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SURJECTIVE LIMITS OF LOCALLY CONVEX SPACES
AND THEIR APPLICATION TO INFINITE DIMENSIONAL

HOLOMORPHY

BY

SEAN DINEEN
[Dublin]

ABSTRACT. — A locally convex space, F, is a surjective limit of the locally convex
spaces, (Ea) ^ . if there exists, for each a in A, a continuous linear mapping. Tin, from E
onto Ea and the inverse images of the neighbourhoods of zero in Ea, as a ranges over A,
form a basis for the neighbourhood system at zero in E. In this article, the theory
of surjective limits of locally convex spaces is systematically developed and applied to
a variety of topics in the theory of holomorphic functions of infinitely many variables.
These topics include pseudo-convex domains, domains of holomorphy, Zorn spaces,
holomorphically complete and paracomplete spaces, weak holomorphy, hypoanalytic
functions, extensions of Hartogs' theorem and locally convex topologies on spaces of
holomorphic function.
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1. Introduction

In infinite dimensional, holomorphy, we are interested in characterising
collections of locally convex spaces in which certain holomorphic pro-
perties are true. For example, we would like to know in which locally
convex spaces the pseudo-convex and the holomorphically convex open
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442 S. DINEEN

sets coincide and we are interested in determining which locally convex
spaces are holomorphically complete. The classical theory of several
complex variables is concerned with holomorphy in a finite dimensional
setting, in other words, it limits its investigation to the simplest collection
of locally convex spaces-the locally compact topological vector spaces.

Infinite dimensional holomorphy proceeds by investigating the next
simplest and most interesting collection of locally convex spaces, i. e.,
the locally bounded or normed linear spaces. We may then investigate
many different collections of locally convex spaces, e. g. Baire, metrizable,
barrelled, bornological, nuclear, etc. spaces. All of these collections have
proved themselves of interest, within the context of linear functional
analysis, so it is quite natural that we should consider them. However,
within the context of holomorphic functional analysis, they have proved
inadequate so we are forced to find a new method of classifying locally
convex spaces.

In this paper, we introduce the concept of surjective limit and use
it to generate collections of locally convex spaces which are of holomorphic
interest. A locally convex space, E, is a surjective limit of the locally
convex spaces, (E^^, if there exists a continuous linear mapping 71,
from E onto E^ for each i e A and the inverse images of the neighbourhoods
of 0 in E,, as i ranges over A, form a basis for the neighbourhood system
at 0 in E. We use this definition and the classical Theorem of Liouville
concerning bounded entire functions to obtain our results.

This approach was first used by HIRSCHOWITZ [16] and RICKART [38]
in their studies of holomorphic functions over the Cartesian product of
complex planes. NACHBIN [32] essentially uses this method in his study
of uniform holomorphy and subsequently further applications to the
study of pseudo-convex domains were made by DINEEN ([9], [13]) and
NOVERRAZ [35].

In section 2, we define, discuss and give examples of various kinds
of surjective limits and representations.

In section 3, we introduce the different definitions of holomorphic
function that we shall use in our work. We are mainly interested in
the locally bounded and the continuous holomorphic functions but hypo-
analytic, Silva holomorphic and weakly holomorphic functions are useful
in proving results (e. g. by using hypoanalytic mappings we show that
most results proved for dual of Frechet-Schwartz spaces can be extended
to dual of Frechet-Montel spaces (see sections 4, 5 and 6)).
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SURJECTIVE LIMITS 443

Section 4 is devoted to pseudo-convex domains and domains of
holomorphy in locally convex spaces. In contrast to the other sections
many of the proofs in this section have appeared previously [13].
We include this section, however, as some of the results are new
(Example 4.7 and Proposition 4.8), some previous proofs have been
simplified, and we are using a new definition of surjective limit.

Zorn's theorem [44] states that a Banach valued Gateaux holomorphic
function defined on a connected open subset of a Banach space is every
where continuous if it is continuous at one point. In section 5, we
extend this result to different collections of spaces and to different
definitions of holomorphy. The results proved greatly help to under-
stand the various counterexamples connected with Zorn's theorem
([5] and [18]). We also prove various factorization theorems for
holomorphic functions.

