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FOURIER ANALYSIS AND PATHS OF BROWNIAN MOTION

by

ROBERT KAUFMAN
[Urbana]

RESUME. — Le mouvement brownien transforme presque surement un ensemble
ferme de dimension > 1/2 en ensemble lineaire a interieur non vide. La preuve se fonde
sur les inegalites de Burkholder pour la norme dans LP d'une martingale, et sur 1'inversion
des transformees de Fourier.

Let [i be a probability measure of compact support E on the line,
satisfying a Lipschitz condition in exponent b > 1/2 : ̂  (T) ^ (diam T)^
for all measurable sets T. The transform of E by a Brownian motion X,
with continuous sample paths, has positive Lebesgue measure, almost
surely. Taking a planar process, Y ( t ) = (X^ (t),X^(t)\ we have the
same conclusion for each projection X^ cos 9 + A^ sin 9, by a theorem on
Fourier-Stieltjes coefficients ([3], p. 165), but it has not been observed
that the projected path has non-empty interior, and this seems beyond
the reach of the method of estimating individual Fourier coefficients.

In order to treat a more general problem, we write h for a function
of class C15 (R2), 1 < P < 2, whose gradient never vanishes. (By C13 (R2),
we denote the space of functions defined on R2, whose first partial deri-
vatives are subjects to a Lipschitz condition in exponent P — l , uniformly
on each bounded subset of R2.) SQ denotes the rotation of R2 through
an angle 9.

THEOREM.— With probability 1, all composite mappings h o SQ o Y trans-
form E onto a linear set of non-empty interior; in fact, these mappings
transform \x to a measure with a continuous density.

In proving that a finite measure ^ has a continuous density,

we use its Fourier-Stieltjes transform ^ (u) = \ e(—ut)^(dt), where
^

e (a) == e1". To recover ^ from X, we choose and fix a function (p of class
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428 R. KAUFMAN

C°° (R), with support in (-2,2), equal to 1 on (-1, 1) and write (for
— 0 0 < X < 0 0 , / ; > 1 )

J(x,fe)= \^(k~lu)e(^x)^(u)du.

Then / (x, k) —> 2 TT X (^) in the weak* topology of measures, so that ^
has a continuous density if some subsequence converges uniformly on
compact subsets of the x-axis. A closer look yields the formula

I ( x , k)= \k^(kt-kx)^(dt);

now if T| > 0 is arbitrary but fixed, and [ x—t [ > k^~1, then

[ k (p (kt — kx) \ < k~1' for any constant L and k > fe(L, r\).

Thus our method leads us to investigate the total ^-measure of intervals
of length ^T1~1. Another stage in the estimation of / (x, k) — I (x, 2 k)
uses a Fourier-type integral, arising as an expected value. The final step
of the proof is a reduction of 7(x, k ) — I ( x , 2 A:) to a martingale and appli-
cation of 27-inequalities about the square function 5' of a martingale ([I],
[2]). I thank D. L. BURKHOLDER for help with the theory of martingales
and distribution function inequalities.

1. In the program outlined above, it is expedient to eliminate all values
of Y outside some ball in R2. Therefore we choose a function \|/ of
class C^ (R2), 0 ^ \|/ ^ 1, with compact support. We then work with
the transforms of [IQ == \|/ (7). n, but by using an appropriate sequence
of test-functions v|/, we obtain all our assertions for the measure n itself.
We write g for any of the composites h o SQ, and denote by M (x, r) the
Ho-measure of the t-set defined by

\goY(t)—x\ ̂ r, 0 < r < 1, — o o < x < o o .

The analysis in the lemmas below is used extensively in [3], and in [4],
to obtain bounds very similar to those needed here.

LEMMA \.-Each U-norm || M(x, r) \\p < Bp r , p = 1, 2, 3, . . . .

In the proof, we operate with jx-measure, adding the inequality
[ ] ^(0|| < C(\|/), since \|/ has compact support. To bound the p—ih
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moment of M(x, r), we integrate the /?-fold product measure of the set
in ̂  :

\goY(Q-x\^r, [yO,) |<C, l ^ n ^ p .

