then ipe Co(A ) and o- ($)CA".

By using the right kind of ^ approximate unit " (see § 6) one can also
define cr(/) for an arbitrary /e C, (^) as lim^(/,) for well-behaved/,
converging to /, for instance /,€ Co(JT) n Z1 (JT). The limit is taken in the
natural uniform topology on the space formed from the closed subsets Z
of Y. (Z^ and Z^ are near to each other if Z,CZ^-{- V and Z^^i-t- V
for V a neighborhood of o in Y.) The sequence fn that converges'to / must
be specially chosen, however. It is not necessarily true that cr (/„) approaches
cr(/,) when /„ approaches /o, no matter w-hat degree of smoothness and small-
ness we require. Nonetheless, we can always assert that lim info-(//J = o-(^).

LEMMA 3.5. — Letfo^ C(JT) have compact spectrum ^o=<7(/o). Then the
mapping f-> a (/) ;.9 lower-semicontinuous at /o for the weak" topology on
C(JT) and the natural topology and partial order on closed subsets of Y.
Specifically, for each neighborhood W of o in Y, there exist

gi, ....^eZ1^)

such that if j^f'g,-^^^ <^ y^ ^/, ̂  ̂  ̂  S==^(f), then

s.cs-^- w.
PROOF. — Given a neighborhood Fofo in Y, there are g\, . . . . g^ e L1 (.Y)

such that if ^{f-f^gn <i then <7 (/) intersects ^.4- V. Suppose we

have already chosen s, + V, . . ., ̂ + V to cover So = v{f,). Let

^°'(/)n(^4- V), that is t ^ S j - ^ - V j .

Then s^-^ S 4- V. Hence
^•4- FC^-4- F4- F.

Hence
^oC^(^.+ ^)C^+ F+ F.
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We isolate below the only part of 3.5 that we shall use. (It is not strictly
speaking a corollary, but rather a step in the proof of 3.5.)

COROLLARY 3.6. — Let fn—>f^ C(yY) in the weak* sense. Suppose ^(/o)
intersects the open set V. Then eventually all ^(fn) intersect V.

Other equivalent definitions of the spectrum can be constructed from the
two lemmas below. For a complete discussion of these matters, see HERZ [3].

LEMMA 3.7. (Spectral analysis). — The J€o-(/) are exactly the charac-
ters that can be approximated by finite linear combinations of translates
off. This statement is true for any f^ C(^) with weak* approximation^
or for any f^. Co(^T) with narrow approximation.

LEMMA 3.8. ( " Loose " spectral synthesis.) — Given f^C(^) let W be
a neighborhood of o in Y. Then f is the narrow limit of trigonometric
polynomials e with ̂ {e)^d(f) 4- W. Conversely^ suppose K is a closed
subset of Y such that^ for any neighborhood W of o, / is the weak* limit of
trigonometric polynomials e with o"(e)CAr+ W. Then ̂ {f)^K.

h'. Spectrum of an invariant algebra. — The spectrum of a closed inva-
riant linear subspace B of Co(^Y) is defined to be the union of the a(f) for
Y€ B. We shall show in this section that if A is a closed invariant subalgebra
of Co(^T), ^(A) is a closed subsemigroup of Y^ and locally a set of multi-
plicity. Any such subsemigroup of Y appears as the o ' ( A ) of at least one
closed invariant A^ but perhaps more than one. The only case in which we
have been able to show uniqueness is the case where ordinary spectral syn-
thesis holds for o ' ( A ) .

LEMMA 4 . 1 . — Let B be a closed invariant linear subspace of Co(^T).
Then for any point y^a'(JB)^ and for any neighborhood V of y^ there
exists some non-zero /€ B with a (f) C V.

PROOF. — By definition, y€o-(/o) for some /o€^. Choose g^.L^^X}
with cr(^)C V and ^(7)^0. Then g ^/o==/e B, and/^o, and

^f)^^)^V.

THEOREM 4 •2. — The spectrum o'(B) for a closed invariant linear sub-
pace B of Co(^T), defined as the union of the o-(f)forfeB^ is a closed
subset of Y,

PROOF. — Let y be a point in the closure of a~(A) and choose y^ in o ' ( A )
with y^. -> y . Choose neighborhoods Vn of the y^ which are such that their
closures are pairwise disjoint and any neighborhood ofj eventually contains
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all the closures V n. By Lemma 4.1 there are functions fn^ o in A with

^fn)^Vn and ^||/.|k<oo.
n

The function /=V^ is in ^4 and we shall show that J€<7(/). Let FF be

any neighborhood ofj, and choose F^C F .̂ Since o-(/^)C p^, we can find
^•eZ^^r) with

a(^)CF, and ffng'^0'

And since ^ f^'=1 I fng'i the theorem is proved.

LEMMA 4.3. — If B is the closed invariant subspace of Co(JT) generated
by /o, thena(f,)=^(B).

PROOF. — Clearly ^(fo)^o-(£). For the converse, choose any / in /?.
Then there is a sequence /^ of linear combinations of the T^/o converging
uniformly to/. Also a{fn) Co- (/o) since a ( T^f) C o- (/o). Thus a(^)C(7(/)
since fn->§ uniformly and o'(/) is closed.

