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VECTOR FIELDS AND INFINITESIMAL TRANSFORMATIONS
ON RIEMANNIAN MANIFOLDS WITH BOUNDARY Q) ;

BY

CHUAN-CHIH HSIUNG
[Bethlehem (Penn.)].

Introduction.

In recent years many. authors have made interesting and important
contributions to the study of vector fields or infinitesimal transformations
on compact orientable Riemannian manifolds without boundary. The
purpose of this paper is to extend some of those contributions to
Riemannian manifolds with boundary.

Paragraph 1 contains fundamental notations, and local operators
and formulas for a Riemannian manifold.

In paragraph 2 fundamental formulas for Lie derivatives are given,
and the infinitesimal transformations and their generating vector fields
are defined in terms of Lie derivatives.

Paragraph 3 is devoted, for a compact orientable Riemannian manifold
with boundary, to a discussion of local boundary geodesic coordinates
and the derivation of some integral formulas, which will be needed in
the remainder of this paper.

In the remainder of this introduction, M'1 will always denote, unless
stated otherwise, a compact orientable Riemannian manifold with
boundary I^-1. Paragraph 4 contains necessary and sufficient condi-
tions for a vector field on a manifold M71 with zero tangential or normal
component on the boundary B '̂-1 to be a Killing vector field. A boun-
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4l2 C.-C. HSIUNG.

dary condition is also given for an infinitesimal affine collineation on
the manifold M" leaving the boundary B^-1 invariant to be a motion.

In paragraph 5 we obtain conditions for the nonexistence of a non-
zero conformal Killing vector field on a manifold M^ with zero tangential
or normal component on the boundary J^-1, and necessary and sufficient
conditions for a vector field on the manifold Mn with zero tangential
or normal component on the bondary B^ to be a conformal Killing
vector field. It is shown that if the manifold M" has constant scalar
curvature R and admits a certain special infinitesimal nonhomothetic
conformal motion leaving the boundary B^ invariant, then R > o.
Moreover, on a compact orientable Einstein manifold Mn- with boun-
dary jB72-1 and J? > o, those special infinitesimal nonhomothetic conformal
motions leaving the boundary jE^-1 invariant form a Lie algebra, and
a decomposition of this algebra with interrelations between its
subalgebras is also obtained.

Paragraph 6 contains conditions for the nonexistence of a projective
Killing vector field on a manifold M" with zero tangential or normal
component on the boundary B^ and satisfying certain other boundary
conditions. Finally, it is shown that on a compact orientable Einstein
manifold Mtl with boundary B"-1 and positive constant scalar curvature R
a projective Killing vector field is the direct sum of a Killing vector
field and an exact projective Klilling vector field in such a way that
they all satisfy the same type of boundary conditions.

Throughout this paper, the dimensions of M11 and jB72-1 are understood
to be n (^ 2) and n — i respectively, all Riemannian manifolds are
of class C3, and all differential forms and vector fields are of class C2'

1. Notations and operators.

LetJM" be a Riemannian manifold of dimension n (^2), ||^/||
with gij == gji the matrix of the positive definite metric of the mani-
fold Mrt, and || (fi \\ the inverse matrix of || g^- [ [ . Throughout this paper
all Latin indices take the values i, . . . , n unless stated otherwise.
We shall follow the usual tensor convention that indices can be raised
and lowered by using g^ and gij respectively; and that when a Latin
letter appears in any term as a subscript and superscript, it is understood
that this letter is summed for all the values i, . . . , n. We shall also
use v1 and Ui to denote the contravariant and covariant components
of a vector field v respectively. Moreover, if we multiply, for example
the components di/ of a covariant tensor by the components b^ of a
contravariant tensor, it will always be understood thatj is to be summed.

Let 91 be the set { i, . . . , n} of positive integers less than or equal
to n, and J(p) denote an ordered subset (ii , ..., i p } of the set 91
for p^n. If the elements fi, ..., ip are in the natural order, that
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is, if ii<...<ip, then the ordered set J(p) is denoted by Jo(p).
Furthermore, let I ( p ; ^ \ j ) be the ordered set I (p) with the 5-th
element is replaced by another element j of 91, which may or may not
belong to J(p). We shall use these notations for indices throughout
this paper. When more than one set of indices is needed at one time,
we may use other capital letters such as J , K, ... in addition to J.

From the metric tensor g with components ^7 we have

Qi.h • • • ^

9l(n), K{n)==gi^\ • . • ^A^'A-%==

^Ui • • • 9U.

where ^['n\ is zero when two or more j'^s or Tc's are the same, and is + i
or — i according as the j'^s and A-'s differ from one another by an even
or odd number of permutations. Thus the element of area of the
manifold Mn at a point P with local coordinates re1, . . . , x ' 1 is

(l.i) dA.n==ei...ndx1 A • • .A^S

where d and the wedge A denote the exterior differentiation and multipli-
cation respectively, and

(1.2) ^ l . . . / z==+ V^l. . . / / , i . . . ^ -

By using orthonormal local coordinates x1, .., x'1 and the relations

(1.3) e/^^^)^,.,,,
0 / \ ^ I ( P ) ' f ( ^ l — — — P ) $1 . . . ^ ____ y. t ^f [11'———/-')

^ . . 4 ) Ol . . .^ " O l ^ K ^ - p } ^ ? ' QK[n-'i>},

we can easily obtain
(1.5) c,(,)A-(.-^^)7(/^-^=p! ̂ %.

From equations (1.3), (1.4)» (1.5) it follows that

(1.6) ^...n^'--11^ I.

On the manifold M71 let v^ be a differential form of degree p given
by
(1.7) ^^^A70^
where we have placed
(1.8) dx1^ -.== dx11 A ... A dx1?.

