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CONTINUOUS DERIVATIONS OF VALUED FIELDS

BY

Marivs van per PUT

[Utrecht]

SuMMARY. — Let L> K be complete ultrametric fields. Every K-linear continuous
derivation of L into a Banach space over L factors through the universal K-linear
continuous derivation d: L —> Qli, k- The structure of (d, 92,,‘) is described in
detail for discrete valued fields L/K. For dense valuations there are results on :
extensions of continuous derivations; topologically transcendental and algebraic
elements; topological p-bases. As application one finds a result on tensor products
of Banach algebras over K.

Introduction

The goal of this work is to describe continuous derivations of a valued
field L into a Banach space over L. As there are no continuous deri-
vations (other than 0) for archimedean valued fields, we restrict our
attention to non-archimedean valued fields.

For complete valued fields L> K, one constructs in section 2 an
universal continuous K-linear derivation d}x: L - Q4. It is shown
in (2.5) that the pair (d%,x, Q%) can be obtained from the universal
Vi-linear derivation d,/L/yK= Vi— SZ}/LI,/K, where V, and V, are the
rings of integers of L resp. K.

An almost complete description of (d}/k, Q%) for discrete valued
fields is given in sections 3, 4, 5. The results are close to computations
of R. Berger and E. Kunz on the module of differentials of a discrete
valuation ring.

The main result of section 6 is the following :

If L>K are complete valued fields with residue-characteristic zero
then the canonical map Q7 ®x L — Q4 is isometric (6.1).

In an informal way this means that any continuous derivation of K
into a suitable Banach space over L can be extended with the same
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72 M. VAN DER PUT

norm. Using (6.1) one obtains in section 6 a fairly good description
of Q}/x for the case of residue characteristic zero. An application of
this yields the following result on tensor products of commutative
Banach algebras :

Suppose that K has residue-characteristic zero. Let A and B be
commutative Banach algebras with a unit over K such that the norms
of A and B are powermultiplicative (i. e. || f* || = || f||* for all f and n).
Then the norm on A @« B is also power-multiplicative (8.5).

Section 7 deals with fields of caracteristic p 0. A fundamental
result on extensions of bounded derivations in that case leads to a
description of Q.

As a corollary one can show the existence of topological p-bases for
field extensions of countable type. Bases of that type are used by
R. KieHL in his proof of the excellence of affinoid algebras over a field L
with [L : L?] = o0.

Finally, an exposition of the main technical tools used in this work
is given in section 1.

1. Preliminaries

To facilitate the reading of the next sections, we present here a
number of more or less disjoint an technical topics. At the same time
some notation is introduced.

(A) Non-Archimedean Banach spaces. — Let L be a complete non-
Archimedean valued field. (We will abbreviate this sometimes by
“ Lis a field ”.) Its ring of integers %xeL [ |z L1 } is denoted by V.
The residue field of V. (or L) is denoted by the small letter I. The
value group of L will be written as | L* |. If | L* | is discrete (e. g. the
valuation is discrete) then = or =, will denote a uniformizing parameter
(that is, 0 <|m| <1, and |L*|={|n|*|ne€Z}). For discrete
valued fields KcL, e (L/K) will denote the ramification index; so
e (L/K) = order of | L*|/| K*|. A non-Archimedean Banach space over
Lis a vector space E over L provided withanorm | [[:E—{reR|(r>0}
having the properties :

(1) |z|| =0 if and only if x = 0;

@ lIrzf=]2]llz]| AeLl);

@) llz+yl| Lmax (=], Iy

Moreover E is supposed to be complete with respect tot the metric
derived from the norm. Of the various possibilities of making a residue
space of E, we choose :

the residue space v E of E equals
lz€E | |z]|<1}/|zeE | [|z]| <1}
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CONTINUOUS DERIVATIONS 73

This is in fact a wvector space over [ =t L. For additive maps
(or L-linear maps) ¢ : E - F, E and F Banach spaces over L, such
that || g(e)[| L1 for all ecE, | e| <1, the induced additive (or K-
linear) map : tE -t F is denoted by 7 (g). Also the residue map
{ erl ||| <1} E will be given the name z. A Banach space E

over L is called discrefe if || E || = | L | and the valuation of L is discrete.
For any a€R, 0 < « <1, and any subset X ={x;|iel}| of a Banach
space E over L we define :

X is a-orthogonal if for any convergent expression x = ¥ 4; x;, A €L,
the inequality max; (| 2;|.[|z:|]) > || 2| > amax; (| A:|.[| x:||) holds.

X is a-orthonormal if for any convergent expression x = Y. A; x;, €L,
the inequality max;|A;|> | x| > « max;|A; | holds. Further 1-ortho-
gonal and 1-orthonormal are abbreviated by orthogonal and orthonormal.

X is called an a-orthogonal base (resp. a-orthonormal base or a-base)
if Xis a-orthogonal (resp. a-orthonormal) and every x € E can be expressed
as a convergent sum £ = Y A; x;. One easily shows that a subset XcE
such that ||z || = 1 for all ze X, E discrete Banach space over L, is an
orthonormal base of E if and only if the subset X c 7 E is a Hamel-base
of  E over I. So a discrete Banach space E is completely determined
by its residue space t E.

Further, it is known that any Banach space over L of countable
type has for any «, 0 < « < 1, an «-orthogonal base (see[7]). ForBanach
spaces E and F over L, we define Hom, (E, F) or Hom (E, F) to be
the vector space of all bounded L-linear maps from E into F. The defi-
nition || ¢|| = sup ; [z~ ()i |er, x#0! makes Hom (E, F)
into a Banach space over L.

A Banach space F is called spherically complete if every sequence of
spheres { B,|n>. 1} in F, with the property B.> B, for all n, has
a non-empty intersection.

According to a theorem of A. W. INGLETON, we have : ¢ F is spheri-
cally complete if and only if for every Banach space E and every
subspace E, of E, any bounded L-linear map [, : E, — F can be extended
to a bounded L-linear map [ : E — F such that || [|| = || L] .

For a field L, spherically complete is equivalent to maximally complete
in the sense of KrurLL and KAPLANSKY.

We will need explicitely the following results :

LEMMA :

(A1) Let E be a vector space over L, provided with two equivalent
norms || |, and || |l.. Suppose that (E, | |:) is a discrete Banach space
over L (i =1,2). Then the I-linear spaces = (E, | |) and = (E, | |.)
are isomorphic.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



74 M. VAN DER PUT

(A 2) Let E be a Banach space over L and F a spherically complete
Banach space over L. Then also Hom (E, F) is a spherically complete
Banach space.

Proof :

(1) If dim E < oo, then dim, E = dim; 7 (E, | [|) = dim;« (E, || ),
and (1) is trivial. If dim E = oo, we take subsets X, and X, of E such

that X, is an orthonormal base of (E, || |.), and X, is an orthonormal
base of (E, || |.). We have to show that card X, = card X,. Since
the norm || |}, is equivalent to | ||;, we find that X, is an a-orthogonal
base of (E, || |[.), for some «, 0 < a < 1.

By expressing the elements of X, as convergent sums in X, and using
that a convergent expression has a countable support, one finds
card (X;) < card (X.). In the same way, card (X.) < card (X,).

(2) Put G =Hom (E, F), and let B, = {{€G||[{ —t.||<r.| be
a sequence of spheres in G such that B,>B,., for all n. Put F, =F
for all n, and let r : F — [I;_, F, denote the map given by i(f),. = f
for all feF and n> 1.

The map
F—>T Fu> 11 F./E Fa

is isometric and since F is spherically complete, it has a left inverse p
with ||p||=1. Now # =p,j,II{. : E— F has the property {,€B,
for all n> 1. [Part (A 2) of the lemma is due to R. ELLis.]

More information on Banach spaces can be found in [5], [7] and [8].

(B) Tensor Product of Banach spaces. — Let E and F be Banach
spaces over L. On E ® F we introduce the semi-norm || ||, given by

la|l =inf{max, oo, | & fi]] | e =2, e @ f |-
Put T=EQF,| -

(B 1) LemMA. — T has the following universal property : [For every
Banach space G over L and every bounded bilinear map t : EXF — G
the corresponding linear map t' : E @ F — G has the property || t|| = |t |.

Proof. — First, we note that || f|| is defined to be the supremum
of {llel=[fI~ It ]ecE feF|. Let a=FXea®ficEQF.
Then

[t @[ =[St )| <max [ t(e fi) [| < ||t max || e .| fi ]l
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CONTINUOUS DERIVATIONS 75
Consequently, || # (@) | < || £]|.|| @], and so || #|| < || t||. On the other
hand,
IteNI=1tEe@nNi<ltlle@fl<=11-Ilel-I I
So [t <[]

(B 2) LEMMA.

(1) Take a€R, 0 <a<1. If {e|l1<Li<Ls}lcE is a-orthogonal
then for all f,, ...,f;€F,

| Zi, & @ fi|| = amax (|| e|].]| fi |])-

(2) Thesemi-normon E @ F is a norm and satisfies ||e@ || = e]|.]| f]-
(3) For all suspaces E, of E and F, of F is the map

EQF, | HD>EQLE | )

isometric.

(4) If every finite dimensional subspace of E has an orthogonal
base then every acE ® F can be writlen as a= Y e ® f; where

@l = max (|| e[| fi ]])-
Proof :

(1) Let G be a spherically complete field containing L (G exists, we
will not go into the details of that). Define ¢, : Le, ...+ Le;—~ G
byti(e)=1and {,(e;) =0ifj#i. Definet,: Lfi—~ Gbyt(f)=1
(we suppose here, as we may, that f; = 0). Extend both mappings to
the whole of E, resp. F, with values in G and without increasing their
norms. Consider {:EXF—> G, t(e,f)=1t(e) £ (f) and let ¢ :
E ® F - G be the corresponding L-linear map. Then ¢ (@) =1 and

Il =Ntl=Ntlltl=a" el fl
So [[af|>allel.lf:l
Alternative proof (after T. A. SPRINGER). — Let
z=Y,eQf: and r=3',¢Qf
be another representation of x. We have to show
max || €; ||| f; | = « max || e [|.|| fe[|.

