
BULLETIN DE LA S. M. F.

MARIUS VAN DER PUT
Continuous derivations of valued fields
Bulletin de la S. M. F., tome 101 (1973), p. 71-112
<http://www.numdam.org/item?id=BSMF_1973__101__71_0>

© Bulletin de la S. M. F., 1973, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » (http:
//smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/
conditions). Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=BSMF_1973__101__71_0
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://www.numdam.org/conditions
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Bull. Soc. math. France,
101, 1973, p. 71-112.

CONTINUOUS DERIVATIONS OF VALUED FIELDS

BY

MARICS VAN DER PUT

[Utrecht]

SUMMARY. — Let L 3 K be complete ultrametric fields. Every .K-linear continuous
derivation of L into a Banach space over L factors through the universal .K-linear
continuous derivation d : L->Sli/^. The structure of (d, ^i/^) is described in
detail for discrete valued fields LjK. For dense valuations there are results on :
extensions of continuous derivations; topologically transcendental and algebraic
elements; topological p-bases. As application one finds a result on tensor products
of Banach algebras over K.

Introduction

The goal of this work is to describe continuous derivations of a valued
field L into a Banach space over L. As there are no continuous deri-
vations (other than 0) for archimedean valued fields, we restrict our
attention to non-archimedean valued fields.

For complete valued fields L^K, one constructs in section 2 an
universal continuous X-linear derivation d^/K '- L —>- ^i/Ar. It is shown
in (2.5) that the pair (di/K, ^L/K) can be obtained from the universal
VA-linear derivation d^.^= VL-> ̂ ^K9 where VL and VK are the
rings of integers of L resp. K.

An almost complete description of (di/^, ^i/p) tor discrete valued
fields is given in sections 3, 4, 5. The results are close to computations
of R. BERGER and E. KUNZ on the module of differentials of a discrete
valuation ring.

The main result of section 6 is the following :
If L~^K are complete valued fields with residue-characteristic zero

then the canonical map ^(g^L-^^i is isometric (6.1).
In an informal way this means that any continuous derivation of K

into a suitable Banach space over L can be extended with the same
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72 M. VAN DER PUT

norm. Using (6.1) one obtains in section 6 a fairly good description
of ^L/K for the case of residue characteristic zero. An application of
this yields the following result on tensor products of commutative
Banach algebras :

Suppose that K has residue-characteristic zero. Let A and B be
commutative Banach algebras with a unit over K such that the norms
of A and B are powermultiplicative (i. e. || />/l || = || f[|71 for all f and n).
Then the norm on A(^)^B is also power-multiplicative (8.5).

Section 7 deals with fields of caracteristic p 7= 0. A fundamental
result on extensions of bounded derivations in that case leads to a
description of ^i/^-.

As a corollary one can show the existence of topological p-bases for
field extensions of countable type. Bases of that type are used by
R. KIEHL in his proof of the excellence of affinoid algebras over a field L
with [L : LP] = oo.

Finally, an exposition of the main technical tools used in this work
is given in section 1.

1. Preliminaries

To facilitate the reading of the next sections, we present here a
number of more or less disjoint an technical topics. At the same time
some notation is introduced.

(A) Non-Archimedean Banach spaces. — Let L be a complete non-
Archimedean valued field. (We will abbreviate this sometimes by
<( L is a field ".) Its ring of integers j a;€L [ | rr | ̂  1 { is denoted by Vz.
The residue field of VL (or L) is denoted by the small letter Z. The
value group of L will be written as ] L* |. If ] L* | is discrete (e. g. the
valuation is discrete) then TT or HL will denote a uniformizing parameter
(that is, 0 < | TT | < 1, and | L* [ == { | TT \71 \ n cZ }). For discrete
valued fields KcL, e (LfK) will denote the ramification index; so
e (LjK) = order of [ L* |/| K* |. A non-Archimedean Banach space over
L is a vector space E over L provided with a norm [| [|: E -> {r e R | r^ 0 j
having the properties :

(1) || x || = 0 if and only if x == 0;
(2) ||^||=m.||rr|| OeL);
(3) \\x +y ||̂  max (|| x |], \\y\\).
Moreover E is supposed to be complete with respect tot the metric

derived from the norm. Of the various possibilities of making a residue
space of E, we choose :

the residue space T E of E equals
\xeE \\x\\^\\l\x^E\ \\x\\<l[
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CONTINUOUS DERIVATIONS 73

This is in fact a vector space over I = T L. For additive maps
(or L-linear maps) g : E -^ F, E and F Banach spaces over L, such
that | |^(e)[|^l for all eeE, |] e || ̂  1, the induced additive (or /-
linear) map : T E ->- T F is denoted by T (<y). Also the residue map
j :C€-E | || x [| ̂  1 i ->- T E will be given the name T. A Banach space E
over L is called discrete if || £ [| == | L | and the valuation of L is discrete.
For any aeR, 0 < a^l, and any subset X = { Xi:\ i ^ I } of a Banach
space £ over L we define :

X is a-orthogonal if for any convergent expression x = 2 ̂  ^» ^ e L,
the inequality max^ (| }i,; |. || Xi:\\) ̂  |[ x \\ ̂  a max, (| ^ |. |[ .x'z ||) holds.

X is oc-orthonormal if for any convergent expression x = 2 ̂  ^» ^ € L,
the inequality max, [ ^:\ ̂  [| x [| ̂  a max; [^ | holds. Further 1-ortho-
gonal and 1-orthonormal are abbreviated by orthogonal and orthonormal.

X is called an a-orthogonal base (resp. a-orthonormal base or en-base)
if X is a-orthogonal (resp. a-orthonormal) and every x^E can be expressed
as a convergent sum x = 2 ̂  ^* O116 easily shows that a subset XcE
such that [| re 1] == 1 for all x^X, E discrete Banach space over L, is an
orthonormal base of E if and only if the subset T Xc T E is a Hamel-base
of T £ over Z. So a discrete Banach space E is completely determined
by its residue space T E.

Further, it is known that any Banach space over L of countable
type has for any a, 0 < a < 1, an a-orthogonal base (see [7]). For Banach
spaces E and F over L, we define Honiz (E, F) or Horn (E, F) to be
the vector space of all bounded L-linear maps from E into -F. The defi-
nition [ I 1 1 [ = sup 1; [ I x ||-1 [ I t (x) i l x^E,x^Q\ makes Horn (£, F)
into a Banach space over L.

A Banach space F is called spherically complete if every sequence of
spheres j £?„ | n ̂  1 j in F, with the property Bn^Bn+i for all n, has
a non-empty intersection.

According to a theorem of A. W. INGLETON, we have : (< F is spheri-
cally complete if and only if for every Banach space E and every
subspace £1 of E, any bounded L-linear map /i : £1 -^ F can be extended
to a bounded L-linear map I : E -> F such that ] [ / 1 ] = |] Zi [ [ ".

For a field L, spherically complete is equivalent to maximally complete
in the sense of KRULL and KAPLANSKY.

We will need explicitely the following results :

LEMMA :

(A 1) Let E be a vector space over L, provided with two equivalent
norms || |]i and || ||2. Suppose that (E, [| ||;) is a discrete Banach space
over L (i = 1, 2). Then the l-linear spaces T (E, \\ ||i) and r (E, [ [ [[a)
are isomorphic.
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74 M. VAN DER PUT

(A 2) Let E be a Banach space over L and F a spherically complete
Banach space over L. Then also Horn (£, F) is a spherically complete
Banach space.

Proof :

(1) If dim E < oo, then dim^ E == dim/ T (E, || (|i) = dim/ T (E, || [l^,
and (1) is trivial. If dim £ = oo, we take subsets Xi and Xa of £ such
that Xi is an orthonormal base of (E, || ||i), and Xa is an orthonormal
base of (£, |[ Ha). We have to show that card Xi = card Xa. Since
the norm [| [ [a is equivalent to |] |]i, we find that Xa is an a-orthogonal
base of (E, [ | |[i), for some a, 0 < a ̂  1.

By expressing the elements of Xi as convergent sums in Xa and using
that a convergent expression has a countable support, one finds
card (Xi) ̂  card (Xa). In the same way, card (Xs) ̂  card (Xi).

(2) Put G = Horn (£, F), and let B^ == \te G \\t- in \\ ̂  Tn \ be
a sequence of spheres in G such that Bn^Bn+i for all n. Put Fn== F
for all n, and let r : F -> rG=i ^n denote the map given by i (f)n == f
for all f^F and n^l .

The map
F^TlFn-^TlFnI^F^

is isometric and since F is spherically complete, it has a left inverse p
with [ ] p |[ == 1. Now /o = pojo II in : E -> F has the property /o€J3^
for all n ̂  1. [Part (A 2) of the lemma is due to R. ELLIS.]

More information on Banach spaces can be found in [5], [7] and [8].

(B) Tensor Product of Banach spaces. — Let E and F be Banach
spaces over L. On E (g) F we introduce the semi-norm |] ||, given by

|| a [ ] = inf { max^,^ || d \\. \\ fi \\ \ a = ̂  e, ® f, ;..

Put T=(£(g)F,|| ||).

(B 1) LEMMA. —- T has the following universal property : For every
Banach space G over L and every bounded bilinear map t : ExF -> G
the corresponding linear map V : E (g) F -> G has the property [| t [| = |] f ||.

Proof. — First, we note that \\ t \\ is defined to be the supremum

of \\\e\\-l\\f\\-l\\t(e,f)\\ eeE.feF}. Let a = 2 e, (g) f^E (g) F.

Then

II t' (a) |[ = [ ] £ t (̂  fi) || ̂  max, [| t (̂  f,) || ̂  || ( [ [ max, [| e, ||. |] f, [|.
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CONTINUOUS DERIVATIONS 75

Consequently, ]] t' (a) |] ̂  [| t [|. [| a ||, and so [| f \\^\\t |]. On the other
hand,

ii^^nii-ii^^^nii^ii^ii.ii^/'ii^ii^ii.ii^ii.iifii.
So | I<]]^| | f | | .

(B2) LEMMA.

(1) Take a eR, 0 < a ̂  1. Jf { e,' [ 1 ̂  i ̂  s } cE is ^-orthogonal
then for all f,, ...,/,eF,

||2;^^•®^||^a^x(||6,||.|]/•.||).

(2) The semi-norm on E (g) F is a norm and satisfies [| e 0 /'|| = |[ e [|. [| f\\.
(3) jFor a// suspaces Ei of E and F y of F is the map

(^(g)F,,[| ||)-^(£(g)F,|| ||)
isometric.

(4) If every finite dimensional subspace of E has an orthogonal
base then every a e E 0 F can be written as a == 2 :̂ ® /^ where
|| a |]= max (|| e, ||.|| f, ||).

Proof :
(1) Let G be a spherically complete field containing L (G exists, we

will not go into the details of that). Define ti : L Ci + • • • + L1 ^s -> G
by t, (d) = 1 and t, (cy) ==0ifj^ i. Define t.: L f, -> G by ^ (fi) = 1
(we suppose here, as we may, that fi -^- 0). Extend both mappings to
the whole of E, resp. F, with values in G and without increasing their
norms. Consider t : E x F -> G, t (e, f) == t, (e) t.z (f) and let f :
E (g) F -> G be the corresponding L-linear map. Then f (a) = 1 and

II v II -II t II = 1 1 ^ 1 1 . 1 ! ^ 1 1 ^ ̂  1 1 ^ - I I - 1 1 1 ^ - II-1-
So [I a |[^ a || ^ . 1 1 . || ^||.