In section 7, we extend Zorn's theorem by replacing the requirement
of continuity at any one point and we also extend Hartogs' theorem
concerning separately holomorphic functions. To obtain these results,
we had to place many conditions on our surjective limits. These
conditions are sufficient and we show by counterexample that they are
not unnecessary. In section 6, we discuss holomorphically complete
and paracomplete locally convex spaces, two concepts introduced by
HIRSCHOWITZ [17]. Holomorphic completion involves extending holo-
morphic functions from E into F to holomorphic functions from £\
into F where E is dense in E^. We find, in the case of continuous
holomorphic functions, that it is necessary to assume that the range
space is a very strongly complete space [10]. We show that a locally
convex space is very strongly complete if and only if it is a complete
surjective limit of normed linear spaces. Using this concept and sur-
jective limits we generate holomorphically complete locally convex spaces
and simplify the proof of one of the main results of [10].

If F is a C-holomorphic extension of U paracompleteness involves
finding what F-valued holomorphic functions on U can be extended to
F-valued holomorphic functions on V. Again we need to place a com-
pleteness condition on F (which we call R completeness). Sequentially
complete and holomorphically complete spaces are -/^-complete. Various
spaces are shown to be paracomplete.

In section 8, we briefly investigate locally convex topologies on spaces
of holomorphic functions and apply results from [12] to show that
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444 S. DINEEN

certain spaces of holomorphic functions are quasi-complete and barrelled.
Theorem 8.3 gives conditions under which various definitions of holo-
morphic functions coincide.

Many of the results in this paper were announced previously ([9], [11]
and [14]), and we apologise for any confusion that the many changes
in definitions and notation may cause. We adopted our present definition
of surjective limit as it enjoys great generality and enabled us to simplify
many proofs. The term projective limit was previously used to denote
surjective limit ([9], [10]), A^-projective limit was used to denote open
surjective limit ([9], [10], [II], [13]) and the locally convex spaces of [32]
and [35] with property (C) coincide with our open surjective limits of
normed linear spaces. We have recently learned that E. LIGOCKA was
engaged in a study similar to ours and that some of her results [28]
coincided with our results in [11] (see also section 5). This paper went
through many versions before reaching its final form and the author
would like to thank all those who showed an interest in the various
stages of development of this work.

2. Surjective Limits

All vector spaces considered are over the complex numbers, C, and
all topological vector spaces considered are locally convex spaces./^
E will denote the completion of the locally convex space E and in general
the " notation will denote some sort of completion.

^r, ^, ̂ , J^, y, ̂ ^, ^M, ̂ T and ^ y will denote respectively
the collection of all Frechet, reflexive, Montel, nuclear, Schwartz, reflexive
Frechet, Frechet-Montel, Frechet-nuclear and Frechet-Schwartz locally
convex spaces ([20], [22]). The strong dual of a 9 space is a ^0 space
and E, a locally convex space, is a Z>9 space if £p (the strong dual of E)
10 a A cr^or^ ((\ — <^ (3^ ^y /(/* <y ^? ̂  ^ ̂  <^" A/' ^ <y\IS a U-SpdCe \\J —— c^ , <S%, ^VC , ^/\ , t7 , £%e^ , e^e^ , e^</r , t^ (-7 ) ,

A collection of locally convex spaces and linear mappings, (E^, TC^)^,
is called a surjective representation of the locally convex space E if n^ is
a continuous linear mapping from E onto F^for each ie A and (rc^1 (^))ieA
forms a base for the filter of neighbourhoods at 0 in E when V^ ranges
over the neighbourhoods of 0 in E^ and i ranges over A.

