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A NOTE ON 4-DIMENSIONAL HANDLEBODIES

BY

FRANCOIS LAUDENBACH AND VALENTIN POfiNARU

1. Introduction

We prove the following theorem :

THEOREM A. — Let X^, YP be the following smooth ^-manifolds :

XP = p ̂  (S. x D.), YP == p # (S, x 1)3).

Consider a diffeomorphism h: ()XP -> ()YP and the smooth closed 4:-manifold
obtained by gluing XP and YP along h: XP UA YP.

XP \Jh YP is diffeomorphic to &.

Theorem A is clearly equivalent to the following :

THEOREM A'. — Let XP be as before, and consider p handles of index 3,
attached successively to XP :

^: s1, x D\ c-^ <) (XP + (cp;) +... + (cpr1)),
where S{ xD\ = OD\ xD\co(D\ xD\) and i == 1, ..., p.

Assume that o (XP + (9;) +... + (cp?)) = 83, and consider a handle
of index 4 :

^: ^Ac^(x^+(?.0+...+(y0),

attached to XP + (cp;)+. . .+ (<p?). One has :

^p + (?S) +... + (??) + (94) = S4 (diffeomorphism).
BULL. SOC. MATH. —— T. 100. —— FASC. 3 22
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This result implies the following :

COROLLARY B. — Let XP be as before, and consider p handles of index 3,
attached successively to XP :

+i: S[xD{c^^(XP+W)+...+(^i)) ( i = l , . . . , p ) .

If

then
H. (XP + (^) +...+ (^), Z) = 0

XP + (^) +... + CK) = A (diffeormophism).

2. The proof of theorem A

One has « canonical » identifications :

()XP\
\a

(0) ^ (Sl x S{) #.. .̂  (^ x S?) = p ̂  (S. x SQ,
%;/

^./p

which will be given, once for all. It is obvious that

X^Up-ia YP = ^4.

LEMMA 1. — The following two statements are equivalent :
(i) XPUhYP=S,.
(ii) There exist diffeomorphisms: G: XP -^ XP, H :YP-^ YP, such that:

(1) P-1 a = (H [ ^Y^) o A o (G | ̂ X^).

Proof. — If /i, /a are two differentiable embeddings fi: YP —^ Si,,
it is obvious that the pairs (84, /i Y^), (<S'4, /a Y^) are difTeomorphic. Hence,
if XP\JhYP == $4 = XP\JI^-^YP, there exists a diffeomorphism :
XP\JhYP ->XP\JQ-^YP sending XP onto XP and Y^ onto YP. This
shows that (i) => (ii).

On the other hand, the equality (1) tells us that G and H can be patched
together so as to give diffeomorphism :

XPUh YP^->XP\J^-^ YP.
Hence (ii) •==> (i).

REMARK. — The implication (ii) => (i) holds whenever we glue two
n-manifolds along their (difTeomorphic) boundaries, while (i) ==> (ii) is
very exceptional.
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We consider now 7:1 YP == the free group with p generators, and we
remark that, if i: ()YP c_ Y? is the natural inclusion, then :

i^ : 7:1 ()Y?-> 7:1 YP
is bijective. Let DifT YP be the group of diffeomorphisms of YP and
Aut (TTi Y^) [resp. Aut (7:1 ()YP)] the group of automorphisms of 71-1 Y°
(resp. 7:1 ()YP). We have a commutative triangle of natural homomor-
phisms :

-, Aut (TTi YP)
I

^(DiffY/')7 KI
B\ ^

^A.ut(n,()YP)

LEMMA 2. — A and B are surjectiue.

Proof. — We consider a handle-decomposition, given once for all :

(2) Y^=A+(cpO+. . .+(cpO

where (^\) corresponds to the handle D\ xD[.
We orient the D\'s and we chose a base-point

:Co € ̂ A — u, Image (cp^).