Alternative proof (after T. A. SPRINGER). — Let
x == ff=i e, (g) f, and x -== ̂  e} ® f;

be another representation of x. We have to show

maxlK.II.II/-; ||̂  a max ||e, ||. 1 1 ^ - [ ] .

Take (3eR, 0 < (3 < 1, and let g^ ..., gc be an P-orthogonal base
of the vector space L f[ + • • • + L fi. (For every (3, 0 < (3 < 1, such
a base exists 1). Then fy = 2^=i ̂  ̂  with

I ] f; || ̂ (3 max, (| ̂ |.|| ̂ ||).

Further x = 2/ < (g) f; = 2, (£, ^,, e,) (g) ^.
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76 M. VAN DER PUT

Since the { gi, . . ' , Q c } are linearly independent, we have

2/ ^/k <• = 2?=i ̂  e,

and fi = ̂  ,̂ ,̂ for some ^eL. Now

max; II <• II • II f ' j II ̂  P max,,, [| e', \\. [ ̂  |. || ̂  || ̂  (3 max, [| S/ ̂  <• ||. [I 9k ||
^ a(3 max,, [ ̂  |.|| ̂  ||.|| g, |[ ̂  a(3 max, [ [ e, | [ . [ | /;• |].

Since (3eR, 0 < (3 < 1, was arbitrary, it follows that

max [ [ ,/, [|. [ ] /•; || ̂  a max |[ e, [|. [|/-, [|.

(2) Take aeE 0 F, a -^ 0. Write a == 2 ̂  (g) fi where { ^-, . . . , e , }
is linearly independent over L. Then, for some a, 0 < a < 1, { e,, ..., C s }
is a-orthogonal. According to (1), |] x |[ 7^ 0. Hence [| [ [ is a norm.
The equality [| e (g) f [ | == || e | [ . | [ /•[[ follows directly from (1).

(3) The norm on Ei (g) Fi will be denoted by || ||r Clearly,
|| x |[i ̂  |[ x [ I for all x in £'1 (g) Fi. On the other hand : for x^Ei 0 Fi
and aeR, 0 < a < 1, there are ei, ..., e.s in Ey and /'I, . . ., /leFi such
that 61, ..., Cs is a-orthogonal and x == 2 e,; (g) ^.

Hence (1) yields [| a; [ [ ̂  a max ([| e, |]. || fi [|) ̂  a || rr ||i. Since a e R,
0 < a < 1, was arbitrary, we may conclude |] x |[i ^\\x f | .

(4) Take x^E (g) jF. Then re = ^=1 ^ ® A- Choose an orthogonal
base { e\} of L 61 +... + L Cs. Then x can also be expressed as
S^(g)// (some f/eF). According to (1), we have

[| x I] == max |[ ^ 1 1 . \\f, |1.

DEFINITION. -- The completion of E 0 F with respect to the norm
on the tensorproduction is denoted by E 0 F.

(B 3) PROPOSITION (L. GRUSON [4]). — (g) F is an exact functor for
every Banach space F.

Proof. — Let
O-^E^E^E.-^Q

be an exact sequence of Banach spaces (i. e. the sequence is exact as
a sequence of vector spaces over L and a and (3 are bounded L-linear
maps). We have to show that the derived sequence

0 -> E, (g) F^E, (g) F^E, (g) F -> 0

is exact. The most difficult part, (< a' injective ", follows directly
from (B 2) part (3). The rest is left to the reader.

TOME 101 —— 1973 —— ?1



CONTINUOUS DERIVATIONS 77

(C) The structure theorem for complete local rings. — In this subsection,
we gather the components of Cohen's theory on complete local rings
which are of particular interest for us.

A complete local ring is a ring R which has precisely one maximal
ideal M, and satisfies n,T^i M"- = 0, and R is complete with respect
to the uniform structure induced by M. We remark that R need not
be Noetherean and that M need not be finitely generated. The residue
field of R will be written as K == RIM. Let TT : R -> K be the cano-
nical map. A subfield L of R is called a coefficient field if TT (L) = K.
For a coefficient field L is the map TT L : L -> K bijective. Suppose
that char K == p ̂  0. A subring V of R is called a coefficient ring
if : (1) V is a discrete complete valuation ring and its maximal ideal
is generated by p; (2) TT (V) = K.

(C 1) THEOREM (I. S. COHEN) :

(1) If char K = 0, then every maximal subfield of R is a coefficient
field.

(2) If char R == p -^ 0, then R contains a coefficient field.
(3) If char K = p ̂  0 and p71 R 7^ 0 for all n, then R contains a coeffi-

cient ring.
(4) If R is a complete discrete valuation ring and char R = char K,

then R is isomorphic to K[[TT:}] where TTC-R is a uniformizing para-
meter of R.

For the proof of this theorem, we refer to [9] volume 2, or <( NAGATA,
Local rings " or [3] EGA IV (premiere partie), chap. 0, § 19.

(D) Extensions of fields. — First of all, we will tacitely use the following
criterion for separability ([9], part 1, Th. 42) : <( 1'^k is separable if
and only if every derivation of k is extendable to I ".

Let us suppose that 13 k are fields of characteristic p -^- 0. By k^-
we mean k (IP). A p-independent (or p-free) set { a; | ie I }cl of Ifk is
a set satisfying : (< ai^k^ (a/ jeJ , j 7^ i) for all I'eJ ". This condition
is equivalent with : <( the monomials { a^ ... a^ j neN; 1*1, ..., i^
different elements of J; 0 ̂  a; < p } are linearly independent over k-^- " .

The set j ai:\ i € I } is called a p-base of Z/A-, if this set is p-free in Ijk
and if moreover I == kr^ (0.1 \ i € I). Every maximal p-independent set
in Ifk (existence guaranteed by the lemma of Zorn) is a p-base of Ijk.

For rings AcBcC, we let (dc/B, ^c/a) denote the universal module
of differentials, and ^ C I B / A = ker (^/^ @5 C ->- ^c/^)- In all cases, where
derivations are involved, we keep the notations of [3] (EGA IV,
chap. 0, § 20).

Further j ai i € I } is a p-base in Ifk if and only if j di/k (di) \ i e I }
is a base of the Z-vector space ^//^. For the case that k equals the
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78 M. VAN DER PUT

prime field of Z one obtains the usual definition and results. (See [9],
part 1.)

DEFINITION. — Let M be a vector space over Z. A symmetric
/c-bilinear 2-cocycle of I into M is a A-bilinear symmetric map h: I x I -^ M
satisfying :

h (ab, c) + ch (a, b) = h (a, be) + ah (b, c) (for all a, b, eel).

This 2-cocycle is called trivial if there exists a A-linear map ho : I -> M
such that h (a, b) == ho (ab) — aho (b) — bho (a) for all a, be I.

(D 1) PROPOSITION. — Ifljk is separable, then every symmetric k-bilinear
2-cocycle of I is trivial.

Proof. — Consider jR == I Q) M provided with the ring-structure given
by the formulas

(a, m) + (a\ m') == (a + a ' , m + m')

and
(a, m) (a\ m') == (aa\ am' + a' m + h (a, a')).

R is a commutative ring. Its only maximal ideal is M and M2 = 0.
Let Tz- : jR -> I denote the map of R onto its residue field. jR is in a
trivial way a complete local ring, and we can apply Cohen's structure
theorem :

There exist a ring homomorphism c? : I -> R such that TT o <p == id.
The map D : k -> M given by D (a) = cp (a) — (a, 0) is a derivation of k
into M. This derivation can be extended to D' : I -> M. Consider
cp' == cp — D' : I -> R. This is again a ring homomorphism satisfying
7T o CO' = id.

Write cp' in coordinates, q/ (a) = (a, ho (a)) (with a e Z). Then /?o: I -> M
is a /c-linear map. The equation

?' (ab) == c?' (a) ^ (b)

written down in coordinates gives

h (a, b) = h, (ab) - ah, (b) - bh, (a).

2. General theory of continuous derivations

Let L be a complete valued field, and M a Banach space over L.
We are interested in continuous derivations D : L -> M. If L == R
or C, the only continuous derivation is the zero-derivation. Excluding
this case, we assume in the sequel that the valuation of L is non-Archi-
medean. (The trivial valuation is allowed.)

TOME 101 —— 1973 —— ?1



CONTINUOUS DERIVATIONS 79

(2.1) LEMMA. — Let D:L-^M be a derivation and assume that
the valuation of L is non-trivial. The following properties of D are
equivalent :

(1) D is continuous;
(2) [ || D (x) |[ xeL, | x | ̂  1 \ is bounded;

(3) \ || D (x) |]/| a; | :reL, x ̂  0 ̂  is bounded.

Proof. — See [1] (3.1.1). We remark that (2) and (3) are equivalent
even if the valuation of L is trivial.

DEFINITIONS. — To include the case of a trivial valued field in our
theory, we will consider, instead of continuous derivations, bounded
derivation in the sense of part (2) and (3) of (2.1). Let L^K denote
valued fields and let M be a Banach space over L. Then Derb^ (L, M)
denotes the L-linear space of all bounded jK-linear derivations of L
into M. This vector space is made into a Banach space over L by
the norm

| ]D[ |=sup} | [D(^) ||/|^| \x^L,x^O\.

Further provide L (g)^ L with the tensorproduct-norm, and let I denote
the kernel of the map p : L (g)^ L->L given by p (2 ai (g) bi) = 2 cti bi.
Let P denote the closure of the ideal in L (g)^ L generated by
j xy | x, y ^ I ), and let ^2 I/A- denote the completion of the normed
space J/J2. Finally, d = dt/K : L —^ ^L/K is the bounded derivation
given by

d (a) = (a (g) 1 - 1 (g) a) + Pe^i/A.

(2.2) THEOREM. — The pair (di//<, ^i//c) represents the functor
<( M -> Derb^ (L, M) " of the category of Banach spaces over L into
itself. Moreover the isomorphism Horn/, (i2i/A, M) -^ Derbyr (L, M) is
isometric.

Proof. — The derivation d : L -> I^i/A induces a canonical map a :
Homz. (^i//^, M) -> DerbK (L, M) given by a (I) == I o d. Since I I F - is
generated by d (L) and is dense in ^i/p, we have that a is injective.
For aeL, we find

\\d{a)\\^\\a®\-\®a\\^\a\.

Hence || d \\ ̂  1 and [| a || ̂  1. We will construct a map (3 :
Derb^ (L, M) -> Homz. (^i/A, M) satisfying |[ (3 || ̂  1 and a o (3 == id.
This implies that a is bijective and isometric.

Construction of^. — Given D e Derb/r (L, M), we define h: L 0/, ̂  -^ M
by A (2 a.i (g) 6,) === 2 a, D (6;). According to the definition of the norm
on L(g)A^, || h [| ̂  ||£) I ] . The kernel of h is closed and contains
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{ x y x , y e l } . So h induces an L-linear map hf:I|F->M with
I I ht I I == I I h I I - Define (3 (D) to be the unique continuous extension of A'
to a map ^i/s -> M. Obviously, a o (3 = id and [| (3 [| ̂  1.

Remarks.
(1) If the valuation of L is trivial, then ^2i/^ equals t2^/^ as a vector

space over L, and its norm is trivial.
(2) It is obvious from the construction of ^i/^, that ^/K is the

completion of ^IL/K with respect to some semi-norm p. This semi-norm
can be described as follows :

Let D : L -> M be a bounded A-derivation and let I : 12̂  -> M be
the corresponding linear map. The formula pa (x) = [[ D [|-1 [| I (x) ||
defines a semi-norm on ^/A. Now p (x) equals sup { po (x) \ D bounded
JC-derivation of L}.

