BULLETIN DE LA S. M. F.

François Laudenbach Valentin Poénaru

A note on 4-dimensional handlebodies

Bulletin de la S. M. F., tome 100 (1972), p. 337-344

http://www.numdam.org/item?id=BSMF_1972__100__337_0

© Bulletin de la S. M. F., 1972, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 100, 1972, p. 337 à 344.

A NOTE ON 4-DIMENSIONAL HANDLEBODIES

ВY

François LAUDENBACH and Valentin POÉNARU

1. Introduction

We prove the following theorem:

THEOREM A. — Let X^p , Y^p be the following smooth 4-manifolds:

$$X^p = p \# (S_2 \times D_2), \qquad Y^p = p \# (S_1 \times D_3).$$

Consider a diffeomorphism $h: \partial X^p \to \partial Y^p$ and the smooth closed 4-manifold obtained by gluing X^p and Y^p along $h: X^p \cup_h Y^p$.

 $X^p \cup_h Y^p$ is diffeomorphic to S_4 .

Theorem A is clearly equivalent to the following:

THEOREM A'. — Let X^p be as before, and consider p handles of index 3, attached successively to X^p :

$$\varphi_3^i: S_2^i \times D_1^i \hookrightarrow \partial (X^p + (\varphi_3^1) + \ldots + (\varphi_3^{i-1})),$$

where $S_2^i \times D_1^i = \partial D_3^i \times D_1^i \subset \partial (D_3^i \times D_1^i)$ and $i = 1, \ldots, p$.

Assume that $\partial (X^p + (\varphi_3^1) + \ldots + (\varphi_3^p)) = S_3$, and consider a handle of index 4:

$$\varphi_{k}: \partial D_{k} \subset \partial (X^{p} + (\varphi_{3}^{1}) + \ldots + (\varphi_{3}^{p})),$$

attached to $X^p + (\varphi_3^1) + \ldots + (\varphi_3^p)$. One has:

$$X^p+(\varphi_3^1)+\ldots+(\varphi_3^p)+(\varphi_4)=S_4$$
 (diffeomorphism). Bull. Soc. Math. — T. 100. — Fasc. 3

This result implies the following:

COROLLARY B. — Let X^p be as before, and consider p handles of index 3, attached successively to X^p :

$$\psi_3^i: S_2^i \times D_1^i \hookrightarrow \partial (X^p + (\psi_3^1) + \ldots + (\psi_3^{i-1})) \quad (i = 1, \ldots, p).$$

If

$$H_2(X^p + (\psi_3^1) + \ldots + (\psi_3^p), Z) = 0$$

then

$$X^p + (\psi_3^1) + \ldots + (\psi_3^p) = D_4$$
 (diffeormorphism).

2. The proof of theorem A

One has « canonical » identifications:

(0)
$$\partial X^{p} \times (S_{2}^{1} \times S_{1}^{1}) \# \dots \# (S_{2}^{p} \times S_{1}^{p}) = p \# (S_{2} \times S_{1}),$$

$$\partial Y^{p} \times \beta$$

which will be given, once for all. It is obvious that

$$X^p \cup_{\beta=1} X^p = S_4$$
.

LEMMA 1. — The following two statements are equivalent:

- (i) $X^p \cup_h Y^p = S_4$.
- (ii) There exist diffeomorphisms: $G: X^p \to X^p$, $H: Y^p \to Y^p$, such that:

(1)
$$\beta^{-1} \alpha = (H \mid \partial Y^p) \circ h \circ (G \mid \partial X^p).$$

Proof. — If f_1 , f_2 are two differentiable embeddings $f_i: Y^p \to S_4$, it is obvious that the pairs $(S_4, f_1 Y^p)$, $(S_4, f_2 Y^p)$ are diffeomorphic. Hence, if $X^p \cup_h Y^p = S_4 = X^p \cup_{\beta \to i_\alpha} Y^p$, there exists a diffeomorphism: $X^p \cup_h Y^p \to X^p \cup_{\beta \to i_\alpha} Y^p$ sending X^p onto X^p and Y^p onto Y^p . This shows that (i) \Rightarrow (ii).