Remark. — A is merely an indexing set and the neighbourhood
requirement implies that for each neighbourhood of 0 in E, W, there
exists an i e A and V a neighbourhood of 0 in E^ such that (K^~ 1 (F) <= W.
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SURJECTIVE LIMITS 445

E is called a surjective limit of (£';, 7r;);g^ and we write E = lim;^ (27;,

TC;). When there is no possibility of confusion or when the existence of
the mappings 71;, ie A, is asserted but not explicitly given we say E is a
surjective limit of (£';); e A' and we write E = ̂ eA Ei' Let 0(E) (resp. ̂

(E), jf (E), y (E)) denote the set of all open subsets (resp. bounded subsets,
compact subsets, convergent sequences) of the locally convex space E.
(Ei, 7i;);g^ ls called an open (resp. bounded, compact, sequential) surjective
representation ofE ifn, maps 0 (E) (resp. ^ (E), Jf (E), ^ (E)) onto 0 (£';)
(resp. ̂  (£';), Jf (E,), y (E,)) for each ie A and E = lim;^ (E,, 71;) is called

an open (resp. bounded, compact, sequential) surjective limit (1). Thus
E = lim;g^ (Ei, TT;) is an open surjective limit if, and only if, 71; is an

open mapping for each ie A and E = lim;^ (£';, TT;) is a bounded

(resp. compact, sequential) surjective limit if and only if each bounded
subset (resp. compact subset, convergent sequence) of £'; is the image
of some bounded subset (resp. compact subset, convergent sequence)
of E for each ie A. If ^ is a collection of locally convex spaces then
the smallest collection of locally convex spaces which contains ^ and
which is closed under the operation of surjective limit (a trivial applica-
tion of Zorn's lemma shows that such a collection exists) consists of all
locally convex spaces which are surjective limits of elements of ( €.
This follows immediately from the fact that if

E = lim^ e B (E\ p,) and £' = lim;,, ̂  (E\, 71; J,

are surjective limits then

E = Um^ e B, ̂  e Ax^h ̂  ° Px),

is also a surjective limit (2). Similar results hold for open, bounded,
compact and sequential surjective limits.

(1) For the remainder of this paper we will, where appropriate and without
explanation unless there is a possibility of confusion, interchange terminology between
surjective limits and representations in the same obvious way as in this sentence.

(2) If we had restricted ourselves to directed sets in the definition of surjective
representation (see [9], [10]) then this result would not necessarily be true.
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446 S. DINEEN

If ^ is a collection of locally convex spaces which is closed under the
operations of taking arbitrary products and subspaces (3) then ^ is also
closed under the operation of surjective limit. Hence ^T, y and the
locally convex spaces in which every bounded set is precompact are
examples of collections of locally convex spaces closed under the operation
of surjective limit ([22] p. 275-278, and [36]).

EXAMPLE 2.1.

(a) Let ^y (E) denote the collection of all continuous semi-
norms on the locally convex space E. For each p e ̂ y (E), we
let Ep denote the vector space E endowed with the topology generated
by p and Kp will denote the canonical surjection from E onto Ep^-, ̂
^P/P-^O)^ ^p^pe^y (E) ls called the canonical normed surjective represent-
ation of E.

(b) If E is a locally convex space, we let ̂  (E) denote the set of all
locally convex semi-metrizable topologies on E weaker than or equal to
the topology of E. For m E^ (E) we let E^ denote the vector space E
endowed with the topology w, E^^ will denote the associated
Hausdorff topology and TT^ is the canonical surjection from E onto
^m/{0}^' C^w/{0}^ ? ^m^m e M (E) ls called the canonical metrizable sur-
jective representation of E.

EXAMPLE 2.2. - Nuclear spaces are surjective limits of separable
inner product spaces [36] and Schwartz spaces are surjective limits of
separable normed linear spaces [42]. A topological space X is said to
be Lindelof if each open cover of X contains a countable subcover.
The continuous surjective image of a Lindelof space is a Lindelof space.
Hence if E is a locally convex Lindelof space and p is a continuous
seminorm on E, then Ep.p-, ̂  is a normed Lindelof space. Since every
metrizable Lindelof space is separable it follows that E is a surjective
limit of separable locally convex spaces.