In Lemma 2.2 we denned TV/ to be the set of all ^^Z^^T) such that
g ̂  f== o. Clearly this is equivalent to demanding that g be orthogonal to
the closed linear subspace B of Co(^T) generated byV. Furthermore, N f is
a convolution ideal in Z^^T), and its Fourier transform fftf is a pointwise
ideal in J?. Wiener's Tauberian theorem, Lemma 2.2 (4), asserts that the
zeros of ffif [i. e. the set of y such that g ( y ) ==• o for all ^'€ «^/] is non-
empty. For an arbitrary closed invariant subspace B of C()(JT), whether or
not it is generated by one function, let us define NB to be

^eZ'W: ff'g==o fo ra l l / eZ? j

and Sts to be the pointwise ideal -X? consisting of Fourier transforms of the
^e^.

LEMMA 4.4. — Fo r any closed invariant linear subspace B of Co(^T),
the spectrum o~(jB) coincides with the zeros of 91 a'

PROOF. — We shall show first that any point not a common zero of the
functions in ffi^ cannot be in o"(^). Let y be such a point and^o a function
in NB with ^-0(^)^0. Choose g^ in Z^^T) with g^g^^i on a neigh-
borhood U ofj. Let g be any function in Z1 (^T) with <j{g) C U. Then

(^0 -)< ^1 * g)' == gQgig = g
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so ̂ o*^i* g=§^ and since TV^ is a convolution ideal, g is in 7V^. Thus
each / in B is orthogonal to each g in Z1 {A) with o- (^-) C U and so j is not
in ff(£).

We shall show next that any point not in o~(£) is not a common zero of
the functions in ffi^. Let y be a point not in o-(/?). Because of Lemma 4.2
there is a neighborhood F o f j disjoint from a ( B ) . Let g be a function in
Z^JT) with cr(^)C F and ^(7)^0. Then for each/in B, <7(/)ncr(^) is
empty so g is orthogonal to all of B and is thus in N£. Since ^(j^^o,
j is not a common zero of the functions in 91^' This completes the proof of
Lemma 4.4.

Since the full Banach dual of C^^A) is the space M{A) of integrable
Radon measures it is natural to ask what would happen if M\A) were
substituted for Ll(A') in developing the notion of the spectrum.

LEMMA 4.5. — Let B be a closed invariant subspace of Co (JT) and let B1-
be the subspace of M{A) orthogonal to B. Then £1 is determined by
the absolutely continuous measures it contains^ i. e. by NB. And v{B) is
exactly the common zeros of the Fourier transforms of the measures
in B^-.

PROOF. — Suppose 2?i and B^_ are closed invariant subspaces with B^cB^.
^

Then by Lemma 2.3 the weak* closures in Z30 {A) are similarly related,
B^cB^. But then the orthogonals in Z^JT) have the reverse relation

7-

A'(2?i) 37V(7?2). Hence the correspondance B->N(B) is a lattice anti-

isomorphism and the first assertion of the lemma is proved.

Suppose p. (y) ̂  o for some ^ e BL. Then convolution by any ge L1 (A)
for which g { y ) ̂ o yields g^g^ ^^.L^A) with^(j)^o. Hence the
lemma is completely proved.

Having justified the use of L^^A) rather than M(A)^ we should perhaps
justify our use of C(A) rather than Z°°(Jr), e. g. in Lemmas 3.7 and 3.8.

LEMMA 4.6. — Let B be a weak* closed invariant subspace of Z^J:^).
Then B is determined by the continuous functions it contains.

PROOF. — Convolution by an integrable approximate unit, as in the proof
of Lemma 2.1.

Note that B is not always determined by the Co functions it contains.
Consider, for instance, on a non-compact A the one-dimensional weak*
closed subspace consisting of constant functions.

THEOREM 4 . 7 . — Let A be a closed invariant subalgebra of Co (A). Then
a (A) is a sub semigroup of Y.
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PROOF. — Given y^(j(A) and j^Co-^) we want ji 4-72 eo-(^). We
shall exhibit /€ A with (7 (/) arbitrarily close to Ji 4- ̂ 2. Let U be any neigh-
borhood of o in Y. By Lemma 2.1 there exist fk € A (k = i, 2) with /^ o
and o-(/)Cj^+£/. Choose ^e^T to make /=/i (T^) ̂  o. Then
^(V)^ closure of (o-(/i) + cr(T^/,)) == closure of

Wi) + ̂ (/2))Cji+j,4- ^7+ U.

Andji+^2-4- ^-+- ^7 can be an arbitrarily small neighborhood ofji+y.,.
But not all closed subsemigroups S of Y can appear as < J ( A ) . For instance,

the subgroup consisting of o alone can never appear unless X is compact.
Let us introduce the following definitions. A subset Z of Y is called a set
of multiplicity if it contains the spectrum of some/^E o in Co(^T). And Z
is said to be locally a set of multiplicity if every open set that intersects Z
intersects it in a set of multiplicity. Because of Lemma 4.1, the spectrum
of a closed translation invariant subspace of C^X) is locally a set of mul-
tiplicity.

The following lemma states that on the circle our definition coincides with
the one used in the uniqueness theory of trigonometric series. (See, for
instance, ZYGMUND [13], p. 291, where a set of multiplicity is also called an
M-set.)

LEMMA 4.8. — Let Y be the reals mod^n and let Z be a closed subset
of Y. Then Y is a set of multiplicity if and only if there exists a non-zero
trigonometric series converging to zero at all points of the complement
of Z in [o, 27:].

PROOF. — BARI [2], p. 22.

LEMMA 4.9. — A subset Z of Y that is locally of multiplicity cannot
contain an isolated point unless Y is discrete.

PROOF. — We can assume without loss that the isolated point is o. But
then the only / with < 7 ( / ) = { o { is /==i. Hence X must be compact,
and Y discrete.

