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^-PRIME IDEALS IN /-RINGS

BY

H. SUBRAMANIAN.

Many results ([3], [4]) in the lattice-ordered (1. o.) ring C(X) of real-
valued continuous functions on a topological space X are due essentially
to the fact that these rings are subdirect products of reals. A direct
generalization of these may be attempted for 1. o. rings which are sub-
direct products of totally ordered (t. o.) rings, viz. f-rings [2]. The
point evaluation technique of functions will have to be substituted
with evaluation by each t. o. homomorphism. This has been the well-
known core of thought in the study of /-rings. We adopt this procedure
here in an effort to know how exactly some algebraic properties of C(X)
are or are not influenced by the topology on the set X. We confess
that the propositions and proofs hereunder broadly follow the same
lines as for C(X) to be found in ([3], [4]). For this reason, we also do
not dignify any proposition with a formal label such as Theorem, etc.,
but however merely number them to enable cross-reference purpose.

1. — A convex normal subgroup of a partially ordered group G
characterizes the kernel of an order-preserving group homomorphism
defined on G. If further G is 1. o., the kernel of 1. o. preserving group
homomorphism is given by a convex normal subgroup which is also
a sublattice. We shall call it an l-ideal. A normal subgroup S of a 1. o.
group G such that x ^ y |, ye S=-^xe. S will be an Z-ideal, and conver-
sely. For a detailed account on these, we may refer to [2]. A natural
question in this connection is to ask what are the kernels in a 1. o.-group
which give t. o. homomorphic images (*). The following simple propo-
sition answers it.

(*) The author thanks the referee for drawing his attention to ([I], [5]) in this
connection.
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1.1. — If S is any subgroup of a 1. o.-group G, the following are equi-
valent :

(1) x A y=o=>xeS or y e S ;
(2) n-i A ^2 A • • • A^ == o => some Xi € 5';
(3) \x A l!Z =o=-->:re<S or y ^ S ;
(4) j ;ri | A I ^21 A • • • A I ̂  == o => some ;r/ e S.
(/Q (Zc = i, 2, 3, 4) : The condition (k) in which the JLH^ (< . .. = o "

should now read < ( . .. ̂ S ".
It is obvious that (i') <=> (2') => (2) => (i), and (3') ̂  (4^) =^ (4) => (3).

Wewillprove(i) =>(i'). Let s= x A ye-S. Since (x—s) f\ (y—s) == o,
either x — s or y — s is in 5'. That is, either x or y belongs to S.
(3) ==> (37) likewise, once we see that

x\^S =±> xeS,
because of the fact

x+/\x^==o, where x+==x\/o and rc_==(—x) V o.

The same remark establishes also that (i) <=» (3). The proof is complete.

1.2 (SIK [5]). — An Z-ideal S of a 1. o.-group G is such that the canonical
order in G/<S (i. e. the image of the positive cone being taken as the
positive cone in the range) is a total order if and only if S satisfies anyone
of the above-mentioned equivalent conditions.

P. CONRAD [1] shows that such Z-ideals S are also characterized by
the l-prime property, viz. A n B C S ==> A C 5" or B C S, for any two
Z-ideals A and B.

Hereafter, let G denote a 1. o. Abelian group. G can be taken to be
a subdirect product of t. o.-groups [2]. Thus an identity is valid in G
if and only if it is true in each t. o.-homomorphic image of G. We list
below some interesting and well-known facts. We give no proof
because they can be obtained from ([I], [2], [5]) or easily checked.

1.3. — Let 5 be a subgroup of G. The smallest convex subgroup
containing S is

\xe G s^x^t; s, teS\

and the smallest Z-ideal containing S is

( T <=. (^ l ^ r l ^ V <• I • <• c. ^ ^i t̂ t: Lr | t < - / | ^—— ^ o /• | , o i ̂ : 0 ^ •

1.4. — A convex subgroup containing an Z-prime ideal is also Z-prime.