EXAMPLE 2.3. - A locally convex space E possesses the Banach-
Grothendieck approximation property if for each compact subset K

(3) We refer to DIESTEL (J.), MORRIS (S. A.) and SAXON (S. A.), Varieties of linear
topological spaces, Trans. Amer. math. Soc. (to appear) for a discussion of such
collections.
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of E and each neighbourhood V of 0 in E there exists a continuous
linear mapping n from E into £' with finite dimensional range such
that n (x)-x e V for all x e K. Let E = lim,^ (£',, TT.) and suppose

each £'; possesses the Banach-Grothendieck approximation property.
There exists an ie A and W a neighbourhood of 0 in E, such that
V =) 7^~1 (^). Choose u a continuous linear operator from E^ into £',.
with finite dimensional range such that a o 71, (x)-7c; (x) e ̂  for all x e K.
Let F denote a finite dimensional subspace of E such that TT; is an
isomorphism from F onto a ° TT, (£') and let G denote a topological
complement of ^ o 7^ (£') in £',. Now let co denote the mapping from E^
into £' which takes x = x^+x^ ^i e u o 71, (£') and x^ e G, onto
(TT,)"1 (^i) n 77. © o H o TT; is a continuous linear mapping from E
into I7 with finite dimensional range. If x e K, then

Tr^Cuo^Cx) -Tc.^e^-^^c: 7.

Hence 7^~1 (^ o 7 .̂ (x)) c: F and since ^ (TT, (x)) e a o TT (£') it follows that

^~x (^ ° ̂  W) - 0 (u ° TT, (x)) c 71,"1 (0)
and

0)o^o7T,(x)-XG 7.

We have thus shown that the collection of locally convex spaces which
possess the Banach-Grothendieck approximation property is closed under
the operation of surjective limit.

EXAMPLE 2.4. - A Schauder basis, (^)^Li, in a locally convex space E
is an equi-Schauder basis if there exists a family of continuous semi-
norms on E, (^a)aer' which define the topology of E and is such that

(2 • 1) Pa (En°°= 1 ^n ^n) = SU?^ J^ (̂  ̂  X^ ̂ )

for all a e r and all ^°°,i x ^ e ^ e E (we may assume that F is directed).
If E is a locally convex space with a Schauder basis, (^)^=i, and ^ is
the projection of E onto the subspace spanned by (^)^i then (^)^i
is an equicontinuous family of mappings if and only if (^)^Li is an
equi-Schauder basis for E. An equi-Schauder basis is sometimes called
a strong basis. Any Schauder basis in a barrelled locally convex space
is an equi-Schauder basis. If (^)^Li is an equi-Schauder basis for E
then it is also an equi-Schauder basis for E and

/^ _ _
£:= {Enoo=lx»^|SUPmP(x(E^=l^^)< oo for all aeF}.
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448 S. DINEEN

Let p^ denote a continuous seminorm on E which satisfies (2.1). Let

Z(a)={neZ|^(^)=0}.

It is immediate that

ker p, = {xe£, x == Enez(a)^n}.

For x = ̂ i ̂  ̂  e £' we define 71̂  (x) as the formal sum En^z (a) ^n ^r
We let

^(XxOO) = Em<n,m^Z(a)^m^m-

Hence
^(^aM)=^a(^00).

Now

Pa (^n (^a (x)) = Pa (Em < n, m i Z (a) ^m ̂ n) = Pa (Em < n ̂ m ̂ m) = Pa (^n 00).

Hence

(2. 2) p^ (X) = SUp^ ̂  (^n (^)) = SUp^ p^ (7^ (7T^ (x))).

£' induces on F^ = { n^ (x), x e £" } a vector space structure.
Let PaC^aOO) = ^PnPaC^C^a^))). Pa is a wen defined norm on F^

and the mapping n^ is an isometry from E p ^ / p ^ i (Q) onto (7^,^).
Since 7?^ (^ (^)—x)->0 as n -> co it follows that

Pa^nO^))-^))-^

as n -> oo.
Now ^^ (n^ (x)) = 0 if and only if x^ = 0 for all ^ ^ Z (a) and

thus (^)n^z(a) ls an equi-Schauder basis for ( F ^ , p y ) . We have thus
proved that E is a surjective limit of normed linear spaces each of which
has an equi-Schauder basis.