Then we have
r p i(1.9) du^=(—i)P ^ V^^o(^—^V^^(^^,^)

ip+i>i» L «y=i J
^)== (—0^ >, I V^^)— Sv^^o (^^l^^) rf^0^4-11,
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where V denotes the covariant derivation with respect to the affine
connection of the Riemannian metric g^-, whose components in the
local coordinates x1, . . . , x"- are given by

(1 .10 ) rj, = I g^gn^+Og^—^g^1).
2i

Moreover, the dual and codiflerential operators ^ and ^ are defined
by (for this see, for instance, [9])

( 1 . 1 1 ) * v^^e^j^p^W^-P^
( 1 . 1 2 ) ^ U^ = (——1)^-^+1 ̂  d * l̂ ),

which imply immediately

(1. l3) 8 U^ =—p^Vy^o(^-l)^70(/?-l)•

In particular, for a vector field y on the manifold M"- we obtain, from
equations (1.9), (1. 13),
(1. 14) (dv)ij = V, Vj —— Vy Vi,

(l.l5) ^y=—V,yS

(l.i 6) (d6i/),==—V,Vy^,
(1. 17) Wi = V^V^y——V^Vy^,

where V^===^^V^. A use of equations (l.i6), (1.17) and the Ricci
identity for the contravariant components v\

(l.i 8) [V,,V;]^=^J^

thus gives
(I.IQ) (̂  ==— V7 ̂ / ̂  + Rij u^

where [VA:, V/] = V ^ V y — V y V y f c , and ^ R1^, R,y are respectively the
Laplace-Beltrami operator, the Riemann curvature tensor and the
Ricci tensor defined by
(1.20) A = dS + M,
(i .21) R^ == ̂ T^I^-^I^ + r;.,r^-r;,n,.
(1.22) Ri^R^jk.

By contraction with respect to i and k, from equation (l.i 8) we have

(1. 23) Vf [V,, Vy] V1 = Rij U1^.

Multiplication of equation (1.18) by g^ gives the Ricci identity for the
covariant components Ui,

(1.24) [V,,V,]^=—i;^,
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which can also be written as

(1.25) — ̂  V, Vj + V, (V, u, + V; Ui) — V; V, Vi =— viR1^.

Multiplying equation (1.25) by g^g111 and using equation (1.19) we
thus obtain
(i. 26) (W— (^uy1 --= Vi (v^ + v7^) — v^v^s
where
(1.27) (Qvy^iWv1.

Let UHP) and Vi^ be two tensor fields of the same order p on a compact
orientable manifold M7^ Then the local and global scalar products <( u, v )>
and (u, y) of the two tensor fields u and v are defined by

(1.28) <u,y>=^uW^,

(1.29) (u, v) == f < u, v > dA^.
JM»

From equations (1.28), (1.29) it follows that (u, u) is non negative,
and that (u, u) = o implies that u == o on the whole manifold M".

2. Lie derivatives and infinitesimal transformations.

Let u be a nonzero vector field on a Riemannian manifold M'1, and
let i^ and L(. denote, respectively, the interior product and the Lie
derivative with respect to the vector field y. Then for a covariant
tensor a of order r, the interior product i^a is a tensor of order r—i
defined by
(2. i) (^a)ur-i) = u^a^^-i),

and according to H CARTAN [1] we have

(2.2) L^==i^d+di^

from which it follows
(2.3) L.d==dL^==di.d.

For later developments, we shall use the following known formulas
for Lie derivatives in terms of local coordinates x\ ..., x71 of the
manifold Mn (for these formulas see, for instance, [8], [12]) :

(2.4) L^'ki === v^.u^ki—u^ki^sV1—u^ki^s^' + u^^kV8 + u^V/y%
(2.5) L.(V/^)—Vz(L.u^) := (L.rL)u^—(L,r^)u^—(L.r^)u^,
(2.6) L.(fu^) =. (L.f)u^ + f(L^^),
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(2.7) L^ (u^ w,y) == (Lp u^) w,7 + u^p w,/,
(2.8) L^7==V,p;+Vy^,
(2.9) L.r^v.v^+j?^,
(2.10) L.J? ,̂ = V/(L.r^)—V,(L^,),

where f is a scalar, and U^'H, u1^, u11, Wi/ are tensor fields of class
least C' on the manifold M", the contra variant and co variant orders
of each of which being the numbers of the superscripts and subscripts
respectively. Applying equation (2.5) to g^- and noticing that V^ === o,
we obtain

V^L^.,) = (L.I7;)^-+ (L.17,) .̂.

Subtracting this equation from the sum of two others obtained from
it by interchanging Z, j, k cyclically, and multiplying the resulting
equation by g11 we are thus led to

(2.n) L .̂, = ' ̂ [Vy (L,,̂ ) + V,(L^O— V,(L^y,)].
A

The infinitesimal transformation on the manifold M11 generated by
a nonzero vector field u is called an infinitesimal motion (or isometry),
affme collineation, projective motion, or conformal motion, and the
corresponding v a Killing, an affme Killing, a projective Killing, or a
conformal Killing vector field according as

(2.12) L^=o,
(2.13) L.r^=o,
(2.14) Ljr^=py^+p^,
or
(2.15) L^=2e>^,

where
(2.16) p,=^p/6^==V,p

is a gradient vector field on the manifold M^, and 0 is a scalar. An
infinitesimal conformal motion defined by equation (2.i5) is called
a homothetic motion, if ^ is constant.