LEMMA 4.10. — Let S be a closed subset of Y that is locally aset of multi-
plicity. Let a(S) consist ofall /e Co(^T) thai have o-(/)C^. Then a(^)
is a closed invariant subspace of Co {X) and a (a (S) ) == S. Furthermore
if S is a subsemigroup of JT, then a(^) is a subalgebra of Co(JT).

PROOF. — It is clear that a(^) is a linear subspace. a(*S') is translation
invariant since cr( T^f) = o-(/). If S is a subsemigroup of Y, a ( S ) is a
subalgebra since

^(/i/2)$ closure Wi)+^(/0).
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Let / be in the closure of a ( S ) . Then there is a sequence fn in <x(S)
converging uniformly to/. Since for each n, o ' ( S n ) C S^ and S is closed,
o'(f) 5= S. Thus/is in a(*S) and Q t ( S ) must be closed.

Now only ( 7 ( o c ( S ) ) 3 S needs proving. Let ye S and consider any neigh-
borhood V of y . Since *S' is locally a set of multiplicity there is some
/€ Co(^T), ̂  o, with a(/) C V r\ xS. Hence j belongs to the closure of the
(closed) set cr(a(^)) and the lemma is proved.

Let us now assemble some of the above lemmas in a theorem.

THEOREM 4 . 1 1 . — If A is a closed invariant subalgebra of Co(^T), then
o-(A) is a closed subsemigroup of Y and locally a set of multiplicity.
Conversely^ each closed sub semigroup of Y that is locally a set of multi-
plicity is the v{A) of at least one such A.

The above theorem does not assert that the closed subsemigroups of Y
that are locally sets of multiplicity are in one-one correspondence with the
closed invariant subalgebras of Co(^T). For although a ( a ( S ) ) = S ^ it can
happen that a (o"(A))3^4.

THEOREM 4.12. — Let Xbe a ̂ -dimensional vector group. Then there exist
closed invariant subalgebras A-i ~^- A^ of Co(^T) such that a'(Ai) == a(A^).

PROOF. — Y is also a 4~dimensional vector group. Let S==Si\jS^^
where Si is the sphere {y'.(yi—4)2+,yj+./!+./! :== J } s^d S^ is the
half-space {j:.7i^6j. Clearly S is a semigroup, for ^i+^iC^,
^+ S^CS^ and Si-^-S^C S^. Let A be the closed subalgebra of Co(^T)
generated by a (S^) and by all/e C^(X} that are Fourier-Stieltjes transforms
of measures carried by Si. The uniform mass distribution is one such

_ j_
measure, its Fourier transform behaving like | x \ 2 at infinity. [The set of
/€ Co (^) that are Fourier-Stieltjes transforms of measures carried by Si can
also be described as the weak* closure in Co(-^T) of the trigonometric poly-
nomials that have sepctra in Si.] On the other hand, Laurent SCHWARTZ [10]
has exhibited an /oeCo(^T) with o"(/o)^^i but with fo not the limit,
even in the weak* topology relative to Z^^T), of Fourier transforms of
measures carried by S ^ . Hence /o^^4, although /o€a(o-(^4)) . This
completes the proof.

Spectral synthesis is said to hold for a closed subset Z of Y if every
ye C{^) with o'(f)^Z is a weak* limit of trigonometric polynomials having
spectrum in Z. Equivalently, if the unique w^eak* closed invariant subspace B
of C(X) having Z= \] a(f) is

/€2?

B={f:f^CW^(f)CS}.
BULL. SOC. MATH. — T. 88, FASC. 3. 25
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Still another equivalent characterization is that every g~o € L1 (X) with ^•o ̂  o
on Z is the limit, in the Z1 norm, of ge.L^(X) whose Fourier transforms
vanish identically on neighborhoods of Z. For a detailed discussion of
spectral synthesis, see HERZ [3]. The Schwartz counterexample [10]
actually showed the failure of spectral synthesis for any ^-sphere in T?"^1,
n^'2. And recently MALLIAVIN [6] has proved that every non-discrete
locally compact abelian group contains a compact subset for which spectral
synthesis is impossible.

Lemma 3.8 states, of course, that every ywith ^{f)^Z is spectrally
synthesizable by means of trigonometric polynomials with spectra in an
arbitrarily small neighborhood of Z. But may not be synthesizable from
within Z itself.

THEOREM ^.13. — Let S be a closed subset of Y that is locally a set oj
multiplicity and for wich spectral synthesis holds. Then (x(S) is the
unique closed invariant subspace of C^^X) having S as spectrum.

PROOF. — Let B be a closed invariant subspace of Co(JT) with o-(^)== S.
Let 2?"be the weak* closure of B in C{X). If/€ B, or (/) C S so since <7 (£)=S,

^ j o~(f) == S. Thus since spectral synthesis holds for S^
' e . B

B =={/ : /€ C{X), c r ( / )C S\ and thus B C\ C,{X) =. a(*S).

But by Lemma 2.3, B r\ Co(^T) == 2?, which finishes the proof of the lemma.
We shall need in Section 6 the following result of Better's.

LEMMA ^.U. — Spectral synthesis holds for each closed subgroup of Y

PROOF. — BEITER [7].