This result is not very useful however since one cannot calculate
the semi-norm p. A better approach is to connect ^i/^- with 1̂  ^ ,
the universal module of derivations of VL over VK' (VL and VK are
the integers of L and K.) This line of attack is followed in (2.3) up
to (2.6).

DEFINITIONS. — Suppose that the valuation of L is non-trivial.
Let V = VL denote the valuation ring of L, and let M be a V-module.
The vector space M (g)/^ L has a natural semi-norm induced by the
absolute convex subset

M' = { m (g) v | M^m, ye V }

of M(g)rL. This semi-norm p is given by

p (x) = inf 1 1 v | veL, v ̂  0, v-1 x^.M' '}.

Let F (M) denote the (separated) completion of M(g)^L with respect
to p. Then F is a covariant functor of the category of V-modules
into itself.

(2.3) LEMMA. - F (M) == lim { M <g)^ (L/a V) | a e V, a ̂  0 }.

Proof. — As is well known (or easily checked), the completion of
M 0^L, with respect to p, equals lim M (g)^L/0, where 0 runs through
the set of all convex neighbourhoods of OeM 0/^L. A base for those
neighbourhoods is

Oa = { m 0 a | meM{, aeV, a ̂  0.

Now M (g)^ L/Oa is isomorphic to M (g)/- (L/a V) and the lemma follows.
(2.4) PROPOSITION. — The functor F has the following properties :
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(1) Let M be a V-module and H a Banach space over L. Then every
bounded V-linear map I : M-^H factors uniquely through F (M), in
diagram

M—>H
I ^i //'

F ( M )

Moreover [ ] U |] = sup || I (M) || < oo.
(2) If a : Mi -> Ma is a surjective map of V-modules, then F (a):

F (Mi) -> F (Ma) is also surjective.

Proof :
(1) The map I : M ->H extends to Zi : M (g)^L -> H, and since Z (M)

is bounded, Zi is continuous with respect to p, By continuity Zi extends
uniquely to a continuous V : F (M) -> H. Hence Z factors through F (M).
According to a result of J. Van TIEL ([8], (2.9), part 1° and 2°) :

(A) If the valuation of L is dense, then

{rceM(g)L | p (x) < 1 } c M t c { x e M ^ L p(x)^l}.

(B) If the valuation of L is discrete, then

M' = [x^M^L | p ( x ) ^ l } .

The set M (g) L is dense in F (M), and consequently || U [ ] = [| Zi [|.

Case (A). — Let xeM (g) L, and take ^eL such that p (x) < \ 7 |.
Then

Z, (̂  x) I] < || Z, (x) I]/? (re) = [| Z, (̂  a:) ||.| ^ |/p (̂ ).
Because

m i [ \ ^ \ l p ( x ) | ^ e L , | ^ | > p ( . r ) } = l ,

we can conclude that |] Zi |] = sup || Zi (M') [| = sup |] Z (M) [[.

Case (B). — The definition of p implies that

p(M(g)L) = | L [ = { 7 ^ H n e Z } u { 0 } .

Take xeM (g) L, then x = TT^ y, where p (y) = 1. Consequently,

!]Z,(r(;)[l/p(.r)=|]Z,0/)[]/p(y)
and

I I li I I = sup •{ || Z, (y) || y e M ^ L , | p O/) 1 = 1 ^ = sup |1 Z(M) ||.

(2). Let M be a V-module and M1 = j m e M [ a m == 0 for some
a € V, a 7^ 0 { its torsion submodule. We show first that the map
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p : M -> M/M^ induces a bijective map F (p) : F (M) -> F (M/M^).
For every a € V, a 7^ 0, the sequence

0 = M^ (g) L/a V -> M (g) L/a V^M|Mt (g) L/a V ^ 0

is exact. So pa is bijective and also F (p) == lim pa is bijective.
Now we may suppose that Ma has no torsion. This implies (see

BOURBAKI, Algebre commutative) that Ma is a flat V-module. The exact
sequence 0 —>- K ->- Mi -> Ma ->- 0 gives for every a e V, a ̂  0, an exact
sequence

0 -^ K (g) L/a V -^ Mi (g) L/a V -^ Ma 0 L/a V -^ 0.

For any (3 e V, 0 < | (3 | ̂  | a | and any V-module M, the map
M 0 L/(3 V —>- M (g) L/a V is surjective. Hence the condition of Mittag-
Leffler is satisfied, and we may conclude with [3] (EGA III, chap. 0,
(13.2.2)) that

0 -> F (K) -> F (Mi) -> F (MQ -> 0
is exact.

Remark. — The functor F is neither left- nor right-exact.

(2.5) THEOREM. — Let M^L^K denote complete valued fields.
(1) There is a canonical isomorphism a : F t^^ir^) -> ^i/A. The map a

15 in general not isometric but satisfies p || x \\ ̂  || a (x) || ̂  |[ x |] where
p = sup [ 1 1 1 | ̂ €L, ] X | < 1 I.

(2) If the valuation of L is dense, then any rceI^i/A: with |] x \\ < 1
can be represented as a convergent sum

x=^7.idxi; ^,^-eL; |^ |<1, Xi \ < 1

and lim ^ = 0
(3) If the valuation of L is discrete, then |] ^L/K [ [ = [ L | and any

x^^i/K with I ] x |] ̂  1 can 6e represented as a convergent sum

X = ^TTZ1 dTTz, + 2 ̂  ̂ z

w/iere ,̂ ?i;, a^ € Vz and lim ^ = 0.
(4) The sequence

^K^M^^M/K-^^M/L

has the following properties :
(a) (3 is surjective and induces the norm on ^if/z;
(b) (3 o a = 0 and ker (3 is f/ie closure of im a;
(c) [| a I ] ̂  1 and || (3 || ̂  1.
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Proof :
(1) The derivation d = di/K restricted to Vz can uniquely be written

in the form d = lo d^^ where I : ̂ ^-> ^L/K is a V^-linear map.
Since [| d \\ ̂  1, we find sup || Z(^y^) || ̂  1. Using (2.4), we find
an L-linear map a : F(^^)-^ ^i/^ with norm ^ 1. On the other
hand, the map V^ -^ ^2 ̂ ^ -^ F (^/^) ^^^s a K-derivation :
L -> F (^/^J with norm ̂  p-1. The induced L-linear map from ^i/^
into F(^^y^) is the inverse of a and has also norm ̂  p-1.

(2) F (M) == ̂  where M = 12^^ and

[x^M^L \ p ( x ) < l }cMfc{xGM®L \ p ( x ) ^ l ] ,

Let x^F (M), || a; || < s < 1. It suffices to show that there exists a
finite sum y = 2 ̂  <te such that ^ | < s, | ̂  | < 1, [| x — y || < z\
Indeed, by induction one forms :

X i = x — y o ; x^ === x, — yi; ...; Xn^==Xn—y^;

such that
I I ̂  [ I < ^> ^ = 2 ^z,/z ^,71 (finite sum),

| ^i,n\ < ̂ n, \X i , n \ < 1.

It follows that x = J^n^i ^i,n dxt,n, and this is the required expression.
Since F (M) is the completion of M (g) L, there exists y € M 0 L with

|| x - y [ I < s2. Hence || x [ [ = [| i /1| < £. Take a, b^L, 0 < | a < c,
0 < | b | < 1, such that ij = a-1 b-1 y has norm < 1. Now yeM\
and we can write y = 2 ̂  ̂  with ^, ^ € Yz. This implies the
required expression for y = 2 a ̂  (d (bxi) — Xi d (6)).

(3) As in the proof of (2), it is sufficient to show that any xe^i/K
with [| x || ̂  1 can be approximated by a finite sum of the required type.
Going back to the definition of ^i/p, this means that we may suppose
a;eJ/P. Take ye I with || y || ̂  1 and y + I2 = x. The element y
can be written as 2 a, (g) b,, with max |] a, |]. || b, |] = [| y || ̂  1.
(5ee section 1.) Further 2 Oz &z = 0, and we can write

y = 2 (a,- (g) l - l ® a,) ^,.
It follows that a; = 2 ̂  <te with | 0.1 bi\^l for all i. Substituting
a, = TT^^^ a', and 6, = Tr^^ 6; with | a; | = | b', \ = 1, and collecting
terms one obtains

X = S ̂  ̂  + (S ^z a,) TT^1 d7T^.

This is the expression we are looking for.
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(4) The surjective map ̂ /^-^^/^ yields the surjectivity of ^
after applying (2.5) part (1) and (2.4) part (2). Let H be any Banach
space over M then

0 -> Horn (1̂ , H) ̂  Horn (^, H) °? Horn (^ ̂  M, 7^)

is an exact sequence since

Horn (1̂ , H) = Derb^ (M, Jf); Horn ( ,̂ /„ J^) == Derb,, (M, ^T)

and
Horn (12^ 0^ M, ̂ ) = Derb^ (L, Jf).

It follows from this, by substituting various spaces H, that (3 o a = 0
and ker (3 equals the closure of im a. The remaining parts of (4)
follow easily from (2) and (3).

(2.6) COROLLARY. — If L^K are discrete valued fields such that ^i/k
is finite dimensional, then :

(a) ^F^K == M ® T ® •D' where M is a free, finitely generated module;
T is a finitely generated torsion module and D is a divisible module.

(b) dimL ^i/K === rank M.

Proof :

(a) For this, we refer to [2].
(b) ^L/K ^ F (^/^) = F (M) since F (T) = F (D) = 0. Clearly(b) ^

rank M == dim^ F (M).

Remark. — This proposition gives the link between calculations of
rank M, done by R. BERGER-E. KUNZ in [2] (especially, Satz 8,12) and
the calculations done in paragraphs 3, 4, 5. The reader can verify that
the results on rank M are special cases of results in paragraphs 3, 4, 5.

Comparing of ^L/K with ^i/k cmd definition of ^ L / K and Z L / K - — The
universal bounded derivation d == di/K : L -^ ^i/K has norm ̂  1. Hence

and
d(VL)^\X€^/K \\x\\^l

d (^eVz \x\<l})c[xe^ \\x[\<l\.

So d induces a A-linear derivation T (d): Z -^ T ̂ i/^, which factors uniquely
through the universal derivation di/k : I -> ^i/j,. In diagram
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The map ^ L / K can be described as follows :

^ L / . (difK (T A)) = T (dA) for all A € L, | A | ̂  1.

Of course ^ L / K depends (< functorially " on L\K which means that
for L ' I K ' , which L c I/, K c K' the following diagram is commutative :

T (̂ ) ®Z Z' c——— T {^K ®L L1) ———> T ( î/^)
A A

°L/A:®1 \ ^ L ' / K '

^l/k ®l I ' ———————————————————————————————> ^ l ' / k '

The cokernel of ^ L / K is denoted by SZ/A.

(2.7) LEMMA. — Consider for fields L^K the following statements :
(1) a : ̂ t (g) L -^ ^2i 15 isometric.
(2) For eyen/ spherically complete Banach space B over L and every

bounded derivation D : K —^ B there exists an extension D* : L -> B
with || D | |== I ) D* ||.

(3) Every derivation D : K ->- K with norm 1 can be extended to a deri-
vation D* : L->L with norm 1.

(4) T (a) : T (^i (g) L) -> T (^2i) is injective.

Then :
(a) (1)^(2)^(4).
(b) If the valuation of L is discrete, then all four statements are equi-

valent, and moreover

T(^i)(g),Z^T(^(g)^L).
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Proof :
(a) (1) =» (4) is trivial, and (1) <^=> (2) follows from the Hahn-Banach

property of spherically complete Banach spaces : Every bounded L-linear
map I : E -> B, where E is a subspace of the Banach space F can be
extended Z* : F -> B with || I [| = || Z* |[.