Take feR, 0 <3 <1, and let g, ..., g be an B-orthogonal base
of the vector space Lf, +...+ Lf,. (For every B, 0 <f <1, such
a base existsl). Then f; = X{_, Az gx with

I £ 1= 8 maxy (| 2]l gx )
Further x = X, €; @ f; = Zx (X; 2jx €;) @ g
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76 M. VAN DER PUT
Since the { ¢i, ..., g.} are linearly independent, we have
X hike; = XL, Pu
and f; = X pw Qi for some prueL. Now

max; || € [|.[[ f; [| > B max;,i (| € ||| Al || g [| =P maxy | X, 25 €; ||| ge |
= ap maxy; | pa ||| €[] ge [| = af max; || e [|[| fi [l

Since B€R, 0 < 3 < 1, was arbitrary, it follows that

max || e; [[.[| f; |

> omax| e[ fi-

(2) Take acE® F, a #0. Write a =Y e; ® f: where {e, ..., e}
islinearly independent over L. Then, forsomea,0 < a <1,{e;...,€}
is a-orthogonal. According to (1), ||z |2 0. Hence | || is a norm.
The equality ([e® f|| = e[l.||f|| follows directly from (1).

(3) The norm on E, @ F, will be denoted by | |[:. Clearly,
[z|:i>]| x| for all zin E; ® F,. On the other hand : for reE, Y F,
and «eR, 0 <« <1, there are ¢, ..., e;in E, and f,, ..., fy€F, such
that e, ..., e, is a-orthogonal and = = Y &; ® f-

Hence (1) yields ||z || > a max (|| e ||.[| f:||]) >« ||z |li. Since z€R,
0 < « < 1, was arbitrary, we may conclude ||z |, < || x ||

(4) Take re EQ F. Then z =Y, ¢ ® fi. Choose an orthogonal
base {e;} of Le,+...+ Le,. Then x can also be expressed as
Ye®f; (some f/eF). According to (1), we have

LA

DEerFiniTION. — The completion of E @ F with respect to the norm
on the tensorproduction is denoted by E & F.

[z = max|

€

(B 3) ProrosiTioN (L. GrusoN [4]). — ® F is an exact functor for
every Banach space F.

Proof. — Let
0>E5ESE >0

be an exact sequence of Banach spaces (i. e. the sequence is exact as
a sequence of vector spaces over L and « and (3 are bounded L-linear
maps). We have to show that the derived sequence

0>EQFAEEQFEEQF->0

is exact. The most difficult part, ¢ «’ injective ”, follows directly
from (B 2) part (3). The rest is left to the reader.
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CONTINUOUS DERIVATIONS 77

(C) The structure theorem for complete local rings. — In this subsection,
we gather the components of Cohen’s theory on complete local rings
which are of particular interest for us.

A complete local ring is a ring R which has precisely one maximal
ideal M, and satisfies N,_, M* =0, and R is complete with respect
to the uniform structure induced by M. We remark that R need not
be Noetherean and that M need not be finitely generated. The residue
field of R will be written as K = R/M. Let = : R — K be the cano-
nical map. A subfield L of R is called a coefficient field if = (L) = K.
For a coefficient field L is the map = |L : L - K bijective. Suppose
that char K = p #0. A subring V of R is called a coefficient ring
if : (1) V is a discrete complete valuation ring and its maximal ideal
is generated by p; (2) = (V) = K.

(C 1) Tueorem (I. S. CoHEN) :

(1) If char K = 0, then every maximal subfield of R is a coefficient
field.

(2) If char R = p # 0, then R contains a coefficient field.

(3) If char K = p 2 0 and p* R # 0 for all n, then R contains a coeffi-
cient ring.

(4) If R is a complele discrete valuation ring and char R = char K,
then R is isomorphic to K[[w]] where t€R is a uniformizing para-
meter of R.

For the proof of this theorem, we refer to [9] volume 2, or ¢ NaGATA,
Local rings  or [3] EGA IV (premiére partie), chap. 0, § 19.

(D) Extensions of fields. — First of all, we will tacitely use the following
criterion for separability ([9], part 1, Th. 42) : < I>k is separable if
and only if every derivation of k is extendable to [ .

Let us suppose that [>k are fields of characteristic p #0. By k+
we mean k (I?). A p-independent (or p-free) set { a;|iel}cl of ljk is
a set satisfying : «“ a;¢k* (a;|je€l, jZ1i) foralliel ”. This condition
is equivalent with : ¢ the monomials faf ... a» | neN; i, ...,1,
different elements of I; 0 < a; < p | are linearly independent over k+ .

The set { a;| i€ I} is called a p-base of l/k, if this set is p-free in Ik
and if moreover | = k+ (a;| i€ I). Every maximal p-independent set
in l/k (existence guaranteed by the lemma of Zorn) is a p-base of I/k.

For rings AcBcC, we let (d¢/s, 2¢/5) denote the universal module
of differentials, and y¢/5.« = ker (5,4 ® C — Q¢,4). In all cases, where
derivations are involved, we keep the notations of [3] (EGA IV,
chap. 0, § 20).

Further { a;|iel} is a p-base in Il/k if and only if {d; (a)|i€l}
is a base of the l-vector space £,;. For the case that k equals the
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78 M. VAN DER PUT

prime field of I one obtains the usual definition and results. (See [9],
part 1.)

DEerFiniTION. — Let M be a vector space over . A symmetric
k-bilinear 2-cocycle of ! into M is a k-bilinear symmetric map h : IXI > M
satisfying :

h (ab, ¢) + ch (a, b) = h (a, bc) + ah (b, ¢) (for all a, b, cel).

This 2-cocycle is called trivial if there exists a k-linear map h, : [ - M
such that h (a, b) = h, (ab) — ah, (b) — bh, (a) for all a, bel.

(D 1) ProrosrtioN. — If l/k is separable, then every symmetric k-bilinear
2-cocycle of 1 is trivial.

Proof. — Consider R = I @ M provided with the ring-structure given
by the formulas

(a, m) 4+ (a’, m'") = (a + a’, m + m’)

and
(a, m) (@', m") = (ad’, am’ + a’ m + h (a, a')).

R is a commutative ring. Its only maximal ideal is M and M?® = 0.
Let © : R— 1 denote the map of R onto its residue field. R is in a
trivial way a complete local ring, and we can apply Cohen’s structure
theorem :

There exist a ring homomorphism ¢ :l— R such that ©oo = id.
The map D : k — M given by D (a) = ¢ (a) — (a, 0) is a derivation of k
into M. This derivation can be extended to D’ :l-—> M. Consider
¢'=¢ —D":l- R. This is again a ring homomorphism satisfying
T o cp' = id.

Write ¢’ in coordinates, ¢’ (a) = (a, h, (2)) (withael). Thenh,: 1> M

is a k-linear map. The equation
9" (ab) = ¢’ (@) 9" (b)
written down in coordinates gives

h (a, b) = h, (ab) — ah, (b) — bh, (a).

2. General theory of continuous derivations

Let L be a complete valued field, and M a Banach space over L.
We are interested in continuous derivations D :L-> M. If L=R
or G, the only continuous derivation is the zero-derivation. Excluding
this case, we assume in the sequel that the valuation of L is non-Archi-
medean. (The trivial valuation is allowed.)

ToME 101 — 1973 — ~N° 1



CONTINUOUS DERIVATIONS 79

(2.1) LemMMa. — Let D: L~ M be a derivation and assume that
the valuation of L is non-trivial. The following properties of D are
equivalent :

(1) D is continuous;
@) { D@ |zeL, x| <1} is bounded;
3) { | D (@) ||| z| ] rel, x¢0} is bounded.

Proof. — See [1] (3.1.1). We remark that (2) and (3) are equivalent
even if the valuation of L is trivial.

DeFINITIONS. — To include the case of a trivial valued field in our
theory, we will consider, instead of continuous derivations, bounded
derivation in the sense of part (2) and (3) of (2.1). Let L> K denote
valued fields and let M be a Banach space over L. Then Derby (L, M)
denotes the L-linear space of all bounded K-linear derivations of L
into M. This vector space is made into a Banach space over L by
the norm ,

ID|=sup||D@]z||zeLl x50}

Further provide L @k L with the tensorproduct-norm, and let I denote
the kernel of the map p : L ®« L -~ L given by p T a: ®Q b)) = ¥ a; b..
Let I* denote the closure of the ideal in L ®x L generated by
{zy |z, yel}, and let 4, denote the completion of the normed
space I/I*. Finally, d =d}x: L > Q},x is the bounded derivation
given by

d@=@®1—-1Qa + e

(2.2) Tueorem. — The pair (d7x, Q%/k) represents the functor
«“ M — Derby (L, M) ” of the category of Banach spaces over L into
itself. Moreover the isomorphism Hom, (Q},x, M) — Derby (L, M) is
isomelric.

Proof. — The derivation d : L — Q7 induces a canonical map « :
Hom,, (2%,x, M) — Derby (L, M) given by « () =1lod. Since I/I* is
generated by d (L) and is dense in 7, we have that « is injective.
For ae L, we find

ld@!<=la®1 -1Qaf <|al.

Hence | d| <1 and |a| «£1. We will construct a map {:
Derby (L, M) — Hom, (2}, M) satisfying ||| =<1 and «of = id.
This implies that « is bijective and isometric.

Construction of 3. — Given D € Derby (L, M), we defineh: L @4 L -~ M
by h(Ta;® b) = Y a:D (b;). According to the definition of the norm
on LQxL, |[h||<L||D]|. The kernel of h is closed and contains
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{zy|xz,yel}. So h induces an L-linear map h':I/I* >~ M with
|h' )| =] h|. Define (D) to be the unique continuous extension of h’
to a map Q- M. Obviously, o3 =1id and ||| < 1.

Remarks.

(1) If the valuation of L is trivial, then Q7 equals 2,/ as a vector
space over L, and its norm is trivial.

(2) It is obvious from the construction of Q},, that 92’,,‘ is the
completion of Q;/ with respect to some semi-norm p. This semi-norm
can be described as follows :

Let D : L -~ M be a bounded K-derivation and let [ : ,,x — M be
the corresponding linear map. The formula pp (x) = ||D || I (z) ||
defines a semi-norm on £,,,. Now p (x) equals sup { pp (x) | D bounded
K-derivation of L }.

This result is not very useful however since one cannot calculate
the semi-norm p. A better approach is to connect Qf, with QFL/”K’
the universal module of derivations of V, over V4. (V. and Vy are
the integers of L and K.) This line of attack is followed in (2.3) up
to (2.6).

DeFINITIONS. — Suppose that the valuation of L is non-trivial.
Let V = V denote the valuation ring of L, and let M be a V-module.
The vector space M @, L has a natural semi-norm induced by the
absolute convex subset

M={mQ®v| Mem,veV)}
of M ®, L. This semi-norm p is given by
p (@) =inf}|v| | veL,v#0, v zeM |.
Let F (M) denote the (separated) completion of M ®, L with respect

to p. Then F is a covariant functor of the category of V-modules
into itself.