5. Symmetric algebras. Zero-dimensional groups. — There are two
important kinds of symmetry a subspace of Co(^T) may have, symmetry with
respect to reflection (induced by sending each group element into its nega-
tive), and symmetry with respect to complex conjugation. In general these
two kinds of symmetry are independent, but we shall prove that for closed
invariant subalgebras of Co(^T) either kind of symmetry implies the other.
And since symmetric subalgebras of Co(^T) are in natural one-one corres-
pondence with closed subgroups of ^T, the structure theory for symmetric
algebras is essentially trivial. We shall also prove that when X is totally
disconnected, all the closed invariant subalgebras of Co(^¥) are symmetric.

THEOREM 5 . 1 . — Let A be a closed invariant subalgebra of C^X).
Then the following conditions on A are equivalent.



TRANSLATION-INVARIANT FUNCTION ALGEBRAS. 359

( 1 ) A contains with every f its complex conjugate function f.
(2) A contains with every f its reflected function //, defined by

fW=f(-^-
(3) <7(A) is a group.
(4) A is the whole algebra Co^A'/ff) lifted to A" from some quotient

group A/H.
Furthermore the subgroups o~(A) and H are Pontrjagin annihilators of

each other ^ v(A) open and If compact.

PROOF. — Suppose ( i ) and consider the partition of X induced by the
equivalence relation

{ x^= x^_ if and only if/(^i) =f(x^) for all/€^4 }.

Because A is invariant, the partition cell H that contains o is a subgroup.
For if x^ and x^^H^ then for all/e^4,

/(^ - ̂ ) = ( T^f) (^) = ( T_^f) (o) =/(^) =/(o).

And in fact whenever x^ == x^ then x^ — x^ e H. For

/(^- ̂ ) = (T^J) (^) = (T^J ) (^) =/(o).

Hence the partition cells are the cosets of H. By the Weierstrass-Stone
approximation theorem, A must include all CQ functions compatible with
this partition. We have thus proved that ( i ) implies (4).

The functions lifted from Co ( A ' / H ) can also be described as those / admit-
ting all y ^. I I as periods. Clearly the function f(—x) will admit H as
periods whenever f( x) does. Hence (4) implies (2 ) .

The automorphism of X sending x into — x induces the same kind of
automorphism on the dual group Y ' . If A is stable under this automorphism,
then so also is o'(-^4), and the semigroup is actually a group. Hence ( 2 )
implies (3).

If (J (A) is a group, then ^.13 and ^.U force A to contain all / in Co (A")
whose spectra lie in (7 ( A ) . In particular, A is closed under complex conju-
gation, since o"(/) ==—°'(/) ' Hence (3) implies (i), and the circle of
implications is complete.

Now assume that A is denned as in (4), and let HQ be the Pontrjagin
orthogonal of ^(A). That Ho Off is Theorem 2 of REITER [7]. Conversely
suppose X^.HQ. Then there is some f^A and some y ^ ^ ( f ) such that
(^, y ) -=^, i . To show .a? ̂ 7^ we show that T^fy^-f- There is some compact
neighborhood V oi y such that the function x never equals i on V. Because

je<7(/) there is some gQ^L^A) with ^(g^^V and j g-ofy^o. Fur-
^x
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thermore, the Fourier transform ^ o o f ^ o can be factored ^o=== ^(i — ̂ \
with ^ the Fourier transform of some g^L^X). That is,

^o=^ - T^g and f^f'=^f'-^T_^f' ̂  o.

Hence

/^^/( 77-^)/':==/^( TV)'

Hence /^ 7^/, and H=H^ is established. The compactness of ^ is a
consequence of the fact that all/e.4 vanish at infinity. This completes the
proof of Theorem 5.1.

COROLLARY 5.2. — Let S be a closed subgroup of the locally compact
abelian group Y. Then S is locally a set of multiplicity if and only if S
is open.

PROOF. — If S is an ope-n subgroup of Y^ then by Lemma h-A for every
open subset V of S there is some/€ Co(JT) such that cr(/)C V. Hence S
is locally a set of multiplicity. Conversely, if S is locally a set of multiplicity
then by Theorem 5.1, S=a-(A) for some unique closed invariant A and
a-(A) is open.

We have thus proved that there is natural one-one correspondence between
the compact subgroups of X and the symmetric closed invariant subalgebras
of^oW.

When X is discrete, then all closed subalgebras of Co(^T) are symmetric,
wheter or not they are invariant. See RUDIN [9]. When X is only zero-
dimensional, for instance when X is a 7?-adic group, then Co(^T) contains
non-symmetric closed subalgebras. See RUDIN [8]. The following theorem
asserts, however, that the invariant subalgebras must still be symmetric.

THEOREM 5.3. — On a totally disconnected group X^ every closed inva-
riant subalgebra of Co(^T) is symmetric.

PROOF. — Let { H y , } be the open compact subgroups of X. Since X is
totally disconnected, then n ^ a = = { o j . The orthogonal subgroups H^ in
Y will also be open and compact. The group u H1: is closed because it is
open, hence

u^^n^a^^foj1:^^.

Now since A is a closed invariant subalgebra of Co(^T), then a ( A ) is a
closed subsemigroup of Y. Hence <j{A)r\H^ is a closed subsemigroup of
H^ hence (because H^ is compact) it is a subgroup of//1, hence

^)=^J(^(A)n/^)
a

is itself a group. This completes the proof of Theorem 5.3.
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6. Angular semigroups, approximate units. — In this section a subsemi-
group S of Y will be called angular if it contains the zero element of Y and
is the closure of its interior S°. We are thus in mild disagreement with the
HILLE-PHILLIPS terminology in [4], p. 265. But it is clear that our angular
semigroup is the closure of theirs, and theirs the interior of ours. (In fact,
for ^ to equal the closure of its interior it is enough that o belong to the
closure of this interior.) The angular subsemigroups of the plane are
classified in their Theorem 8.7.7, and an inductive extension of this classifi-
cation method to ¥"- (==the n-dimensional vector group) is sketched on
page 269 of their book. Using these Y"- results, WRIGHT [12] is able to
describe all the angular subsemigroups of arbitrary locally compact abelian
groups.