The spines [D'l ] will determine then a basis X1, ..., XP for TT = 7:1 (Y^, rco).
We define <l>i, ^2, ^3€Aut(7r) by :

(i) €>i (a;Q = x1 if f 7^ /, k, and 0>i (a;7) == ^, e>i (^) = x1;
(ii) ^2 (^) ==: x1 if f 7^ 1, €>2 (.r1) == (x1)-1;

(iii) 0, (^) == ^ if i^ l , ^3 (x1) == x1 x\

In order to prove our lemma, it suffices to exhibit three diffeomor-
phisms Hi: (YP, a-o) -> (YP, 0-0) (i == 1, 2, 3) such that (H,)^ == ̂

[In the new handle-decomposition for YP, induced by Hi, the [D{]'s
will determine the basis ^i(x^) of TT.]

The construction of Hi, H^ is an elementary exercise. In order to
define H^, we start by considering :

YP =(YPU(}YPX(O,I))IX,X(O,I),

where the notation means that we glue ()YPX(O, 1) to YP, along
()YP==()YPX^ and afterwards we contract the fiber ;roX(0, 1) to a
point. YP collapses onto YP, but on the other hand YP and YP can be
identified by a (more or less) canonical diffeomorphism leaving Xo fixed.
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Inside YP we can slide the handle D\ xD\ (of YP) along D\ xD| (using
the positive orientation of D\\ without touching Xo. This changes YP
into a new subset : iV^c YP, diffeotopic to YPC YP. ^YP has a natural
handle-decomposition [induced by (2) and by the slide] and since YP
collapses onto i YP one gets a handle-decomposition of YP (hence of YP !):

(3) Y ^ = A + ( ^ ) + . . . + ( < K )

[where Xo € ?4 — Uz Image (^'i)]. Since

u, Image (^) (u, Image (^^))

is just a collection of disjoint disks in ^D^ = S^ we can find a difTeo-
morphism :

C: A+(^)+...-^A+(^0+...

such that C (D,, Xo) =. (D,, x,), C (D\ xD[) = D\ xD[, C respects the
orientations of the 1-handles. Combining (2), (3) and C, we get our Hy.

REMARK. — The same argument holds for p -=ff^ (Si X-D/i) (n ̂ 2).
On the other hand, using a similar proof, we can show that
Aut (H), (p ̂  (S), xDn)) where H^ = integral homology, n ̂  2, is
generated by 7:0 (Dif¥ (p ̂  (5). xD,))).

We will also need the following

LEMMA 3. — Let

f: p # ( S , x S , ) ^ p # ( S , x S . )

be an orientation-preserving homeomorphism inducing :

fi.. s' ^i (P # (5i X 5.)) -> TT, (p ̂  (S, X SQ).

If /^ is the identity then /^ is also the identity.

Proof. — f lifts to the universal covering space :

x-^x

x-^>x
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where X == p =^ (5i x -Sa). One has a commutative diagramm :

^(X)-A^(X)

^ %< (HUREWICZ)

7^,(X)-A-^7^,(X)

Lemma 3 follows now from :

LEMMA 4. — Let Xn be a closed orientable topological manifold and f :
Xn—^Xn an orientation preserving homeomorphism, such that /\^ :
7:1 (Xn) ~> 7:1 (Xn) is the identity map. Then

^ : H,^ (Xn, Z) -^ Hn-. {Xn, Z)

is also the identity map.

Proof. — Since H1 {Xn, Z) = 0 one has a canonical isomorphism
H^ (Xn, Z) = H1 (TT, Z [TT]), where TT = TTi (Xn). This isomorphism is
functorial, hence the following diagramm is commutative :

H^(Xn,Z)——>H1(K,Z[^])

I7* ^ 1̂Y Y

^(X,,Z)-^^(7r,Z[7r])

Since fi === identity, it follows that /w* is the identity too. On the
other hand, one has an isomorphism (the Poincare duality) :

Hi,(Xn,Z)-^Bn-.(Xn,Z),

which is functorial for maps preserving the fundamental class. Now
one deduces easily that f^ is the identity map.

REMARK. — Let bXn be the space of ends of Xn (which is a compact
totally discontinuous space). Any homeomorphism g : Xn -> Xn induces

-w -w -w S <w ^

a homeomorphism g : bXn -> bXn. If fis like in lemme 4, f : bXn -> bXn
is the identity.