(2.3) LemMa. — F(M)=lim{M Qy L[z V) |aeV, a0}
é_
Proof. — As is well known (or easily checked), the completion of
M &y L, with respect to p, equals lim M @, L/O, where O runs through
<~—

the set of all convex neighbourhoods of 0e M ®, L. A base for those
neighbourhoods is

O,={m@®a | meM|], aeV, a0

Now M ®; L|0, is isomorphic to M ;- (L[« V) and the lemma follows.
(2.4) ProrosiTioN. — The funcior F has the following properties :

TOoME 101 — 1973 — nN° 1



CONTINUOUS DERIVATIONS 81

(1) Let M be a V-module and H a Banach space over L. Then every
bounded V-linear map 1: M — H factors uniquely through F (M), in
diagram

M- H
l s
/Y
F (M)

Moreover || I' || = sup || l (M) || < co.

@) If a: M, —~ M, is a surjective map of V-modules, then F (a):
F (M,) -~ F (M) is also surjective.

Proof :

(1) The map I : M — H extends to [, : M @, L — H, and since [ (M)
is bounded, /, is continuous with respect to p. By continuity [, extends
uniquely to a continuous I’ : F (M) — H. Hence [ factors through F (M).
According to a result of J. Van TieL ([8], (2.9), part 1° and 29) :

(A) If the valuation of L is dense, then
freMQL|p@<ljcMcl{zeML|p()<1}
(B) If the valuation of L is discrete, then
M ={zeM®L|p@=1}
The set M @ L is dense in F (M), and consequently [|I'| = || L |.

Case (A). — Let xre M ® L, and take A€ L such that p (x) <|2|.
Then

1L )| <IL@lp@) =LA ). 2]/p @)

Because
inf{|2|/p@) | 2L, |A|>p @} =1,

we can conclude that || 1, || =sup || L, (M") || = sup || I (M) |.
Case (B). — The definition of p implies that
pMQL)=|L|={n.|"|neZ|u{0}.
Take xeM Q L, then x = n} y, where p (y) = 1. Consequently,
L@ (/p@=ILoIlPw)

and
IL ]| =sup{|L@ | |yeMQL, |p@)|=1}|=sup| ()]

(2). Let M be a V-module and M!={meM |am =0 for some
a€V, a#0} its torsion submodule. We show first that the map
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82 M. VAN DER PUT

p:M— M[M' induces a bijective map F (p): F (M)~ F (M/M".
For every ae V, a 0, the sequence

0=MQL[xV>MQLaVEMM QLjaV >0
is exact. So p, is bijective and also F (p) = lim p, is bijective.
e

Now we may suppose that M, has no torsion. This implies (see
Boursaki, Algébre commutative) that M, is a flat V-module. The exact
sequence 0 — K — M, - M, — 0 gives for every a€ V, « 2 0, an exact
sequence

0>KQLlaV>M QL[aV-—>M,Q LjaV 0.

For any BeV, 0 <|B|L]|«| and any V-module M, the map
M@L[BV—>ME L|a V is surjective. Hence the condition of Mittag-
Leffler is satisfied, and we may conclude with [3] (EGA III, chap. O,
(13.2.2)) that

0>F(K)>FM)—>FM.)—>0

is exact.

Remark. — The functor F is neither left- nor right-exact.

(2.5) THEOREM. — Let M >L>K denote complete valued fields.

(1) There is a canonical isomorphism a : F (Qpr,) — Q4/x. Themap o
is in general not isometric but satisfies o | x| <L | «(x)| < || x| where
p=sup{|A||deL, 1] <1}

(2) If the valuation of L is dense, then any re R}, with ||z| <1
can be represented as a convergent sum

Tz =Y Adx; i, x:€ L [ <1, |z | <1

and lim 2, =0
(3) If the valuation of L is discrete, then || Q|| =|L| and any
erZ/K with || x || £ 1 can be represented as a convergent sum
Tr = )\7'1.’21 dﬂ.‘L + X A da;

where A, %, a;€V, and lim 2, = 0.
(4) The sequence
QU @ M3 bl
has the following properties :
(a) B is surjective and induces the norm on Q,.;
(b) Boa =0 and ker B is the closure of im «;
© [[ell<1 and ||B] <1
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Proof :

(1) The derivation d = d}/x restricted to V, can uniquely be written
in the form d = lo dyL/VK where [ : QVL/VK_* QZ/K is a V,-linear map.
Since [|d || <1, we find sup || 1(8%ryrg)|| < 1. Using (2.4), we find
an L-linear map « : F(SZ,/L/,/K) — 92,1( with norm 1. On the other
hand, the map V,—» Q VL/VK_>F(9VL/VK) induces a K-derivation :
L F (QVL/VI() with norm < p—'. The induced L-linear map from Q%
into F (SZ,/L/,/K) is the inverse of « and has also norm = p—'.

2) F (M) = Q}/x where M = Qp,r, and
{reMQL|p@)<lijcMc{zeM@L|pxL1].

Let xeF (M), ||z|| <e < 1. It suffices to show that there exists a
finite sum y = Y A;dx; such that |4 | <, |m| <1, ||z —y| <e
Indeed, by induction one forms :

Xy =X — Yo, T, =T — Y ey Tny1 = Tn — Yn,

such that
|, || < en, Yo =X Ai,n dz;,, (finite sum),
[)\i,n[<8m lxi,nl<1-

It follows that x = ¥, ¥ A;,» dx; ., and this is the required expression.

Since F (M) is the completion of M @ L, there exists ye M @ L with
lz—y| <e. Hence x| =y| <e Take a, beL, 0<|al<s,
0<|b]<1, such that f =a* by has norm < 1. Now jeM’,
and we can write J = Y A dr; with 2;, x;€V,. This implies the
required expression for y = ¥ a A; (d (bx;) — z: d (b)).

(3) As in the proof of (2), it is sufficient to show that any ze€ Q7
with || || £ 1 can be approximated by a finite sum of the required type.
Going back to the definition of Q%,,, this means that we may suppose
xel/l>. Take yel with ||y|| L1 and y + I* ==x. The element y
can be written as Y a ® b, with max | a|.||b:] =|y] <1
(See section 1.) Further Y a; b; = 0, and we can write

y=Y@aQ®1—-1Q a) b.

It follows that « = Y b;da; with |a;b:| <1 for all i. Substituting
a;=7qa and b, =npFPb; with |a|=|b;| =1, and collecting
terms one obtains

=Y bida; + X b: a;) n3* dm,.
This is the expression we are looking for.
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(4) The surjective map Ly, — Qp, », yields the surjectivity of 3

after applying (2.5) part (1) and (2.4) part (2). Let H be any Banach
space over M then

0 -> Hom (24,2, H) % Hom (R4, 5, H) ™ Hom (24, & M, H)
is an exact sequence since
Hom (@Y., H) = Derb, (M, H); ~ Hom (@}, x, H) = Derb, (M, H)

and
Hom (2%, . M, H) = Derby (L, H).

It follows from this, by substituting various spaces H, that Boa =0
and ker (3 equals the closure of im «. The remaining parts of (4)
follow easily from (2) and (3).

(2.6) CoroLrLArRY. — If L>K are discrete valued fields such that €2,
is finite dimensional, then :

(@ Qyypy=M@DT DD, where M is a free, finitely generated module;
T is a finitely generated forsion module and D is a divisible module.
(b) dim, Q%/x = rank M.

Proof :

(a) For this, we refer to [2].

b) Qyx=F (Lyyry) = F (M) since F (T) = F (D) =0. Clearly
rank M = dim, F (M).

Remark. — This proposition gives the link between calculations of
rank M, done by R. BERGER-E. Kunz in [2] (especially, Satz 8,12) and

the calculations done in paragraphs 3, 4, 5. The reader can verify that
the results on rank M are special cases of results in paragraphs 3, 4, 5.

Comparing of Q% with Q. and definition of ¢.,x and e;x. — The
universal bounded derivation d = d}/x : L - Q}x has norm -~ 1. Hence

d(V)Slzelu| || <1}
and

d ({zeV,||z|<1})C{zey|(la] <1l

So d induces a k-linear derivation (d) : I - 7 Q% x, which factors uniquely
through the universal derivation d;; : I — ;. In diagram

ToME 101 — 1973 — ~N° 1



CONTINUOUS DERIVATIONS 85

Vi—So {zeQu | [l 1] —> <

T T(d) / YL/K

ik

Qi
The map ¢,x can be described as follows :
@ry (dyx (t A)) =7 (dA) for all AelL, JA| 1.

Of course ¢, x depends ¢ functorially ” on L/K which means that
for L'|K’, which LcL’, Kc K’ the following diagram is commutative :

T (Qhx) iU S 1 (R%x R L') — 7 (1)
T?’L/K@l T?L'/A'f
Qi Rl Qe

The cokernel of ¢,/ is denoted by &;/x.

(2.7) LemMa. — Consider for fields L> K the following statements :

(1) o : QL& L > Q% is isomeltric.

(2) For every spherically complete Banach space B over L and every
bounded derivation D : K — B there exists an extension D* : L -~ B
with || D || = || D* .

(3) Every derivation D : K — K with norm 1 can be exfended fo a deri-
vation D* : L — L with norm 1.

@) 7 (@) : 7 (% Q L) - 7 (RL) is injective.
Then :

@ )= @)= @)-
(b) If the valuation of L is discrete, then all four statements are equi-
valent, and moreover

(%) @k 157 (2% R« L).
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Proof :

(a) (1)= (4) is trivial, and (1) & (2) follows from the Hahn-Banach
property of spherically complete Banach spaces : Every bounded L-linear
map [ : E - B, where E is a subspace of the Banach space F can be
extended I* : F—» B with || I|| = I*].

(b) Discrete Banach spaces are spherically complete and Q% & L,
Q% are discrete. From this, (b) follows easily.

(2.8) ProrositioN. — Let fields L> K be given :

(1) The subspace of Q},x generated by d (L) is dense.

(2) If there exists a countable (resp. finite) set Ac L such that K (A)
is dense in L, then Q3 is a Banach space of countable type (resp. of finite
dimension).

(3) If Lo>K is finite algebraic, then Qx = Q.

(4) Let AcK be a complete subfield, and suppose that L is finite
algebraic over K, then

Yr/krA —> QI[;/A ® L 1) 9Ii/.\ ‘B* Qli/l( -0
is exact.
() If L/K is finite algebraic, then

0—‘)‘YL/K_>QIZ; ® L%Qi—)gl["/K—>0
is exact.

Proof. — (1) and (2) are quite obvious. Further (3) follows from
the fact that every L-linear map [ : E — F, with E finite dimensional
and F an arbitrary Banach space is continuous.