(b) Discrete Banach spaces are spherically complete and ^2t (g) L,
12̂  are discrete. From this, (b) follows easily.

(2.8) PROPOSITION. — Let fields L^K be given :
(1) The subspace of ^li/^ generated by d (L) is dense.
(2) If there exists a countable (resp. finite) set AcL such that K (A)

is dense in L, then ^L/K is a Banach space of countable type (resp. of finite
dimension).

(3) If L^K is finite algebraic, then ^IL/K = ^L/K'
(4) Let AcK be a complete sub field, and suppose that L is finite

algebraic over K, then

-iL/K/\ -> ̂ /A (g) L ̂  ̂ 2i/A ̂  ̂ LIK -> 0

is exact.

(5) If LIK is finite algebraic, then

o -> Y^ -^ ̂  <g) L -. ̂ i -> ̂  -> o
is exact.

Proof. — (1) and (2) are quite obvious. Further (3) follows from
the fact that every L-linear map / : E ->- F, with E finite dimensional
and F an arbitrary Banach space is continuous.

(4) There exists a constant C > 0 such that for any bounded deri-
vation D : K->B (B some Banach space over L) which extends to a
derivation : L ->- B, there exists an extension £)* : L -> B with
|| D* [ I ̂  C [| D I I . This follows from the fact that any linear base of L
over K is y-orthonormal for some y, 0 < y < 1. It follows that
im a = ker (3, and that the image of

^L/K/\ = ker (^A/A ® L -> ^L/A)

under the canonical map ^/c/A ® L -> ^i/A ® L is the kernel of a.
Hence the sequence in (4) is exact.

(5) Let in (4) A denote the completion of the prime field of K.
Then we have an exact sequence

T^A -> ̂ ® L -> ^1 -> ^i/K -> 0.
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So we have only to prove that ^ L / K -> ̂ t ® L is injective. This we do
by induction on [L : K]. To start induction, we have to consider the
case L = K ( x ) ; xP==aeK\K.P, where char K == p -^ 0. Since
^ L / K C ^ K ® L is 1-dimensional and generated by djr(a)» all we have to
show is that d^ (a) -^ 0.

This is true, and proved in paragraph 7, (7.2). We remark that in
the proof of (7.2) no use is made of (2.8). So we may use (7.2).

Now the induction on [L : K] < oo goes as follows :
Let K^LI^L, then we have a commutative diagram

0 0i i
YZ-/ZI ——————>^L/L^/K

[ I
(i) o—>-{L./K®L—^ai(g)L-^ai,<g)L—^,^® L—>o

I L | |
4- Y Y Y

(2) 0——————>^L/K f >^K®L——————>^i—————————>^L/K——————>0

^>L/Li ———————> ^L/L^

[ \
0 0

(3) (4)

Now (1) and (3) are exact by induction; (4) is exact and according
to [3] [EGA IV, Chap. 0, (21.6.1)],

0 -> Y^/A: ® L, -> -^L/K -> T î -̂  ̂ L/L,/K -> 0

is exact where d is some natural map.
One verifies easily that im (g o f)c-{L/L, and that d == g o f.
This implies that fis injective, since f (a;) = 0, X^L/K implies d (x) = 0

and x e y^ (g) L. Further y^ (g) L -> ̂  ® L is injective.
(2.9) LEMMA. — Le< L^K denofe complete valued fields and let B be
a spherically complete Banach space over L. Suppose that the bounded
derivation D : K -> B can be extended to a bounded derivation D' : L -> B.
Then there exists an extension D* : L -> B of D with minimal norm.

Proof. — Consider the exact sequence

0 -> Derb^ (L, B) -4 Derb (L, B) 4 Der (X, B).
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Clearly f is isometric, and by section 1 (A 2),

Derb^ (L, B) = Hom^ ( ,̂ B)

is spherically complete. So /* has a left-inverse /i of norm ^ 1.
Now D* =2)' — f o f ^ D ' ) is an extension of 2) with minimal norm.

3. Discrete valued fields (Tame case)

For given discrete valued fields L 3 K the Banach space i2i/^ is discrete
and hence determined by its residue space T ^2i/^. So almost all in for-
mation on ^L/K can be derived from ker ^ L / K and coker cp^/y,, where ^ L / K '-
^i/k -^ 7I^i/A: denotes the canonical map introduced in paragraph 2.
From (2.5) part (3), it follows that s^ == coker cp^ is generated by
the image of n^dnL in ^ ^ L / K - So dim^ Z L / K can only be 0 or 1.

Besides ker ^L/K we are interested in extensions of bounded derivations
which means that we want information on the map a : I2^(g)L -> ^2i.
In this section we deal with the case L\K is tamely ramified [i. e. Ifk
is separable and e (L/K) is not divisible by the characteristic of k].

(3.1) THEOREM. — Suppose that L~^K are discrete valued fields and
that L-^K is tame. Then

(1) kercp^==0 and Z L / K = 0; in other words ^ L / K : ^i/k --^ T (^i/y0
is bijectiue.

(2) 0 -^ ̂ <§) L 4- ̂ i -^ ^2i/^ -^ 0 is exact and a is isometric.

Proof :
(1) ?Z/A injective is equivalent to :

Horn/ (T ̂ , Z) -> Horn (^//,, Z)

is surjective; since

Horn/ (T I2i/̂  /) == T Hom^ ( î/̂ , L) = T Derb^ (L, L)

and
Horn/ (i^, Z) = Der^ (Z, /),

this means :
(^) For eyeri/ k-derivation D : I — I there exists a V^-derivation D6 :

VL -> VL (of norm ̂  1) such that the diagram

v^v,

l-°->l

is commutative.
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We split the proof of (^) in two parts.
(1 A) Reduction to the unramified case [i. e. Ijk separable and e (L/jFC) ==!].

— Let e == e (LjK), then ni = a n^ for some aeL, | a | == 1. It follows
that e 7TZ1 d^L = a~1 da + n^ dr:^ Since dn^ == 0 and | e \ = 1, we
have Z L / K = 0. So it suffices to show that ^L/K is injective.

The reduction of the polynomial X6 — aeL[X] to X6 —T ael[X]
is separable. By HensePs lemma, the reduction of an irreducible
factor q (X) of X6 — a remains irreducible and separable in I [X],
Let b, an element in the algebraic closure of L, be a root of q (X).
Put Li = L (b) and K, (b-17:1). Then Li/Xi is unramified,

k, = k, ^k (g) h — ^i,/k

is bijective, and ^I^/K = ^ii/^i since JCi/K is separable algebraic.
In the following commutative diagram,

^i/k ® Zi!z/^ T (^ 0 L,) = T (̂ ) 0, z,

^ ————L^——> ̂  ( l̂/A.) = T ( î̂ -)

?Ai/Ari is injective if the unramified case of (^) is supposed to be true.
It follows that ^ L / K is injective.

(1 B) The unramified case. — Let a A-derivation D : I -> I be given.
By induction, we will define V^-derivations Dn : VL -> VZ/TT" VL,
TT = T:K = 7r^, such that Di equals VL -'> I -> ^ == VZ/TT Y^ and such
that all diagrams

V^^V^/T:^ y^

v^- VL
are commutative.

If that is done, then D6 =\imDn : VL -> lim V^/TT^ Vz = V^ is a
V^-derivation of norm ^ 1. And De is clearly a lifting of D in the
sense of (^).

Construction ofDn+i. — Let { Oz | ie I } be an orthonormal base of L
over J?. Then every element of VL can uniquely be expressed as a
convergent sum 2 ̂  ca with all ^ € V^:. Further we may assume that
for some I'oeJ, o^ = 1. Let Dn be given; we define a Vy^linear f :
VL-> Vz/T^4-1 VL by f(^i ai) == 2 ^ ^^ where the ^, are chosen such
that bi =EE Dn (ai) mod TT".
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The diagram with f on the place of Dn+i is commutative but f need
not be a derivation. The V^-bilinear 2-cocyle

h : VL X VL -> 7T71 V^/TT^1 VL,

given by h (a, b) = f(ab) — af(b) — bf(a) is zero on the subset
(TT VzXVz)u(VzX7r Vz,) and induces a ^-bilinear 2-cocycle A' :
Ixl-^^ V^/7r^1 Vz. This 2-cocycle is trivial (section 1) since Ifk is
separable. So for some VA-linear map

g : VL 4- I -> 7^ V^/TT^1 VA,

we have h (a, b) == g (ab) — ag (b) — bg (a).

Now Dn+i == f — g has the required properties.
(2) According to (2.5) and (2.6) the statement is equivalent to :

Every derivation D : K ->- K of norm 1 extends to a derivation D* :
L->L with norm 1.

As in (1 A), we make first a reduction to the unramified case.
With the notations of (1 A), f 1, (b-1 TT^), ..., (b-1 T^)6-1 } is an

orthogonal base of Ki over X. The unique extension Di : Ki -> Ki
of D satisfies

D, (S.-o1 ^ (&-17r^) = 2^1 (i ̂  e-^ 7^1 D (TT^) + D (^)) (6-1 7r^)-.

Using the orthogonality of the base, one finds || Di |[ = 1. Assuming
the unramified case, £>i extends to Da : Li —>- Li, || Da |] = 1. Let P :
Li ̂  L be an L-linear projection onto L with norm 1, then D* = P oD^\L
has norm 1 and extends D.

(2 A) The unramified case. — Again this is done by truncating V^
By induction we will construct derivations Dn : VL —>- VL/T^ VL
TT == TT^ = TT^, such that all diagrams

v.——> v.
V^-"^ V^"+1 Vi

\.. I
\ i

V^T" V^

are commutative.

If we succed it will follow that D* = limDn is a derivation extending D
and [I £>* 1] = 1. "—
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Construction of A. — The derivation D : VK—VK^VL, having
norm 1, induces a derivation D ' : k -> Z. Since Z//c is separable, D' extends
to D" : Z-^Z. Now put

D, == VL^I^I = Vz/7:^ VL.

Construction of D,^,. — Using the terminology of (1 B), we
define f: VL— Vz/Tr^1 VL by the formula

/'(;£ ^ ^) = 2 ̂  bi+^D (^) (a, mod 7r^1),
where the bi e Vz/7^1 VL are chosen such that

bi == Dn (di) mod T^ and Z^ = 0.

Clearly f on the place of Dn+, in the diagram above makes the diagram
commutative. From f, we derive the VA-bilinear 2-cocycle

h: Vz X Vz -^ VL^ VL, h (a, h) = f(ab) - af(b) - bf(a).

This /i induces a A-bilinear 2-cocycle : Z x Z -^ 7r71 Vz/T:^1 V/. which is
trivial since l / k is separable. And we conclude the existence of a
VA-linear

g : VL -> I -> ̂  Vz/Tr7^1 VL
satisfying

h (a, b) = g (ab) - ag (b) - bg (a).

Now Dn+i = f — g has the required properties. Hence the theorem
is proved.

(2B) Alternative proofs. — If char K = char/c, then using Cohen's
structure theorem there are coefficient fields k and Z of VK, resp. VL
such that kci So V^ == k [[x]] c Z [[y]} == VL and kcl,

x = ay + J:n>e an yn

where c = e (L/X) and a € Z, a ^z 0. Moreover e is not divisible by
the characteristic of k, and we can change y such that x = ay6. For this
explicit situation, it is easy to deduce (1) and (2) of theorem (3.1).