In this section we characterize the closed invariant subalgebras A of Co {A )
for which a(A)C Y is angular, X an arbitrary locally compact abelian group
and Y its dual. We also establish spectral synthesis for such <T(^4 ) , so that
each angular semigroup appears as the spectrum of exactly one closed
invariant subalgebra.

An approximate unit in a (commutative, metrisable) topological ring A is
a sequence €n of elements of A such that for each element / o f^4 , enf->f.

In Lemmas 6.1 through 6.4 the algebra A will always be a closed invariant
subalgebra of Co(^T).

LEMMA 6 .1. — The following four conditions on A are equivalent :
( 1 ) A has an approximate unit.
(2) There exist e^ € A converging weak* to the constant i.
(3) There exist en^.A with \\en\\x'=l and €n converging to the constant i

uniformly on compact subsets of X.
(4) ^(A) contains oe Y.

Proof that (i) implies (2) . Multiplication by ^defines an operator Z^
on A. For each y, Enf converges. Hence En is bounded in the strong
operator topology. Hence by the uniform boundedness theorem (Banach-
Steinhaus) ||^|[ is bounded. But

|[ En || = \\ en \\x, since [ [ EnCn \\x = [I en \\x II en Hx.

Hence || en ||xis bounded. Now let Z be any compact subset of X. Since A
is translation-invariant, then each z € Z has some neighborhood V z and some
f^A such that i n f { \f^x} \\x^ V ^ } > o. Since || Cnf. -fz \\x->o, On
must converge to i uniformly on Vz. But Z can be covered by finitely
many V zi hence €n—>'i uniformly on all of Z. But || €n ||x bounded and
€n->f on compact subsets together imply that e^—^i weak*.

The equivalence of (2 ) and (3) and (4) is a consequence of Theorem 4.2
and Lemma 3.7. For, by Theorem 4.2, to say o^a-(A) is to say oeo-(/)
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for somef^A. And by Lemma 3.7, oeo'(/) if and only if the constant i
is a narrow (or weak*) limit of linear combinations of translates of /.
Narrow convergence is what is described in condition (2 ) , except that we
have strengthened |[^[[x->i to read | |^| |^==i. This strengthening can be
accomplished by a trivial modification of the strictly converging sequence.
The fact that a sequence (instead of a net) suffices for narrow convergence is
a consequence of the o-compactness of /T, which in turn follows from the
metrisability of Y.

Proof that (3) implies (i). Given /e Co (-^T), with (say) \\f\\x= i, choose
the compact subset Z so that \f(x) \ < s for x^.Z. Then if \€n(x) — i [ < 5
for x e Z-^ we will have

|^(^)/(^)-/(^)|<£| | / | |^=£ for x ^ Z .

Thus e^ is an approximate unit for A.

LEMMA 6.2. — If A has an approximate unit^ and if {for some q <<oo)
the subalgebra LV r\A is uniformly dense in A. then v(A) is angular.

PROOF. — Without loss of generality we can assume q an integer. Let V
be any neighborhood ofo in Y^ with V compact, and let W be a neighborhood
of o with closure ( W-\-. . .(q times). ..+ W) C V. Since oeo- (A) by
Lemma ^.1, there is some/oCA with cr(/o)C W. And since/o is a uniform
limit of feL(f(X)r\A, then by Lemma 3.6 one of these has o-(/)n ^7 non-
empty. Convoluting by suitable ^eZ^^F), we can even make ^(f)^U,
with / still in L^ r\A and non-zero. Then the <7-th power f^ belongs to
Z^^nA, and cr(/y) C V since (7(^i^)C closure (cr(^) + o-(^)). Fur-
thermore v{fq) is the support of the continuous fonction obtained byconvo-
luting/with itself (7 times, hence has an interior, and the lemma is proved.

LEMMA 6.3. — Spectral synthesis holds on each angular subsemigroup S
of the group Y.

PROOF. — We must show that when /e C(^) has o-(/)C^, then/ is a
weak* limit of trigonometric polynomials e with a ( e ) C S . Choose points
y ^ . X approaching o through the interior S° of S. Then the functions y
approach the constant i narrowly on ^T, and by Lemma 2.^, yf approaches /
weak*. Furthermore,

^•(J/)=74-cr(/) C S°-{-S C S°,

the last inclusion because S°-i-S is open and S -+-SCS. Finally, by
Lemma 3.8, yf is a weak* limit of trigonometric polynomials e with <7(e) C S°.
Hence spectral synthesis is established on -S'.
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LEMMA 6.4. — Suppose a- (A) angular. Let B consist of all g^L^^X)
that have compact spectra interior to a (A). Then B is a uniformly dense
subalgebra of A.

PROOF. — Because the g^.B have compact spectra, then £C Co(^). And
by spectral synthesis, J3CA. Because

^(/i/2) c closure of (cr(/,)+cr(/2)),

and because <7(A) is a closed semigroup, B is an algebra under pointwise
multiplication. Because translations on .^become on Y multiplications by
characters, B is translation-invariant. Finally, if ^ is the Fourier transform
ot g^.B^ then its complex conjugate ^ is the Fourier transform of ̂ , denned
by^(^)=^(—^) .