On the other hand, the equality (1) tells us that G and H can be patched together so as to give diffeomorphism:

$$X^p \cup_h Y^p \leftrightarrow X^p \cup_{\beta = 1} X^p$$
.

Hence (ii) \Rightarrow (i).

REMARK. — The implication (ii) \Rightarrow (i) holds whenever we glue two *n*-manifolds along their (diffeomorphic) boundaries, while (i) \Rightarrow (ii) is very exceptional.

We consider now $\pi_1 Y^p =$ the free group with p generators, and we remark that, if $i: \partial Y^p \hookrightarrow Y^p$ is the natural inclusion, then:

$$i_*: \pi_1 \partial Y^p \to \pi_1 Y^p$$

is bijective. Let Diff Y^p be the group of diffeomorphisms of Y^p and Aut $(\pi_1 Y^p)$ [resp. Aut $(\pi_1 \partial Y^p)$] the group of automorphisms of $\pi_1 Y^p$ (resp. $\pi_1 \partial Y^p$). We have a commutative triangle of natural homomorphisms:

$$\pi_0 \text{ (Diff } Y^p) \xrightarrow{A \longrightarrow Aut (\pi_1 Y^p)} \text{Id}$$

$$\text{Aut } (\pi_1 \partial Y^p)$$

LEMMA 2. — A and B are surjective.

Proof. — We consider a handle-decomposition, given once for all:

(2)
$$Y^{p} = D_{4} + (\varphi_{1}^{1}) + \ldots + (\varphi_{1}^{p})$$

where (φ_1^i) corresponds to the handle $D_1^i \times D_3^i$.

We orient the D_1^i 's and we chose a base-point

$$x_0 \in \partial D_4 - \bigcup_i \text{ Image } (\varphi_1^i).$$

The spines $[D_1^i]$ will determine then a basis x^1, \ldots, x^p for $\pi = \pi_1(Y^p, x_0)$. We define $\Phi_1, \Phi_2, \Phi_3 \in \text{Aut}(\pi)$ by :

- (i) $\Phi_1(x^i) = x^i$ if $i \neq l$, k, and $\Phi_1(x^l) = x^k$, $\Phi_1(x^k) = x^l$;
- (ii) $\Phi_{2}(x^{i}) = x^{i}$ if $i \neq 1$, $\Phi_{2}(x^{1}) = (x^{1})^{-1}$;
- (iii) $\Phi_3(x^i) = x^i$ if $i \neq 1$, $\Phi_3(x^1) = x^1 x^2$.

In order to prove our lemma, it suffices to exhibit three diffeomorphisms $H_i: (Y^p, x_0) \to (Y^p, x_0)$ (i = 1, 2, 3) such that $(H_i)_* = \Phi_i$.

[In the new handle-decomposition for Y^p , induced by H_i , the $[D_1^j]$'s will determine the basis $\Phi_i(x^j)$ of π .]

The construction of H_1 , H_2 is an elementary exercise. In order to define H_3 , we start by considering:

$$\overline{Y}^p = (Y^p \cup \partial Y^p \times (0,1))/x_0 \times (0,1),$$

where the notation means that we glue $\partial Y^p \times (0, 1)$ to Y^p , along $\partial Y^p \equiv \partial Y^p \times 0$ and afterwards we contract the fiber $x_0 \times (0, 1)$ to a point. \overline{Y}^p collapses onto Y^p , but on the other hand \overline{Y}^p and Y^p can be identified by a (more or less) canonical diffeomorphism leaving x_0 fixed.