(2 C) The statement of (2 A) can also be proved with the help of [3]
(EGA IV, Chap. 0). Using (19.7.1) one finds that VL is formally
smooth over VK with respect to the Tr-adic topologies. Now (20.7.2)
implies that ^ : ̂  (g) VL -> ̂  has formally a left inverse. That
implies, in particular, that the restriction map

Der (VL, VL) -> Der (V^, VL)
is surjective.

Since e (LfK) = 1, this means that every derivation D : K->L with
norm ̂  1 can be extended to D* : L -> L with norm ̂  1.
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(2 D) The similarity of the proofs (1 B) and (2 A) leads to the conjec-
ture that (1) implies (2) (or conversely). In general, this seems not
to be the case. In some examples however (2) follows directly from (1).
Example : QpCKcL, e (LIQp) == 1 and Z//c is separable. We have the
commutative diagram :

T(^)(g),Z=T(^i(g)L}-^T^

^ ^
?A^1 ?Z

^k^l—————————°————————>^

Since every bounded derivation on Qp is zero, cp^ = ?A/Qpan^ 9z == ^L/Q
By part (1) of (3.1), cp^ and cp^ are bijective; ^ is injective because Ifk
is separable. Hence T (a) is injective, and consequently a is isometric.

(3.2) COROLLARY. — Let L be a discrete valued field, and K a sub field.
on which the valuation is trivial. Suppose that Ifk is separable. Then :

(1) ker ^ L / K == 0 and dim Z L / K = 1;
(2) a : t2t (g) L -> ̂ i is isometric.

Proof. — This follows easily from (3.1) if one replaces K = k by
K,=k((7:,)).

(3.3) COROLLARY. — Let L be a discrete valued field :
(1) If char L = char I, then T ̂ i ̂  ̂  © ̂  and dim sz. == 1.
(2) If char L = 0 ̂  p = char /, then ^i == 12 .̂ Moreover

dim ker cp^ = dim £^. Jfc (L/Q^,) k not divisible by p, then e^ = 0.

Proof :

(1) Follows at once from (3.2) by taking K = the prime field of L.
(2) The first part follows from : every bounded derivation on Qp

is zero. If e (LfQp) = 1, then second part follows from (3.1).

Using Cohen's structure theorem, there exists a complete subfield K
of L such that

e (L/K) = e (L/Q^) = e, e (K/Q,) =1, / = k.

Hence [L : K] == e. The map a : ̂  (g) L -> ̂  has norm ^ 1 and
is bijective since L is a finite separable extension of K. But a need
not be isometric. In the commutative diagram :

r(^(g)L)-^>T^

^ ^

^ = ^i
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<PA is bijective by (3.1). Hence

ker cpz, ̂  ker T (a) and coker cpz, ̂  coker T (a).

Under the assumption that i2/ is finite dimensional we get at once
dim ker T (a) = dim coker T (a).

The general case reduces easily to the finite dimensional case by
means of the following trick :

Let TT = HL satisfy the equation ^ == SfJo1 ^ ̂  over K. Consider
the set { K j } of all closed subfields of K satisfying { do, ..., Oe-i} c Kj,
and ̂  is finite dimensional. Put Lj = Kj (rr). Then

K ==\jKf, L =U^/; T^i ==limT^;

T ̂ 1 == lim T ̂ .; T (a) == lim T (ay)

where a; is the canonical map .̂ (g) L] —>- ^2i. Since for every j,

dim ker T (a;) == dim coker T (ay) (= 0 or 1),

the same holds for T (a).

Example. — If L 3 Q^, is a discrete valued field with e (L/Qp) == e
divisible by p, then both cases dim E^/Q == 0 and 1 actually occur.
Take K = Qp (t), where t^K has absolute value 1 and its residue T tek
is transcendental over F^,. Put L = K (rr), where T^P == pa.

(a) a = t. Clearly / == k == Yp (f) and ̂ i = / d/. Since p 7r^-1 ^TT == p d/,
we have [ [ dt [| < 1, and cpz, : ^2/ -> T ̂ i is the zero-map. So S^/Q has
dimension 1.

(6) a == 1. Now TT^ = p implies d7r == 0. Consequently s^/ = 0.

Remark. — Theorem (3.1) leaves us two cases of non-tame exten-
sion L^K of discrete fields for study :

Section 4 : Discrete fields of characteristic p. (So char K = p.)
Section 5 : Discrete fields of mixed characteristic. (So char

K = 0 ̂  p = char K.)

4. Discrete valued fields of characteristic p

In this section, L 3 K are discrete valued fields of characteristic p 7^ 0.
The field K^ == K (LP) is the smallest complete field containing both K
and LP. Since any bounded J^-linear derivation of L is zero on K^,
we have ^i/^ == t2i/^+. The residue field of K^ is denoted by k°.
Clearly, k° 3 k-^ == k (IP). As we shall see, in general, k° -^- k^. Further,
c (L\K^) can only be p or 1.
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The best approximation of theorem (3.1) seems to be :

(4.1) THEOREM. — With the notations above :
(1) ^L/K+ : ^i/k» -> ^ ^L/K is injective and

ker ^ L I K = ker (12 -̂ -> ̂ /,o).

Further Z^K = S,L/K+ has dimension 0 or 1 according to e(LIK^) = For p.
(2) a : ^/Lp (g) L -> 121 is isometric.

Proof :

(1) Let { Gz | i€J } be a p-base of Z/A:0, and choose a set of represen-
tatives { A, | i€ J } cL. Put e == e (L/X+) and n == 7 .̂ Then the set

B = { ^ A?/ ... A?;1 | n e N; i\, ..., i^ different elements in I ;
O^a < e; O^a,• < p ]

is an orthogonal base of L over jK4-.
We show first that cp^+ is injective. Arguing as in (3.1), we have

to show that a ^-derivation D : I -> I lifts to a E^-derivation D6: L -> L
with norm 1.

Define D6 by
^ (S6e^ ^) = S ̂ (? (&),

for any convergent sum 2 ̂ b with coefficients in K^. Further for

b=^ A^ . . .A^eB,
we define

D^ (b) = b 2^ A^ a,^. c,,

where c,eL are chosen such that T c, = D (a,). It is almost immediate
that De has the required properties. So we have shown that ^L/K-+- is
injective. It follows at once that ker cp^ == ker (I2^+ -^ ̂ o).
Further, if e = p then the X^-Iinear bounded derivation D* : L -^ L,
which is given for 6 = ̂  A?/ . . . A^eB by D* (6) = a 6, has clearly
norm 1 and T (D*) == 0. So £z^+ ̂  0.

(2) Let the L^-derivation D : K^ -> K^ be given, [ [ D \\ = 1.
It suffices to show that D extends to a derivation D* : L -> L with the
same norm. With the notations above, define D* by

D*(S^B^b)==^D(^)b.

One easily checks that D* is a derivation extending D. The orthogo-
nality of the base B implies [| D* || = 1.
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(4.2) COROLLARY. — If L^K is tame then k° == /e4-.

Proof. — This follows from (4.1), (3.1) and the observation that
^li/k = ̂ i/k+ -> ̂ /k» is injective if, and only if, k° = k^. Also a direct
proof of (4.2) is of interest :

Using (2B) from the proof of (3.1), we have

VK = ̂ [W] c l[[y}] == V,
with kcl and x = ay6, aeZ, a ̂  0, (e, p) = 1. For some n, /neZ,
we have ne + mp == 1, hence z = x"- y^ = an ye V^+. Since VA+
contains also k^, we have VAr+3^'11^]]. Further

yp = a-^ ZP e k^ [[z]]; x = ay6 = a^ r <= /c4- [[z]].

Hence /^ [[z]] 3 A: [[.r]] and k^ [[z]} 3 ̂  [[^]]. Consequently k^- [[z]] = Y^
and the residue field of K^ is k^-.

Remark. — Also for non-tame extensions L 3 JC it is possible that k° = k^~
(or equivalently ker ^ L / K == 0). More specific :

(4.3) COROLLARY. — Given fields kcl of characteristics p ̂  0, and a
positive integer e such that :

(1) ^/^O.
(2) Either l / k is inseparable or e is divisible by p.

Then :
(a) There are discrete valued fields KcL of characteristic p, with residue

fields kcl and e = e (LfK) such that ker cp/,/A: = 0.
(b) There are discrete valued fields KcL of characteristic p, with residue

fields kcl and e = e (LfK) such that ker ^ L / K ^ O '

Proof :
(1) Suppose p | e. Let VK = ̂ [[^]]c VL = l[[y]] such that kcl

and x = ay6.

Case (a). — Put a = 1. Clearly, V^+ = A^[[y^]], and so k° = k^.

Case (b). — Take a€l\k+; k-^-^l since î . ̂  0. Then a = xy-6

belongs to K^. Hence a^ko\k}~.
(2) Suppose that p does not divide e, and that Ifk is inseparable.

Again VK = k [[x]] and VL = I [[y]]. The embedding ^ : k [[x]] -> I [[y]]
is given in case (a) by :

^ (x) == y; ^ maps Jc into Z.

Clearly V^ = k-^- [[y]] and k° == k-^-.
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Case (b). — This is somewhat tricky. Since Ifk is inseparable, there
are elements Xi, ...,Xn€.k which are p-free over k^ but p-dependent
in I / I P . Without loss of generality, we may assume Xnelp [xi, ..., Xn-i].
There exists a ring homomorphism ^ '' k -> I [[y]] such that

ip (a) == a mod (y) for all a e k

and
^ (re,) EEE rcz + ̂  (/ mod (y2) where ^ = = . . . = ^_i = 0

and
^eZ\A:+.

Define further ^ : /c [[.r]] — / [[(/]] ̂  ^ (.r) = y.

Now
^ =S^^;... ̂ ""i1; ^aeZ; 0^a,<p

and
2 = ^ (Xn) - S ̂ ^ (^1 . • . fc)

belongs to V^. Further z== ^ny mod (?/2). Since also y e VK+, because
V K^-^.^ [[y 9 y6^ we have ^eA'°. The choice of ^ implies A-0 -^ k^.

Remark. — The moral of (4.3) is that ker ^L/K and £L/K depend not
only on k c I and e (LIK) but also on the embedding ^ of K into L.
An open problem is to obtain from an embedding ^ suitable (linear) data
which determine ker ^ L / K and s^. We conclude this section by showing
a converse of (3.1) part (2) for fields of characteristic p.

(4.4) PROPOSITION. — Let L~^K be discrete valued fields (of characte-
ristic p) such that a : ̂  (g) L -> ̂  is isometric. Then L 3 K is tamely
ramified.

Proof. — We prove that Ifk is separable by showing that every deri-
vation D : k-^k extends to a derivation D* : l — ^ l . From (3.2), it
follows that D lifts to a derivation A : K -> K with [| A || == 1. It is
given (namely a isometric) that Di extends to a derivation A : L ->- L
with || D^ [ I = 1. Then D* = T (Z^) does the job.

To show that e = e (LIK) is not divisible by p is more complicated.
Since dim ZK = 1 by (3.2), there exists a A-linear map m : r^—^k
with kernel im cp^. The map m lifts to a jC-linear map M : i2j| -> K
with norm 1. The derivation Di == M o dj: : K-^ K extends to a deri-
vation Da •" L->L with norm 1. The reduction of Dz, T (Da) : l->l
is obviously a ^-derivation and lifts to a X-derivation D^ : L—^ L with
norm ^ 1. So A = A — Ds is an extension of Di, || A [] = 1 and
this time the reduction T (A) is zero.
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Applying A to the equation ni = a TZ^, aeL, | a | = 1, one finds

c TrI1 A (TTz) = a"1 A (a) + ̂  A (^).