(4) There exists a constant C > 0 such that for any bounded deri-
vation D : K - B (B some Banach space over L) which extends to a
derivation : L — B, there exists an extension D* : L -+ B with
|D*¥|| < C | D|. This follows from the fact that any linear base of L
over K is y-orthonormal for some vy, 0 <y < 1. It follows that
im a = ker 3, and that the image of

Yrx/A = ker (QI(/A ® L~ 9L/A)

under the canonical map SZK/A®L~+S22/A\®L is the kernel of o.
Hence the sequence in (4) is exact.

(®) Let in (4) A denote the completion of the prime field of K.
Then we have an exact sequence

TL/I( —_> QZ®L—> QZ—) \Qli/[(-—> O
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So we have only to prove that v x — QL ® L is injective. This we do
by induction on [L : K]. To start induction, we have to consider the
case L =K (x); 2» =aeK\K», where char K = p 0. Since
Yk C Rk @ L is 1-dimensional and generated by dx (a), all we have to
show is that d} (a) £ 0.

This is true, and proved in paragraph 7, (7.2). We remark that in
the proof of (7.2) no use is made of (2.8). So we may use (7.2).

Now the induction on [L : K] < co goes as follows :
Let K$L, 5 L, then we have a commutative diagram

0 0

|

YL, —>YL/Lyk

M 0—(u@L— UL @L—>2u® L—>0

! J

(2) 0 YLk 4 QL QL Qli QL/K 0

0
©)] (C)
Now (1) and (3) are exact by induction; (4) is exact and according
to [3] [EGA IV, Chap. 0, (21.6.1)],
0> Yok ® L= Yum>vism,—Yymm—> 0

is exact where d is some natural map.

One verifies easily that im (g0 f)Cy.., and that d = gof.
This implies that f is injective, since f () = 0, x€ v/« impliesd () = 0
and ze€y,,x ® L. Further y,,/x @ L > Q' ® L is injective.

(2.9) Lemma. — Let L> K denote complete valued fields and lef B be
a spherically complete Banach space over L. Suppose that the bounded
derivation D : K — B can be extended to a bounded derivation D' : L — B.
Then there exists an extension D* : L - B of D with minimal norm.

Proof. — Consider the exact sequence
0 — Derby (L, B)-> Derb (L, B)-% Der (K, B).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



88 M. VAN DER PUT

Clearly f is isometric, and by section 1 (A 2),
Derbg (L, B) = Hom,, (2}/x, B)

is spherically complete. So f has a left-inverse f, of norm 1.
Now D* =D" — fo f(D’) is an extension of D with minimal norm.

3. Discrete valued fields (Tame case)

For given discrete valued fields L> K the Banach space Q9 is discrete
and hence determined by its residue space t Q}x. So almost all in for-
mation on Q} ¢ can be derived from ker ¢, /x and coker ¢, where ¢, :
Qi — 7R}k denotes the canonical map introduced in paragraph 2.
From (2.5) part (3), it follows that ¢,,x = coker ¢, is generated by
the image of nz'dr, in TQZ/K. So dim, ¢/ can only be O or 1.

Besides ker ¢/, we are interested in extensions of bounded derivations
which means that we want information on the map « : QL QL — Q.
In this section we deal with the case L/K is tamely ramified [i. e. I/k
is separable and e (L/K) is not divisible by the characteristic of k].

(3.1) TueoreMm. — Suppose that L> K are discrete valued fields and
that L> K is tame. Then

(1) ker ¢k =0 and ¢ = 0; in other words 91 x: Ly 7 (R%/4)
is bijective.

(2 0> L >R~ Q%0 is exact and o is isomelric.
Proof :
(1) @/« injective is equivalent to :
Hom, (v 4k, I) - Hom (R, 1)
is surjective; since
Hom, (t %4, ) = v Hom,, (}/x, L) = = Derby (L, L)

and
Hom, (i, I) = Derx (I, 1),

this means :

(%) For every k-derivation D : 1 — I there exists a V-derivation D¢ :
V., — V. (of norm = 1) such that the diagram

De
VL —_—> VL

1—2 51

is commutlative.
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We split the proof of (k) in two parts.

(1 A) Reduction to the unramified case[i. e. l/k separable and e (L/K) =1].
— Let e = e (L/K), then n; = a ny for some a€L, |a]| = 1. It follows
that eny' dn;, = a'da + nz' dng. Since dng =0 and |[e|=1, we
have ¢;,x = 0. So it suffices to show that ¢, is injective.

The reduction of the polynomial X* — aeL [X] to X* —rtael[X]
is separable. By Hensel’s lemma, the reduction of an irreducible
factor ¢ (X) of X° — a remains irreducible and separable in [[X].
Let b, an element in the algebraic closure of L, be a root of g (X).
Put L, = L (b) and K, (b—' ;). Then L,/K, is unramified,

ki =k, SZZ/k ® L~ Ql,/k
is Dbijective, and Qli,,,( = 5221/,(1 since K,/K is separable algebraic.
In the following commutative diagram,

?r/k®1

Ql/k QL ( L/k ® L ) =T (QIL'/K,) Rl

! |

LK
4/t T (R, k) = 7 (R%,x)

9Lk, 18 injective if the unramified case of () is supposed to be true.
It follows that ¢/« is injective.

(1B) The unramified case. — Let a k-derivation D : [ — [ be given.
By induction, we will define Vg-derivations D, : V,—> V,/a"V,,
T = Tx = 7, such that D, equals Vi S151 = Vi/m V, and such
that all diagrams

VL—':’; V]/TL'"_H VL

N2
v
Vynr V,,
are commutative.
If that is done, then Dec —hmD 'V —>hm Viyrmn V=V, is a

Vg-derivation of norm 1. And D¢ is clearly a lifting of D in the
sense of (¥).

Construction of D,.,. — Let { a; | i€ I} be an orthonormal base of L
over K. Then every element of V, can uniquely be expressed as a
convergent sum Y A; a; with all ;€ V4. Further we may assume that
for some i,el, a;, =1. Let D, be given; we define a V,-linear f :
Vo= Vy/zr+t Vp by f(Sh a;)) =X A b;, where the b; are chosen such
that b; = D, (a;)) mod =™
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The diagram with f on the place of D,,, is commutative but f need
not be a derivation. The Vj-bilinear 2-cocyle

h: VL X VL —> " VL/Tfn'H VL,

given by h(a, b) = f(ab) — af (b)) — bf(a) is zero on the subset
(rVoxVy)u(Vyxn V,) and induces a k-bilinear 2-cocycle h’
Ixl— m» V,[n»+ V. This 2-cocycle is trivial (section 1) since l/k is
separable. So for some Vj-linear map

g: VL—T>l—> n Vifrn+t Vo,

we have h(a, b) = g (ab) — ag (b) — bg (a).
Now D, = f — g has the required properties.

(2) According to (2.5) and (2.6) the statement is equivalent to :
Every derivation D : K — K of norm 1 extends to a derivation D* :
L — L with norm 1.

As in (1 A), we make first a reduction to the unramified case.

With the notations of (1A), {1, (b'my),...,(b~tm)e—t} is an
orthogonal base of K, over K. The unique extension D, : K, > K,
of D satisfies

Dy (T b (bt mr)) = B (e wx' D () + D (1)) (b7 7o)t

Using the orthogonality of the base, one finds || D, || = 1. Assuming
the unramified case, D, extends to D, : L, - L,, || D.|| =1. Let P :
L, — L be an L-linear projection onto L with norm 1, then D* = PoD,| L
has norm 1 and extends D.

(2 A) The unramified case. — Again this is done by truncating V,.
By induction we will construct derivations D, : V,—> V,[/n* V,
m = m, = Tk, such that all diagrams

are commutative.

If we succed it will follow that D* = lim D, is a derivation extending D
and || D* | = 1. -
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Construction of D,. — The derivation D : Vx> VgcV,, having
norm 1, induces a derivation D' : k — I. Since l/k is separable, D’ extends
to D" : |1 Now put

D, =V, 531% 1= Va1 V,.

Construction of D,.,. — Using the terminology of (1B), we
define f:V, > V,/z"+ V by the formula

f(z )Ai ai) = Z )\i bi + Z D ()\l) (a,- mod TL'n_H),
where the b;e V,/n"+! V, are chosen such that
b: = D, (a;) mod =* and b, = 0.

Clearly f on the place of D,., in the diagram above makes the diagram
commutative. From f, we derive the Vj-bilinear 2-cocycle

h: VoxV,—rn Vijar+t Vy, h(a, h) = f(ab) — af (b) — bf ().

This h induces a k-bilinear 2-cocycle : [ Xl n» V /n"+ V, which is
trivial since [l/k is separable. And we conclude the existence of a
Vi-linear

g: Vp>l>m VeV,
satisfying
h(a, b) = g (ab) — ag (b) — bg ().

Now D,,, = f — g has the required properties. Hence the theorem
is proved.

(2B) Alternative proofs. — If char K = char k, then using Cohen’s
structure theorem there are coefficient fields k and [ of Vg, resp. V,
such that kcl. So V4 = k[[z]]c![[y]] = V. and kcl,

T=ay’ + Ya>e @n J"

where e = e (L/K) and ael, a2 0. Moreover e is not divisible by
the characteristic of k, and we can change y such that x = ayc. For this
explicit situation, it is easy to deduce (1) and (2) of theorem (3.1).

(2 C) The statement of (2 A) can also be proved with the help of [3]
(EGA 1V, Chap. 0). Using (19.7.1) one finds that V, is formally
smooth over Vy with respect to the m-adic topologies. Now (20.7.2)
implies that ¢ : Q,, ® V.~ Q,, has formally a left inverse. That
implies, in particular, that the restriction map

Der (VL, VL) — Der (VK, VL)
is surjective.

Since e (L/K) = 1, this means that every derivation D : K — L with
norm 1 can be extended to D* : L — L with norm 1.
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(2 D) The similarity of the proofs (1 B) and (2 A) leads to the conjec-
ture that (1) implies (2) (or conversely). In general, this seems not
to be the case. In some examples however (2) follows directly from (1).
Example : Q,cKcL, ¢(L/Q,) = 1 and l/k is separable. We have the
commutative diagram :

T (QY) Rl = ':(Q}}@L)i@»r&’,’d
@1 Tu
QU1 2 Q

Since every bounded derivation on Q, is zero, ¢x = 9x/q, and ¢ = 91/q,
By part (1) of (3.1), 9, and ¢, are bijective; o is injective because l/k
is separable. Hence 7 («) is injective, and consequently o« is isometric.

(3.2) CoroLrLARY. — Let L be a discrete valued field, and K a subfield
on which the valuation is trivial. Suppose that l/k is separable. Then :

(1) ker ¢k =0 and dim ¢, = 1;
Q) « : QL& L > Q4 is isometric.