Now for per, P ^ a and ^ (x) e F^ we let

PP (^a 00) = infy e £, ̂  (y)= 0 PP (^ + VY

Let G^ denote the vector space F^ endowed with the locally convex
topology generated by the seminorms (pp)p^a. ^ is an open continuous
mapping from E onto G^ and G^ is isomorphic to Ejp^ 1 (0). G^ also
has (e^\ ̂  z (a) as a basis. For any integer n

infy 6 E, ̂  (y) = 0 Pp (^ + ̂ ) > infy e £, ̂  (y) = 0 P? (̂ n M + ̂  (}/))

= l̂ y e E, ̂  (y) = 0 Pp (̂ n M + Y\
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SURJECTIVE LIMITS 449

Hence p^ (n,(x)) = sup^p (^ (^ (x))). Hence ^ has (^^^ as an
equi-Schauder basis and we have shown that a locally convex space with
an equi-Schauder basis is an open surjective limit of locally convex spaces
each of which has an equi-Schauder basis and admits continuous norms.

EXAMPLE 2.5.

(a) Y[ieAEi is an open, bounded, compact and sequential surjective
limit of CF,)fe^(A) where ^(^) consists of all finite subsets of A
and F, = n»ej^ for all J e ̂  (A). ((E^xE^ is not a surjective limit
of C^=i,2.) In particular E»°°= i C x f^ i C is an open surjective limitof &i cxn^i c ̂  SL, o ,̂.

(6) If E is a locally convex space then (£, cr (£, £")) is a surjective
limit of finite dimensional spaces.

If (£',,71,.),^ is a surjective representation of E then £' defines a
preorder on the indexing set A in the following manner; i ^ j if for each
neighbourhood of 0 in E j , W, there exists a neighbourhood of 0 in E,, V,
such that TT,-1 (V) c nj 1 (W) (4). When E, and E, are Hausdorff this
implies the existence of a continuous linear mapping n1. from E^ onto E - ,
defined for each x e E, by the formula n} (x) = 7 .̂ (Z) where ^ = 71, (Z)
for some Z in E, and of the following commutative diagram

(2.3)

i. e. KJ = 71} o TT, (5).
Moreover if i ̂  j ̂  k then 7^ o 71;} =7^, i. e. the following diagram

commutes;

(2.4)

(2.5) and n\ is the identity mapping for each ie A.

(4) We shall only discuss orders and preorders on the indexing set which arise in this
fashion.

(5) If i ^ j and j ^ i then, if Ei and Ej are Hausdorff, it follows that n] is a linear
isomorphism from Ei onto Ej with inverse n} (this does not, however, imply that
Ei = Ej).
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450 S. DINEEN

If the system (A, » is directed (i. e. for each i, j e A there exists a k e A
such that k^ i and k ^ j ) and E, is Hausdorjf for each ie A then we
say that (E^, TT,.),^ is a directed surjective representation of E. A collection
of locally convex Hausdorjf spaces and linear surjections (£',, n1.), y^ ,>.
is called a surjective system if A is a directed set and (2.4) and (2''.5)hold.
A surjective representation of E, (E,, TT,),^ , is said to be associated with
the surjective system (E,, TT}),, ,^ ̂ , if (2.3) is satisfied.

We have thus shown that a surjective representation is directed if
and only if it can be associated with a surjective system. Most of the
surjective limits and representations we encounter are in fact directed.
It is trivial to show that any surjective limit of normed linear spaces is
a directed surjective limit. We write E == lim,,, ̂ ,^. (E,, 71}, n,) to show

that the surjective limit E = lim,^ (E,, 71,) is associated with the sur-

jective system (E,, 71})̂  jeA;w

PROPOSITION 2.6. - E = lim,^^,^(^., jr}, Hi) is an open surjective

limit if and only if the associated surjective system (E,, 7i1.); •g^>. is
open (i. e. 7r} is an open mapping for all z, j e A, i ̂  j).