Now || a-1 A (a) || < 1 and || Trz1 A (TT^) [| =1. So e cannot be divi-
sible by p.

5. Discrete fields of mixed characteristic

In the most general case of inseparable residue field extension A:cZ,
we have no method to compute ^L/K' For reasonable extension l^k
however, the situation is as follows :

(5.1) THEOREM. — Given discrete valued fields QpCKcL such that
4here exists a field Zo with :

(1) Z c c Z o C Z ;
(2) l o / k is separable;
(3) Z/Zo is finite algebraic.

Then :
(a) 0 -> ̂ (g) L -^ ̂ i -> ^i/A- -> 0 i5 exact;
(b) y/^ /za5 /?m'Ze dimension and y/^ © T ^L/K ^ ^i/k'

Remarks.
(1) The map a need not be isometric; the statement in (a) can be

translated as follows : « there exists a constant C > 0 such that every
bounded derivation D : K -> K has an extension De : L -> L with
\\D^\\^C\\D\\ )>.

(2) The isomorphism mentioned in (b) is not canonical. The statement
merely says that the cardinal of a Hamel-base of y//^ © T ^2i/^ is equal
to the cardinal of a Hamel-base of ^ i / k *

(5.2) COROLLARY. — Let QpCKcL be discrete valued fields such that I
is finitely generated over k. Then dim T Q^IK = [ I : Hr. ([ ]ir means
transcendence degree.)

Proof. — Of course Zo with the properties of (5.1) exists in this case.
Further by [3] [EGA IV, Chap. 0, (21.7.1)], we have

dim ̂  — dim y^ = [Z : A-jir.

Proof of (5.1) :
(1) First we show : There exists a complete field Lo, KcLocL such

that e (LolK) == 1, and Lo has residue field Zo.
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Let Lo 3 K be a field extension such that e (L^K) == 1 and Lo has
residue field Zo. We have to show that there exists a JC-linear embedding
of Lo into L, or what is equivalent a V^-linear embedding of V^ into V^.
This is done by constructing for each n ̂  1 a VA-linear ring homomor-
phism ^n : VL, -> VL^I VL such that all triangles

v^^->v^iv^
\
^\
\
v^r1 VL

are commutative, and <pi = V^ 4- /o ̂  I == V^L Vz. Then cp = lim c?/,
is a V^-linear embedding of V^ into VL'

So all we have to do is to give a construction of ^n+i : Let [0.1 \ f e J j
be an orthonormal base of Lo over K. Define f : VL,-> Vi^l^1 VL
by the formula fQ ̂ a,) = 2 ^bi (^e V^) where the 6, are chosen
such that ^ = ^n (di) mod (Tr^).

Of course f need not be a ring homomorphism, but the 2-cocycle
(a, b) H. /-(a&) - f(d) f(b) of V^x V^ ̂  7:2 Vz/Trr1 Vz is trivial since
l^k is separable. Hence there exists a V^-linear map

g : VL, -^ /o -> I ̂  7r2 Yz/Trr1 VL

with ^ (ab) — ag (b) - bg (a) = f(ab) - f(a) f(b) for all a, b^ V^
Then ^n+i = f — g has the required properties.

(2) Proof of (a). — By (3.1) and (2.8), we have a commutative
diagram, with exact top-row :

0———>^K®L———>^®L———>^K®L———>0

[-id (

0——^(g)L———>^i————>^———>0

Hence the bottom-row is also exact.

(3) Proof of (b). - Using section 1, (A 1), (3.1) and ̂ /K ® L ^> ̂ /K,
we see that T ^L/K ^ ^i,/k ® ^ So we have only to show that
(^/oA- ® 0 © T^ ̂  ^^^

This follows from the following exact sequences :

(A) 0 -> y//^ — ̂ /k ® / -^ ^//y^ -> ^i/i, -> 0,

(B) i2^ ̂  y^ since Z//o is finite algebraic,

(C) 0 -> -^/h -> y///, -^ Y///^ -> 0
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in the following way :

T/A- © (^ ® 0 © ^///o ̂  T^oA © T^ © ̂  Use (A).
By (C), Tw^ © T^- ̂  T^o ̂  ^/Ao by (B).

So
T^ © (^/oA ® 0 © ^///o ̂  ̂  © ̂ o.

Dividing by i^ one obtains the formula

V/k © (̂  00^ ^A.

Examples :
(1) Let X^Q^ be a complete field such that e (KIQp) == 1 and k has

a countable p-base { On \ n ̂  1 } over /c^. Take a set of representatives
j An | n ̂  1 j c VK and let Bn denote an element in the algebraic
closure of K satisfying Bg" = A,;.

The complete field
L=\J^K(B,,B^ ...,5,)

has the properties e (L/K) == 1 and / = k (a\/P, a^9, ...). Certainly the
condition of (5.1) is not satisfied for L^K.

According to (3.3), { dAn \ n ̂  1 j is an orthonormal base of 1̂ ,
and { dBn \ n ̂  1 } is an orthonormal base of ^2i. The map a :
^(g)L->^i maps dAn^l onto pn B^-^ dBn. It follows that
ker a = 0 and that

im a = { 2 ̂  dBn^^i | ^eL, lim ̂  p-'1 = 0 )
^^=ker(^i^^^=0).

So in this case, im a is not closed and the sequence

Q ^ ^ T " °Lo6 ^ o^ . n^K Q9 ̂  —^ ^2. -^ "'-Z/A: ~> ̂

is not exact. It shows moreover that the functor F, introduced in
section 1, is neither left- nor right-exact.

(2) Let K^Qp and L^Qp be complete discrete valued fields such
that 1 =e(LIQp)=e(KIQp); k = Fp (x) and I == ka (y) where ka
denotes the algebraic closure of /c. Also in this case, Z//c does not satisfy
the condition of (5.1). Moreover, given a Q^-linear embedding s: K -> L,
one can form dim ^L/K and ker (pz^. They depend essentially on the
embedding 5.

Proof, — It follows from (3.3) that dim i2i == dim ̂  = 1. Let D :
L->L be a derivation with norm 1. The set

Lo = { aeL [ D(d) =0}
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is a complete subfield of L. One easily sees that the residue field of Lo
equals ka. Take representatives X^K of xek and XoeLo of x^ka,
YeL of yeZ. The embedding s depends only on £ (X), and all possible
values of s (X) are Xo + pu, where u e Vz.

Case (a). - Take u == 0; s (X) = Xo. Then D is a X-derivation;

dim Q^LIK ^ 1 and ^ L / K is bijective.

Case (6). - Take u = Y; s (X) = Xo + P Y. Then D is not a
jK-derivation;

^i/A: = 0 and ^ L / K = 0.

6. Fields of residue-characteristic zero

In this section, we deal with fields L such that char I == 0. The main
result on extensions of bounded derivations is :

(6.1) THEOREM. — Suppose that KcL are complete valued fields and
that char I == 0. Then

0 -> ̂  (g) L 4 ̂ i -> ̂ IK -> 0

is exact and a is isometric.

Proof. — According to (2.7), we have to show that any bounded
derivation D : K —^ B where B is a spherically complete Banach space
over L, can be extended to a derivation D* : L —^ B with [| D [| = || D* [|.

Without loss of generality, we may suppose that L is algebraically
closed. Using Zorn's lemma, there exists a maximal extension A :
L,-^B, KcL.cL with || A ]| == 1. Of course the field L, is also
complete. In several steps we will show that Li == L.

(a) The residu field of Li is algebraically closed. — Suppose that
this is not the case. Applying HenseFs lemma, we find Sr e L satisfying
a polynomial

P (X) = X- + a^, X7-1 +... + Go,

all \ai\^\ which is irreducible and such that is residue in /i [X] is
irreducible. This implies [Li (Sr) : LJ = [Zi (r Sr) : /i] and 1, S7, . . . , 2^-1

is an orthonormal base of Li (^) over Li. Let Da : Li (2r) -^ B be the
unique extension of Di. Then

0 = D, (P (SO) = P7 (̂ ) D. (SO + (̂  D, (^_Q +... + A (ao)).

Since | P' (S^) =1 (PeZJX] is irreducible and separable), we have
|[ A (Sr) || ̂ 1^1. [ I A 1|. Also

1 1 A (̂ ) II = II f ̂ A^) || ̂ |^|. 1 | A ||.
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Now for an arbitrary element rreLi (^), x = 2̂ o1 sa^1, we find

II A (x) || =||2^D,(y)+2^^l(^)||^||A||max|a^^|=[[Dl[[.]^|.

Hence |] Da [| == || Di []. Contradiction.
(b) The value group \ L^ is divisible. — Suppose the contrary.

Then one can find an extension La = Li ((/Tr) of Li such that [ 14 |/| L* |
has order n and TreLi. Put 2r == ^TT. As before 1, ^, ..., ̂ -1 is an
orthogonal base of La over Li and it suffices to show that the unique
extension Da : L..->B has the property |[ Da (^) || ̂  [ [ A ||. ] ^ . But
this is obvious since

2r-1 Da (^) = n-1 Tr"1 Di (7r).
Contradiction.

(c) Li is algebraically closed. — Suppose the contrary, and let La^Li
be a finite extension. Then t = [La : Li]-1 Tr^//^ : La -̂  Li is an
Li-linear projection of La onto Li with norm 1. Let x^O, rcekerL
There is an element Xo e Li with | re — Xo \ < | .To | because Za = l\
and | L* ] = | L, |. Now

\ X o \ =\t(Xo)\ ==\t(XQ — X ) \ ^ \ X — X o \ < \ X o \

is a contradiction.
(d) We show finally that Li = L. — Suppose ortherwise. Take

2reL\Li and aeR, 0 < a < 1. Put La = L, (^) and ^ = S? — a',
a'eLi chosen such that ] ^ / 1 ̂  a inf { | ̂  — b \ | 6eLi }.

Define Da : La -^ B by Da | Li == Di and Da (^/) == 0. Since Li is
algebraically closed any element of La has the form

ao (^' — ai)^ ... (^ — am)^1 with n,€Z.

It follows that I ] Da ]] = sup \\^' -a |-1 |] Da (^' - a) |] J aeL, \. The
latter expression is less or equal to

[I Di ||.| y | (inf •; | ̂  - a \ aeL, i.)-1 ̂  a-1 [| A ||.

So || Da || ̂  a-1 || A ||.

Using lemma (2.9) and the fact that a, 0 < a < 1, was arbitrary,
one concludes that Di is extendable to La with the same norm. This
contradicts the maximality of Li.

DEFINITION. — Given complete fields L^K with char I = 0.
An element rceL is called almost algebraic over K if there exists for
every £ > 0 a monic polynomial p e K [X] such that | p (x) \ ̂  s | p' (re) [.
L is called almost algebraic over K if every element of L is almost
algebraic over K.
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Remark. — If L is algebraic over K, then L is almost algebraic over K.
Consider La, the completion of the algebraic closure of L, and let K
denote the closure of the algebraic closure of K in La. Since La is
algebraically closed, K is isomorphic to the completion of the algebraic
closure of JC, which is Ka. For convenience we write K == Ka C La.

(6.2) PROPOSITION. — Let L D K be complete valued fields and suppose
char I = 0. The following properties of an element x^L are equivalent:

(1) x is almost algebraic;
(2) di/, (x) = 0;
(3) xe.KaC\L.