Proof. — This follows easily from (3.1) if one replaces K = k by
K, =k (7).

(3.3) CoroLrLaRY. — Let L be a discrete valued field :
(1) If char L = char I, then 1 Q} >~ Q, @ ¢, and dim ¢, = 1.

() If char L=0x(p=charl, then Q}f= Q"L/QP. Moreover
dimker 97/, = dim ¢z/q,. If e (L/Q)) is not divisible by p, then ¢;/q, = 0.

Proof :

(1) Follows at once from (3.2) by taking K = the prime field of L.
(2) The first part follows from : every bounded derivation on Q,
is zero. If e(L/Q,) =1, then second part follows from (3.1).

Using Cohen’s structure theorem, there exists a complete subfield K
of L such that

e(LIK) =e(L/Qy) =e,  e(K/Q)=1 I=k

Hence [L : K] =e. The map «: Qs QL -> Q4 has norm —~ 1 and
is bijective since L is a finite separable extension of K. But « need
not be isometric. In the commutative diagram :

T (%)

T(REQ L) —>7 QY

fe

Q = Q,
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9k is bijective by (3.1). Hence
ker ¢, >~ ker 7 (a) and coker ¢, 2 coker 7 («).

Under the assumption that &, is finite dimensional we get at once
dim ker = («) = dim coker 7 («).

The general case reduces easily to the finite dimensional case by
means of the following trick :

Let ©m = m, satisfy the equation 7¢ = }{7' a; n? over K. Consider
the set { K; | of all closed subfields of K satisfying { a,, ..., .1 } K},
and Qf, is finite dimensional. Put L, = K, (r). Then

K =UK;; L =yLj; T Qb =limr.Q§’(,.;
—>
Q) =lim7 Qf ; 7 (a) = lim 7 («;)
—> —>

where «; is the canonical map Qf ® L; > Q%. Since for every j,
dim ker 7 (2;) = dim coker 7 (a;) (=0 or 1),
the same holds for 7 («).

Example. — If L>Q, is a discrete valued field with e (L/Q,) = e
divisible by p, then both cases dime; g, =0 and 1 actually occur.
Take K = Q, (1), where t€ K has absolute value 1 and its residue v ftek
is transcendental over F,. Put L = K (r), where n? = pa.

(@) a=1t Clearlyl=k=F, ({)and 2, =1dl. Since pnr—tdr =pdi,
we have || df || <1, and ¢, : ;> tQf is the zero-map. So ¢x/q, has
dimension 1.

(b)) a=1. Now n” = p implies dn = 0. Consequently ¢;, ,=0.

Remark. — Theorem (3.1) leaves us two cases of non-tame exten-
sion L> K of discrete fields for study :
Section 4 : Discrete fields of characteristic p. (So char K = p.)

Section 5 : Discrete fields of mixed characteristic. (So char
K = 03 p = char K.)

4. Discrete valued fields of characteristic p

In this section, L > K are discrete valued fields of characteristic p == 0.
The field K+ = K (L) is the smallest complete field containing both K
and L». Since any bounded K-linear derivation of L is zero on K+,
we have Q= Q}+. The residue field of K+ is denoted by k.
Clearly, k°>k+ = k (I7). As we shall see, in general, k* £ k+. Further,
e (L/K+) can only be p or 1.
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The best approximation of theorem (3.1) seems to be :

(4.1) TueoreM. — With the notations above :
1) oru+ @ Q-7 R}k is injective and

ker Pk = ker (Ql/k—P - Ql/ko).
Further s1/x = ¢1,xk+ has dimension 0 or 1 according to e (L/K+) = 1or p.
@) a : Qb+, QL > QL is isomelric.
Proof :

(1) Let {a; | iel} be a p-base of [/k°, and choose a set of represen-
tatives { A; | iel}cL. Put e =e(L/K*) and @ = n;. Then the set

B={n"Al... A}

neN; i, ..., i, different elements in I;
0za<e;0ZLa,<p|
is an orthogonal base of L over K+.

We show first that ¢, -+ is injective. Arguing as in (3.1), we have
to show that a k°-derivation D : [ — [ lifts to a K+-derivation D¢: L — L
with norm 1.

Define D¢ by

D¢ (Zpen ds b) = X 2 D° (D),

for any convergent sum Y A, b with coefficients in K+. Further for
= 7Ta 1421 P AZ‘HGB,

we define
De (b) =b Z?:l AZ1 ai,‘ Ci,

where ¢;e L are chosen such that v ¢; = D (a;). It is almost immediate
that De has the required properties. So we have shown that ¢, x+ is
injective. It follows at once that Kker g, = ker (&, + — Q).
Further, if e = p then the K+-linear bounded derivation D* : L — L,
which is given for b = 7" A}’ ... Al"€B by D* (b) = a b, has clearly
norm 1 and = (D*) =0. So e /x+# 0.

(2) Let the Lr-derivation D : K+ - K+ be given, ||D| =1.
It suffices to show that D extends to a derivation D* : L — L with the
same norm. With the notations above, define D* by

D* (Xpes 2o b) =X D (1) b.

One easily checks that D* is a derivation extending D. The orthogo-
nality of the base B implies || D* || = 1.
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(4.2) CororrLary. — If L> K is tame then k® = k+.

Proof. — This follows from (4.1), (3.1) and the observation that
Q) = Qg+ — Qo is injective if, and only if, k* = k+. Also a direct
proof of (4.2) is of interest :

Using (2B) from the proof of (3.1), we have
Vi =kllz]] c Uyl =V,

with kcl and =z = ay°, ael, a#0, (¢, p) =1. For some n, meZ,
we have ne 4+ mp =1, hence z=x"yr» = a*ye Vg+. Since Vi
contains also k+, we have Vy.Dk+[[z]]. Further

y? = ar? zrek+[[z]]; T = ay° = a™? ek [[7]].

Hence k+[[z]]2 k[[x]] and k*[[z]]217[[y?]]. Consequently k+[[z]] = Vi+
and the residue field of K+ is k+.

Remark. — Also for non-tame extensions L > K it is possible that k* = k+
(or equivalently ker ¢, = 0). More specific :

(4.3) CororLrarY. — Given fields kcl of characteristics p % 0, and a
positive integer e such that :

(1) 70,
(2) Either l/k is inseparable or e is divisible by p.
Then :

(a) There are discrete valued fields K c L of characteristic p, with residue
fields kcl and e = e (L|K) such that ker ¢ x = 0.

(b) There are discrete valued fields K c L of characteristic p, with residue
fields kcl and e = e (L|K) such that ker ¢/ 0.

Proof :

(1) Suppose p | e. Let Vi =k[[x]lc V., =1[[y]] such that kcl
and z = aye.

Case (@). — Put a =1. Clearly, Vi+ = k+[[y”]], and so k° = k+.

Case (b). — Take aelN\k*; k+ 21 since Q,; #0. Then a =ay—
belongs to K+. Hence ae€k™ k+.

(2) Suppose that p does not divide e, and that I/k is inseparable.
Again Vi = k[[z]] and V. =][y]]. The embedding ¢ : k[[z]] - l[[y]]
is given in case (a) by :

¢ (@) =y ¢ maps k into L
Clearly Vi = k+[[y]] and k° = k.
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Case (b). — This is somewhat tricky. Since l/k is inseparable, there
are elements z,, ..., z,€k which are p-free over k» but p-dependent
in l/l».  Without loss of generality, we may assume x,€l” [z, ..., Z,].
There exists a ring homomorphism ¢ : k— [[[y]] such that

Y (@) =amod (y) forallaek

and
(@) =2 + ey mod (1?) where p, =...=p,, =0
and
po €l k.
Define further ¢ : k[[z]] - I[[y]] by ¥ (x) = y-.
Now
T, =N hade ... 7 la€ly; O0Za<p
and

z=¢ @) — Ty (e 2)

belongs to Vi+. Further z = p, y mod (y?). Since also y€ V-, because
V217 [[y?, y¢]], we have p,ek’. The choice of p, implies k° = k.

Remark. — The moral of (4.3) is that ker ¢, and ¢z« depend not
only on kcl and e (L/K) but also on the embedding ¢ of K into L.
An open problem is to obtain from an embedding ¢ suitable (linear) data
which determine ker 9./« and ¢;/x. We conclude this section by showing
a converse of (3.1) part (2) for fields of characteristic p.

(4.4) ProrosiTioN. — Let L> K be discrete valued fields (of characte-

ristic p) such that o« : Q% & L — QY is isometric. Then L>K is tamely
ramified.

Proof. — We prove that l/k is separable by showing that every deri-
vation D : k — k extends to a derivation D* : [ -1 From (3.2), it
follows that D lifts to a derivation D, : K — K with || D, || =1. It is
given (namely « isometric) that D, extends to a derivation D, : L — L
with || D, | = 1. Then D* = 7(D,) does the job.

To show that e = e (L/K) is not divisible by p is more complicated.
Since dim e¢x = 1 by (3.2), there exists a k-linear map m : 1 Q} —k
with kernel im ¢5. The map m lifts to a K-linear map M : Q} — K
with norm 1. The derivation D, = M o d} : K — K extends to a deri-
vation D, : L - L with norm 1. The reduction of D,, = (D,) : | >1
is obviously a k-derivation and lifts to a K-derivation D, : L — L with
norm 1. So D, =D, — D; is an extension of D, || D, || =1 and
this time the reduction = (D,) is zero.
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Applying D, to the equation n§ = any, a€L, |a| =1, one finds
ens' D, (ry) = a ' D, (a) + nx' D, (ng).

Now ||a' D, (a)|| <1 and ||nz' D, (nx)|| = 1. So e cannot be divi-
sible by p.

5. Discrete fields of mixed characteristic

In the most general case of inseparable residue field extension kcl,
we have no method to compute Q7,. For reasonable extension 1>k
however, the situation is as follows :

(5.1) TaEOREM. — Given discrete valued fields Q,c Kc L such thal
‘there exists a field I, with :

1) kclicl;

) L/k is separable;

3) U1, is finite algebraic.

Then :

(@ 0> QULQLS QL Qx>0 is exact;

(b) v, has finite dimension and v, @ © Qx > Q.
Remarks.

(1) The map « need not be isometric; the statement in (a) can be
translated as follows : « there exists a constant C > 0 such that every
bounded derivation D : K - K has an extension D¢ : L - L with
| Dej| < Cl[DJ »

(2) The isomorphism mentioned in (b) is not canonical. The statement
merely says that the cardinal of a Hamel-base of v, @ © Q/« is equal
to the cardinal of a Hamel-base of £;/.

(5.2) CororLLARY. — Let Q,c KcL be discrete valued fields such that [
is finitely generated over k. Then dim 7 Q% =[l: kl.. ([ ]. means
transcendence degree.)