1.5. — The set union of a chain of convex subgroups (Z-ideals) is
a convex subgroup (Z-ideal). It may be the whole group.
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The situation is even more delightful to observe :

1.6. — Any Z-ideal is an intersection of Z-prime ideals.
A heuristic proof of this will be : G being a subdirect product of

t. o.-groups, ; o ; is an intersection of /-prime ideals. But G is equa-
tionally definable, hence its homomorphic images (homomorphism with
respect to all algebraic operations under considerations) also share this
property. We skip the formal proof because it is both simple and can
be found in [1].

1.7. — Just as maximal subgroups of a group need not exist, so
is about maximal convex subgroups (maximal Z-ideals) in 1. o.-groups.
The existence of these can however be established by Zorn's lemma
process under the assumption of a strong order unit i in G (i. e. a posi-
tive element which does not belong to any proper Z-ideal of G). By
the preceding results, the maximal Z-ideals are precisely the same as
maximal Z-prime ideals, whether or not a strong order unit exists. But
the collection of maximal convex subgroups is different — a larger
collection in general than the collection of all maximal Z-ideals. For
instance ([3], [4]), consider the group R x R with the positive cone consist-
ing of all those (x, y) such that rc^y^o. R x R i s then a 1. o.-Abelian
group with a strong order unit (2, i) in which (o, R) is maximal convex
subgroup but not an Z-ideal.

1.8. — The group-theoretic sum of any two Z-ideals of G is also an
Z-ideal [2]. Therefore, the same is true of Z-prime ideals. We may
see that the Z-ideals themselves constitute a lattice — in fact, a distri-
butive and complete sublattice of the lattice of all subgroups [2]. The
position with respect to convex subgroups, on the otherhand, is not
so happy. The group-theoretic sum of even a convex subgroup and
an Z-ideal need not be convex. For example [4], consider the 1. o.-
group C(R) in which the subgroup

S={fi feC(R); i(x)=x\
is convex and

T = {fe C(R) | f(x) = o for all x > o }

is an Z-ideal; but their sum S + T is not convex.

2. — We will now consider 1. o.-rings (commutative with unity).
Almost all the preceding discussions evidently carry over — with " sub-
groups " replaced by " ideals ". A typical exception is 1.6, the argu-
ments in which show that this can also be valid provided the 1. o.-ring
is a subdirect product of t. o.-rings. Such rings are called f-rings [2].

The following result subsumes the same known for C(X) [4].
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2.1. — In an /-ring R with no nonzero nilpotent elements, all the
three properties of an ideal I stated below are equivalent :

(1) xy = o=>x^I or yeJ (J is then called <( pseudoprime " [4]);
(2) XiX-2.. .Xn== o==> some Xi^I;
(3) J contains a prime ideal.

J? can be taken to be a subdirect product of t. o. integral domains [2].
Now, x^x.i.. .Xn==o in any t. o. integral domain (and hence, in any
/-ring) if and only if

| xi | A I ̂  A ... A I ̂  I == o.

This remark clinches the proof of (i) <=> (2) in view of 1.1. In any
ring, (2) <=> (3) [4].

2.2. — In an /-ring with no nonzero nilpotent elements, an /-prime
ideal is given by a convex ideal containing a prime ideal, and conversely.

In a like manner, we may ask the generalizability of other results
in ([3], [4]) to /-rings, at least when there are no nonzero nilpotent elements.
For instance, a convex ideal I in C(X) is /-prime if and only if its (nil)
radical

V/7=if€C(X) / ^€J fo r some n e N ;

is prime. We are unable to answer yes or no for such a proposition
in the case of /-rings. However, there are rosy aspects in part at least.
For the remainder of this section, let R denote an /-ring.

