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A METRIC PROPERTY OF SOME RANDOM FUNCTIONS

ROBERT &AUFMAN

[Urbana, 111.]

0. Introduction. — Let £1 and £2 be compact linear sets of Hausdorff
dimensions di>o and A>o, and suppose that d==di+d .2< i . For
real numbers / > o, Ft is the set Ei + tE^. It is proved in [3], that
dimF^ d excepting a /-set of dimension at most d; in [4], the exceptional
set has positive dimension. It is thus natural to search for sets (< comple-
mentary " to a given set £2; namely, sets Ei for which the exceptional /-set
is void. This particular problem is solved by some theorems in
([I], chap. XV), founded on harmonic analysis. However, the analysis
of that work uses special properties of linear mappings, while the method
of [3] applies without change to the following non-linear variant. Consider
a continuously difTerentiable function h(u, u) defined in the plane,
whose partial derivatives satisfy inequalities i^-^-i .- ^C. Setting
ht(u, v) =h(u, tv) and .F<==/^(£iX£2), we see that the result of [3]
holds for this definition of Fi. In the next statement, X denotes linear
Brownian motion ([I], chap. XI) on [o, oo) and d == di + d^< i.

THEOREM. — Let ht be as defined above and E^[o, oo) a compact set of
dimension 1/2 di, while dim£2= d^ Then it is almost sure that

dimht(X(E)xE^^d forallt>o.

Because it is almost sure that dimX(£) == di ([I], p. i43), the
set X(E) is <( complementary " to £2 (with respect to the trans-
formation A).

After the proof of this theorem, the special choice A == u + v is briefly
considered; then it will be explained how this is indeed a simple case.
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1. — Suppose that p. and ^ are probability measures in E and £2,
respectively; then Ft carries a probability measure o-^ defined by the.
formula

ff(u)^(du) ==fff.h{X(x\ ty)^(dx)Udy).

Let Vk[u] == i when [ u \ < 2-^, Vk[u] ==• o otherwise (k = i, 2, 3, ...)
Then by the method of ([2], chap. Ill), it is easy to see that

dimF^ e., provided iT Vk[u — u1} ̂ (du) ̂  (du') == 0(2-^).

In order to handle all values t in an interval, i^<^2, we choose an
integer ko so large that

Vk[h(a, ty)—h(b, ty,)]^ V,-4/i(a, sy)—h(b, sy,)],

whenever y, y^E^ and |/—s\^<l-k. Thus we can obtain a lower
bound for dimFf, uniform over 1^/^:2, by majorizing

m8ix(teSk)^Vk[h(X(x), ty)—h(X(x'), ty^^dx) ... W),

where S^==( i , I+2-^, ..., 2 } has 1+2^ elements. In the following
paragraph, t occurs innocuously as a parameter, and so it is suppressed
until the end of the proof.

2. — To each number d e (o, 1/2 di), there is a probability measure ̂
in E, fulfilling a Lipschitz condition to exponent ei, and similarly, for
each number e^e(o, d^), a measure ^ in £2 (see [2], chap. II). For any
numbers a ̂  o, b, we form the double integrals

Ik^ffVk[h{X{x\ y)—h(X(a), b)}^(dx)7. (dy)

==fVk[u—h(X(a),b)]^(du).

LEMMA. — The rth moment oflk is0(k2~etk~eak)r, for each r == i, 2, 3,...,
uniformly with respect to a and b.

Proof, — The rth power of Ij, is a multiple integral
r

f'"ftl ̂ (-^A ffy)-A(X(a), b)]y.(dx,) ... Udgr).
/=!
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We can suppose that x^x^.. .^Xr, and then divide the integral
into subsets depending upon the relative position of a; here we shall
suppose a^Xi. The inequality TTv^o implies the system

\h(X(x,), y,)—h(X(a), b) < 2-^,
| h(X(x^), y^)—h(X(x,), y,) \ < ̂ .

To these, we can adjoin the inequalities

\X(x,)—X(a)\<k\x—a\r, \X(x^)—X(x,)\<k\x^—x,\^

for the set on which one of these fails has probability < e~2 . These
systems of inequalities yield

| y,— b | ̂  2-^+ Ck | x— a |1, | y^—y, | ̂  21-A+ Ck \ x^—Xj ̂

where C depends also on t, but is bounded for i ^-1 ̂ . 2. Because — ̂  i,— — ^y —
the probability of the first system of inequalities is

r—l

^infG,^ | ^i—al'^FJinfd,^1-^ | x^—Xj \^\
i

To each determination of Xi, ..., Xr a domain of values (t/i, ..., yr)
is defined, of measure

r—l
/ l\e2--—_- / 1\<?2

0^-k+k\x—a\2) f^[^+k\x^—x,[') .

To majorize the rth moment, we perform iterated integration; we
require a bound for integrals of the type

Cmi{l^-k\x—c\~^{{i~k+k\x—c^)e^(dx).

For the intervals \x—c\<^~k, a contribution (^"^.A^a"^) is
obtained. For the intervals [\~n•^x\—c|< 41-/S the magnitude does
not exceed

2^—A:^—raei^^?2^—es/ i ̂  ^—/c^ea^7i{l—2ei—e^^

As 2ei+e2^di+d2< i, the sum, for k^n, of all partial integrals,
is of magnitude y^k-e^k^e^ g^ from this the required estimate follows.
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Now, setting

Jk ̂ f • • • f V,[h(X(x), y) -h(X(x^ y ' } p. (dx).. .7. (dy'),

we find by Jensen's inequality the same estimate for the rth moment
of Jk.

Let now €3 < 2 Ci + 62. Then

P { J^ 2-^ } == O^-2^-^)7'^.

At this point, we restore the parameter t, and find

P { maxJ^O^ 2- '̂, ^€ &} == C^^3-2^--^)^^.

Choosing r so large that r (€3 — 2 Ci — 62) +1 < o, we find max Jk(t) == o (2"kcs)
almost surely. Since 63 is arbitrarily close to d = di + di, we have
finally dimjF^d for i^/^2, almost surely.

In the proof, we allowed t to operate on the coordinate v, since £2 is
bounded. But X(E) is almost surely bounded, and so / might also
operate on u. In fact, the proof is valid for functions 7i(u, u, t) conti-
nuously differentiable in u, v, t provided ,- > o, , > o everywhere.

3. — In the special case h == u + u, we use harmonic analysis of
Fourier-Stieltjes transforms. Let ^ and ^ be the measures introduced
in the beginning of paragraph 2, and v the transform of ^ by the trajec-
tory X:

^(s) =E Ce-^^^dx) = C e-^' v{dx').

By Theorem 1 of ([I], chap. XV),

9 (s) == o( | s I-6) for every e < - Ci.

Also,
f [ X (s) |2 [ s \f ds < oo for every f< 62— i.

^ \ s 1 ^>1^1>1
Hence

f |X(s)|2|^(s)|2|5|^ds<oo for every y< 62+01—i.
^ \ s l^ l' i ^oi

Now the measure v ^r X has Fourier transform v\ and is supported
by X(£)+2?2, so that X(E)+E^ has dimension ^€1+02. (For this
paragraph, see [2], chap. III.) The set X(E) is therefore complementary
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to every set £2, but the proof of this fact seems to have little relation
to the non-linear problem. Observe that when ^i+e2>i, the set
X(E) + ̂ 2 has positive measure, by the Plancherel formula; it would be
extremely interesting to obtain a theorem of this type for non-linear
mappings, valid for all t > o uniformly; it would also be interesting to find
properties of hf dependent upon the higher derivatives of h when these
exist.
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