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A NOTE ON 4-DIMENSIONAL HANDLEBODIES

BY

Frangois LAUDENBACH anp Varestin' POENARU

1. Introduction

‘We prove the following theorem :
Tueorem A. — Let X7, YP be the following smooth 4-manifolds :
XP = p # (S: X Dy), Y? = p 4= (S: X Dy).

Consider a diffeomorphism h: 0X? — 0Y? and the smooth closed 4-manifold
obtained by gluing X7 and Y? along h: XP v, Y?.
Xru, Y is diffeomorphic to S..

Theorem A is clearly equivalent to the following :

THEOREM A'. — Let X7 be as before, and consider p handles of index 3,
attached successively to X7 :

95t SyxDic»d (XP 4+ (93) +.. .+ (95",

where S, xD! = 0Dy xD,co(DyxD}) and i =1, ..., p.
Assume that 0 (X? + (¢3) +...4 (¢3)) = S;, and consider a handle
of index 4 :
90t 0Dy 0 (XP + (93) +- .-+ (@5

altached to X7 + (¢;) +...+ (9%). One has :
X7 + (93) +...4 (95) + (9:) = S.  (diffeomorphism).
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This result implies the following :

CoroLLARY B. — Let X? be as before, and consider p handles of index 3,
attached successively to X7 :

o SixDics>oXr + @) +...+ @) (@E=1...,p).
If

then

Hy(XP + @)+ o4+ (W5, 2) =0

XP + (3) +...+ (U8) = D, (diffeormophism).

2. The proof of theorem A

One has « canonical » identifications :

© S XS 7 (SEX S = p# (S X 8,

which will be given, once for all. It is obvious that
XPUQ_W YP = Sl,.

Lemma 1. — The following two statements are equivalent :
(i) Xru,Yr = S.
(ii) There exist diffeomorphisms: G: X7 — X7, H:Y? — YP, such that :

1) B—ta = (H|0Y?P)oho (G| 0XP).

Proof. — If f,, f. are two differentiable embeddings f;: Y”» — S,
it is obvious that the pairs (Ss, f1 Y7), (Si, f: Y?) are diffeomorphic. Hence,
if XPu,Yr =S8, =Xrug-.Y?, there exists a diffeomorphism
XPUpY? - XPUg—, Y7 sending X» onto X» and Y” onto Y». This
shows that (i) = (ii).

On the other hand, the equality (1) tells us that G and H can be patched
together so as to give diffeomorphism :

Xrup YP <> XPug—a Y7
Hence (ii) = (i).

ReMARK. — The implication (ii) = (i) holds whenever we glue two
n-manifolds along their (diffeomorphic) boundaries, while (i) = (ii) is
very exceptional.
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We consider now m; Y» = the free group with p generators, and we
remark that, if i : dY? <5 Y7 is the natural inclusion, then :

iy: m0YP—>mYP

is bijective. Let Diff Y» be the group of diffeomorphisms of Y~ and
Aut (7, Y?) [resp. Aut (7, 0Y?)] the group of automorphisms of =, Y»
(resp. m, dY?). We have a commutative triangle of natural homomor-
phisms :

A/1 Aut (71'1 YP)

m, (Dift YI’)/ 1d
\"\ Aut (z, 0Y7)
LemMma 2. — A and B are surjective.
Proof. — We consider a handle-decomposition, given once for all :
@ Yo =D + (93) +...+ (9%)

where (¢%) corresponds to the handle D} xDj.
We orient the D’’s and we chose a base-point

x, € 0D, — u; Image (¢}).

The spines [ D} ] will determine then a basis z1, ..., z# for 7 = =, (Y7, x,).
We define ®,, ®,, ®;€Aut (7) by :

O @, @) =2a if i 21 k and @, (2) =zt, @, (z}) =';

(i) @, (z) =2t if i 21, D, (x!) = ()

(iii) @, (x) =2 if i £ 1, ®, (x!) =z 22

In order to prove our lemma, it suffices to exhibit three diffeomor-
phisms H;: (Y7, 2) > (Y?,x) (i=1,2,3) such that (H), = ®.