From equations (2.8), (2.12) it follows that v is a Killing vector field
if
(2.17) V,y/+V/^-=o,

which and equation (l.i5) imply

(2.i8) <^==o.
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From equations (2.9), (2.i4) for any projective Killing vector field v
we have
(2. IQ) L,r^ = V,V^+ J^;/= py^ +p .̂.

The contraction with respect to i and j in equation (2.19) and a use
of the identity R^-ki = o give

(2.20) p^^v.V^.

By means of equations (l.i6), (1.19), (1.27), (2.20) and the equation
obtained by multiplying equation (2.19) by g^ we thus have

(2.21) ^u——^—dSu==Qu.v / n+1 "

Similarly, for a conformal Killing vector field y, from equations (2.9),
(2.15), (2. i i ) we have
(2.22) v,y;+V^=2<^7,
(2.23) —^=n0>,
(2.24) LJT^ = V.Vy^ + R'/kiu^ <^A + ̂ k^—^g/k,
where we have placed

(2.25) <^ = Vy 0 == ̂ /̂ ', ^l = g1^' ̂ y.

Multiplication of equation (2.2 4) by g^ and substitution of equation (2.23)
in the resulting equation yield immediately

(2.26) ^+(i—^dSu=Qu.

3. Local boundary geodesic coordinates and integral formulas.

Throughout this paper, by an (n—i)-dimensional boundary B^1

of a compact n-dimensional submanifold Mn of an n-dimensional
manifold 9Jl"(n^ 2) we mean either an empty or a nonempty subdomain
on the submanifold M" satisfying the following condition. At every
point P of the boundary B^^ there is a full neighborhood U(P) of
the point P on the manifold W and admissible local coordinates x\ ..., x"-
such that U(P)c\Mn appears in the space of the a/s as a hemisphere

n

(3.i) ^(a;y<£2, x^o,
i=l

the base x1 == o of the hemisphere corresponding to the boun-
dary B"-1. For nonempty boundary jE^-1 we shall choose the local
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coordinates x\ . . . , ̂  to be boundary geodesic coordinates so that at
each point P of the boundary i?^-1 the r^-curve is a geodesic of the
manifold M"-, with x1 as its arc length measured from the boundary B^-1,
and is orthogonal to the ^-curves, 1=2, . . . ,n . Thus on the
boundary B71-1 we can easily obtain (for this see, for instance, [4], p. 57)

(3.2) ^==^i=i, ^,==^==0 (i==2, .... n).

Moreover, by equation (3.i) the unit tangent vector N of the rc'-curve
at every point P of the boundary B^ is the unit outer normal vector
of the boundary B"-1 in the sense that x1 is increasing along the a^-curve
in the direction of the vector N.

By using local boundary geodesic coordinates, from equations (l.io),
(3.2) it is easily seen that on the boundary jB^-1 :

(3.3) T{, = o, T[, == o, I\\. = o, 2 P,, == y^g^,

(3.4) bi, = (VyV^) g^ +g^NrT^ V^Vy^

== 17, = — ^ <)g^ 0', j = 2, . . . , n),

where bij are the coefficients of the second fundamental form of the
boundary B^ relative to the outer normal vector N on the manifold M'1,
and V denotes the covariant derivation with respect to the metric
tensor g i / ( i , j == 2, . . . , n) of the boundary B^ (for this see, for instance,
[3], p. 147). Equations (3.3), (3.4) imply immediately

(3.5) ^.=(^=-r^,.
The boundary jB"-1 is said to be convex or concave on the manifold M'1
according as the matrix ]| b i /1 | for i, j === 2, ..., n is negative or positive
definite. If ^7=0 for i, j = = = 2 , . . . , n , then all the geodesies of the
boundary J^-1 are geodesies of the manifold M'\ and the boundary B^1

is said to be totally geodesic on the manifold M"-. Moreover, in terms
of local boundary geodesic coordinates the tangential and normal
components of a vector v are respectively Ui, i^i, and ^r

Now consider a compact orientable Riemannian manifold M"- with
boundary B^1, and let u be a vector field of class C2 on the manifold M\
Then on the manifold M"- we can construct the differential form

(3.6) ^=-kUidx1.

By means of equations (l.n), (1.3)jwe can easily obtain

(3.7) ^--=yiMnn-^e,...nUidxr^-\
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which becomes, on the boundary B -1 in terms of local boundary
geodesic coordinates,

(3.8) ^ ==u^dAn-i,
where
(3.9) dA„_l=(?l.. .^2A...A dxn

is the element of area of the boundary J?71-1. A use of equations (8.7),
(1. i) gives immediately

(3.10) dco == ̂ ^)e,...nVk^dxk/\ &/o^-1) = V/u^A,.

By applying the Stokes* theorem we thus obtain the integral formula

(3.n) f V.u^dAn == f u.dAn^.
J Mn J B »—i

For a vector field v on a compact orientable Riemannian manifold Mn

with boundary B^-1, replacement of the vector field w in equation (3.11)
by the vectors i^W^, v^iV, v^iU1 and use of equations (1-ig), (1.27),
(1.28), (1.29), (l.i 5) yield the integral formulas, respectively,

(3.i2) fIQu—^u,u}+^(yu,'Vu)= f v^,VidAn_^
\2 / JB^

(3. i3) 2(TVy, Vu) + f v^^j^dAn^ f v^^dAn-,,
^M^1 J B^1—^

(3.14) (̂ , ̂ ) + f ^V/V^^A,== f v^^dAn^
^M71 J B11—^

where for a covariant tensor field u;/,

(3.15) TO7=^.