Let N consist of all ge. Z.1 (cZ-) that are orthogonal to B. If B is not dense
in ^4, then Lemma 4.5 will find us some g^.N that is not orthogonal to A.
Again by spectral synthesis, we must have g ( y ) - ^ o for some Jo m °'(^)
and even, if we wish, interior to a {A). Because B is invariant, then so is N.
Thus g^.=g ̂  g" belongs to TV, with

^(j)=[^(j)[^o foralljer and ^(y.) =\^(y.)\2 > o.

By Lemma 2.2, there is some ̂ €^1 (^T) with o'(^) interior to *S, and

^( jo)>o and ^3 (.7)^0 for all y.
Then

j ^ { y ) ^ { y ) d y = j ^ { — x ) ^ W d x > o '

Hence g^ is not orthogonal to B after all. Contradiction.
We collect the above lemmas in the following theorem.

THEOREM 6.5. — There is natural one-one correspondence between the
angular subsemigroups S of Y and the closed invariant subalgebras A of
Co(^T) that contain approximate units and dense integrable subalgebras.

The condition that the subalgebra of integrable functions be dense is of
course stronger than the sufficient condition of Corollary 6.2 and weaker than
the necessary condition of Lemma 6.4. In stating Theorem 6.5 we have
omitted the refinements partly for the sake of simplicity, and partly because
the condition (weak or strong) may turn out to be redundant. At least,
there are two important cases in which we can dispense with it. We present
one of these below and the other in the next section.

THEOREM 6.6. — Let X have a compact open subgroup 77. Let A he a
closed invariant subalgebra of Co(^) with approximate unit. Then o-(A)
is an open sub semigroup of Y.
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PROOF. — The Pontrjagin orthogonal If1 of H is also compact and open.
Let K r= o" (A ) r\ H^. This is a closed subsemigroup of a compact group,
and is thus a group. It is not empty, because by Lemma 6.1 it contains at
least o. Because H^ is open Lemma 2.1 there is some non-zero f^.A with
cr(y)CA". By Theorem 5.1, f is periodic with respect to the Pontrjagin
orthogonal A^1, wich must therefore be compact. Hence K itself is open.
And the semigroup o"(^4), wich contains AT, is also open, because

K + a ( A ) C ( A ) .
Hence the theorem.

Finally, let us observe that for an arbitrary angular semigroup S^ our
algebra oi(S) coincides with the Arens-Singer algebra A y described in [1].
In particular, these authors can identify the maximal ideal space of a ( S ) .

THEOREM 6.7. — For an angular semigroup S^ there is natural one-one
correspondence between the multiplicative functionats on a(S) and the
continuous multiplicative mappings ofS into the closed complex unit disk.

7. The Phragmen-Lmdelof algebra. — The presence of an approximate
unit in A., when ^T is the real line, leads to the following complete description
of .4.

THEOREM 7 .1 . — Let A be the real line ̂  and let Ac Co (A) be a closed
invariant algebra with approximate unit. Then A must contain exactly
one of the two functions——.. Suppose A does not contain———.• Thenv v x ± i x — i
every function f in A extends to be analytic in the upper half-plane Z and
continuous on its closure^ including the point at infinity. And conversely^
if a function F is analytic in the upper half-plane Z and continuous on
the closure of Z in the Riemann sphere^ then the restriction of F to the
real line differs from some f^i A by a constant.

PROOF. — The spectrum o ' ( A ) is a perfect subset of the line and contains o.
In particular, o is a limit point. HILLE-PHILLIPS [4] (Theorem 8.6.1, p. 264)
states that there are only three closed subsemigroups of the line containing o
as a non-isolated point : the right half-line, the left half-line, and the whole
line. If A cC(JT), then by Lemma 6.^, A must consist of all f that have
spectrum in the right half line, or else of all / that have spectrum in the left

half-line. Hence if we suppose cr(A) •==. right half-line, then ———. ^A and

———. (^ A. Then for every continuous cp, the Fourier transformx — ?•

i r'f{x)=.—^ e^^^dt (o<b<oo)
2 7r JQ
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belongs to A. If we replace x in the above integral by z = x + (y, then

7^):= -L. C e^^^dt
^o

defines an entire function (of exponential type). This extended function is
bounded in the upper half-plane Z because

i r' i r'F(z) ^— / e-ty\Q(t')\dt^.—
v ) ~^^J, m / 1 —^Jo

c p ( ^ ) dt.

On the real axis, F coincide with the original Fourier transform / and
vanishes at ±00. Now we can use Phragmen-LindeIof to prove that F even
vanishes at infinity in the upper half-plane Z. The version in TITCHMARSH [11]
(Theorem 5.63, p. 179) is exactly what is needed.

Finally, let us take the uniform closure of the algebra B of all /€ A that
have continuous Fourier transforms cp of compact support. By Lemma 6.5,
this uniform closure is all of A. That is, the most general /€ A is the limit
offn that are boundary values of Fn analytic in the open upper half-plane,
continuous on its closure, and vanishing at infinity. This limit is uniform
on the boundary of the half-plane hence by the maximum modulus principle
the differences F,n— Fn go to zero uniformly on the whole upper half-plane.
Thus the Fn converge uniformly to an F that is analytic on the open half-
plane Z^ continuous on its closure, and zero at infinity. Andy is the boun-
dary value of F. Since yis any function in A^ we have now proved the first
half of our theorem.