We can adjoin the inequalities ^ ^ ^ ^ • • • ̂  ^» because this decreases
the product measure by a factor p\. The event so obtained is a subset
of the event

\goY(t,)-x\<^r, \goY(t^,)-goY(Q\^2r, 1 ̂  n < p,
\Y(Q\<C, l ^ n ^ p .

Now h is of class C1 (R2) and has a gradient vanishing nowhere; by
independence of increments, we can conclude that the p-th moment has
a magnitude comparable with the p-th power of

sup, min(l, r\t-s\~l/2)\i(dt) ̂  rsup, \t-s\~112 \Ji(dt) <^ r.

LEMMA 2.—Let Ej be disjoint closed sets, and m = max \\. (Ej). Let
Mj (x, r) be the ^-measure of the set defined by \ g o Y(t)—x\ ^ r, t e Ej,
and put

M *(x, r) = supM^.(x, r).

Then \\ M* (x, r) \\p ^ B (p, q) rnf for any q < (2 b-1)/2 b.
First we majorize the moments of each Mj (x, r), adding the condition

/„ e Ej (1 ^ n ^ p) in the product set used in the proof of lemma 1. Hence

we obtain p factors sup \t—s\~lll\^(dt), with F = Ej. Now this
J F

integral is <^ [i (F)^ for each q specified. Indeed, the Lipschitz condition

imposed on |i yields \s—t\~f\Ji(dt) < C(/) for each f < b, so we

can use Holder's inequality to obtain the factor \x (F)'1, q being the conjugate
index to//2. We apply this bound with F = Ep finding that M* (x, r) has
p-th moment < r^^ (E^ ^ ^ m^-1; |1 M* (x, r) ||^ <^ r^ w-17^
This yields our lemma because q—p~1 can be made arbitrarily close
to (2b—l)/2b, and the Z^-norm increases with p.

2. In this paragraph, we investigate the integral 7(x, k) formed from UQ?
namely

^(k~lu)e(ux-ugoY(t))^(Y)[i(dt)du.
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430 R. KAUFMAN

We approximate I ( x , k ) — I ( x , 2k) by a martingale sum and use the
estimates of M and M* already found. There remain some estimates
whose derivation is the most technical point in the paper. Let a be fixed
once and for all in the interval (0 ,P—1) and Tj be the interval
(jk'^, C/'+l) ̂ -ot]; then / (x, k) — I (x, 2 k) is correspondingly divided
into integrals, over Tp which we name. Because F^j is measurable
over the cr-field F^' of the variables { X(s) : s ^ (27+1) A:""}, the
variables Y^j—E(T^j\F^j_^) form a sequence of martingale differences.
We proceed to a bound of E (T^j | ̂ 2.7-2)- ^ij ls ^e integral with respect
to H, over T^p of

][(p(^- lM)-(p(2- l/c- lM)]v|/(y(0)^(Mx-Mgoy(f))^.

We shall give a uniform bound for the expectation, for t > 2y^~a, of this
integral. To bound E(T^j F^j-2), we have only to multiply by p (T^y).

By the Markoff property, the conditioning depends only on

Y((2j-l)k-^=Y(v\

say, and we have the inequality t—v ^ k ' " . Thus Y ( t ) has a conditional
distribution represented by Y (v) + t—s\^12 Y(l), which we write as
y°+a 7(1), a2 ^ A;"". At each point in the ball \\y\\ < C(v|/) in R2,
there is a direction T so that Oh/Q^c > 0; consequently, there is a finite cove-
ring 1 ) ^ of the support of \|/ by convex open sets, and directions T^,
so that Oh/Q^ > a > ° on v^ Let \|/ = ^ \|/^ be a C°°-partition of v|/,
wherein v]/^ vanishes outside ,̂. It will be enough to obtain a bound
for the integral containing \|/^ (Y) in place of \|/ (V), and to take 9 = 0 ,
g == h (in view of the symmetry of the normal law).