Proof. - Suppose (E,, 7r})^ y^^y is an open surjective system.
Let V and j denote respectively a neighbourhood of 0 in E and an element
of A. Choose i e A, i ̂  j such that TT, (V) is a neighbourhood of 0 in E,.
Hence TT, (V) = 7r} o 71, (F) is a neighbourhood of 0 in Ej and E is an
open surjective limit. Conversly, suppose E is a directed open surjective
limit. Let ;, j e A, i ^ y, and let F denote a neighbourhood of 0 in E:
By hypothesis TC, (7r,-1 (F)) is a neighbourhood of 0 in E,. Now If
x e TT, (Ti,"1 (V)) then x = TT, (w) where TC, (w) e V. Hence

7i}o7r,(w) = 7r,(w) = xen}(V),

i. e. TT, (71,-1 (F)) c: 71} (F). This implies that 71} (F) is a neighbourhood
of 0 in Ej and completes the proof.

The same method of proof may be used if E = lim,^ ,^ (E,, TC.)

is an open surjective limit to show that i ^ j if and only if TT, (x) = 0
implies Uj (x) = 0 for any x in £'.

EXAMPLE 2.7.

(a) Directed surjective limits of Frechet spaces (resp. Q)^ spaces)
are open surjective limits. It suffices to note that Frechet spaces

TOME 103 — 1975 — ?4



SURJECTIVE LIMITS 451

and 0)01^ spaces are fully complete and barrelled ([22], p. 300) and
hence we may apply the open mapping Theorem and Proposition 2.6.

(6) A surjective limit of Banach spaces is an open surjective limit.
We have already noted that it is a directed surjective limit and hence
we may apply (a).

(c) Let X denote a completely regular Hausdorff topological space.
^ (X), the space of all continuous complex valued functions on X endowed
with the topology of uniform convergence on compact sets, is a directed
surjective limit of ^ (K) (6), K compact in X (the compact sets are directed
by set inclusion and the restriction mappings are used between ^ (K)
and ^ (A^i), K^ c= K), where ^ (K) is endowed with the topology of
uniform convergence on K. Since each ^ (K) is a Banach space (Z?)
implies that ^ (X) is an open surjective limit. ^ (X) may not be a
complete locally convex space [43] but its completion is also an open
surjective limit of ^ (K), K compact in X. The Tietze extension theorem
implies that ^ (X) is a bounded surjective limit. Now let K denote a
compact subset of X and suppose B is a compact subset of ^(K).
There exists a sequence in ^ (7Q, (x^i, which converges to 0 and B
is contained in the closed convex hull of this sequence. By the Tietze
extension theorem we can extend each x^ to a continuous function on X,
^, such that [ [ ̂  |(^ = [ [ ̂  [[^. Hence ^ converges to 0 in ^ (X) and
its closed convex hull is compact. This shows that ^ (X) is a compact
and sequential surjective limit.

(d) Let X denote a locally compact space, ^ a Radon measure on X
and J$ff^ ( ,̂ a) the space of all locally p - ̂ -summable functions on X
with its natural topology, 1 < p ^ oo. The associated Hausdorff space
L^ (X, a) is an open, bounded, compact and sequential surjective limit
of Banach spaces.

PROPOSITION 2.8. — Let E=\im^E^ denote a strict inductive limit

then £p is a directed surjective limit of ((^)p)^L i ([22], 2.12).

Proof. - We may suppose that E = [j^ i E^ Since E induces on E^
its original topology we see, via the Hahn-Banach theorem, that the
transpose of the canonical injection of E^ into E is a surjective mapping
from £p onto (^)p. The strong topology on E ' is the topology of

(6) The Tietze extension theorem shows that the restrictions mappings are surjections.
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452 S. DINEEN

uniform convergence on bounded subsets of E and since each bounded
subset of E is contained and bounded in some E^ it follows that the
topology of £p is the weakest topology for which all the transpose
mappings are continuous. Hence £p is a surjective limit of ((£^)n)^Li
and it is obviously a directed surjective limit. This completes the proof.