Suppose conversely that F is analytic on the open half-plane Z, continuous
on its closure, and zero at infinity. Define

w-^?^-
Since Fn converges to F uniformly on the real axis, it is enough to prove that
a ' ( F n ) lies in the right half-line. The Fourier transform cp^ is a function, and
because Fn is analytic in the upper half-plane, cp^ ban be computed by inte-
grating along any horizontal line at height R >- o above the real axis,

^n(t)= C Fn^-^-i^e^^dx.
J —w

Now if t <^ o, we let 7? approach oo and get ^>n(t) == o. The proof of Theo-
rem 7.1 is thus complete.

8. Vector groups. Half-spaces, maximal subalgebras. Cones, con-
formal subalgebras. — This section is devoted to special results for the
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/z-dimensional real vector group Xn. We write x == (^, . . ., ^) for a point
in Xn and y = (Y]i, . . ., y^) for a point in the dual space ^n. And we write
x.y for the inner product EiYh +. . . + ̂ y^, so that the Pontrjagin cou-
pling j(^) or x { y ) can here be written exp {ix.y).

The first theorem of this section can be regarded as a generalization of
the classical theorem that a convex cone lies in a half-space. With the aid
of this fact about subsemigroups we can describe the maximal closed inva-
riant subalgebras of Co(^P); they are determined by the half-spaces (i. e.
maximal subsemigroups) of ^n. This fact might be used to define a natural
« half-space » in an arbitrary locally compact abelian group. We can also des-
cribe the most general intersection of such maximal subalgebras. As a by-
product we see that either of the following is sufficient to make a closed inva-
riant algebra be all of Co(JT") : ( i) that it separate points from compact sets,
(2) that it be invariant under rotations (if n ̂  2).

LEMMA 8.1. — Let Jo? • • ., Yn be n + i points in the vector space Y11. In
order that the convex hull K of y^^ • • • i Yn have o as an interior point it
is necessary and sufficient that ji, . . ., y^ be a basis for Y71 and that jo
have all coordinates with respect to this basis strictly negative.

(Notice that the choice ofjo is arbitrary.)

PROOF.— Ifji, .. .,J/z do not form a basis, then they all lie in some hyper-
plane through o. Even ifjo does not lie in this hyperplane, o must belong to
the face spanned byji, ...,j^ or else not belong to K at all. If on the other
hand ji, . . ., y^ do form a basis, but jo has (say) its first coordinate ̂ o,
then every convex combination ofjo? • • ., Yn will have first coordinate ̂ o,
and again o cannot be an interior point of K.

Conversely suppose thatji, . . ., y^ form a basis and that jo has all coor-
dinates strictly negative, sayjo=(— ai, . . ., — a,,). The convex hull AT is
in fact a simplex. And if we set (3 == i 4- ai +. . . 4-a^, we see that o belongs
to its interior because none of the coefficients in the convex combination

i ai y-n - .°=QJo4-pj i+.. .+—^ is zero.

LEMMA 8.2. — Let S be a, subsemigroup of the coordinatized vector
group J ,̂ and suppose S contains all the natural basis vectors (i, o, . . ., o)
and (o, i, o, .. ., o) and. . .and (o, . . ., o, i). Then either S lies in some
half-space or else S contains some vector having all coordinates strictly
negative.

PROOF. — Assume .5? lies in no half-space. Let C be the closed convex
cone generated by S. Since every such cone is the intersection of half-spaces,
then C must be all of ¥"-. (Actually the convex cone spanned by S is itself ¥"•
It is unnecessary to take limits. But we shall not need this sharper fact.)
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Hence we can find real [3i, . . ., (3^ all ^> o and ^i, . . ., z,n^ S such that

Pi^i4- . . .4-(3^^==(—l, .... — l ) .

Replacing the (3y by nearby rationnals yy we have

YI -Si + • • • H- Y/n ̂ m == (— <^i, . . ., — a/^)

with all a; strictly negative. And if we then multiply through by the product
of the denominators of the (3y, we produce some point actually in S that has
all coordinates strictly negative, proving Lemma 8.2.

THEOREM 8.3. — Let S be a closed subsejnigroup of an n-dimensional
real vector group Yn^ and suppose S is contained in no half-space. Then
S is a group {and hence is the direct sum of a lattice-point subgroup and a
vector subspace).

PROOF. — It is enough to prove that — y o ^ S whenever y o ^ E S . Since S
lies in no hyperplane we can find ji, . . ., yn-\ such that Jo? ' ' "i Yn-\ form
a basis for Y"-. And then by Lemma 8.2 we can find

fn=— aojo — . . . — a/z-i J/z-i with all — a, < o.

Hence by Lemma 8.1, o is an interior point of the simplex spanned
by YQ^ • • • ? Yn and YQ must in turn have all its coordinates strictly negative
with respect to the basis yi, . . ., y^.

From now until the end of the proof we shall use the basis y^ . . ., yn'
The integral linear combinations of these vectors form a lattice-point sub-
group L of Yn^ and the quotient Y11/L is an ^-dimensional torus. In parti-
cular JFyZ is compact, hence some subsequence TT (w^-jo) of the images TT (mjo)
of the positive integral multiples ofj^o must converge to the identity element
of the torus. [Proof : Some subsequence Tr(^jo) must converge to some-
thing. Define m^ '==• nk+i—^k}' Hence for large m^ we can find inte-
gers —^i , . . . , — h n (necessarily large negative integers) such that
m^-jo — (— Ai^i — . . . — hn.yn) is arbitrarily small. Hence

( /7ZA:—l)jo+^lJl4- . . .^-hnyn

will be arbitrarily close to — jo, and since S is closed Theorem 8.3 is proved.