Proof :

(1) implies (2). Put d == di/p, and let £ > 0. There is a polynomial
p e K [X] such that | p (x) I ̂  s [ p' (a;) [. Then

s | p' (rc) | ̂  || d (p (re)) || = | p- (re) dx \\ = | p ' (x) |.|] drc ||;

hence drc == 0;
(2) implies (3). Take y^L\(Kar\L). It suffices to show that

^t/^Q/)^°- ^"S (^^ it is enough to prove d^/^ (y) ̂ °-
Let D : Ka (y) -> Ka (y) denote the K^-derivation given by D (y) == 1.
Then D is bounded since

\D(a,(y -a^ ... (y - a^ \
^ \ Go (y - a^ ... (y - a^m 1 . 1 2 , Hi (y - a,)-1 D (y - a,) \

and
| y — a, I-1 [ D (y — a,) [ == | y — a, ^ (inf p y — a \ a^Ka \ ) < oo.

It follows that d^o)//^ (y) -^ °5
(3) implies (1). Take x^L and suppose that

sup { | p' (x) |- | p (̂ ) | p€K[X] | = C < oo.

The JC-derivation D : K(x)->K (x) given by -D (re) == 1 is then bounded.
Indeed, one calculates easily that || D \\ = C. Hence dt ̂ }/K (x) -^ 0.
Using (4.1), di,/A: (a;) ̂ - 0, and certainly .r^Ka.

(6.3) COROLLARY. —• Lei L^K denote complete valued fields and let
char Z == 0. The following properties are equivalent :

(1) ̂  = 0;
(2) Ka == La;
(3) L is almost algebraic over K.
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Proof. — Follows directly from (6.2).

DEFINITIONS. — Given complete valued fields L 3 K, char I = 0,
and aeR, 0 < a < 1.

A = { X i \ i e I } c L is called ^-transcendental over JC if, for any
polynomial p^K[Xi, ..., Xn] and different elements 1*1, ..., in^I, the
following inequality holds :

p (x^ ..., x^)\ ̂  a max; | ̂ . (op^Xj) (x^, ..., ̂ ) |.

The set A is called topological transcendental if A is (3-transcendental
over K for some (3eR, 0 < (3 < 1. The set A is called an cn-transcen-
dance base of L over K if A is a-transcendental and L is almost algebraic
over K (A). The set A is called a topological transcendance base of L
over K if it is a (3-transcendance base for some p e R , 0 < P < l .

Remark. — If A is a-transcendental over K then A is certainly alge-
braically independent over K.

(6.4) PROPOSITION. — With the above notations :
(1) A is ^transcendental if and only if [ x ^ d x i \ i e I } c ^ i / K is

a-orthonormal,
(2) A is an Qi-transcendance base if and only if {x~^ dxi \ i € I } C ̂ L/K

is an en-base,
(3) L has a topological transcendance base over K if ^L/K is a Banach

space over L of countable type.

Proof :
(1) Using (6.1), we may suppose that L = K (A). Now « only if » :

We have to show « || 2 a/ ^71 dx^-\\ ̂  a | a, | ». Consider the K-derivation
A : K(A)-.K (A) given by A (xf) = ̂  ̂ . Clearly

|| A |[ = sup \\ p ] - 1 1 A (p) \ 0 ̂ - peK [A] 1 .

It follows from the definition of a-transcendental that [| A || ̂  a"1.
Extending A by continuity to a K-derivation of L and using (2.2),
we find an L-linear map ii : ^L/K — L such that

|| ti || ̂  a-1, ^ ((tey) = ̂ 7 Xi.

Hence
a-1 || 2 a, x j 1 dx, |[ ̂  || ti [|. || 2 ̂  re/1 dx, || ̂  | ̂  |

and the required inequality is proved. The proof of the « if-part » is
analogous.

(2) This follows from (1) and (6.3).
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(3) The Banach space ^/K is of countable type over L, and we suppose
for convenience that ^K is infinite dimensional. Using (2.5) part (3),
one can find a sequence of elements { Xn \ n € N } in L such that
Vn == L dXi +... + L dxn has dimension n and U^=i Vn is dense
in ^i/A. Take aeR, 0 < a < 1.

Let in : ^li/K-^L be a bounded linear map satisfying /„ (V^i-i) = 0,
|1 in | V^ || ̂  y^ I I ^ ||> and let Dn : K (xi, ..., Xn) -> L be the corres-
ponding K (Xi, ..., ̂ _i)-derivation. Choose yn € K (xi, . . . » Xn) with
| D^ (y^) | ̂  \/a [| Dn [|. | ̂  |. It follows easily that

Vn==Ldy, +.,.+Ldyn

and that [ y T 1 dy^ \ i e N j is a-orthonormal. It is also an a-base
of ^i/K because U^=i Vn is dense in ^i/^»

(6.5) LEMMA and DEFINITION. — Let L^K be valued fields and let
char k = 0. The map

L*->\Xe^/K | \\X\\^l\-^^i/K->^L/K',

^L/K being coker cp^/A:; given by a h-> a~1 di/K (a) is additive and factors
uniquely through \ L* |/| K* |. The induced map L* |/| K* \ (g)z I -> Z^K
will be denoted by ^L/K-

Proof. — We can restrict ourselves to showing that the kernel of
L* -> ^L/K contains K* and { rreL* | x \ = 1 i. The first statement
is obvious. Further, take x^L*, \x\ == 1, and let rx^l denote its
residue. Then cpzy^ (d (r x)) = T (di/K (^)) and T (x-1 di/K (x)) e im cp^A.

(6.6) PROPOSITION. — Let L^K be complete valued fields and suppose
that char k = 0. Then V^L/K cmd ^L/K are injective,

Proof. — Take a transcendance base { xi \ i € I \ of Z//c, and let
j Xi' \ i e I } C L be a set of representatives. Take further a linear
base { t/y | jeJ '} of | L* [/| K* | (g)^ ^ consisting of elements of the
type a (g) 1, ae| L* |/| K* [. Let { (// | j e . 7 { c L be a set of repre-
sentatives.

As is easily seen the monomials in {Xi \ i e I } u { y / \ j € J } are
orthogonal over K. By (6.4) part (1), it follows that { dXi \ i e I } u
[ y ~ j 1 dyj \ j e J } is an orthonormal subset of ^2t/^. Their images
in T ̂ L/K are linearly independent, so { T fc | iel ] u { r (y^1 dy^) | 7 e J }
is linearly independent.

Clearly cp = <?^ is injective since cp (&) = T d^, and { dxi \ I 'eJ j
is a base of ^2^. Further im 9 is the subspace of T ^i/^ generated
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by {^(dXi) | ieJ}, and the formula

^L/K (I//) = T (y71 dyf) + im cp € £z./A

shows that also ^/^ is injective.

Example. — Let Z be a field of characteristic zero, G a subgroup of R
and i; : G x G -> Z* a symmetric 2-cocycle (where G acts trivially on Z*).
The set Lo = Z <^ G, ^ > of all functions x : G->1 such that

s u p p ( a ; ) = { ^ e G | r c ^ ^ O j

has limit + °o» becomes a complete valued field under addition, multi-
plication and valuation given by the formulas :

and

(^+y)(g) =^(g) +y(g)',
(^) (9) =^x (h) y (g - h) \ (h, g - h)

| x | = exp (— min (supp (x))).

The set Li = Z« G, ^ » of all functions x : G -> I such that supp (x)
is a well-ordered subset of G, becomes in the same way a complete valued
field. KAPLANSKY (Maximal fields with valuations. Duke math. J^
vol. 9, 1942, p. 303-321) has shown that every complete valued field,
of residue-characteristic zero, is isomorphic (as valued field) to a field L\
LoCl/cLi, for suitable Z, G, ^. Further the field Li is maximally
(= spherically) complete.

As an illustration of (6.6), we calculate ̂ . To do so, we introduce
the following notation : TT^ is the element of Lo given by TZ-^ (h) == 6,,, ^
for all g, Ae G.

Every element x of Lo can now be written as a convergent sum
x = 2^e G \ ^g with \ € Z.

Since
dx == 2 \ n, (7^1 dT:s) + 2 d (^) 7 ,̂

it follows that ̂  is topologically generated by

\dQ.) | ^ € Z j u { ^ 1 ^ | ^ € G j .

Hence ̂  is also topologically generated by

[d(\)\ ZeJ{u{7:,/^.|7eJj,

where j ^: \ ie I } is a transcendance base of Z/Q and { gj \ j^J } is
a maximal Z-independent subset of G. Proposition (6.6) asserts that
this set is orthonormal and hence it must be an orthonormal base of i2^.
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7. Fields of characteristic p ^ 0

In this section, we deal with fields L 3 K of characteristic p ̂  0.
Let jK^ == K. (2>), which is the smallest complete field containing both K
and LP. Clearly i2t/A equals ^L/K^ By means of a result on extensions
of bounded derivations we will show that ^i/p 7^ 0 if L 7^ K^.

(7.1) PROPOSITION. — Suppose L-^K^LP. Then

0 -> ^i/LP ®L^^i-> ̂ IK -> 0

is exact and a is an isometry.

proof. — It suffices to show [according to (2.7)] that any bounded
L^-derivation D : K -^ B, where B is a spherically complete Banach
space over L, is extendable to L with the same norm.

The lemma of Zorn yields the existence of an intermediate field Li,
KcL.cL, such that D extends to D,: L, -> B with [| D || = || D, [|
and such that any extension of Di to a bigger field has a norm greater
than || D ||.

We will lead the assumption Li -^- L to a contradiction. Take
y€L\L, and aeR, 0 < a < 1. Let La = Li (y) and let Do : La -> La
be a non-zero Li-derivation. Take ze La such that | Do (z) \ ̂  a || Do ]|. | z |.
We may suppose that Do (z) = z. We want to show that { 1, z, . . . , z^-1 }
is an a^-^-orthogonal base of La over Li. Take / = 2^o1 ^^ ̂  ^^h
all ^eLi. Then we have

Do (0 = 2fro1 m. zs ..., Dr1 (0 = 2f='o1 ^-1 a. ̂ .

It follows that
di z1 == 2^ .̂7 D '̂ (0 where ^ € F^.

Hence
| a, z11 ̂  max Do' (Q [ ̂  a-^1 1 1 [.

Consequently ^ | ̂  a^-1 max | a; ̂  |. This means that { 1, z, . . . , z^1 ;
is an a^-^orthogonal base of L-a over Li.

Now define D^ : L., -> B such that D,, ] Li == Di and D.2 (z) == 0.
Then [| Da [| ̂  a-^11| Di |[. Applying lemma (2.9), one concludes that Di
is extendable to La with the same norm. This is a contradiction.

Remark. — For the case of a trivial valued field one finds back a
result of [3] [EGA IV, premiere partie. Chap. 0, (21.4.7)] :

Tw^=° if L^K-^LP.
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(7.2) THEOREM. — Let L^K be complete valued fields of characteristic
PT^O. If xeL\K^, then di^ (x) ̂  0. In particular, ^i^ == 0
implies L = K^.

Proof, — Form Li = JC-^ (rr), and the bounded ^-derivation D :
Li -> Li given by D (x) = 1. Hence di/^+ (x) -^ 0. According to (7.1)
also di/K (x) ̂  0.

DEFINITIONS. — A subset A == { x , \ i € I } of L is called an a-p-free
(aeR, 0 < a ̂  1) set in L\K if the monomials

Af== ;^ ... ̂  neN; i\, ...,^eJ; 0^a,<p}

are a-orthogonal in L viewed as a Banach space over X-1-. The set A
is called an cn-p-base of L/JFC if M is an a-orthogonal base of L over K-4-.
If A is (3-p-free in L/J^C for some (3 then A is called topologically p-free
in LfK, and if A is a (3-p-base of LfK for some (3 then A is called a
topological p-base of L/X.