It now follows that the strong dual of the strict inductive limit of ^^r

spaces is an open surjective limit of Os^^F spaces and the strong dual
of the strict inductive limit of D^F spaces is an open surjective limit of
Frechet spaces.

EXAMPLE 2.9. - Let Q, denote an open subset of R" and let 2 (0)
denote the set of all compex valued C°°-functions on 0 with compact
support. It is well known (see [22]) that 2 (Q) with its natural topology
is the strict inductive limit of Frechet-Schwartz spaces. Hence Q ) ' (?)
is an open surjective limit of Q)^' y spaces.

EXAMPLE 2.10. — The strong dual of the strict inductive limit of
Frechet-Montel spaces is an open and compact surjective limit of
^^FM spaces.

Proof. - Let E = lim^ E^ We have already noted that £p = lim^ (£„)?

is an open surjective limit. Let K^ denote a compact subset of (£/,)?.
There exists a convex balanced neighbourhood of 0 in E^, V, such
that V° ^ K^ (V° is the polar of V in (£„)?). Since E is a strict inductive
limit there exists a neighbourhood of 0 in E, W, such that V ^ W n E^
Now if (p e F° then [ (p (W r\ E^) \ ^ 1 and, by the Hahn-Banach theorem,
there exists $ e E ' such that [ (p (W) \ ^ 1 and $ [^ == (p. E is a Montel
space and hence W° is a compact subset of £?. This completes the proof.

Remark. — GROTHENDIECK ([15], p. 95) gives an example of a Frechet-
Montel space which has a quotient space isomorphic to /i. Since /i is
non-reflexive and every quotient space of a Frechet-Schwartz space is
itself a Frechet-Schwartz space and hence reflexive it follows that there
exist Frechet-Montel spaces which are not Frechet-Schwartz spaces
(see also [22], p. 279).

We now define complete surjective representations. If u is a continuous
linear mapping from the locally convex space E into the locally convex
space F then u will denote the unique extension of u to a continuous/\. /\.
linear mapping from E into F. Let a = (E^, T^^^A denote a surjective
representation of the locally convex space E. The ^-completion of E is
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the subspace ofE containing E -which equals (~}ieA (^i)"1 (X-)- ^e let ^a
denote the a or (^ , TC^.g ̂ -completion of E. (E^, n^ L )^^ is a surjective
representation of E^. If E = ̂  then we say that E is an (E^, Tr^.g^-
complete space and ( E ^ , TT^g^ is a complete surjective representation of E.

PROPOSITION 2.11. — If a = (Ei, T€p T^i)ieA, i^j ls a directed surjective
representation of E then E^ is isomorphic to

E={(Xi)i^^=nieAEi\n}(Xi)=Xj for all i J e A , i ^ j } .
y\ __ /^ ys.

Proof. — Let n, E ->Y[ieA^i denote the mapping which takes x e E
onto (7Cf(x))^^. By the definition of surjective limit E is isomorphic
to 7i (E) and Ey^ is isomorphic to n (Ey). To complete the proof it suffices
to show that the sets n (E^) and E coincide. If x e E^ then n^ (^) e E^
for all ie A. Since n^ o n^ = TCj for all i, je A, i ^7, it follows that
7T} ° ^i Ifa = ^j \E^ Hence n^ (Ki (x)) = ̂  (x) for all x e E^ and TT (Ey) c= £'.
Conversly let (x^) e £'. Let a^, . . . , ^e A and let P e ^4, P ^ oc,
for f = 1, . . . , n. Choose x e E such that Tip (x) = Xp. Hence

^ ° ̂ P 00 = ̂ ^ C^p) = ^a. fO1' I = 1, . . ., M.

It now follows that (x^en^E) where the closure is taken in ]~[^^J^.
Since n (Ey) is a closed subspace of f^ ieA^i we see ^na^

7l(£,)cEc7T(£)c=7T(£,).