The conditional expectation is given explicitly as an integral involving
the normal density (2 Ti)"1 exp (—1/2 ]| y ||2). In this integral, we make
an affine change of variable, z = y°-}-a Y(l) and then integrate on lines
in the redirection. Suppressing the variable of integration in the direction
orthogonal to T^, we obtain

JJ[<p (fe-1 u) - (p (2-1 k-1 u)] e (ux - uh (y)) ̂  (y)

xexp^-^CT-^-j^^dM/c^ir)172.
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The integration is extended over an interval y [ ^ C, and in fact, we can
neglect all of this interval except that part on which x—h(y)\ ^ Vfc11"1,
for the reason explained in the first paragraph. In case [ x—h (y) < k^~1

for some y in [—C,C], this inequality defines a subinterval of length
<^ k^~1. In the remainder of this argument, we assume that this interval
is included entirely in [—C,C], but only minor variations are necessary
in other cases. Let us consider the error in replacing h (y) by its tangent
line at some point in this interval, say h^ (y) = h (yo)+(y~yo) h' (yo).
Fisrt, the Lipschitz condition on h ' , and Taylor's formula, yield
h^-h ^ k^~1^ throughout the interval. Now \u ^ 2 k, and

the integration with respect to u extends over this range at most, introdu-
cing a factor <^ k2. But o2 ^ ^-a, and the integration with respect
to y is confined to an interval of length <^ ^T1-1. Thus the error is
<^ k\ with e = 2+(n-l)(p+l)+(l/2)a, approaching

i -p+^a^a-p)
2 2

as T| approaches 0+. Thus we can choose n > 0 so small that the error
is <^ k~6 for some 5 > 0.

Next we evaluate the integral in which h has been replaced by the linear
function h^\ at the end-points of the domain of integration on the ^-axis,
\x—h^(y) w k^~1. Integration with respect to u gives

k^(kh^y)-kx)-2k^2kh,(y)-2kx\

and our plan now is to integrate by parts several times in succession.
The function r ( s ) = ^ > ( s ) — 2 n ) ( 2 s ) is represented by a Fourier

transform of C°° function of compact support, and so are each of its inde-
finite integrals if they are normalized so as to vanish at infinity.
Successive integrations of kr (kh^(y)—kx) with respect to y there-
fore bring in factors k~1. The Z^-norm of the p-ih derivative of the
cofactor is < a'^, and this disposes of the integral obtained in inte-
grating by parts several times. The integrated terms occur at the end-
points, where k I x—h^ (x) j ^ k^, and the rapid decrease of r and its
integrals at infinity enable us to obtain a bound <^ ^-L for any fixed L.
In summary, then, we have

| E (T^j | F^j-z) | < ̂ "^(T^) for a certain 8 > 0.
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3. From the properties of I ( x , k ) mentioned in the first paragraph,
we have I F^, | ^ ^-L ^ (T^+k M, (x, ̂ -1). Here M, is the partial
Ho measure of lemma 2, and Ej = T2y. Thus m = max u (T^) ^ A;-^,
and max Y^\ has ZAnorms of magnitude k^, with 6?i =r|-a^.
Taking r ( < a Z ^ , we again find [| max r ^ l H p ^ A r 8 for a certain
o > 0 and every p = 1, 2, 3, . . . . Using lemma 1 instead of lemma 2,
we obtain || ̂  ^ j l i l p ^ ^ ; two applications of Holder's inequality
yield || ̂  I F^j \2 l [p ^ ^T1-8, and the exponent is negative for small
T| > 0. In view of the bound on E(T^ Fij'-i) obtained above, the
martingale square function defined by S2 = V T^ —E{T^ ^2--2) 2

has ZAnorms < /;-8 for some 5 > 0. By a theorem of BURKHOLDER ([I],
[2], theorem 3.2), the sum has 17-norms of comparable magnitude;
but then there is a y > 0 so that

P ( \ I ( x , k ) - I ( x , 2 k ) \ > k ~ 7 } ^ k ~ L for every L.

The integral /(x, k ) - I ( x , 2k) depends on the parameters x and 9, but
has partial derivatives with respect to these variables < k2. From this
it is easily seen that the probability estimate is valid for the supremum
over 0 ^ 9 ^ 2 K and | x ^ k. Choosing now k = 2-7, we find that
/ (x, 27) converges uniformly on compact subsets of the x-axis, and even
uniformly with respect to 9, with probability 1.
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