Proof. — Of course I, with the properties of (5.1) exists in this case.
Further by [3] [EGA IV, Chap. 0, (21.7.1)], we have

dim Q[/k — dim Yie = [l . k]"-.

Proof of (6.1) :

(1) First we show : There exists a complete field L,, Kc L,c L such
that e (Lo/K) = 1, and L, has residue field I,.
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Let L,> K be a field extension such that e (L,/K) =1 and L, has
residue field [, 'We have to show that there exists a K-linear embedding
of L, into L, or what is equivalent a V,-linear embedding of V,, into V.
This is done by constructing for each n > 1 a V,-linear ring homomor-
phism ¢, : V; — V;/r} V; such that all triangles '

VL0 i > VL/TE;L, VL
AN
C.Vn+1\
N
Vi Vg

are commutative, and ¢, = VL‘,—T> l,>>1=V,/n, V,. Then ¢ =limo,
is a Vg-linear embedding of V,, into V,.

So all we have to do is to give a construction of ¢,.,:Let {a; | iel}
be an orthonormal base of L, over K. Define f: V, — V. /nit V,
by the formula f(X A a) =X 4 b: (A,€ Vi) where the b, are chosen
such that b; = ¢, (a)) mod (n%).

Of course f need not be a ring homomorphism, but the 2-cocycle
(a, b) > f(ab) — f(a) f (D) of V,, xV, — =} V [} V. is trivial since
L,/k is separable. Hence there exists a Vg-linear map

g: VoS>l >l n} Vi V,

with ¢ (ab) — ag (b) — bg (@) = f(ab) — f(a)f(b) for all a, beV,,.
Then ¢n., = f — ¢ has the required properties.

(2) Proof of (a). — By (3.1) and (2.8), we have a commutative
diagram, with exact top-row :

0—> Q%QRQL—> QL QL—> % x&Q®L—>0

id 13 ll
Y

0—> QR L Qb Q% x 0

Hence the bottom-row is also exact.

(3) Proof of (b). — Using section 1, (A1), (3.1) and Q% x ® L > Q4 ,
we see that = Qli/x >~ Q,+®1L So we have only to show that
Qi @D D Yyr = Qupe

This follows from the following exact sequences :

(A) 00— Yt e —> 910/;\. ® - \Q[/k —> 91/10 - O,
B) Q1. 2 iy, since 1[I, is finite algebraic,‘
© 0 — Yok = Yu, = Yiue = 0
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in the following way :

Yur @ (Lo @ D) @ iy 22 Yiun @ i @ Ly Use (A).
By ©)  Yurr @ Yir =2 Yoy, =2 Ry, by (B).
So
Yk D Qi @ ) D Ly, = Lk @ Lyt

Dividing by £, one obtains the formula

Yk D (e Q@ ) >~ Qe
Examples :

(1) Let K>Q, be a complete field such that e (K/Q,) = 1 and k has
a countable p-base { a,|n> 1} over k». Take a set of representatives
{A, | n>1}cV, and let B, denote an element in the algebraic
closure of K satisfying B2 = A,

The complete field
L=y, ,K@B,B,,...,B,)

has the properties e (L/K) = 1 and | = k (a}/?, ay”", ...). Certainly the
condition of (5.1) is not satisfied for L> K.

According to (3.3), {dA, | n> 1} is an orthonormal base of Qf,
and {dB, | n>1} is an orthonormal base of Q). The map o« :
QIQL-—>Q% maps dA,® 1 onto p»Br'-tdB,. It follows that
ker « = 0 and that

ima={Y2dB,eQ} | },€L,lim,p" =0}
# Q) = ker (R4 — Q% /x = 0).

So in this case, im « is not closed and the sequence
UQLEQ L Q>0
is not exact. It shows moreover that the functor F, introduced in

section 1, is neither left- nor right-exact.

(2) Let K>Q, and L>Q, be complete discrete valued fields such
that 1 =¢(L/Q,) =e(K/Q,); k=F,(x) and [ =k,(y) where k,
denotes the algebraic closure of k. Also in this case, I/k does not satisfy
the condition of (5.1). Moreover, given a Q,-linear embedding ¢ : K — L,
one can form dim QZ/K and ker ¢, . They depend essentially on the
embedding e.

Proof. — 1t follows from (3.3) that dim Q} = dim Q; =1. Let D :
L — L be a derivation with norm 1. The set

Ly={aeL | D() =0}
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is a complete subfield of L. One easily sees that the residue field of L,
equals k,. Take representatives Xe K of rek and X,eL, of zek,,
YeL of yel. The embedding : depends only on = (X), and all possible
values of ¢ (X) are X, + pu, where ueVj.

Case (a). — Take u =0; ¢(X) = X,. Then D is a K-derivation;
dim Q% =1 and 91/« is bijective.

Case (b). — Take u=Y; ¢(X)=X,+pY. Then D is not a
K-derivation;
92/1( =0 and Qrx = 0.

6. Fields of residue-characteristic zero

In this section, we deal with fields L such that char [ = 0. The main
result on extensions of bounded derivations is :

(6.1) TueorEM. — Suppose that Kc L are complete valued fields and
that char [ = 0. Then

0>QQL>SQL Qx>0

is exact and « is isomelric.

Proof. — According to (2.7), we have to show that any bounded
derivation D : K — B where B is a spherically complete Banach space
over L, can be extended to a derivation D* : L — B with || D || = || D*||.

Without loss of generality, we may suppose that L is algebraically
closed. Using Zorn’s lemma, there exists a maximal extension D, :
L, —~>B, KcLicL with ||D,||]=1. Of course the field L, is also
complete. In several steps we will show that L, = L.

(a) The residu field of L, is algebraically closed. — Suppose that
this is not the case. Applying Hensel’s lemma, we find € L satisfying
a polynomial

PX)=X"+4+ a1 X +...+ a,

all | a;| = 1 which is irreducible and such that is residue in [, [X] is
irreducible. This implies [L, (%) : L] =[L (%) : ] and 1, %, ..., 37
is an orthonormal base of L, (3) over L,. Let D, : L, (3) — B be the
unique extension of D,. Then

0 =D, (P () =P 3)D: () + (D, (@) +...+ D (a)).

Since | P'(3)| =1 (Pel,[X] is irreducible and separable), we have
ID: @) || <[5 | Di[l. Also

[D: @) | =115 Dy (3) | <[ 5] ]| Dy |-
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Now for an arbitrary element ze€ L, (3), £ = 32! a; 3%, we find
[D: @) || =X a:D:(3) + £ Di(a) || <[ D, || max | a;F| = [ Dy |||
Hence || D, || = || D, |. Contradiction.

(b) The value group |L*| is divisible. — Suppose the contrary.

Then one can find an extension L, = L, ({/7) of L, such that | L¥|/| L*|
has order n and neL,. Put 3 =\/m. As before 1, 3, ..., 5! is an
orthogonal base of L, over L, and it suffices to show that the unique
extension D, : L, —» B has the property || D, (3)|| < || Di||.|3]. But
this is obvious since

gD, (%) =n'ntD, (7).
Contradiction.

(¢c) L, is algebraically closed. — Suppose the contrary, and let L,2 L,
be a finite extension. Then ¢ =[L,: L,J-* Trg, : L.— L, is an
L,-linear projection of L, onto L, with norm 1. Let z;20, zekert.
There is an element x,€L, with |x —x,| <|x,| because I, =1,
and |L¥| =|L¥|. Now

2| =[t@) [ =]t@ —2)|Z|2 =2 [ < ||

is a contradiction.

(d) We show finally that L, = L. — Suppose ortherwise. Take
el L, and 2€eR, 0<a <1l Put L,=L, (%) and 3' =5 — d/,
@ €L, chosen such that | 3’| <« inf {|%' — b| | beL |

Define D, : L,—~ B by D,|L, =D, and D, (3") =0. Since L, is
algebraically closed any element of L, has the form

Q@ —a)r ... (3 —ay)™ with n;eZ.

It follows that || D, || = sup%~ |3" —a || D (3" —a) || '| aelL, } The

latter expression is less or equal to
D19 |(inf{|% —a| | aeL,})™ Za | D .

So || D || < = || Dy |-

Using lemma (2.9) and the fact that «, 0 < «a < 1, was arbitrary,
one concludes that D, is extendable to L, with the same norm. This
contradicts the maximality of L,.

DerFiNITION. — Given complete fields L>K with char 1= 0.
An element xeL is called almost algebraic over K if there exists for
every ¢ > 0 a monic polynomial pe€ K [X] such that | p (z) | =< ¢ | p’ (*) |-
L is called almost algebraic over K if every element of L is almost
algebraic over K.
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Remark. — If L is algebraic over K, then L is almost algebraic over K.

Consider L,, the completion of the algebraic closure of L, and let K
denote the closure of the algebraic closure of K in L,. Since L, is

algebraically closed, K is isomorphic to the completion of the algebraic
closure of K, which is K,. For convenience we write K = K.cL,.

(6.2) ProrosiTioN. — Let L> K be complete valued fields and suppose
char I = 0. The following properties of an element x€ L are equivalent :

(1) z is almost algebraic;

() disx () =0;

3) ze K.nL.

Proof :

(1) implies (2). Put d = d}/, and let ¢ > 0. There is a polynomial
pe K |[X] such that |[p(x)| <¢|p'(x)|. Then

@I =de@) | =p @de] =]p" @] dz];
hence dxr = 0;

(2) implies (3). Take yeL\(K.nL). It suffices to show that
d;, k, ) #0. Using (6.1), it is enough to prove d%, ,y«, () # O.
Let D : K, (y) > K, (y) denote the K,-derivation given by D (y) = 1.
Then D is bounded since

1D (a (@ —a)s ... (4 — @)™ |
Zla@y—a) ...y —an)=|.|Znu@y —a)y' Dy —a)]
and
ly—a [ |D@—a)|=|y—a|=(inf}|y—a||aeK.}|)<o0.
It follows that dg,y«, (U) # 0;
(3) implies (1). Take xe€L and suppose that

sup { | p' @) |~ | p@)||peK[X]| =C <.

The K-derivation D : K () - K (x) given by D (x) = 1 is then bounded.
Indeed, one calculates easily that ||D| = C. Hence dj .y« (x) #0.
Using (4.1), d? « (x) £ 0, and certainly z¢ K,.

(6.3) CororLrary. — Let L> K denote complete valued fields and let
char 1 = 0. The following properties are equivalent :

@) K, = L,;

() L is almost algebraic over K.
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Proof. — Follows directly from (6.2).

DerFINITIONS. — Given complete valued fields L> K, char [ =0,
and ceR, 0<a<<1.