2.3. — Any minimal prime ideal P of R is an /-ideal.
To prove this, we use a known characterization of minimal prime

ideals in any commutative ring with unity. A prime ideal. P is minimal
prime if and only if it satisfies the condition : x^P => there exists y ^ P
such that xy is nilpotent. Let [ z ^ [ x , x e P. Then

o^\(zyY == z^iy n^ x\'1 y}'^ (xyV^^o,

for some n e N and some y ^ P . So, zy is nilpotent, implying that zeP.

2.4. — If I is a convex ideal (/-ideal) of J?, so is \/7.
Suppose that I is a convex ideal and o^x^y, y ^ \ I . Then yeJ

for some n e N; and from o ̂  x11^, y ' 1 , it follows that x ' 1 e I , Thus x e \ 7.
The other part is similar.

2.5. — If I is a convex pseudoprime ideal of -R, then \I is convex
prime.

\ / I is certainly convex as seen above. Indeed, I being /-prime, ^1 is
also so. Suppose now that xye\J. Then x .\y\e.\I. But either
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^ I ̂  y [ modulo I or | y ^ \ x modulo J. That is, either [ x2 \ or y2

belongs to \ / I . Thus either x or y is in \ J.

2.6. — Let J? be an /-ring with no nonzero nilpotent elements. Then
a convex radical ideal I (i. e. I = yJ) in J? is an Z-prime if and only
if it is prime.

Use 2.2, 2.5 and the fact that y/V? == yJ.

2.7. — The proof of 2.5 is easier in the case of C(X), where every
prime ideal is an Z-ideal. Taking P to be a minimal prime ideal contained
in the convex pseudoprime ideal J, C(X)/P is t. o. in which the convex
ideals being intervals form a chain. Thus the prime divisors of I form
a chain; so \/J, being the intersection of them, is prime. A similar
argument will work in R, using 2.3, provided we are able to show that
every convex radical ideal is an intersection of convex prime ideals.
We first settle that this is the case for radical ideals which are Z-ideals,
and then extend the result to convex radical ideals also.

2.8. — For an /-ideal I of jR, \ I is equal to an intersection of prime
Z-ideals.

\/7 is equal to the intersection of all minimal prime divisors of J,
and the minimal prime ideals of J?/J are Z-ideals by 2.3. The corres-
pondence between convex ideals (Z-ideals) of R and R / I does the rest.

2.9. — A convex radical ideal I is also an Z-ideal.
If x=x+—;r_eJ, then x ' 2 ==xx^€l. Thus rc+eJ, proving that I

is an Z-ideal.
2.10. — Every Z-prime ideal in R contains a minimal one.
If we show that the intersection of a decreasing chain of Z-prime ideals

is an Z-prime ideal, Zorn's lemma clinches the proof. Let { K y . } be a
decreasing chain of Z-prime ideals. If x^. nJCa, y^. nKa, then both x
and y are outside some particular JCa. So, x /\ y ̂  o. By 1.2, n JCa
is an Z-prime ideal.

2.11. — Let jR be an /-ring with no nonzero nilpotent elements. Then,
the minimal Z-prime ideals and the minimal prime ideals are same in R,

Follows from 2.2, 2.3 and 2.10.

2.12. — The question which tries our wit now is a converse of 2.5 :
If I is an Z-ideal such that \ / I is prime, is I Z-prime? This is tantamount
to asking : If I is an Z-ideal such that \ / I is minimal prime, does I coincide
with v/7? This is proved to be so in C(X) [4], where of course notions
of uniform convergence are employed. We do not know whether they
are indispensable to prove this result.
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2.13. — Every prime ideal in R is convex if and only if | y ^ x \
(or, o^y^rc) implies that some integral power of y is a multiple of x
in J?.

When every prime ideal is convex, by 2.9, every radical ideal will
be an /-ideal. So, y \ ̂  x \ => y e ̂ (x). Conversely, let P be a prime
ideal with x e P and y ^ x . We have yn == rx for some n e N,
and some r^R. Thus ye P.

2.14. — Every maximal ideal in R is convex if and only if R is of
bounded inversion, viz. x ̂ i is a unit in R.

