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ISOMORPHIC REFINEMENTS
OF DECOMPOSITIONS OF A PRIMARY GROUP

INTO CLOSED GROUPS ;

EDGAR ENOCHS
[Columbia, S.C.] (*).

Introduction. — It is known that any two decompositions of a group
into cyclic groups have isomorphic refinements. KOLETTIS [2] has
shown that any two decompositions of a group into a closed group and
cyclic groups have isomorphic refinements. The purpose of this paper
is to show that any two decompositions of a group into closed groups
have isomorphic refinements. Since cyclic groups are closed this will
be an extension of Koletti's result.

Definitions. Preliminaries. — All groups will be assumed to be
primary (relative to the same prime p) abelian groups without elements

of infinite height ^ i. e. /^\ p" G === o V If p" G ~^- o for each n we say G
\ n /

has infinite length. We will use the notation P(G) for the subgroup
of G generated by elements of order p and height^ (g) will denote the
least non-negative integer n such that g e p ' 1 G, g 7^ o and height^
(o) = oo. FUCHS [1] calls a group closed if given a sequence of
elements (gi) of G such that the orders of the gi are bounded and
such that g i — g ^ ^ ^ G there is a ge. G with g — g ^ p 1 G. We will

(*) This paper is part^of the author's doctoral thesis at the University of Notre Dame.
The author is indebted to Professor Donald J. LEWIS, who directed the progress
of this work.
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use the equivalent definition which states that every Cauchy sequence
having a bound on the orders of the elements converges when G is made
into a topological group having the subgroups p^ G as a fundamental
system of neighborhoods of o.

We will need the fact that every pure closed subgroup of a group is
a direct summand of the group and that any two decompositions of a
closed group have isomorphic refinements (see [I], p. 116-117; corollary 34.5
and theorem 34.6). We further need that each group has a sequence

of subgroups (B) and (H,) such that V Bi is a base, B, is a direct sum
;•

of cyclic groups of order p1,

G== ̂  B,+H, (direct) and H,^H^
1^^7

(see [I], p. 98).
The fact that a subgroup H of G is pure in G if height// (A) == heightc (h)

for h e P (H) will also be used without stating the fact that it is being
applied.

We firts prove several technical lemmas.

LEMMA 1. — Let G be a group and suppose that

G - G1 + G2 (direct) and G = H1 + H1 (direct)

where P (G') == P (H1). Then

G= G1 + H2 (direct) and G - H1 + G2 (direct).

Proof. — We will show that G = H1 + G2 (direct). We have

P(J^ l)nP(G2)=P(G l)nP(G2)=o thus J^nG^o.

Let ge G be of order //. If k = o, i, then

geP(G)=P(G[)+P(G2)==P(H[)+P(G'-)cHi+ G\

Now suppose that if the order of g is less than p^1 then g e H 1 + G2

and let h be of order p^1. Then p^e-ZT + G2 by the induction
hypothesis. If p^ = ^ + ^, for ^i e P (7T) = P (G1), ^, e P (G2),
let p^hi = ̂ i, p^/h = ^2 for hi^Hi, h^e G... Then the order of
h — (hi + ^2) is less than p^4"1 so

A == h—(h, + 7i.) + (^i + h,)e:H1 + G2.

LEMMA 2. — Lef G &e the direct sum of its subgroups G1 and G2 and
let TT be the projection of G onto G1 determined by this direct decomposition.
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If H is a subgroup of G such that P (H)cP (G1), then r. restricted to H
is an isomorphism. Furthermore, if H is pure in G, then TT (H) is pure
in G.

Proof. — Let g ^ H , g -^ o. If p v, N ̂  i is the order of g, then

p v-1 T: (g) == TT (p Y-1 g) == p v-1, g -^- o so 7:(g)^o.

Let p^x == g for
^P(7:(H))=7:(P(^))=P(^).

If Jf is pure in G there is o. y ^ H such that jo^ == ^ but then

g=^(9)= ^(P'y) - P^O/) and 7r(y) e TT(^).