Subtraction of equation (3.i4) from equation (3.i3) and substitution
of equations (1.23), (1.27) give immediately

(3.16) ( " _ Qu, u) + 2(TVy, Vy)—(6y, ̂ ) = f (^V^i—^V.^A^.
\ / i/^n—l

By subtracting equation (3.i6) from equation (3.i2) we obtain, in
consequence of equation (l.i4),

(3.17) — (Ap, v) + (dv, dv) + (Su, ̂ )

= f [^'(Vi Vi——^iVi) + V^iU1] dAn-,.
t/jgn—l
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Similarly, addition of equations (3.12), (3.16) and use of equation (2.8)
yield
(3.18) (Qv — Ay, v) + (L, g, L, g) — (< ,̂ Qv)

= f [u1 (Vi Vi + V, v,) — v, V, u1] dAn^.
JBn-l

The integral formulas (3.n), ..., (3.i4), (3.i6), (3.17), (3.i8) were
first derived by the author in a previous paper [4] by means of general
local boundary coordinates x1, ..., x\ with xn=o corresponding to
the boundary J^-1, and the combined operator of the exterior product A
of differentials on the manifold Mn and the vector product of n + m — i
vectors in a Euclidean space £^+771 of dimension n + m for any m > o,
provided that the manifold Mn is isometrically imbedded in the
space £^+^.

It is easily seen that equation (3.i6) can be written in the following
three forms

(3 • 19) { l Q u , v \ + { 2 . (Vy, ViQ — (du, dv) — (8v, ^v)
\ 2 /
= f (u1 V, v, — v, V, v1) dAn^,,

JB^-1

(3 • 20) ( L Qv, v \— 2 (Vy, Vy) + (L. g, Vp g) — (< ,̂ Qu)
\ 2 /

= f (^ V, yi — v, V, ̂ ) dA^_i,
J Hn—1

(3.21) Q @y, vy- 2 (Vy, Vy) — 77^2 (̂ , 6y) + (/y, tu)

= / (^V^i—yiV^OdA^-i,
^'7?7l——l

where

(3.22) tv=L^g + 2-^^.

LEMMA 3.1. — Let f be a scalar field of class C2 on a compact orientable
Riemannian manifold M11 with boundary B71-1. Suppose that the normal
component Vi/* of the gradient vector Vf on the boundary B11-1 vanishes,
and that f satisfies
(3.23) —A/^V^/'^V

with constant ^. Then f==o or constant on the manifold Mn according
as ^ > o or ^ = o.

The proof of lemma 3.1 follows immediately from the integral
formula (3.n) with the vector field u replaced by V(f2).
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4. Killing vector fields and infinitesimal motions.

From equations (2.17), (2.i8), (1.26) it follows immediately that
a Killing vector field v on any Riemannian manifold M"- satisfies

(4.1) Ay—Qv = o.

For the converse, suppose that on a compact orientable Riemannian
manifold M11 with boundary B^1 a vector field v has zero tangential
component on the boundary £^-1 and satisfies equations (2.i8), (4.i).
If Vi Ui == o on the boundary B^ in local boundary geodesic coordinates,
then by using equations (2.i8), (4.i), from equation (3.i8) it follows
that the vector field v satisfies equation (2.12), and therefore is a Killing
vector field on the manifold M". Hence we obtain

THEOREM 4.1 T. — On a compact orientable Riemannian manifold M'1
with boundary ̂ -1, a necessary and sufficient condition for a vector field v
with zero tangential component on the boundary B^1 to be a Killing vector
field is that it satisfy equations (2.i8), (4.i) on the manifold Mn and

(4.2) V i y i = = o on B^

in local boundary geodesic coordinates.
It should be noted that if the boundary B^ is totally geodesic, and

the vector field v on the manifold M71 with zero tangential component
on the boundary B^-1 satisfies equation (2.i8), the condition (4.2)
in local boundary geodesic coordinates is automatically satisfied, as
on the boundary B'^ in local boundary geodesic coordinates we have,
in consequence of equations (2.18), (3.5),

v^=—]gv^=—i;1^,

which vanishes for a totally geodesic boundary B^.
Similarly, from equation (3.18) we have

THEOREM 4.1 N. — On a compact orientable Riemannian manifold M11

with boundary B^, a necessary and sufficient condition for a vector field v
with zero normal component on the boundary B71-1 to be a Killing vector
field is that it satisfy equations (2. i8), (4. i) on the manifold Mn and

n

(4.3) ^ v1 (V, Vi + V, Ui) = o on B^

in local boundary geodesic coordinates.
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It should be noted that the letters T and N in theorems 4. IT
and 4.1 N are used to denote similar theorems on vector fields with
zero tangential and normal components on the boundary 2?"-1 of the
manifold M11 respectively; for convenience we shall use this notation
throughout this paper.

From equations (2.11), (2.12), (2.13) it follows that on any Riemannian
manifold M^ an infinitesimal motion is an infinitesimal affine colli-
neation. For the converse, suppose that on a compact orientable
Riemannian manifold Mn with boundary B^1 an affme Killing vector
field v has zero normal component on the boundary 2?71-1. From
equations (2.9), (2.i3) it follows

(4.4) V,Vy^+^/^=o,

which implies equation (4.i) by multiplication by g^. By putting
i==j==a in equation (4.4), summing for a and making use of the
identity R\ki==o, we obtain V^V^=o and therefore Va^^^Cfe,
which and equation (3.11) yield equation (2.18) because of the vanishing
of the integrand on the right side of equation (3.n). On the other
hand, from the definition of infinitesimal transformations it is readily
seen that a necessary and sufficient condition for an infinitesimal trans-
formation generated by a vector field u on a compact Riemannian
manifold M"- with boundary B"-1 to leave the boundary jB^-1 invariant
is that the vector field u has zero normal component on the boundary B'1-̂
An application of theorem 4.1 N thus gives

THEOREM 4.2 N. — On a compact orientable Riemannian manifold M11

with boundary jB71-1, an infinitesimal affine collineation leaving the
boundary B^1 invariant is a motion, if its generating vector field v has
zero normal component and satisfies equation (4.3) on the boundary B'^1.