Now we can prove our theorem A. We consider the identifications a,
(5 from the beginning of this section. Lemma 2 tells us that we can
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always find H^Difi(Y^) such that, if H , = = H \ ( ) Y ^ , the following
diagramm is commutative :

n,(<)XP)-^>n,(p#(S.xS,))

(4) ^ * ^

n.^YP) ^ >^(^YP)

Let us assume for the time being that

(3 o H, o h o a-1 : p ̂  (S, xSi) -^ p ̂  (S, X 5i)

is orientation-preserving. Consider Xi^S\ [see formula (0)] and the
embedded 2-spheres :

^ = S'.xXiCp^^xS^

From lemma 3, it follows that I1 and j3 o Hi o h o a-1 ( '̂) are homo-
topic. From [I], section 5, it follows now that there exists an isotopy
JPeDifT (YP) (te (0, 1)) such that ^° = Jf, and

^ == (3 o ̂  o /; o a-i (^)cp ̂  (^ X Si).

One can also remark that the difCeomorphisms H^ (a) from [I], section 5.3,
extend to elements of DifT (p # (A X 5'i)). Hence, by [I], 5.4,
there exists an LeDifT(Y^) such that : p o Li o H\ o A o a-1 = iden-
tity. Since this means (3-1 a == ((L o Jf1) ^Y^) o h, lemma 1 tells us
that XP\J/,Y^ == Si, (mark that no diffeomorphism of XP was needed
here !).

If [3 o H^ o h o a-1 is not orientation-preserving, we can change (4)
into :

TT, (OXP) -^ ̂  (^XP) -^ TT, (p # (5, X Si))

(5) ^ ^

^ ^YP)——————^—————>r., <^YP)

where Fi == F \ ()XP, FeDifT(X^) with F orientation-reversing and
(F,)^ === the identity. From here on the proof continues as before.

3. The proof of corollary B

Corollary B follows from theorem A' and the following :

LEMMA 5. — Let XP, (^4) be as in the statement of corollary B. Then :

() {XP + (^) +. . . + (^?)) == S, (diffeomorphism).
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Proof. — The condition on H^ implies that XP + (^/g) +... is contrac-
tible. 44 stands for the attaching map :

^: ^xJc^(x^+(^+...+(^1)).

For each i, 4/3 (s^ x v} is a 2-cycle of ^ (XP + (^;) +... + (44-1))

nof homologous to 0. [Otherwise (4/3) would introduce a 3-cycle in
Xp + W\) +.. .+ (44) which could never be killed by adding 3-cells,
only.]

Hence, the 44 ( S-zX ^ ) c-^ <^XP = p -^ (S^ x S,) are embedded, dis-
' \ ^/

joined, homologically independant. It follows easily that

(p^(S.xSO,u^(5.x1))
\ \ ^/ /

is difleomorphic to (p # (S^xSi), \Ji S[xx1) a. s. o. (Caution : This
difTeomorphism does not necessarly extend to XP.)

4. Final remarks

We will place now corollary B, which is the starting point of our
investigation, in its proper context.

If n ̂  4, n — 2 ̂  X ̂  1, let Cn,\ denote the class of smooth manifolds
of the form

X=D.+(90+...+(?0+(^) +...+«„)

such that X is contractible.
The A-cobordism theorem of Smale implies that : X e Cn, \=> X = Dn

provided that : n ̂  6, n — 3 > L On the other hand, €4,1 (and in
general Cn,n-^) contains elements with non-simply-connected boundary.

Here are some conjectures for the cases which are not settled :

C(l): XeC4,2 => X==A,
C(2): XeC4,2 => 7r^X=0,
C(3): XeCs,! => X=D,,
C(4): XeC^i => ^X==54.

C (2) is a very modest version of C (1), while C (3) and C (4) are clearly
equivalent. Our corollary B is just the simplest case where we can
hope to check C (1). From [2], [3] and very easy arguments, it follows
that C (1) =^ the Poincare conjecture in dimensions 3 and 4. Also C (2)
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and the Poincare conjecture in dimensions 3 and 4 => C (1). C (3) (C (4))
implies the following weak version of the Poincare conjecture in dimen-
sion 4 : if 1,4 is a smooth oriented homotopy 4-sphere, then :

(6) ^4 # (- ̂ ) = S, (diffeomorphism).

The Poincare conjecture in dimension 4 <=> (6) and the smooth 4-dimen-
sional Schoenfliess conjecture.
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