LEMMA 3. — Le^ G ==• G1 + G^ (direct) and suppose H is a pure closed
subgroup of G such that P(H)cG1. Then G1 admits a direct decom-
position G[ = H ' + H1 such that P (H1) = P (H) and such that H1 ̂  H.

Proof. — Let TT be as in lemma 2. Then TT (H) is a pnre closed subgroup
of G hence a direct summand of G so let H1 == TT (H) and H2 be any
supplement of H1 in G'.

The next two lemmas show us conditions that an isomorphism of a
closed group into a group written as the direct sum of a family of its
subgroups must satisfy. It closely resembles Kulikov's result that a
closed group cannot be written as the direct sum of infinitely many
subgroups of infinite length.

LEMMA 4. — Let G == V (P (direct) and let cp be an isomorphism of
ve^v

a closed group H into G. Then H admits a direct decomposition
H = H* + J^** such that H* is a direct sum of cyclic groups and such
that P (cp (H*^)) is contained in the sum of a finite number of the G\

Proof. — Let (Bi) and (Hi) be sequences of subgroups of H such that

Bi is a direct sum of cyclic groups of order p1, ̂ . Bi is a base of H and

H == B, +. . . + Bn + Hn (direct). It suffices to show that for n
sufficient large P (cp (Hn)) is contained in the sum of a finite number
of the G\ If this is not the case, let T^ be the projection of G onto G'
associated with this decomposition.

For each non-negative integer n let

An= [ v \ v ^ N , 7r,(P(cp(JZ.)))^o}.

By assumption each An is infinite. Let ^ / e A ^ for each i and suppose
^ ̂  Vj for i ̂ -] and let Tz /ecp (P (Hi)) be such that TT^ (hi) -^ o. Then

BULL. SOC. MATH. — T. 91, FASC. 1. 5
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we know height// (h,) ̂  i since H == Bi + .. . + B,•—{- Hi (direct) and

since ^^Bn is a base of H. We choose a sequence of integers (n<) by

letting Hi == i and in general

Hi+i > max { height^ (^(A^)) | ^ eN, T^(/Z^) ̂  o j.

Note that
(1) heightG(7r,(h//,,,)) > height^; (TT, (A//,))

whenever 7:v (hn^ -^ o.
We form the Cauchy sequence gi == h^ + • • . + hn,. If g is the

limit of this sequence let Vn- be such that TT^ (g) == o. Now TTy (A^) ̂  o
so assume
(2) height^ — <7j/) > heightc (^.(^)),

where M^j. But
heightc (TT^ (^ — ^j/)) = height^ (TTv^ (^ i/))

and
heightG (TTv^ (^^y)) = min | height^ [^^ (h^)) ]

by (i) above. This contradicts (2) above.

LEMMA 5. — If ^ is a homomorphism of a closed group H into a direct
sum of cyclic groups T, then H admits a direct decomposition H == H* + ^**
such that cp (P (J^**)) == o and H* is a direct sum of cyclic groups.

Proof. — Let (Bi) and (Hi) be as in the proceeding lemma and fur-
thermore assume H^Hi+i. If T ===VT; where T, is a direct sum of
cyclic groups of order p ' apply lemma 4 and suppose

cp(P(^))cTi+...+T,y.
Then

9(P(^^))cTi+...+T^.

But for TzeP (H^M\ height^ (h) ̂  M thus heightr,+...+7'^ (? (h)) ̂  M
but clearly this implies c? (A) == o.

Lemmas 4 and 5 will be used in lemma 6 to show that if a group is
written as the direct sum of closed groups in two different ways, that
the number of summands of infinite length, if infinite is an invariant
of the group.

LEMMA 6. — Suppose

G == ̂  G^ + S (direct)
a^Af
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and

G=^H^+T (direct),
veA'

where each G^ and H ' are closed and of infinite length and where S and
T are direct sums of cyclic groups. Then if either N or M is infinite,
so is the other and both have the same cardinality.

Proof. — Assume M is infinite. By applying lemmas 4 and 5 for
each .̂ € M there is a direct decomposition G1 == G^ + G^ and a
finite subset Np. of N such that G^ is a direct sum of cyclic groups and

such that P(G^)C ̂  H^.
a e A'j.