A ={x |iel}lcL is called a-franscendental over K if, for any
polynomial pe K [X,, ..., X,] and different elements i,, ..., i,€ I, the
following inequality holds :

Ip @ -5 2,) | > @ max; | T, (Ap[0X)) @iy v 5 Ti,) |-

The set A is called fopological transcendental if A is p-transcendental
over K for some B€eR, 0 <3 << 1. The set A is called an a-franscen-
dance base of L over K if A is a-transcendental and L is almost algebraic
over K (A). The set A is called a topological transcendance base of L
over K if it is a 3-transcendance base for some Be€R, 0 < < 1.

Remark. — If A is a-transcendental over K then A is certainly alge-
braically independent over K.

(6.4) Prorosition. — With the above notations :

(1) A is o-transcendental if and only if {x;' dx; | iel}cQyk is
a-orthonormal,

(2) A is an a-transcendance base if and only if { ;7' dx; | iel}c
is an a-base,

(3) L has a topological transcendance base over K if Q% is a Banach
space over L of countable type.

Proof :
(1) Using (6.1), we may suppose that L = K (A). Now « only if » :
We have to show «|| ¥ a; 27" dx; || > | a;|». Consider the K-derivation

D; : K(A)— K (A) given by D; (x;) = 0;; x;. Clearly
IDif =sup||p[~|Di(p)| | 05 peK[A]].
It follows from the definition of a-transcendental that || D;| < a1

Extending D; by continuity to a K-derivation of L and using (2.2),
we find an L-linear map ¢ : Q%,x — L such that

[t Lo,  fi(dzy) = 0y 20
Hence

ot [ Ray it dry || = ([ L[| Zaj 27" dej || > | ai

and the required inequality is proved. The proof of the « if-part » is
analogous.

(2) This follows from (1) and (6.3).
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(3) The Banach space Q7 is of countable type over L, and we suppose
for convenience that Q% is infinite dimensional. Using (2.5) part (3),
one can find a sequence of elements {z, | neN} in L such that
V.= Ldx, +...4+ Ldx, has dimension n and y;_, V, is dense
in Q7. Take a€R, 0 < a<1.

Let t, : Q}x —> L be a bounded linear map satisfying £, (V,._,) = 0,
ltn | Val|>Va| ], and let D, : K (z, ..., ) > L be the corres-
ponding K (zi, ..., ,,)-derivation. Choose y,eK (z,, ..., x,) with
| Dy ) | >V || Dr|.|yn|- It follows easily that

V.=Ldy, +...+ Ldy,

and that {y;'dy, | ieN} is «-orthonormal. It is also an o-base
of Q} because Uj;_, V, is dense in Q}/.

(6.5) LemMA and DEFINITION. — Let L> K be valued fields and let
char k =0. The map

L* > lzeQn | [z 1] —>7 Q% — erms

e being coker ¢px; given by aw a'd}k(a) is additive and factors
uniquely through | L* ||| K* |. The induced map | L* |/| K* | Qz | - e1/x
will be denoted by Upx.

Proof. — We can restrict ourselves to showing that the kernel of
L* — ¢k contains K* and {xeL* [ lz|=1 ; The first statement

is obvious. Further, take xeL*, |z| =1, and let txel denote its
residue. Then ¢z (d (t2)) = 7 (d}/x (x)) and 7t (' df/x (¥)) €im o 4.

(6.6) ProrosiTioN. — Let L> K be complete valued fields and suppose
that char k = 0. Then ¢;x and Yk are injective.

Proof. — Take a transcendance base {x; | iel} of I/k, and let
{z; | iel}cL be a set of representatives. Take further a linear
base {§; | jeJ} of |L*||| K*| Qg consisting of elements of the
type a® 1, ae|L*|/|K*|. Let {y;|jeJ}|cL be a set of repre-
sentatives.

As is easily seen the monomials in {x; | iellu{y; | jeJ} are
orthogonal over K. By (6.4) part (1), it follows that {dx; | iel}u
{y;'dy; | jeJ} is an orthonormal subset of €7,. Their images
in © Q% 4 are linearly independent, so { tdx; | iel|u{* (y;' dy;) | jeJ |
is linearly independent.

Clearly ¢ = g./x is injective since ¢ (dr;) =t dx;, and {dz: | iel)
is a base of Q;;. Further im¢ is the subspace of 192,,; generated
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by {7 (dr) | iel}, and the formula
Yx ) == ;"' dy)) +im o €epi
shows that also ¢, is injective.

Example. — Let [ be a field of characteristic zero, G a subgroup of R
and £ : GX G — I* a symmetric 2-cocycle (where G acts trivially on [*).
The set L, = 1< G, ;> of all functions  : G — [ such that

supp () = {ge G| z(9) %0}

has limit + oo, becomes a complete valued field under addition, multi-
plication and valuation given by the formulas :

@+y@ =z +y@:;
@) (@) =Ziz()y(@9—hit g—h
and
| | = exp (— min (supp ())).

The set L, =1 { G, £>)> of all functions : G — [ such that supp (x)
is a well-ordered subset of G, becomes in the same way a complete valued
field. Kapransky (Maximal fields with valuations, Duke math. J.,
vol. 9, 1942, p. 303-321) has shown that every complete valued field,
of residue-characteristic zero, is isomorphic (as valued field) to a field L’,
L,cL’'cL,, for suitable I, G, . Further the field L, is maximally
(= spherically) complete.

As an illustration of (6.6), we calculate 4. To do so, we introduce
the following notation : 7, is the element of L, given by =, (h) = d,,.
for all g, he G.

Every element x of L, can now be written as a convergent sum

T = Yeec hs T with A,el

Since
dr = ¥ ), mg (n5" dmg) + X d (Ag) T,
it follows that Qf, is topologically generated by
{d@) | reljuin'dnr, | geG|.
Hence Q}, is also topologically generated by
(d@) |iel}lu{ny dny| jed ),

where { ; | iel} is a transcendance base of I/Q and {g¢, | jeJ} is
a maximal Z-independent subset of G. Proposition (6.6) asserts that
this set is orthonormal and hence it must be an orthonormal base of Q}.
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7. Fields of characteristic p £ 0

In this section, we deal with fields L> K of characteristic p % 0.

Let K+ = K (L”), which is the smallest complete field containing both K
and L7. Clearly 522/,( equals QZ/H. By means of a result on extensions
of bounded derivations we will show that Q% =<0 if L = K+.

(7.1) ProposiTioN. — Suppose L>K>Lr. Then
0>Qh®LSQL >8>0
is exact and « is an isomelry.

Proof. — It suffices to show [according to (2.7)] that any bounded
Lr-derivation D : K — B, where B is a spherically complete Banach
space over L, is extendable to L with the same norm.

The lemma of Zorn yields the existence of an intermediate field L,,
KcL,cL, such that D extends to D,:L,—~ B with || D|| = | D, ||
and such that any extension of D, to a bigger field has a norm greater
than || D ||

We will lead the assumption L, # L to a contradiction. Take
yeL L, and «€R, 0 < a<<1. Let L,=L,(y) and let D, : L, > L,
be a non-zero L,-derivation. Takeze L,suchthat|D, (2) |> «||D,].|z|.
We may suppose that D, (z) = z. We want to show that { 1,z, ..., z7—}
is an ar—'-orthogonal base of L, over L,, Take t = ¥/ a;z, with
all a;eL,. Then we have

Dy () =37 i 2y ..., DI =X i a2
It follows that
a7z =Y, %;Dj(t)  where );€F,.
Hence

| a; 7' | =< max | D} (f) | =< a—7+ | t].

Consequently | f|> a?»~*max|a; z|. This means that {1,z ..., z#—!}
is an ar—'-orthogonal base of L, over L,.

Now define D,: L, > B such that D, | L, =D, and D, (z) =0.
Then || D, || £ a7+ ||D,||. Applying lemma (2.9), one concludes that D,
is extendable to L, with the same norm. This is a contradiction.

Remark. — For the case of a trivial valued field one finds back a
result of [3] [EGA IV, premiére partie, Chap. 0, (21.4.7)] :

Yo =0 if L>K>Lr.
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(7.2) TreoreM. — Let L> K be complete valued fields of characteristic
p#0. If reL\ K+, then d}y(x)#0. In particular, Q, =0
implies L = K+.

Proof. — Form L, = K+ (z), and the bounded K+-derivation D :
L, L, given by D () = 1. Hence d} 4+ (x) # 0. According to (7.1)
also df,x (x) # 0.

DeriNITIONS. — A subset A = {x; | iel} of L is called an a-p-free
(z€eR, 0 < a 1) set in L/K if the monomials

M={z...2¢" | neN; i, ...,i,€el; 0 Zo; < p}

are a-orthogonal in L viewed as a Banach space over K+. The set A
is called an a-p-base of L/K if M is an a-orthogonal base of L over K+.
If A is B-p-free in L|/K for some {3 then A is called fopologically p-free
in L/K, and if A is a B-p-base of L/K for some {3 then A is called a
topological p-base of L|K.

(7.3) ProposiTioN. — With the above nolations :
(1) AcL is a-p-free in LK if and only if {a'di,(a) | acA )
is a-orthonormal.

(2) AcL is an a-p-base of L|K if and only if {a—'d}x(a) | a€A )
is an a-orthonormal base of R} .

(3) If Q% is a Banach space of countable type over L, then L has a
topological p-base over K.

Proof :

1) Let A ={x; | iel!} be a-p-free. Using (7.1), we may assume
h )
that

L =K+ |iel).

Consider the K+-derivation D; of L into L given by D; (z;) = d;; z;.
The norm of D; is =< a—' because the set of monomials M is supposed
to be a-orthogonal.

Let t; : %,k — L be the linear map corresponding to D;. The elements
x;' dr;€ Q) have the property {i;(x;'dx) = 9d;;. From this one
deduces :

| Saat de || > 4| | S do | =] e
and the required inequality is proved.

The second part of (1) can be proved in the same way.
(2) This follows from (1) and (7.2).
(3) The proof is verbally the same as the proof of (6.4) part (3).
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Remarks :

(1) If the field L is spherically complete or if the Banach space Q}
is of countable type then Q}, 0 implies that Derby (L, L) = 0.
However in the case that L is not spherically complete, we can not
draw this conclusion. It seems likely that there are complete valued
fields L> K of characteristic p £ 0 such that L 2 K+ and

Derbg (L, L) = 0.

The author does not know any example of this type.

(2) Topological p-bases form an essential part of Kiehl’s proof [6] of
the exellence of affinoid algebras and analytic rings over a complete
valued field L with [L : L?] = oco. Proposition (7.3) gives an alternative
proof of the existence of p-base in the countable case.