[In the new handle-decomposition for Y7, induced by H,, the [D{]’s
will determine the basis ®; (z/) of m.]

The construction of H,, H, is an elementary exercise. In order to
define H,, we start by considering :

Y = (YruoYr x (0, 1)), x (0, 1),

where the notation means that we glue dY»x (0, 1) to Y», along
0Y? = 0dY?”x0 and afterwards we contract the fiber z,x (0, 1) to a
point. Y7 collapses onto Y”, but on the other hand Y7 and Y7 can be
identified by a (more or less) canonical diffeomorphism leaving z, fixed.
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Inside Y7 we can slide the handle D} x D} (of Y?) along D? X D? (using
the positive orientation of D}), without touching x,. This changes Y”

into a new subset : , Y7 c Y7, diffeotopic to Y7 c Y?. ,Y” has a natural
handle-decomposition [induced by (2) and by the slide] and since Y?
collapses onto , Y7 one gets a handle-decomposition of Y7 (hence of Y71):

6) Y7 =D + (1) +...+ D)

[where x,€0D, —u; Image (§%)]. Since
v: Image (¢) (U: Image (%))

is just a collection of disjoint disks in dD, = S;, we can find a diffeo-
morphism :

C: D+ (9}) +...>Di + @) +...

such that C (Di, %) = (Ds, ), C (D} xDi) = D} xDi, C respects the
orientations of the 1-handles. Combining (2), (3) and C, we get our H..

Remark. — The same argument holds for p =% (SixD,) (n > 2).
On the other hand, using a similar proof, we can show that
Aut (Hy (p # (SvxD,)) where H, = integral homology, n>.2, is
generated by m, (Diff (p 7~ (S) X Dy))).

We will also need the following
LemMma 3. — Let
f: P# (81X 8:)—>p# (SiXS:)
be an orientation-preserving homeomorphism inducing :
fon i T (P 7 (81X 8.)) = 7 (P # (S1 X S5)).
If f, 4 is the identily then f, , is also the identity.

Proof. — f lifts to the universal covering space :
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where X = p # (5;x S;). One has a commutative diagramm :

H, (%) -2 1, (%)
wl zl (Hurewicz)
7 (X) L% 7, (X)

Lemma 3 follows now from :

LemmaA 4. — Let X, be a closed orientable topological manifold and f :
X, X, an orientation preserving homeomorphism, such that f, , :
m, (Xpn) = 7 (X,) is the identity map. Then

fo: Hio(Xny Z) > Hot (X Z)
is also the identity map.

Proof. — Since H'(X,,Z) =0 one has a canonical isomorphism
H:(X,, Z) = H* (7, Z[r]), where © = m, (X,). This isomorphism is
functorial, hence the following diagramm is commutative :

Hi (Xm Z)‘;"Hi (7{’ Z [Tt])

{ 7™ lﬁa*

\V'
H!(X,, Z) — H' (%, Z[x])

Since f¥ = identity, it follows that f* is the identity too. On the
other hand, one has an isomorphism (the Poincaré duality) :

H(.1‘ (Xm Z) 7; Hn—l <X”, Z),

which is functorial for maps preserving the fundamental class. Now
one deduces easily that f is the identity map.

ReEMARK. — Let bX,, be the space of ends of X” (which is a compact
totally discontinuous space). Any homeomorphism ¢ : X, — X, induces
a homeomorphism § : bX, - bX,. If fis like in lemme 4, f: bX, > bX,
is the identity.