If ^ is a sequence of distinct elements of M we would like to show
J^ ̂  J^. for some i and j. If this is not the case let gi^P (G^*) be

such that gi -^ o and heights; (g!) > i. Since each g, e V Jf' which
v€:"^

is closed then the series (hn) where hn == gi +.. . + gn converges say
to g. For some .̂y we would have TT^ (g) = o where TT^. is the projection
of G onto G^ determined by the decomposition above. If
k = heighto (g j) let m be a positive integer, m >j such that height^
(^ — A/n) > k. Then

7c < height^ (^(g— hm)) = heightG(7r^.(^)) == 7c

which is a contradiction.
This shows that the cardinality of N is greater than or equal that

of M. Similarly the cardinality of M is greater than or equal that of N;
hence, the two are equal.

LEMMA 7. — Let G be a group and

G == ̂  MT, G == ̂  N5

yeF §eA

6e fwo dired decompositions of G into closed groups and let G =='Y G",
[^ei

G = V ̂  ^e refinements of these decompositions respectively. Then
ve./

iy V MT and V^ JV° /?aye isomorphic refinements, then so do ̂  G^
yer oeA ae^

and ̂  J^^.
ve./
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Proof. — Consider the scheme

(MT) (N8)
^\ ^\

(G^) (P')^^) (̂ )
^ ^ ^ ^

(jR^ ^ (J?0') (SP) ^ (5?)

([/^ (v^)

where each family is a family of subgroups of G, giving a direct decom-
position of G, where the arrows indicate refinements and the symbol ^
denotes isomorphic decompositions, e. g. — P' is isomorphic to (// for
each /. The existence of the isomorphic refinements (J?^) and (R^),
(S^) and (S^) follows from the fact that each M^ and N° are closed and
from the fact that any two decompositions of a closed group have iso-
morphic refinements. Similarly the existence of the decompositions
(U^) and (V") follows from the fact that the P^ and (^ are closed.

Lemma 7 gives us an indication of how we may proceed to find
isomorphic refinements of two decompositions of a group G into closed
groups. To be more specific, suppose

G == ̂  G^ (direct),
p-e^

G == ̂  H ' (direct)
^e.J

and let J* (J*) be the subset of I (of J) consisting of all ^ € I (y e J)
such that G^ (H^) is of infinite length and let J** (J**) be the complement
of J* (of J*) in I (in J). If J* or J* were finite, KOLETTIS and Kulikov's
results could be applied to find isomorphic refinements; hence, suppose
they are both infinite. Then by lemma 6 we know they have the same
cardinality.

Suppose that (3 is the first ordinal having the same cardinality as J*.
We will show that we can write

j*=u7-
(7<?

^=u17-
^<?

where each la, Jr are finite and la n l a ' = 0 === J-nJr/ if o- ^z o-' and
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such that if we let

C^^ G^
p-e^

D-=^H',
^e^

we can find decompositions

C^ = C^ + C72 + C^3 (direct),
jD7 = D'1 + J^2 + D^3 (direct)

such that :
(1) D^ ̂  C^ for each cr < j3;
(2) D^ ̂  0^1)2 for each cr < p;
(3) C^ and D73

are direct sums of cyclic groups for each o- < [3;

(4) P/^^+C^^P/^^+D-V
\^<P / \^<? /

(5) C(T2=o if cr==o

or a limit ordinal < (3. If this is possible, then lemma 1 coupled with (4)
above gives

G = ̂  (C^ + C72) + ̂ D-^+ ̂  ̂ .
(7<? T<p VG^

But

G = ̂  (C7- + C )̂ + ̂  C^ + ̂  G .̂
(7<p <7<p ^e^**

thus ̂  C^ + ̂  G^ ̂  ̂ D^ + ̂  ̂ ,
(7<p [iej** T<P ve.^*

but any two direct decompositions of a group into cyclic groups have
isomorphic refinements. Using this fact, (i) and (2) above, and lemma 7,
we get that

]^G^ and ^H^
p- e i v e •/

have isomorphic refinements.
To complete the proof that the two decompositions have isomorphic

refinements the task remains to determine the sets Jo, J^ and the required
decompositions of the groups C'7 and JD7.