COROLLARY 8.^. — Let S be a closed subsemigroup of r", and locally
a set of multiplicity. Then either S == Yn or S lies in some half-space.

PROOF. — By Theorem 8.3, if S does not lie in a half-space, then S is
the direct sum of a lattice-point subgroup and a vector subspace. And by
Lemma 5.2, then S cannot be a set of multiplicity unless S == Y"-.
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Let H be a closed half-space in Yn. As in Theorem ^.10 above, we
define C(.(H) to be the closed invariant subalgebra of Co(^n) consisting of
all f that have spectrum in H.

THEOREM 8.5. — The maximal closed invariant subalgebras of Co(^Srn)
are exactly the algebras oc(ff) defined by the various half-spaces H in the
dual space Y"-. Every closed invariant subalgebra of Co {^n) is contained
in a maximal one. In particular every closed invariant subalgebra is
anti-symmetric^ i. e. never contains a pair f and~f with f ̂  o.

PROOF. — Let A be a closed invariant proper subalgebra of Co(^n)^ with
spectrum v(A). Then o- (A) is contained in some half-space H. Hence a(ZT)
contains A. And the same argument applied to A == <^{H) shows that o^(If)
is maximal, for H cannot be contained in any other half-space.

COROLLARY 8.6. — Let f\^Co(JT^) have a spectrum that lies in no half
space of -F\ Then every /€ Co^^"-) is a uniform limit of linear combi-
nations of pointwise products of translates offi.

PROOF. — No a(ZQ contains/i.

[Notice that if pointwise products are not allowed then we must demand
thata(/) be all of Yn.\

LEMMA 8.7. — For some fixed non-zero x^^C"-^ let the half-space H be
defined as [y : y . x ̂  o]. For each /e CQ (^n) define fx to be the restriction
of f to the one-dimensional subspace T of X11 spanned by x. Then a (H)
consists of those f such that fx has spectrum in the right half-line (or equi-
valently, by Theorem 7.1, /y extends to be analytic and zero at infinity in
the upper half-plane of the complex! fi cation of T).

PROOF. — Write ^(ff) for the / such that fx has spectrum in the right
half-line. The mapping f->fx is a homomorphism of Co(^n) onto Co(T).
Our or^T^) is the complete inverse image of the subalgebra A^~ ( T ) == all
/€ Co( T) that have spectrum in the right half-line. Hence ^(ff) is closed
and invariant.

To prove the lemma, it will be enough to show that a (7^) C (^"(T^). For
clearly (^(Zr) c Co^PQ. On the other hand, by Lemma 8.5 above, (x(ff)
is maximal. Suppose f^(x(ff). By REITER [5], Theorem 1, the spectrum
of/a: lies in the closure of the image ofo-(/) under the quotient Yn—^ Yn|TL-
Hence ^(fx) lies in the image of H^ which is exactly the right half-line. And
the lemma is proved.

Notice that since C(.(H) is invariant under translation, then the restriction
of /€ a (H) to any line parallel to 77, which can be written g ( r ) ==/(^o -4- T.^),
will also have spectrum in the right half-line.
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COROLLARY 8.8. — Let A be a closed invariant subalgebra of Co (^n) that
separates points from compact sets (/==o at the point, /=EI on the com-
pact set). Then A is all of C^X^.

PROOF. — By Theorem 8.6, if A <- Co(X) then A C some a(//). Let H
be denned by x^X71^ and let The the line spanned \^j x. {See Lemma 8.7.)
Then since each fsc on T is the boundary values of an analytic function, it is
impossible to separate a point of T from a closed subinterval of 77.

[Notice, however, that we do not claim any sort of « quasi-analyticity )) for
a(ff). For oi(fl) will always contain non-zero f that vanish on infinite open
cylinders parallel to T. ]

COROLLARY 8.9. — For ^^2, let A be a closed subalgebra of Co^X"-)
invariant under proper euclidean motions of' X"-. Then A is all of Co {X^ -

PROOF. — ^ ( A ) is invariant under proper rotations, and hence =: JT71.
(Notice that the above argument fails for n == i, since the real line has no

non-trivial proper euclidean motions.)
Finally, let us characterize the intersections of maximal invariant subalge-

bras. If 7/i, H^ . . . are half-spaces in J^, then clearly na(Z^) == a (n //^).
If the cone C = C\Hk fails to have an interior then it will lie in some hyper-
plane, and hence {see Lemma 8.4) cx-(C) will consist of the zero function
alone. If, on the other hand, C does have an interior, then C is an angular
subsemigroup of Y11 and hence a(C) is the unique closed invariant sub-
algebra of Co^X11) attached to C. Since C is invariant under homotheties
(y->^y-i ^ ^> o) of JT^, then a (C) is invariant under the transformations of
C^X"-} induced by homotheties of^T\ Conversely, it is clear that cones are
the only closed subsemigroups ofJT71 invariant under homotheties. Hence we
have proved :

THEOREM 8.10. — The intersection of maximal closed invariant subalge-
bras of Co(Xn) is a subalgebra A invariant under all proper con formal
linear transformations of X"-. Conversely^ any closed subalgebra A inva-
riant under proper conformal linear transformations is the intersection of
maximal subalgebras.

We may omit the word ( c invariant" in describing A above because a linear
angle-preserving transformation is the sum of a homothety and a translation.
The converse can be strengthened by requiring in addition to translation only
the one homothety x—^ix Qi Xn. For then <r (A) will be invariant under

y -> - j, and must still be a cone.
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