5. Conformal Killing vector fields and infinitesimal conformal
motions.

At first we suppose that a Riemannian manifold M11 be an Einstein
manifold so that
(5.1) R^=Rg^n,

from which follows immediately

(5.2) R==^R^

On contracting with respect to i and m from the Bianchi identity

(5.3) VmR^kl+^kR^-lm+^lR^mk^O,
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and multiplying the resulting equation by g!k we can easily obtain

(5.4) 2V^==V/7?.

On the other hand, multiplying equation (5.i) by g^ we have

(5.5) R^-^R^.In.

Substitution of equation (5.5) in equation (5.4) shows immediately
that for n > 2, R is constant.

Now let u be a conformal Killing vector field on a compact orientable
manifold M71 with boundary B^. Then equation (3.i6) becomes,
in consequence of equations (2.22), (2.23),

(5.6) f [j^y/_2<(Vp, 'Vvy—n(n—'2)^]dAn

JMn

== f (v^iUi——ViViU^dAn-i.
JBn—i

If the vector field u has zero tangential component on the boundary J5'1-1,
then by means of local boundary geodesic coordinates and equation (3.5)
we have, on the boundary jB^-1,

n n

(5.7) u'VtVt—v^tV^—Vi ̂  V,y'= v^ ̂  b\.
!=2 i=2

Similarly, if the vector field u has zero normal component on the
boundary B71-1, then on the boundary B^-1,

n n

(5.8) ^V,yi—^V^==^ v^iV, == ̂  b^u1^'.
1=2 Z,7=2

By making use of equation (5.6) and the fact that the right side of both
equations (5.7), (5.8) is nonnegative for a totally geodesic or concave
boundary B72-1, we can easily obtain

THEOREM 5.1. — On a compact orientable Riemannian manifold M"-
with a totally geodesic or concave boundary B'1-1 and negative definite
Ricci curvature everywhere, there exists no nonzero conformal Killing
vector field, with zero tangential or normal component on the boundary B^-1,
and therefore no infinitesimal conformal motion, other than the identity,
leaving the boundary B^1 invariant,

Theorems 4. IN, 4.2N, 5.1 were obtained by YANO [14], and the
author [4] with some boundary conditions missing due to a minor mistake,
for which see [5].
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In particular, if M11 is an Einstein manifold, then from equation (5. i)
negative constant scalar curvature R implies negative definite Ricci
curvature R^-u1^'. Thus we have

COROLLARY 5.1. — On a compact orientable Einstein manifold M11

with a totally geodesic or concave boundary B'1-1 and negative constant
scalar curuatur R, there exists no nonzero conformal Killing vector field^
with zero tangential or normal component on the boundary B'1-1, and
therefore no infinitesimal conformal motion, other than the identity, leaving
the boundary B'1"1 invariant.

For any vector field v on a compact orientable Riemannian
manifold M"- with boundary B^, we obtain, by adding equations (3.12),
(3.2i) and making use of equation (3.i3),

(5.9) (tv, tv) — (Ay + (i — 2/n)d ̂  — Qv, v)

= f [v1 (Vi Vi + V, v,) — 2 v, V, v^n] dAn-i.
J^n-l

If the vector field v has zero tangential component on the boun-
dary B^, then by using local boundary geodesic coordinates and
equations (2.22), (2.23) we have, on the boundary B'^,

(5.10) nVi^i—V;^= o.

From equation (3.5) it follows immediately that on the boundary Z^-1,
n n

(5.n) ^,v/==-v^b^

and therefore equation (5.io) becomes
n

(5.i2) n-=z-I- V, v1 + y1 V H == o on J^-1.

For the converse, suppose that on a compact orientable Riemannian
manifold M11 with boundary B^1 a vector field v with zero tangential
component on the boundary B'^1 satisfies equations (2.26), (5.i2).
Then the integrand on the right side of equation (5.9) vanishes due
to equation (5.io), and from equations (5.9), (2.26), (3.22), (2.23)
follows immediately equation (2. i5), which shows that v is a conformal
Killing vector field. Thus we arrive at

THEOREM 5.2 T. — Let M71 be a compact orientable Riemannian manifold
with boundary jE^-'. Then equations (2.26), (5.i2) are necessary and
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sufficient conditions for a vector field v on the manifold M.11 with zero tangential
component on the boundary B"-1 to be a conformal Killing vector field.

Theorem 5.2T is due to YANO [14].
Similarly, if the vector field v has zero normal component on the

boundary ^-1, then by using local boundary geodesic coordinates
on the boundary B"-1 from equation (2.22) it follows that the vector
field v satisfies equation (4.3). For the converse, suppose that on a
compact orientable Riemannian manifold Mn with boundary B^1

a vector field v with zero normal component on the boundary B71-1 satisfies
equations (2.26), (4.3). Then the integrand on the right side of
equation (5.9) vanishes, and v is a conformal Killing vector field. Hence
we have

THEOREM 5.2 N. — Let Mn be a compact orientable Riemannian manifold
with boundary J^"1. Then equations (2.26), (4.3) are necessary and
sufficient conditions for a vector field v on the manifold M^1 with zero normal
component on the boundary J3"-1 to be a conformal Killing vector field and
therefore to generate an infinitesimal conformal motion on the manifold M'1-
leaving the boundary B"-1 invariant.