Inside \overline{Y}^p we can slide the handle $D_1^1 \times D_3^1$ (of Y^p) along $D_1^2 \times D_3^2$ (using the positive orientation of D_1^2), without touching x_0 . This changes Y^p into a new subset : ${}_1Y^p \subset \overline{Y}^p$, diffeotopic to $Y^p \subset \overline{Y}^p$. ${}_1Y^p$ has a natural handle-decomposition [induced by (2) and by the slide] and since \overline{Y}^p collapses onto ${}_1Y^p$ one gets a handle-decomposition of \overline{Y}^p (hence of Y^p !):

(3)
$$Y^p = D_4 + (\psi_1^1) + \ldots + (\psi_1^p)$$

[where $x_0 \in \partial D_4 - \bigcup_i \text{ Image } (\psi_1^i)$]. Since

$$\bigcup_i \text{ Image } (\varphi_1^i) (\bigcup_i \text{ Image } (\psi_1^i))$$

is just a collection of disjoint disks in $\partial D_4 = S_3$, we can find a diffeomorphism :

$$C: D_4 + (\varphi_1^1) + \ldots \rightarrow D_4 + (\psi_1^1) + \ldots$$

such that $C(D_4, x_0) = (D_4, x_0)$, $C(D_1^i \times D_3^i) = D_1^i \times D_3^i$, C respects the orientations of the 1-handles. Combining (2), (3) and C, we get our H_3 .

REMARK. — The same argument holds for $p \# (S_1 \times D_n)$ $(n \ge 2)$. On the other hand, using a similar proof, we can show that Aut $(H_{\lambda}(p \# (S_{\lambda} \times D_n)))$ where $H_* = \text{integral homology}$, $n \ge 2$, is generated by π_0 (Diff $(p \# (S_{\lambda} \times D_n))$).

We will also need the following

Lemma 3. — Let

$$f: p \# (S_1 \times S_2) \rightarrow p \# (S_1 \times S_2)$$

be an orientation-preserving homeomorphism inducing:

$$f_{i} : \pi_i (p \# (S_1 \times S_2)) \rightarrow \pi_i (p \# (S_1 \times S_2)).$$

If $f_{1,*}$ is the identity then $f_{2,*}$ is also the identity.

Proof. — f lifts to the universal covering space :

$$egin{array}{ccc} ar{X} & \stackrel{ extstyle \mathcal{T}}{\longrightarrow} ar{X} \ \downarrow & \downarrow & \downarrow \ X & \stackrel{f}{\longrightarrow} X \end{array}$$

where $X = p \# (S_1 \times S_2)$. One has a commutative diagramm:

$$\begin{array}{ccc} H_{2}\left(\tilde{X}\right) & \xrightarrow{\tilde{f}_{*}} & H_{2}\left(\tilde{X}\right) \\ \approx & \downarrow & \approx \downarrow & \text{(Hurewicz)} \\ \pi_{2}\left(X\right) & \xrightarrow{f_{1},*} & \pi_{2}\left(X\right) \end{array}$$

Lemma 3 follows now from:

Lemma 4. — Let X_n be a closed orientable topological manifold and $f: X_n \to X_n$ an orientation preserving homeomorphism, such that $f_{1,*}: \pi_1(X_n) \to \pi_1(X_n)$ is the identity map. Then

$$ilde{f_{m{\pi}}}: \hspace{0.2cm} H_{n-1}\left(ilde{m{X}}_n, Z
ight) \!
ightarrow H_{n-1}\left(ilde{m{X}}_n, Z
ight)$$

is also the identity map.

Proof. — Since $H^1(\tilde{X}_n,Z)=0$ one has a canonical isomorphism $H^1_c(\tilde{X}_n,Z)=H^1(\pi,Z[\pi])$, where $\pi=\pi_1(X_n)$. This isomorphism is functorial, hence the following diagramm is commutative:

Since $f_*^* =$ identity, it follows that \tilde{f}^* is the identity too. On the other hand, one has an isomorphism (the Poincaré duality):

$$H_c^1(\widetilde{X}_n, Z) \xrightarrow{D} H_{n-1}(\widetilde{X}_n, Z),$$

which is functorial for maps preserving the fundamental class. Now one deduces easily that \tilde{f}_* is the identity map.