Now we can prove our theorem A. We consider the identifications «,
£ from the beginning of this section. Lemma 2 tells us that we can
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always find HeDiff (Y”) such that, if H, = H|dY», the following
diagramm is commutative :

Ty (dX”) —a:'> Uz (P # (S‘z X Si))
@) l"* TB*

Vs (de)WTH (de)

Let us assume for the time being that
BoH ohoat: p#(S:XS)—>p#(S:XS))

is orientation-preserving. Consider z;€S) [see formula (0)] and the
embedded 2-spheres :

= S XTCp# (S X Si).

From lemma 3, it follows that 2/ and o H;oho o~ (X)) are homo-
topic. IFrom [1], section 5, it follows now that there exists an isotopy
H'eDiff (Y7) (te (0, 1)) such that H° = H, and

yi =13°H1 ohoat (Z‘)Cp#(szxsl)

One can also remark that the diffeomorphisms Hy () from [1], section 5.3,
extend to elements of Diff (p # (Ds;xS:)). Hence, by [1], 5.4,
there exists an LeDiff (Y?) such that : BoL,oH}ohoa ' = iden-
tity. Since this means 3~ a = ((LoH!)|dY?)oh, lemma 1 tells us
that XPu,Y” = S, (mark that no diffeomorphism of X7 was needed
here ).

If BoH,ohoa! is not orientation-preserving, we can change (4)
into :

M1 (0XP) > 7y (0XP) — > 71 (P 7# (S2 X 1))

5) | o
7, (0Y7) o7, (OY7)

(H )%

where F, = F|0Xr, FeDiff (X?) with F orientation-reversing and
(F\), = the identity. From here on the proof continues as before.

3. The proof of corollary B

Corollary B follows from theorem A’ and the following :

Lemma 5. — Let X7, ({%) be as in the statement of corollary B. Then :

(X 4+ 3) +...+ {8) = S; (diffeomorphism).
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‘Proof. — The condition on H, implies that X» 4 (J%) +... is contrac-
tible. ¢4 stands for the attaching map :

"Pl'k : SzXIC_>d(XP + (q;j;) 4ot (4)2—1))

For each i, ! <sg>< %) is a 2-cycle of 9 (X + (b2) 4. ..+ (V1)

not homologous to 0. [Otherwise (J;) would introduce a 3-cycle in
X7 + (3 +...4+ (%) which could never be killed by adding 3-cells,
only.]

Hence, the {4 ( Sy X %> €5 0XP = p #(S: X S,) are embedded, dis-
joined, homologiczilly independant. It follows easily that

(P (S:x S Utk (8:x )

is diffeomorphic to (p 7# (S2xSy), U: Sy xx%) a.s.o. (Caution : This
diffeomorphism does not necessarly extend to X».)

4. Final remarks

We will place now corollary B, which is the starting point of our
investigation, in its proper context.

Ifn>4,n—2> A>.1,let C,,; denote the class of smooth manifolds
of the form

X =D+ (9) -+ (&) + (91,) +---+(97,)

such that X is contractible.

The h-cobordism theorem of Smale implies that : Xe€C, =X =D,
provided that : n>6, n—3 > A On the other hand, C,, (and in
general C, , ;) contains elements with non-simply-connected boundary.

Here are some conjectures for the cases which are not settled :

cl): XeC, = X=D,
C®2: XeC, = midX=0,
C@B): XeC,, = X=0D,
C@: XeC, = 0X=3S8.

C (2) is a very modest version of C (1), while C (3) and C (4) are clearly
equivalent. Our corollary B is just the simplest case where we can
hope to check C (1). From [2], [3] and very easy arguments, it follows
that C (1) = the Poincaré conjecture in dimensions 3 and 4. Also C (2)
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and the Poincaré conjecture in dimensions 3 and 4 = C (1). C (3) (C (4))
implies the following weak version of the Poincaré conjecture in dimen-
sion 4 : if %, is a smooth oriented homotopy 4-sphere, then :

(6) 2, # (— %) = S (diffeomorphism).

The Poincaré conjecture in dimension 4 <> (6) and the smooth 4-dimen-
sional Schoenfliess conjecture.
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