8. Application to tensor products

In this section, we deal with a problem raised in the theory of affinoid
algebras : « Let A and B be Banach algebras (commutative and with
a unit element) over the field K. Suppose that the norms on A and B
are power-multiplicative (which means || f* || = || f [[* for all f and all n).

Is the norm on A @« B (or on A &« B) also power-multiplicative ? »

First of all we reduce this question to a problem on tensor products
of fields.

(8.1) ProrositioN (T. A. SPRINGER). — Let A be a Banach algebra
over K, which is commutative and has a unit elemenf. The norm on A
is power-mulliplicative if, and only if A can be embedded in a product
of complete fields L;> K; so AcC]lie: L.

Proof. — We remark that [J;c;L; is defined to be the set of all
elements (L);e; such that sup;|| I || < co and the norm

| Gier || = sup [ L]

makes [],c7 L; into a Banach algebra over K. Its norm is clearly power-
multiplicative. The other part of (8.1) will be shown in a number
of lemmata.

(8.2) LeEmMA. — Inthe set® = ® (A)ofallmapsg9:A — {reR|r>0}
satisfying :

M e(M)=1and ¢ ()= a;

2) ¢ (ab) = ¢ (@) 9 (b);

) ¢ (a + b) < max (¢ (@), ¢ (b);
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every element lies above a minimal element (in the natural order of ®).
Every minimal element ¢ of ® satisfies ¢ (ab) = ¢ (a) ¢ (b) for all a,
beA.

Proof. — We apply Zorn. Let @, be a totally ordered subset of o,
then it is easily checked that ¢, (r) =inf{ ¢ (z) | 9€®,} is also an
element of ®. Further let ¢ be a minimal element of ®. Take acA
with ¢ (@) # 0. Then ¢* defined by

¢* (b) =inf{¢ (@ b) ¢ (@™ | n=0}

is also an element of ® and satisfies ¢* = ¢. Consequently o* = ¢
and ¢ (ab) = ¢ (a) ¢ (b) for all a, beA.

(8.3) LeEmmA. — Lel|| | be the semi-norm on A given by
| allsp = lim ([[ @ [| )

Then || |w€®. Take acA with | a|y, =p. Then there exists a
complete field extension L of K and a K-algebra homomorphism f: A — L

salisfying || f|| =1 and [f(a) | = p.
Proof. — The first statement, || |, €®, is classical. Consider the

algebra B consisting of all power series ¥°, a; T* with coefficients in A
and such that lim || a; ||, p~! = 0. With the norm

| X0 @ T[] = max (|| a [l p~)

B becomes a normed algebra over K. The element xt =aT — 1€B
has the property ||zy || = || y|| for all yeB and ||z| = 1.

Let B denote the completion of B then Bz is a proper closed ideal
in B. Let C be the Banach algebra B/Bx. Take a minimal ¢ € ® (C) and
let C, be the completion of C with respect to ¢. Since ¢ (ab) = ¢ (a) ¢ (b)
for all a and b, é@ is in fact a subring of a complete valued field L> K.
The composed map f: A — é@cL has certainly norm 1. Further the
map A — B maps onto an element of norm || a (s, = p, hence | f (@) | < .
The image of T in L is { and satisfies {f (@) = 1. Since |[t| || T || =,
we have |f(a)| = p.

End of the proof of (8.1). — Suppose that the norm on A is power-

multiplicative. Then || || =] |- For each a€A, a0, we can
take an extension L, of K and a K-algebra homomorphism f, : A€L,

such that |f, ()| =/ a| and || fo | = 1. Then the map
f=MIf.:A—~1IL.
is an embedding of A in a product complete field extensions of K.
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Remark. — Suppose that the norm on both A and B is power-multi-
plicative. Then Ac]I L; and B<J] M,. Using (B 2) part (2), one finds

that the problem : « Is the norm on 4 ®x B power-multiplicative ? »
reduces to : « Is the norm on L; @« M for each i and j power-multi-
plicative ? ». As can be expected, in the case char k = 0 the answer
is yes:

(8.4) TureoreEM. — Let L> K-and M > K be valued fields then the norm
on L ®x M is power-multiplicative provided that char k = 0.

Proof. — Using (B 2) part (2), we may suppose that L is algebraically
closed and without loss of generality we may, according to (8.1), at
any time in this proof replace a power-multiplicative normed algebra by
a valued field. Further for any intermediate field E, KcEcL, the
normed algebras L ®x M and L Qg (E QM) are isometrically
isomorphic. The lemma of Zorn yields the existence of a maximal
intermediate field E such that E @, M has a power-multiplicative
norm. If E = L,we are done. If not we have the following cases :

(1) @7,z # 0, and there exists x€ L with Qs 52 0.
(2) Q%r =0 and according to (6.2), L = E,.

So it suffices to show the validity of (8.4) in the following two cases :

(1) L = K (x), z is topological transcendental and K is algebraically
closed.

(2) L = K, (= the completion of the algebraic closure of K).

Case (1). — Let f, ge K [r] ®« M have degree — n, and let a real
number d, 0<<d <1, be given. Let D:L > L be the bounded
K-derivation satisfying D (x) = 1. Since K is algebraically closed there
exists a polynomial p of degree 1 in K [x] such that | D (p)| > ¢'**||D||.|p|.
Then {1, p, p?, ..., p**} is a d-orthogonal base of the K-vector space
of all polynomials in K [z] of degree .~2n. Let

f= Yo p' Q@ m;
g=3Xj- P/ @m; and  fg=3" p*Q Xij=i m; mj.
So
|| fg || = 0 maxy | Tewjmie mimj || p*|
= 5(maxilmx|-|Pil)~(maX/lm"7I-IP"Uéa N1 gl

Hence the norm on K[x] ®x M is multiplicative and consequent]y
also on L Q« M
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Case (2). — First we enlarge M such that | M |>| K, |, and we consider
special cases of algebraic extensions of K :

(A) If [L: K] =[l:k] <oo then the norm on L ®xM is power-
multiplicative.

B)IL=K(),3"=acK and |J'|¢|K*| fori=1,...,n—1,
then the norm on L ®x M is power-multiplicative.

Proof of (A). —Since for
r=a®b and yeL @« M, |zy|=|z[.[|y]

it is sufficient to show that ||y || = 1 implies that || y*|| =1 for all n.
Put in a different way, we have to show that the ring

R=|yeL@M ||lyll<1}|/lyeL®M ||y| <1}

has no nilpotent elements. Now L has an orthonormal base over K
and it follows from (B 2) that R =[®;m. This ring is known to
have no nilpotents.

Proof of (B). — Again it suffices to show that R has no nilpotents.
Take an element be€M such that |[5®b| =1. Then 1®1,
S®6b,...,3"tQ b is an orthonormal base of L ®, M over the
field M. It follows that R = m[T']/(T" — a) where aem is that residue
of the element Z" b»e M. Since a 20, again R has no nilpotents.

Proof of the case (2). — Let K, be a maximal subfield of L, containing K,
such that the norm on K, ®x M is power-multiplicative.

(a) The residue field k, of K, is algebraically closed. — Suppose not,
then there exists a field K, with K15K2cL, [K.: K] = [k:: ki] < 0.
Now K, ®x M is isomorphic to K, ®x«, (K; ®« M) and using (6.1)
and (A), we find the contradiction that the norm on K, ®x M is power-
multiplicative.

(b) The value-group of K, is divisible. — Suppose not, then there is
an extension K, (¥) of K, of the type described in (B). In the same
way as (a), this leads ot a contradiction.

(¢) K, = L. If not, then K, is not algebraically closed. Let K,cL
be finite extension of K,. According to (a) and (),

f(K:/K,) = e (K./K)) = 1.
And hence for any ze€K,, there exists an element yeK, with

|z —y|<|z|=|y| On the other hand, let 0Zx€K, be such
that Tr (x) = 0. Then, for any ye K,, we have

[z —y|=|Tr@—y)|=[Tr(—y| =yl

This is a contradiction.
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(8.5) CoroLLARY. — Suppose char k = 0, and let A and B be Banach
algebras (commutative and with a unit element) over K. If the norms

on A and B are power-multiplicative, then so is the norm on A &y B.

Remark. — In case chark = p = 0, the statements corresponding
to (8.4) and (8.5) are obviously false. However, one can prove the
following : « If L> K is a tamely ramified extension of discrete valued

fields, then the norm on L ®x M is power-multiplicative for every
field M> K ».

This leads to the conjecture that the following statements concer-
ning L> K are equivalent :

(1) For all M>K, the norm on L ®x M is power-multiplicative.
(2) For all M> K, with [M : K] < oo, the norm on L ®x M is power-
multiplicative.

(3) The map «: Q4 & L - Q} is isometric.

REFERENCES

[1] ABHYANKAR (S. S.) and Van der Pur (M.). — Homomorphisms of analytic local
rings, J. fiir reine und angew. Math., t. 242, 1970, p. 26-60.

[2] BerGgER (R.) und Kunz (E.). — Ueber die Struktur der Differentialmoduln von
diskreten Bewertungsringen, Math. Z., t. 77, 1961, p. 314-338.

[3] DieupoNNE (J.) et GROTHENDIECK (A.). — Eléments de géométrie algébrique.
I : Le langage des schémas. — Paris, Presses universitaires de France, 1960
(Institut des Hautes Etudes Scientifiques. Publications mathématiques, 4).

[4] GrusoN (L.). — Théorie de Fredholm p-adique, Bull. Soc. math. France, t. 94,
1966, p. 67-95.

[5] Gruson (L.). — Catégories d’espaces de Banach ultramétriques. Bull. Soc. math.
France, t. 94, 1966, p. 287-299.

[6] KienL (R.). — Ausgezeichnete Ringe in der nichtarchimedischen analytischen
Geometrie, J. fiir reine und angewan. Math., t. 234, 1969, p. 89-98.

[7] Van der Pur (M.). — Espaces de Banach non archimédiens, Bull. Soc. math.
France, t. 97, 1969, p. 309-320.

{8] Van TieL (J.). — Espaces localement K-convexes, Indagationes Math., 1965,
p. 249-289, et Koninkl. nederl. Akad. Wetens., Proc., Séries A, t. 68, 195,
p. 249-289.

[9] Zarisk1 (0.) and SAMUEL (P.). — Commutative algebra. Vol. I and II. — Princeton,
D. Van Nostrand, 1958-1960 (University Series in higher Mathemetics).

(Texte recu le 10 janvier 1972.)

Marius van der Pur,
Mathematisch Instituut,
Universitetscentrum De Uithof,
Budapestlaan 6,

Utrecht (Pays-Bas).

ToME 101 — 1973 — N° 1