2.15. — In Canadian Bulletin (Thesis Abstracts, ig65, vol. 8, No. 5),
ARMSTRONG has announced that any f-ring can be embedded as a sub-
f-ring in an /-ring with bounded inversion. We shall indicate the outline
of a proof of this, since it does not seem to have been published so far.
All the elements rc^i in an /-ring will form a multiplicatively closed
set. Consider then the formal quotients rfx, x^i. Naturally this
new set can be endowed with ring-lattice operations in a similar way
of construction of rational numbers from integers. As ARMSTRONG
has observed, the embedding is also minimal.

3. — In this section, we will see how some of the results obtained
for C(X) [3] can be viewed in the general set up of /-rings. We recall
that in the set Jll of all maximal Z-ideals of an /-ring a hull-kernel topo-
logy can be introduced : If ; My.} is a subset of 1̂1, cl ; My.} is defined
as {M^3M\M 3 r^Mo,;. This hull-kernel space on is known to be
compact HausdorfY. We have shown in [6] the following proposition.

3.1. — If 5^ and ^ are two disjoint closed sets in the hull-kernel
space 3\i of an /-ring -R, then for every a, b € -R there exists f € R such that

and

f(M) ̂  (a — i) (M) whenever M e ̂ ,

f(M) ̂  (b + i) (M) whenever M e ̂ ,,

where r(M), re-R denotes the homomorphic image of r in J?/M.
Note : The general stipulation in [6] of Z-semisimplicity (i. e. intersection

of all maximal Z-ideals is zero) of the f-ring is not of course needed to
prove 3.1.

3.2. — With ^i and ^2 as in 3.1, there exist g, h^R such that

\g\^i, o^h^i,
g (M) = — i whenever M e ̂  \,
<7(M)=i whenever M€^,
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and

h(M) == o whenever Me^i and A(M)==i whenever Me ^2.

Choose a =b=o in 3.1. Put g =(—i) V (M i).
Choose a == i and b = o in 3.1. Puth= o V (f/\ i)-
Notation : If feR,

h(f)=;Me:>1l /•eMj;
^ (/•)== | Me:ni /^Mj;
pos /•= {Me .m f(M) > o ; = /^ (/•+);
neg /• = { M e .m f(M) < o ; = 7^ (/•_).

3.3. — In the hull-kernel space of an /-ring R, define two subsets ^i
and ^.2 to be completely separated if there exist x, y ^ R such that

^j C 7; (re), ^., C 7; (y) and h (x) n h (y) == 0.

Clearly two subsets are completely separated if and only if their
closures are.

3.4. — Let R be an /-ring. Two subsets ^i and ^2 are completely
separated if and only if there exists h € R, o^h^i such that

h{M) = o whenever Me ̂ i and A(M)==i whenever M €^2 .

By definition, there exist x, y ^ R such that

^i c ̂ (^), -̂ ̂  ̂ ) and h(x) r^h(y) = 0.

From 3.2, we obtain heR as required. Conversely, put

:c= ( 3 h — i ) V o and y = (3A— 2) A o.
Then

h(x) = ; Me .m | 3 A(M) ̂ i ; and A(y) == 5 Me ?1l | 3 h(M) ̂  2 |.

Obviously, ^iCh(x), ^i^h(y) and h(x)nh(y) = 0.

3.5. — Two subsets of the hull-kernel space of an /-ring are completely
separated if and only if their closures are disjoint.

The following is a direct generalization of a result [3] of C(X) to /-rings,
the sketch of the proof of which in comparison with [3] reveals the whole-
some trend of this paper.