Remark. — Let $b\,\tilde{X}_n$ be the space of ends of \tilde{X}_n (which is a compact totally discontinuous space). Any homeomorphism $g:X_n\to X_n$ induces a homeomorphism $\tilde{g}:b\tilde{X}_n\to b\tilde{X}_n$. If f is like in lemme 4, $\tilde{f}:b\tilde{X}_n\to b\tilde{X}_n$ is the identity.

Now we can prove our theorem A. We consider the identifications α , β from the beginning of this section. Lemma 2 tells us that we can

always find $H \in \text{Diff}(Y^p)$ such that, if $H_1 = H \mid \partial Y^p$, the following diagramm is commutative:

(4)
$$\pi_{1} (\partial X^{p}) \xrightarrow{\alpha_{*}} \pi_{1} (p \# (S_{2} \times S_{1}))$$

$$\downarrow^{h_{*}} \qquad \qquad \uparrow^{\beta_{*}}$$

$$\pi_{1} (\partial Y^{p}) \xrightarrow{(H_{1})_{*}} \pi_{1} (\partial Y^{p})$$

Let us assume for the time being that

$$\beta \circ H_1 \circ h \circ \alpha^{-1}: \quad p \# (S_2 \times S_1) \rightarrow p \# (S_2 \times S_1)$$

is orientation-preserving. Consider $x_i \in S_1^i$ [see formula (0)] and the embedded 2-spheres:

$$\Sigma^i = S_2^i \times x_i \subset p \# (S_2 \times S_1).$$

From lemma 3, it follows that Σ^i and $\beta \circ H_1 \circ h \circ \alpha^{-1}(\Sigma^i)$ are homotopic. From [1], section 5, it follows now that there exists an isotopy $H' \in \text{Diff}(Y^p)$ $(t \in \{0, 1\})$ such that $H^0 = H$, and

$$\Sigma^i = \beta \circ H_1^1 \circ h \circ \alpha^{-1} (\Sigma^i) \subset p \# (S_2 \times S_1).$$

One can also remark that the diffeomorphisms $H_{\Sigma}(\alpha)$ from [1], section 5.3, extend to elements of Diff $(p \# (D_3 \times S_1))$. Hence, by [1], 5.4, there exists an $L \in \text{Diff}(Y^p)$ such that $: \beta \circ L_1 \circ H_1^1 \circ h \circ \alpha^{-1} = \text{identity.}$ Since this means $\beta^{-1} \alpha = ((L \circ H^1) \mid \partial Y^p) \circ h$, lemma 1 tells us that $X^p \cup_h Y^p = S_4$ (mark that no diffeomorphism of X^p was needed here !).

If $\beta \circ H_1 \circ h \circ \alpha^{-1}$ is not orientation-preserving, we can change (4) into:

(5)
$$\pi_{1} (\partial X^{p}) \xrightarrow{(F_{1})_{*}} \pi_{1} (\partial X^{p}) \xrightarrow{\alpha_{*}} \pi_{1} (p \# (S_{2} \times S_{1}))$$

$$\downarrow^{h_{*}} \qquad \qquad \uparrow^{\beta_{*}}$$

$$\pi_{1} (\partial Y^{p}) \xrightarrow{(H_{1})_{*}} \pi_{1} (\partial Y^{p})$$

where $F_1 = F \mid \partial X^p$, $F \in \text{Diff}(X^p)$ with F orientation-reversing and $(F_1)_* = \text{the identity}$. From here on the proof continues as before.

3. The proof of corollary B

Corollary B follows from theorem A' and the following:

Lemma 5. — Let X^p , (ψ_3^i) be as in the statement of corollary B. Then

$$\partial (X^p + (\psi_3^1) + \ldots + (\psi_3^p)) = S_3$$
 (diffeomorphism).