Theorem 5.2N is due to YANO [14], and to LICHNEROWICZ (see [7];
[8], p. 129; [10] or [13]) for the case of empty B^1.

An infinitesimal transformation generated by a vector field v on a
Riemannian manifold M'1 is called an infinitesimal conformal colli-
neation, if the vector field v satisfies equation (2.24). Multiplying
equation (2.24) by g^ and using equations (2.23), (2.25) we readily
obtain equation (2.26). An application of theorems 5.2T and 5 .2N
thus gives

THEOREM 5.3 T. — On a compact orientable Riemannian manifold M11

with boundary B^ a vector field v with zero tangential component on
the boundary 2^-1 and satisfying equations (2.24), (5.12) is a conformal
Killing vector field.

THEOREM 5.3 N. — On a compact orientable Riemannian manifold M11

with boundary B^1 an infinitesimal conformal collineation leaving the
boundary B"-1 invariant, generated by a vector field v with zero normal
component on the boundary B'1-1 and satisfying equation (4.3), is an
infinitesimal conformal motion.

Now let v be a conformal Killing vector field on a Riemannian
manifold M" so that it satisfies equation (2.24). Substituting
equation (2.24) in equation (2.io)and noticing that V^/=Vy<E;, we
obtain

(5. i3) L.Rjki=—^ V^y + ̂  V/Oy — g j k ^ i ^ 1 + g/i^k^1.
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which is reduced to, by contraction with respect to i and Z,

(5.i4) L^Rij = — ^VA<^— (n — 2) Vy<^.

On the other hand, from equation (2.4) follows immediately

(5. i5) Lpy/==—(V^+ V^O.

In virtue of equations (2.7), (5. a), (5.i4), (5.i5) we are therefore led
to
(5. i6) L,R =—(yi^+1V/vi)R^—^(n—l) V,^.

By putting

(5.17) J,,=-̂ ,+^ ,̂,.

and using equations (2.), (2.i5), (5.2), (2.25), (5.i4), (5.i6) we have

(5.18) V/V,<D = ——^ L,Ki,.

Multiplication of equation (5.i8) by g1! and use of equations (2.7),
(2.22), (5.i5), (5.17) give

(5.19) ^V^=-^L^(L.fi+2JtO).

In particular, if jR is constant, then equation (5.19) becomes

(5.20) V^V.O ==—J?0/(n—i).

Now we further suppose that the gradient vector V<]> has zero normal
component on the boundary B^1. Then equation (5.20) and lemma 3.1
imply that if R < o, then €> = o, and therefore from equations (2.12),
(2.i5) the infinitesimal conformal motion generated by the vector
field v is a motion.

Similarly, if R = o, then ^ is constant, and the vector field v is homo-
thetic by definition and an affine Killing vector field by equation (2.24).
If the vector field v further has zero normal component on the boun-
dary B^, then it generates a motion leaving the boundary B^ invariant
by theorem 4.2N with the condition (4.3) automatically satisfied.

On a compact Riemannian manifold M71 with boundary B^-1 an
infinitesimal conformal motion generated by a vector field v satisfying
equation (2.i5) is called an infinitesimal boundary conformal motion,
if the gradient vector VC> has zero normal component on the boun-
dary B71-1; and u is called a boundary conformal Killing vector field
on the manifold M71. Thus we obtain
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THEOREM 5.4 N. — On a compact orientable Riemannian manifold M'1
of constant nonpositive scalar curvature R with boundary 2^-1, an infini-
tesimal boundary conformal motion leaving the boundary B11-1 invariant
is a motion.

COROLLARY 5.4 N. — If a compact orientable Riemannian manifold M"-
of constant scalar curvature R with boundary JS^"1 admits an infinitesimal
nonhomothetic boundary conformal motion leaving the boundary B^
invariant, then R > o.

For the case of empty boundary B^1, theorem 5.4N and corol-
lary 5 .4N are due to YANO [13].

Now let v be a conformal Killing vector field on an Einstein
manifold M". Making use of equations (5.17), (5. i8), (5. i), (2. i5) and
the fact that jR is constant, we then obtain

(5.21) V;V,<D=^^,

and therefore, in consequence of the first equation of (2.25),
(5.22) V, 0/ + V; ̂  = 2 ̂  <D g^,

where
(5^3) ^ _ ^ _ ^ .n(n—i)

From equations (2.21), (5.22) follows immediately

(5.24) V,Wy+VyW,=0,

so that Wi is a Killing vector field on the manifold M", where we have
placed
(5.25) Wi = Vi — ̂ ip..

If Vi is a boundary conformal Killing vector field with zero normal
component on the boundary B^, then ^i is also due to equations (5.22),
(5.23). By applying corollary 5.4N we thus obtain

THEOREM 5.5N. — If a compact orientable Einstein manifold M"-
with boundary £^-1 and R > o admits an infinitesimal nonhomothetic
boundary conformal motion leaving the boundary B^ invariant, generated
by a vector field v with zero normal component on the boundary B^, then
the vector field v can be decomposed into
(5.26) y=^+^/^

where 7. =—Rfn(n—i) <o, w1 is a Killing vector field with zero normal
component on the boundary B'1-1, and ^>,=V^is a boundary conformal
Killing vector field with zero normal component on the boundary -B71-1.

BULL. SOC. MATH. — T. 92, PASC. 4. 28



4^8 C.-C. HSIUNG.

For the case of empty boundary B'1-1, theorem 5.5N was obtained
by LICHNEROWICZ ([7] or [8], p. i36) by using de Rham's decomposition
of a vector field on a compact orientable manifold.