3.6. — Let I be an ideal of an /-ring R, and let f e R. If (/V), f \ {!))
is a principal ideal (perhaps improper) in -R/7, then there exists x^l(I),
where 1(1) is the Z-ideal generated by I , such that h(x)r\posf and
and h (x) n neg/' are completely separated int the hull-kernel space of jR.
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We will have d, g, h, s, t e R such that

f==gd (modi), f==hd (modi) and sf+tf\=d (modi).

puta;==| /—^ + f\—hd\+\sf+t\f\—d. Thenxel(I). Sure-
ly the above congruences hold modulo any Mel(x) and we can see that
(sg + th) d (M) == d (M) whenever M e I (x). Now, if M e h (x) n h' (f),
then d^M. This yields, since J?/M is an integral domain,
(sg + th) (M) == i for any M € h (x) n h'(f). Note that h^f) = h' (f+) u A'(f-).
We next obtain g (M) == h (M) for any M e h (x) n A' (/•+) and ^ (M) = —h (M)
for any M^h(x)^hf(f^). Consequently,

h(x)r\posfCh(g—h)r\h(sg+th—i)=h(\g—h\+ sg+th—i\)

and

h(x)r\negfCh(g + h)r}h(sg + th—i)=h(\g + h\+\sg+th—i ).

If a maximal /-ideal contains ^—h, g + h and sg+th—i, it will
contain 2 and hence i. Therefore, the closed sets on the right side of
the above two inequalities are disjoint. The proof is complete.

3.7. — In an Z-semisimple f-ring R, the following are equivalent for
any feR :

(1) pos f and neg f are completely separated;
(2) There exists k € R such that f == k \ f \ (obviously, if and only

if f\ == kffor the same k^R; k may be so chosen that | k \ ̂ i);
(3) (/» I f i ) is a principal ideal (perhaps improper) in J?.
(i)=>(2). There exists h^R such that

h(M) =o whenever M^posf
and

h (M) == i whenever M e neg f.

Put k == i — 2 h. Then

/c (M) == i whenever M e pos /*
and

/c (M) == — i whenever M e neg /*.

f(M) =k\f\ (M) can be checked for any Me ^1L (2) => (3) is trivial.
(3) ==> (i). Particular case of 3.6, choosing I = {o { .

4-. — We provide here a few more concepts and results for /-rings,
the origin of which can again be traced back to C(X) [3]. From now
on, let R denote an Z-semisimple f-ring.
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4.1. — Let M be any maximal /-ideal of R. If x^R, the following
are equivalent :

(1) There exists e^M such that xe ==x;
(2) h(x) is a neighbourhood of M in the hull-kernel space of R;
(3) There exists y^.M such that ^ = o.

Let xe=x, eeM. Since M is prime, M^.h'(e—i)Ch(rr), which
is tantamount to saying that h(x) is a neighbourhood of M in the hull-
kernel space of jR. If M e h' (y) C A (rr), then rry belongs to every maximal
/-ideal, and hence xy == o. Suppose now that xy == o for some y^.M.
Then z + e = = i , where ze.l(y) and C€M. And, xy === o implies that
rcz == o. Thus xe = x.

4.2. — For any maximal /-ideal M of R, define 7:(M) to be the subset
of R consisting of all those rre-R satisfying the equivalent conditions
mentioned in 4.1.

4.3. — Define an ideal I of R to be h-ideal if x ^ I and h(x) ==h(y)
implies that y € J.

4.4. — An ideal I of R is a h-ideal if and only if from xe I it follows
that the intersection of all maximal /-ideals containing x is included
in J.

Follows because h (x) C h (y) ̂  h (y) = h (xy).

4.5. — Any h-ideal is an /-ideal and also a radical ideal.

4.6. — 7r(M) is a A-ideal contained in M.

4.7. — Every prime /-ideal lies between n(M) and M for some unique
maximal /-ideal M of R.

The /-semisimplicity guarantees the nonexistence of nonzero nilpotent
elements. Thus a prime /-ideal is also /-prime; so, prime/-ideals contain-
ing a prime /-ideal form a chain. The rest is a routine check.

4.8. — The only maximal /--ideal containing TT(M) is M.
Since 3Xi is Hausforff [6], we can find for every two distinct maximal

/-ideals Mi and M.,, x^Mi and y^M^ such that xy == o. Obviously,
y€7r(Mi) ̂  Ms.