The next lemma will give us a method of choosing the sets la and J-



7° E. ENOCHS.

LEMMA 8. — Let

G= G* +^ G^ (direct)
[i€7

and

7?=]^^ (direct)
ve.^

where G* and each G11 and JP is a closed group. Then if^ is an isomorphism
of G onto H there exists finite subsets J* of J , J* of I and direct decom-
positions

G* === C1 + C!,

^JP^Z^+^+D3,
v€7*

^ G^C^+C*
p-e^

such f/ia^ :

(1) C^D1;
(2) C^D2;
(3) C3 and D3 are direct sums of cyclic groups;
(4) P(?(C1 + C2)) = P(D[ + D2).

Proof. — It is not difficult to see that there is no loss in generality
in assuming, as we shall, that G == H and that cp is the identity map.

By lemma 4 there exists a direct decomposition G* = C1 + C3 where

C3 is a group of bounded order and where P (C1) c V H^ for some finite
ve^*

subset J* of J. Note that we can assume J* contains any one element
of J ; which element will be specified when the lemma is applied. Fur-
thermore, C1 is closed and pure in G; hence by lemma 3 there exists a
decomposition

^ H^ = D1 + D (direct),
ve,/*

where P (D1) = P (0) and D[ ^ C1. Since D1 and C1 are direct
summands of G by lemma 1 we get

G == C1 + D + ̂  H^ (direct),
v^7*
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but

G ^ C ' + C ' + ^ G ^ (direct).
"•€-/

Thus, let ^ be the isomorphism of

D+^H^ onto (? + ̂  G^,
ve^** [^-e^

where ^ (x) = y if and only if x — y^ C1. Then apply lemma 4 and let

D == D2 + D { (direct)

be such that D ' is a direct sum of cyclic groups and

P('K^))c^ G^
ae^*

for some finite subset J* of J which can be assumed to contain any
specified element of I . Then by lemma 3,

^G^C^+C*,
^C7*

where
C^^(D^)^D2

and where
?((?)= P(^(D2)).

Now r^ (D2) + C1 ===D1 + C' by the definition of ^; hence

P(C1 + C2) = P(C1) + P(C2) = P(C') + PCHD2)) == P(C1) + P(D2),

but
p (C-) = P (D1), thus P (C1 + C2) - P (D1 + ̂ 2)

and our proof is complete. Remark that C* as a direct summand of a
closed group is closed. We now come to the main result of this paper.

THEOREM. — Any two decompositions of a group into closed groups
have isomorphic refinements.

Proof. — Let

G=^G^ (direct),
[ie/

G=^^ (direct),
^e^
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where each Gv- and Jf" is closed; and assume J* consists of all u < = J
such that G^ is of infinite length. Define J* in a similar manner. As we
remarked before, we may assnme /* is infinite. Then by lemma 6,
I * and J * have the same cardinality. Let (3 be the least ordinal having
the same cardinality as I . Let I and J be well ordered so that both
have well order type ^. For any ordinal ^ < j3 let io and j^ denote the
v — th element of I and J respectively. If n < |3 suppose that for
each ordinal o- ̂  •/-; we have chosen a finite non-empty subset /„ of I

such that l,r\l^ == 0 if cr ̂  cr' and such that ^e U ̂  for all s ̂
(7^7]

and that for all T < y? we have chosen finite non-empty subsets J , of J
such that J,nJ- = 0 if T ^z± T/ and such that

Jc e ̂ J J^ for all s < y?.
T<r,

Setting

C^^ G^, D^^H-
l^-e^ ve^

for o- ̂  ^, T < ^ suppose we have decompositions

C^C^+C^+C^ (direct),
Z)7 == D^ + D7- + D-3 (direct)

and a direct summand C^ of C^. We will let C^ denote a supplement
of 0 in C\

Then we consider the following conditions :

(A-.) (z) C-^D\ z<-n;
(2) C^^DS S<7,;