Proof. — The condition on H_2 implies that $X^p + (\psi_3^i) + \dots$ is contractible. ψ_3^i stands for the attaching map:

$$\psi_3^i: S_2 \times I \hookrightarrow \partial (X^p + (\psi_3^1) + \ldots + (\psi_3^{i-1})).$$

For each i, $\psi_3^i\left(S_2\times\frac{1}{2}\right)$ is a 2-cycle of $\partial\left(X^p+(\psi_3^i)+\ldots+(\psi_3^{i-1})\right)$ not homologous to 0. [Otherwise (ψ_3^i) would introduce a 3-cycle in $X^p+(\psi_3^i)+\ldots+(\psi_3^i)$ which could never be killed by adding 3-cells, only.]

Hence, the $\psi_3^i\left(S_2\times\frac{1}{2}\right)$ \hookrightarrow $\partial X^p=p$ # $(S_2\times S_1)$ are embedded, disjoined, homologically independent. It follows easily that

$$\left(p
ot \# (S_2 \! imes S_{\scriptscriptstyle 1}), \, \cup \, \psi^i_{\scriptscriptstyle 3} \left(S_2 \! imes rac{1}{2}
ight)
ight)$$

is diffeomorphic to $(p \# (S_2 \times S_1), \bigcup_i S_2^i \times x^i)$ a. s. o. (Caution: This diffeomorphism does *not* necessarly extend to X^p .)

4. Final remarks

We will place now corollary B, which is the starting point of our investigation, in its proper context.

If $n \ge 4$, $n-2 \ge \lambda \ge 1$, let $C_{n,\lambda}$ denote the class of smooth manifolds of the form

$$X = \textbf{D}_{\textbf{n}} + \left(\phi_{\lambda}^{\textbf{1}}\right) + \ldots + \left(\phi_{\lambda}^{\textbf{p}}\right) + \left(\phi_{\lambda+1}^{\textbf{1}}\right) + \ldots + \left(\phi_{\lambda+1}^{\textbf{p}}\right)$$

such that X is contractible.

The h-cobordism theorem of Smale implies that $: X \in C_{n,\lambda} \Rightarrow X = D_n$ provided that $: n \geq 6, n-3 > \lambda$. On the other hand, $C_{4,1}$ (and in general $C_{n,n-3}$) contains elements with non-simply-connected boundary.

Here are some conjectures for the cases which are not settled:

 $C(1): X \in C_{4,2} \Rightarrow X = D_4,$ $C(2): X \in C_{4,2} \Rightarrow \pi_1 \partial X = 0,$ $C(3): X \in C_{5,1} \Rightarrow X = D_5,$ $C(4): X \in C_{5,1} \Rightarrow \partial X = S_4.$

C (2) is a very modest version of C (1), while C (3) and C (4) are clearly equivalent. Our corollary B is just the simplest case where we can hope to check C (1). From [2], [3] and very easy arguments, it follows that C (1) \Rightarrow the Poincaré conjecture in dimensions 3 and 4. Also C (2)

and the Poincaré conjecture in dimensions 3 and $4 \Rightarrow C$ (1). C (3) (C (4)) implies the following weak version of the Poincaré conjecture in dimension 4: if Σ_* is a smooth oriented homotopy 4-sphere, then:

(6)
$$\Sigma_{\downarrow} \# (-\Sigma_{\downarrow}) = S_{\downarrow}$$
 (diffeomorphism).

The Poincaré conjecture in dimension $4 \Leftrightarrow (6)$ and the smooth 4-dimensional Schoenfliess conjecture.

REFERENCES

- [1] LAUDENBACH (F).. Sur les 2-sphères d'une variété de dimension 3 (to appear in Ann. of Math.).
- [2] POÉNARU (V.). Constructions on low-dimensional manifolds, Bull. Amer. math. Soc., t. 74, 1968, p. 253-257.
- [3] WALL (C. T. C). Geometric connectivity (to appear).

(Texte reçu le 22 mars 1972.)

François LAUDENBACH,
Centre de Mathématiques
de l'École Polytechnique,
17, rue Descartes, 75-Paris 05
et Département de Mathématiques,
Bâtiment 425,
Université de Paris-Sud,
91405 Orsay.
Valentin Poénaru,
Département de Mathématiques,
Bâtiment 425,
Université de Paris-Sud,

91405 Orsay.