4.9. — If I is any ideal of R, I = n I + 7r(Ma), where a runs through
the index set 3Yi of all maximal /-ideals.

Let ^ = = i a + ^ a , where i a < = J and rCa€7r(Ma). Then there exist
i/a^Ma such that :Kaya = o. Since there is no /-ideal containing all y ^ s ,
we have

Z i+^+ . . .+^=1, where ^e/(y0 (i = i, 2, . . . , n).
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But Xiiji = o implies that x.Zi = o. Thus x z ^ I , which gives that xe J.
The other way round is palpably clear.

4.10. — Let I be a h-ideal containing TT (M) for some maximal Z-ideal M
of K If (f(J)), | f\ (I) is a principal ideal in Rf I for every feR, then J
is prime.

There exist xe l , h,, h,eR such that

h(x)r\h'(f^^h(h,\ h(x)r\h'(f_)Ch(h,) and A(^)nA(^)=0.

Let M^A(Tii). So, 7r(M) and Ai are not together contained in any
maximal /-ideal. We then have i^ | h | 4- |r \.\hi \ for some hcT:(M)
and reJ?. This implies that h(h)^h(x)r\hr(f+) = 0. That is,

/i(|/i|+|a;|)=/z(A)n/i(^)CA(^).

Thus /"+ e J. It follows that J is prime, since R / I becomes totally ordered.

4.11. — If I is any /i-ideal containing TT(M) for some maximal ideal M
of an /'-ring with bounded inversion, the following are equivalent in R / I :

(1) Every ideal is convex;
(2) The ideals form a chain;
(3) The principal ideals form a chain, i. e., R / I is a valuation ring;
(4) Every finitely generated ideal is principal.
We leave the proof as it is a repetition of the same for C(X) [3] under

the hypothesis specified.

4.12. — In any 1. o.-ring, the following are equivalent :
(1) Every ideal is convex;
(2) Every principal ideal is convex;
(3) Every ideal is an Z-ideal;
(4) Every principal ideal is an /-ideal.
The proof is obvious and hence omitted.

4.13. — The following are equivalent in R :
(1) For every f^R, there exists k^R such that f = k \ f | ;
(2) T:(M) is prime for every maximal Z-ideal M of -R;
(3) The prime /-ideals contained in any maximal Z-ideal M of R form

a chain;
(4) Every ideal is an intersection of pseudoprime ideals;
(5) Every principal ideal is an intersection of pseudoprime ideals.
( i )=>(2) : Since (f{^(M), \f\(7i:(M)) is a principal ideal in J?/7r(M),

the implication follows from 4.10. (2) => (3) : By 4.7 and 4.8, the
prime Z-ideals contained in M are exactly those containing 7T(M). Use
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the fact T: (M) is /-prime. (3) => (2) : Follows from 2.8 and the above
remark. (2) => (4) : Follows from 4.9. (4) => (5) : Trivial. (5) => (i) :
Follows because

f-f^-f-. f=f.-+f- and /W-=o.

4.14. — In an /-ring with bounded inversion, the following are
equivalent :

(1) Every ideal is convex;
(2) For every /; g, eR, (f.g) =-- (| f\ + \ g |);
(3) Every finitely generated ideal is principal.
We omit the proof of (i) =» (2) =^ (3) as it is identical to that obtained

for C(X) [3]. (3) => (i) : The property (3) of R is shared by its homo-
morphic images. Use 4.9 and 4.11.

4.15. — In 4.14, the property of bounded inversion in jR cannot be
omitted. The counter example needed is the t. o.-ring of integers.

4.16. — If every pseudoprime ideal is convex, the conditions in 4.13
and 4.14 are all equivalent with each other. This is not decided however
in general cases.

The author takes this opportunity to express his sincere thanks to
Prof. M. VENKATARAMAN for his kind encouragement and enthusiasm.
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