(7.3) PROPOSITION. — With the above notations :
(1) AcL is a-p-free in L / K if and only if { a-1 di/K (a) \ aeA}

is a-orthonormal.
(2) AcL is an a-p-base of L\K if and only if { a-1 d^/K (a) \ aeA}

is an on-orthonormal base of ^2t/A.
(3) If ^2i/A is a Banach space of countable type over L, then L has a

topological p-base over K.

Proof :
(1) Let A == { Xi \ ie I } be a-p-free. Using (7.1), we may assume

that
L=K+(x, ieJ).

Consider the JC^-derivation D; of L into L given by A (xf) == 3;y Xj.
The norm of Di is ̂  a-1 because the set of monomials M is supposed
to be a-orthogonal.

Let li: ^L/K -> L be the linear map corresponding to D;. The elements
x~^ dXi^^i/K have the property ij (x^ dXi) = ^;;. From this one
deduces :

a- 1 1| 2 a, x-,1 dx, || ̂  || tj [|. [ [ 2 a, x^ dx, \\ ̂  ] a, \

and the required inequality is proved.

The second part of (1) can be proved in the same way.
(2) This follows from (1) and (7.2).
(3) The proof is verbally the same as the proof of (6.4) part (3).
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Remarks :

(1) If the field L is spherically complete or if the Banach space ^i/K
is of countable type then ^i/s: 7^ 0 implies that Derb^ (L, L) ̂  0.
However in the case that L is not spherically complete, we can not
draw this conclusion. It seems likely that there are complete valued
fields L 3 K of characteristic p ̂  0 such that L -^- K^ and

Derb^ (L, L) = 0.

The author does not know any example of this type.
(2) Topological p-bases form an essential part of Kiehl's proof [6] of

the exellence of affmoid algebras and analytic rings over a complete
valued field L with [L: LP} == oo. Proposition (7.3) gives an alternative
proof of the existence of p-base in the countable case.

8. Application to tensor products

In this section, we deal with a problem raised in the theory of affmoid
algebras : « Let A and B be Banach algebras (commutative and with
a unit element) over the field K, Suppose that the norms on A and B
are power-multiplicative (which means [| f" || = [ [ f [^ for all f and all n).
Is the norm on A (g)A B (or on A (g)^ B) also power-multiplicative ? »

First of all we reduce this question to a problem on tensor products
of fields.

(8.1) PROPOSITION (T. A. SPRINGER). — Let A be a Banach algebra
over K, which is commutative and has a unit element. The norm on A
is power-multiplicative if, and only if A can be embedded in a product
of complete fields Li^K; so AcILe7^'

Proof, — We remark that ILe7-^ ls defined to be the set of all
elements (li)i^j such that supi [| Z; [| < oo and the norm

[ [ (Z,),̂  [|= sup [ [ /, ||

makes IL^i Li into a Banach algebra over K. Its norm is clearly power-
multiplicative. The other part of (8.1) will be shown in a number
of lemmata.

(8.2) LEMMA. — Inthe set^ == ^ (A) of all maps ^ :A ~> { reR [ r^O ^
satisfying :

(1) c p ( l ) = l and^(a)^\\a\\;
(2) ^ ( a b ) ^ ^ ( a ) ^ ( b ) ;
(3) cp (a + b) ̂  max (cp (a), cp (b));
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every element lies above a minimal element (in the natural order of <D).
Every minimal element cp of <I> satisfies 9 (ab) == 9 (a) cp (&) for aZZ a,
AeA.

proof. — We apply Zorn. Let ^o be a totally ordered subset of cp,
then it is easily checked that cpo (x) = inf { 9 (x) \ cp € <I»o j is also an
element of <I>. Further let 9 be a minimal element of ^. Take aeA
with cp (a) ̂  0. Then 9* defined by

cp* (6) = inf { cp (a" )̂ cp (a)-^ | n ̂  0 }

is also an element of <1> and satisfies cp* ̂  cp. Consequently cp* == 9
and cp (a&) == cp (a) cp (6) for all a, be. A.

<8.3) LEMMA. — Le/|| ||sp be the semi-norm on A given by

l l a l l ^^ l imdia 7 1 ! ! ) 1 ^

Then [ [ ||sp€0. TaA:e aeA wi^ || a ||sp = p. Then there exists a
complete field extension L of K and a K-algebra homomorphism f: A -> L
satisfying \\ f\\ = 1 and \ f(a) \ = p.

proof. — The first statement, || | |sp€<D, is classical. Consider the
algebra B consisting of all power series S^o ^ Ti with coefficients in A
and such that lim || a, ||sp p-^ = 0. With the norm

|| 2^ a, T 1 1 | = max (|| a, ||sp p-Q

B becomes a normed algebra over K. The element x = aT — leJB
has the property || xy \\==[\y || for all i/e5 and |[ x || = 1.

Let B denote the completion of B then J§ a; is a proper closed ideal
in B. Let C be the Banach algebra I?/J§ .r. Take a minimal 9 e ̂  (C) and
let 6cp be the completion of C with respect to 9. Since cp (a&) = ? (a) ? (b)
for all a and b, C^ is in fact a subring of a complete valued field LDJC.
The composed map f:A->G^cL has certainly norm 1. Further the
map A -> B maps onto an element of norm || a ||sp = p, hence | f (a) \ ̂  p.
The image of T in L is t and satisfies tf(a) = 1. Since 1 1 \ ̂  || T || = p-1,
we have | f (a) \ = p.

End of the proof of (8.1). — Suppose that the norm on A is power-
multiplicative. Then [| || = || ||sp. For each aeA, a ̂  0, we can
take an extension La of K and a K-algebra homomorphism fa : AeLa
such that | fa (x) \ = || a || and || /, || = 1. Then the map

f=Hfa:A->TlLa

is an embedding of A in a product complete field extensions of K.
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Remark. — Suppose that the norm on both A and B is power-multi-
plicative. Then A c n L,and B c n M^ Using (B 2) part (2), one finds
that the problem : « Is the norm on A (g)^ 5 power-multiplicative ? »
reduces to : « Is the norm on L^ (g)/< M; for each i and j power-multi-
plicative ? ». As can be expected, in the case char k = 0 the answer
is yes:

(8.4) THEOREM. — Let L D K- and M 3 K be valued fields then the norm
on L (g)A M is power-multiplicative provided that char k == 0.

Proof. — Using (B 2) part (2), we may suppose that L is algebraically
closed and without loss of generality we may, according to (8.1), at
any time in this proof replace a power-multiplicative normed algebra by
a valued field. Further for any intermediate field E, KcEcL, the
normed algebras L (g)A M and L (g)^ (E (g)^ M) are isometrically
isomorphic. The lemma of Zorn yields the existence of a maximal
intermediate field E such that E 0^ M has a power-multiplicative
norm. If E = L,we are done. If not we have the following cases :

(1) ^IL/E 7^ 0, and there exists x^L with ^-E^)IE 7^ 0-
(2) ^LIE = 0 and according to (6.2), L = Ea.

So it suffices to show the validity of (8.4) in the following two cases :
(1) L == K. (x), x is topological transcendental and K is algebraically

closed.
(2) L == Ka (= the completion of the algebraic closure of K).

Case (1). — Let f, g ^ K [ x ] ®^M have degree ^n, and let a real
number 3, 0 < ^ < 1, be given. Let D : L -> L be the bounded
E-derivation satisfying D (x) == 1. Since K is algebraically closed there
exists a polynomial p of degree 1 in K [x] such that | D (p) ] ̂  6V2711| D ||. | p |.
Then { 1, p, p2, ..., p ' 2 ' 1 } is a o-orthogonal base of the JC-vector space
of all polynomials in K [x] of degree ̂  2 n. Let

f=^p1®^
^ = S^o P7 ® ̂  and fg = 2^o P' ® I.w=k m, m^.

So
|| fg |[ ̂  ̂  max^ | 2,+/̂  m, m^ |. | p^ |

= 3 (max, | TH, [ . [ y \ ).(max, m; |.| pi \) ̂  o- || f \\.\\ g ||.

Hence the norm on K [x] (^)K M is multiplicative and consequently
also on L 0 :̂ M,
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Case (2). — First we enlarge M such that | M \ 3 [ K,, [, and we consider
special cases of algebraic extensions of K :

(A) If [L : K] = [/: k] < oo then the norm on L (g)^ M is power-
multiplicative.

(B) If L = K (^), ^ = aeK and [ ̂  |^| K* | for i = 1, ..., n - 1,
then the norm on L (g)^ M is power-multiplicative.

Proof of (A). —Since for
x = a < ^ b and z/eL(g)/,M, |[ ̂  || == [ [ x ||.|| i/ ||

it is sufficient to show that [ [ y || = 1 implies that [| y || == 1 for all n.
Put in a different way, we have to show that the ring

R = [ y ^ L ( S ) M \\y\\^\\l\y^L®M\\\y\\<\\

has no nilpotent elements. Now L has an orthonormal base over K
and it follows from (B 2) that jR = I (g)^ /n. This ring is known to
have no nilpotents.

Proof of (B). — Again it suffices to show that R has no nilpotents.
Take an element beM such that [| ^ (g) b [ | == 1. Then 1 (g) 1,
^ (g) 6, ..., ̂ -1 (g) ^-1 is an orthonormal base of L (g)/c M over the
field M. It follows that R = m [T]/(T^ — a) where aem is that residue
of the element ^n b71 e M. Since a 7^ 0, again J? has no nilpotents.

Proof of the case (2). — Let Ki be a maximal sub field of L, containing K,
such that the norm on Ki (g)^ M is power-multiplicative.

(a) The residue field k^ of K^ is algebraically closed. — Suppose not,
then there exists a field K^ with K^cK^cL, [K^: K,] = [k^: TcJ < oo.
Now JC.2 0A M is isomorphic to K^ (g)^ (Xi (g)^ M) and using (6.1)
and (A), we find the contradiction that the norm on K^ 0A: M is power-
multiplicative.

(b) The value-group of K^ is divisible. — Suppose not, then there is
an extension Ki (x?) of Ki of the type described in (B). In the same
way as (a), this leads ot a contradiction.

(c) Ki = L. If not, then Ki is not algebraically closed. Let K>_ c L
be finite extension of Ki. According to (a) and (6),

f(K,IK,)=e(K,IK,)=l.

And hence for any x^Kz, there exists an element y ^ K ^ with
[ x — y | < | x \ = | y |. On the other hand, let O^xeK^ be such
that Tr (x) = 0. Then, for any y e Ki, we have

I x - y | ̂  | Tr (x - y) \ = ] Tr (- y) | = | y |.

This is a contradiction.
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(8.5) COROLLARY. — Suppose char k = 0, and let A and B be Banach
algebras (commutative and with a unit element) over K. If the norms
on A and B are power-multiplicative, then so is the norm on A (g)^ B.

Remark. — In case char k = p ̂  0, the statements corresponding
to (8.4) and (8.5) are obviously false. However, one can prove the
following : « If L 3 K is a tamely ramified extension of discrete valued
fields, then the norm on L (g)^ M is power-multiplicative for every
field M^K ».

This leads to the conjecture that the following statements concer-
ning L~^K are equivalent :

(1) For all M~^K, the norm on L(g)^M is power-multiplicative.
(2) For all M^K, with [M : K] < oo, the norm on L (g)y^ M is power-

multiplicative.
(3) The map a : ̂  (g) L -> ̂  is isometric.
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