(3) C23 and D23 are direct sums of cyclic groups, £^T};

(4) ̂ ^ (C-+ C-) + cA = P(^ (D^+D72));
V £<-/'! / \£<r, /

(5) C32 =o for s == o and for all limit ordinals £ ̂  T],

We can easily see that if we let Jo = { i o } , G ̂  == o and G^ = G'°
then (A°) holds. Now suppose we have chosen our subsets of I and J
and the decompositions of C^ and D^ in such a manner that (A"') holds
for all r} < p where p ̂  (3. If p === (3, then by the remarks after lemma 7,
we see that the theorem is proved. Hence, suppose p < (3. Then
we must choose a direct decomposition C^ = C?1 + CP3, subsets
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Jp+i and Jp of I and J respectively, a direct summand 0^^ of CP
and a direct decomposition

DP == ir-1 + D?2 + D^

so that (AP) holds. First, suppose p is a limit ordinal. In this case
the sets la and J^ for o-, T < p have already been chosen. We let Jp

be any finite non-empty subset of the complement of U J a in I subject
(7<p

to the condition that

ip€Jp if ip^ ^jj^.
(7<p

Now let

CP=2 G^.
p-e/o

Let CP = CP2 + CP* where 0 = o and C^ == CP. Then it is easy
to see that (AP) holds. In case p is not a limit ordinal let ?i + i == o.
By (4) of (A'^) we have

P( ̂  (C21 + C^) + C^2^ = P(^ (D^ + D-)\
\£<)- / \£<^ /

Now both

^ (C- + C-) + C^ and ^ (D3- + D-Q
£<"X £<).

are direct summands of G so by lemma 1

G == 2 (cel + c 2) + c) 2 +2 ^ + 2 D:3 (direct)-
£ < A ^eu^e £<)k

£<^

But also

G==2(c£l+c")+c/'2+c^+ 2 G^+2C''3•
£<>. p-eu^ £<>-

£ < A

Let ^ be the isomorphism of

C^+ 2 G^d^^3-
P-CUA £<^

£<A

onto

S ^+2D-
v^U-^ £<^

£<A
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where ^ (x) == z/ if

^—ye^O^+c^+c^.
£<'A

We have that

^C-- and ^D-'
£<0 £<).

are direct sums of cyclic groups. C7* is a direct summand of a closed

group ^ G^ hence is closed. Letting C^* correspond to the G*
p-e.^

in lemma 8, we can find finite non-empty subsets Jp = J),+i and J\

in the complements of \^J Js and U Je in I and J respectively and
£^). £<A

the following direct decompositions :

c^=c^+c\
£)A ̂  ̂ \ _^ ̂  _^ J))̂

CP^C^+CP*,
where we have :

(a) C^ ^D^;
(b) C^^D^;
(c) C^ and D^3 are direct sums of cyclic groups;
(d) P (^ (C^ + CP2)) === P (D^ + D^).

We can suppose, as remarked in the proof of lemma 8, that

i p G J p if i^\^Jlr^
r.>p

and likewise require that

j\eJ\ if j\^ ^J^r.

Then (i), (2) and (3) of (AP) obviously hold for s < / since (A^) is true.
For s == ?., (i), (2) and (3) of (AP) hold since (a), (b) and (c) above hold.
(5) of (AP) obviously holds so we only need show (4) of (AP) holds.

By (d) above we have that

P(^(C^ + CP2)) = P(D^ + IYQ.

By the definition of ^ we get that

P(C^ + CP- + ̂  (C- + C-) + C )̂ = P(^ (C^ + CPQ + ̂  (C- + C-) + C )̂.
£<^ £<A



DECOMPOSITIONS OF A PRIMARY GROUP. 75

Now since
P(^ (c^i + CP2)) = P(£^ + D'0

by (d) above and since

^ S (c£l + cc2) + ̂  = p( 2 (JD£1 +JD'))
\£<^ / \£<^ /

by (4) of (A7-) we get that (4) of (AP) holds.
Thus by transfinite induction we can suppose (A^) holds for all -n < p

and hence that the two decompositions of G have isomorphic
refinements.
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