Let [u, u*] be the Lie product of two vector fields u and u* on a
Riemannian manifold M", so that
(5.27) [ u, u*] == u u* — i^u.

Since in terms of the local coordinates x\ . . . , x71 we can express u and u*
as

(5.28) u ^ u 1 ^ . , ^ = ^ ^
()X1 W

from equation (5.27) it follows that

[n, n-] - n^^f^ -n^Lf^1 J Ox1 \ ()x^ ) Ox1 \ ^x' )
^ f ^ ()U^ _ ^ 6W_ \ _^_

~\u ̂ x^~u 'Sx1)^

Thus the contravariant and covariant components of the vector [u, u*]
are given by
(5.29) [ u, u*p' = u1 V, u^— u"1 \i w\
(5. 3o) [ u, u*]/ == u1 V, u; — u^1 V, u/.

From equations (2.4), (5.29) it follows that

(5.31) [u, u^==L^\

If u is a conformal Killing vector field satisfying equation (2.15), by
equations (2.4), (5.3o) we obtain

(5.32) [u, u*]/=L^*—2^u/

Now suppose that on an Einstein manifold M'1 with boundary B"-1

there exist two infinitesimal nonhomothetic boundary conformal motions
leaving the boundary B^ invariant and generated by two vector
fields u and u* respectively. Then we have equations (2.i5), (5.21),
(5.22), (5.24), (5.26) and similar equations for the vector field u*, which
will be denoted by the same numbers with a star. By means of
equations (2.8), (5.32), (2.5), (2.i5)*, (2.24) we obtain

(5.33) L^ „, ̂  j g i j == V, (L^ y; — 2 €> y;.) + Vy (L.. y? — 2 ̂  u',)
=2(^<^——^<I^y.

On the other hand, from equations (2.8), (5.24), (5.24)* it follows that

(5.34) L^g==o, L^g=o,
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and therefore
(5.35) [L,,, L^] g ̂  (L,,L^— L^L,,) g = o.

Since w is a Killing vector field, we have, in consequence of
equations (2.n), (2.12) for w,
(5.36) L,r;.,=o,

which and equations (5.32) for ^ = o, (2.8), (2.5), (5.24)* lead imme-
diately to
(5.37) LI,,,̂ ]̂  --= V,(L^M;;.)+ Vy(L^)

== L^(V,W; + Vyi^) + 2 W^L^Tfj = 0.

From equations (2.4), (2.7), (5.3s) and V/, €>, == V; ̂ , it follows that

(5.38) V.(L.,<D) = V^<1>;) = L ,̂ == [w, V0>h.

Similarly, making use of equations (2.5), (5.36), (5.21), (5. 3o), (5.21)* we
can easily obtain

(5.3g) \,{L^)=L^^)=L^g^)^(L^)g^
(5.40) [^,(t)^=^(<D,<D-—<D^),
(5.41) L^,$^^==V.[€»,^];+V,[<I>,^L=o.

Now we observe that if v and p* are two vector fields on the Einstein
manifold M^ with zero normal components on the boundary ^/l-1,
then by using local boundary geodesic coordinates and equations (5.3o),
(2.15), (2.15)*, (3.5) we can easily see that on the boundary J3'1-1,
(5.42) [y,^],=o.

Similarly, if v and y* are two boundary conformal Killing vector fields
on the Einstein manifold M"- with zero normal components on the
boundary 571-1, then by noticing the relations V^== V^, V,€^ == Vy^
we obtain, on the boundary ^-1,

(5.43) Vi (u^l — ̂  ̂ ) == o.

Furthermore, equations (5.38), (5.3g), (5.21) imply that [w,V<^] can
be considered asV<t>, where <i? is related to a nonhomothetic boundary
conformal Killing vector field u on the manifold M"- by the equa-
tion L^ g = 2 <1> g,

Combining the above results and applying theorem 5.5 N we thus
arrive at

THEOREM 5.6 N. — Let M11 be a compact orientable Einstein manifold
with boundary B^ and R > o. Then the infinitesimal nonhomothetic
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boundary conformal motions on the manifold M'1 leaving the boundary B^
invariant form a Lie algebra L, which can be decomposed into the direct
sum

(5.44) L==L,+L,

with the relations

(5.45) [L,,Li]cLi, [L,,L.JcL,, [L,,L,]cL,,

(5.46) dimLi^dimL.2— i, dimLi^ ^(dimL—i),

where L is the subalgebra of L defined by the infinitesimal motions on the
manifold Mn leaving the boundary B^-1 invariant, and L^ the vector space
o/'V<D, <]> being given in equation (2.i5) defining all the nonhomothetic
infinitesimal boundary conformal motions on the manifold M71.

Equations (5.46) are obtained from the fact that if ooo, coj, . . . , ooy form
a basis of Ls, then the q elements [coo, ci)J (i == i, . . . , q) of Li are linearly
independent. For the case of empty boundary jE^-S theorem 5.6N is
due to LICHNEROWICZ ([7] or [8], p. i38), and was proved again by
YANO [13] by a different method, which is extended in this paper.

6. Projective Killing vector fields and infinitesimal projective
motions.

On a Riemannian manifold M" with boundary B'1-1 let a vector
field v generate an infinitesimal projective motion so that equation (2. i4)
holds. Substituting equation (2.i4) in equation (2.io), contracting
with respect to i and I, changing k to i and noticing that

(6.1) V,p;=Vyp,,

we can easily obtain
(6.2) L,J?,y==(i—n)Vyp»

which and equations (2.5), (2.io) yield immediately

(6.3) L^kRij) =- (i —n) Vx: V/p~ 2 pkRij—piRjk—pjRki.

If Mn is an Einstein manifold, thenV^jR;y==o and equation (6.3) can
be reduced by equation (5.i) to

(6.4) (i — n) VA: Vy p, == c (2 pk gi; + pi Qjk + pj g/a),

where c is a constant defined by

(6.5) c==J?/n.
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From equation (6.4) and the Ricci identity (1.24) for p,, it follows

<6'6) —PiWijk === —c- (p^y—p/^O.i ' i t

Since p^==V^p, by multiplying equation (6.4) by g1! we obtain

(6-?) V^[(i—72)^^7,?—2(72 +i)cp]=o,

which implies
(6.8) (i—^V^p—p^^n+O^p—po),

where po is constant. If -^— > o or R < o and in local boundary

geodesic coordinates Vip = o on the boundary B^-S then by
lemma 3.1, p — p o = o or p;=o on the manifold Mn,

Thus from equation (2.i4) we have LpP^.=o, that is, the infini-
tesimal projective motion generated by the vector field v is an infini-
tesimal affine collineation, which is a motion by theorem 4 .2N if on
the boundary jB^-1 the vector field v has zero normal component and
satisfies equation (4.3). An application of corollary 5.1 thus gives

THEOREM 6. IN. — On a compact orientable Einstein manifold Mn

with a totally geodesic or concave boundary B^1 and negative constant
scalar curvature R, there exists no infinitesimal projective motion, other
than the identity, leaving the boundary B^1 invariant such that on the
boundary B^1 its generating vector field v has zero normal component
and satisfies Vip =o and equation (4.3) in local boundary geodesic
coordinates.

For the case of empty boundary J^-1, theorem 6.1 N is due to YANO
and NAGANO [11].

Now let us consider a projective Killing vector field v on a Riemannian
manifold Mn with boundary J3"-1. Then by subtracting equation (3. i4)
multiplied by 2/(n 4-1) from equation (3.17) and making use of
equation (2.21) we can immediately obtain

(6.9) —(Qv, v) + ̂ ^ (̂ , §v) + (dv, dv)

== f [^(Viy—V^O+ n—l.u^,vi]dAn^.
J Qn—\ /t -t- I

Thus, from equations (6.9), (1.2o), (2.21), (4.i), and theorem 4.IT,
follows

THEOREM 6.2T. — On a compact orientable Riemannian manifold Mn

with boundary B71-1, if a projective Killing vector field v satisfies Ri •' v1 v! ̂  o,
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and on the boundary B^ has zero tangential component and satisfies ^v === o,
then it must satisfy R^v'v^o, and is a parallel vector field, that is,
Vy == o on the manifold M", for a totally geodesic boundary f?^-1. In parti-
cular, on the manifold M"- if the Ricci curvature Ri/Vv^ is negative definite
definite everywhere, then there exists no such nonzero projective Killing
vector field v.

Similarly, we have, in consequence of theorem 4.1 N,

THEOREM 6.2 N. — On a compact orientable Riemannian manifold M"
with boundary JE^~1, if a projective Killing vector field v with zero normal
component on the boundary B"-1 satisfies RijV'v^^o and

n

(6.10) V v1 (Vi Vi — V,v,) = o on B^

in local boundary geodesic coordinates, then it must satisfy R^-v^^^o,
and is a parallel vector field for a totally geodesic boundary 2 -̂1. In parti-
cular, on the manifold Mn if the Ricci curvature R^-v^^' is negative definite
everywhere, then there exists no such nonzero projective Killing vector
field v.

For the case of empty boundary B'1-^, theorems 6.2T and 6 .2N
are due to COUTY [2]. For the corresponding theorems on the
nonexistence of a Killing vector field on a Riemannian manifold M11

with boundary jB"~1, see [6].
Now let v be a projective Killing vector field on an Einstein

manifold M'\ Then, from equations (1.27), (5.i), it follows immedia-
tely

(6 .11) e^^-
By means of equations (2.21), (1.2o), (6.11) we thus obtain

/n \ n ^ i . n.(n—i) ,^(6.12) v== —^ ^dv + ——7———d^v.v / iR 2J?(n+i)

On the other hand, in consequence of equations (l.i6), (2.20),
and (6.2), (5.i) we have, respectively,

(6.13) (d8v)i==—(n+i)p,,

(6.14) L.^=-^(^^I)V,p..

From equations (6.12), (6.i3), (6.i4) it is readily seen that

(6.15) L^dv)==o,
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so that ^du is a Killing vector field. Since a Killing vector field is a
special projective Killing vector field, equation (6.12) implies that d^u
is a projective Killing vector field. For later use we need the formula

(6.16) Lv,r^=-^^(p^i+p^;.),

which can easily be obtained from equations (2.9), (6.4), (6.6), and
also shows by definition that dQu is a projective Killing vector field.

An application of theorems 6.1 N and 6.2 T together with a use
of equations (6.1), (6.i4), (6.16) thus gives

THEOREM 6.3. — If a compact orientable Einstein manifold M'1 with
boundary jE^"1 and positive constant scalar curvature R admits a projective
Killing vector field v such that on the boundary B"-1 it satisfies one of the
following two sets of conditions in local boundary geodesic coordinates :

n

(6.17) v,=o, V i p = o , ]^(Vi^+V,yi)==o,
;=2

(6.18) Ui==0, V;R == 0, ^V=0 O'T^I}?

then the vector field v has a decomposition given by equation (6.12), where Sdv
is a Killing vector field, Sdv is an exact projective Killing vector field,
and on the boundary B^ they both satisfy the conditions (6.17) or (6.18)
at the same time as the vector field v.

For the case of empty boundary B" -1, theorem 6.3 is due to YANO
and NAGANO [11].
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