Hence n (Ey) = E and this completes the proof.

Remark. — There may exist more than one surjective limit associated
with the same surjective system (e. g. if (^, Ti^g^ is a directed surjective
representation of E and E is not ( E ^ , Tr^g ̂ -complete). The complete
surjective limit associated with a surjective system is, when it exists, the
classical projective limit associated with a given projective system.
A surjective limit E == lim^ (^ ,71^) is said to be complete if E is

(E,, 7i,)^ ̂ -complete.
Our next proposition is frequently useful and explains our terminology.

PROPOSITION 2.12. — A surjective limit of complete locally convex
spaces is complete if and only if it is a complete surjective limit.

Proof. — If E is complete then TC, = TT; and hence

E = nieA^r1^) = n^w^) = ̂
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Conversly let E = E^. Since E^ is complete

OT,)-1^) = £ and £, = H^A^)"1^ = E.

This completes the proof.

Proposition 2.12 is equivalent to the statement that the collection of
all complete locally convex spaces is closed under the operation of
complete surjective limits. We do not, in general, know if we can
associate a surjective limit with a given surjective system. However,
if the indexing set A contains a smallest element then we can always
construct an associated surjective limit by using the mapping n of
Proposition 2.11. Moreover, if (E^, 71?̂  j-eA,i^j ls a surjective system
then

EUo) = {(^eA.^jen^jo^i71}^) = x j }

is the complete surjective limit associated with C£f» Tcpi, y e A i^./^./o-
It is not difficult to show that E(jo) and E(j\) are isomorphic as locally
convex spaces for any y'o, j\ e A. Moreover if (E^, 71}, ^i)i, jeA^j ls

a representation of the locally convex space E then the (2^,71,)^^-
completion of E is isomorphic to E (Jo) for any J'Q e A. Since we are
primarily interested in the topological vector space structure of surjective
limits and not in the surjective system used to generate them we thus
find that we can always "associate" a surjective limit with a given
surjective system.

3. Vector valued holomorphic functions

In this section we give the various definitions of holomorphic functions
between locally convex spaces that we shall need in this work (7).
We found it necessary to define continuous and locally bounded holo-
morphic functions on a collection of sets which, in general, properly
contain all open sets. This we did by using a Taylor series expansion
which is valid for G-holomorphic vector valued functions defined on
finitely open subsets of a vector space. We also define hypoanalytic,
Silva holomorphic and weak holomorphic mappings and prove a number
of results showing the relationship between these definitions. In the

(7) For further definitions of holomorphic mappings between locally convex spaces,
we refer to [27], [35] and [37].
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latter part of this section we discuss definitions which involve functions
defined on surjective limits.

U, a subset of the vector space E, is finitely open if and only if U n F
is an open subset of the Euclidean space F for each finite dimensional
subspace F of E. The finitely open subsets define a translation invariant
topology on E, tj-, which is a vector topology if and only if the (algebraic)
dimension of E is countable. We shall frequently use the facts that
linear surjections between vector spaces are tf open mappings and the
balanced tj- neighbourhoods of zero form a basis for the tf neighbourhoods
of zero.

A function f defined on a finitely open subset, U, of a vector space E
with values in a locally convex space F is said to be Gateaux or G-holomorphic
if it satisfies the following condition.

For each a e U, b e E, (p e F ' the complex valued function of one complex
variable, ^ -> (p o/(^+^ A), is holomorphic in some neighbourhood ofOeC.

We let X^(£/;F) denote the set of all G-holomorphic functions
from U into F. Each / in ^f^(C/;F) has a (unique) Taylor series
expansion about each point of U consisting of polynomials from E
into F, i. e. for each ^ in U there exists a sequence of polynomials
from E into F, (d^^/n^^, such that

y\

(3.1) f^+y)=^=odnm(y)n!

for all y in some tf neighbourhood of 0. For ^ e U we let

T ^ l̂  V- dnm^ V00 dnm^T(f^)(y)=llmm-ooLn=0 —————l)0=Ln=0———— W
n! n:

/\
whenever this limit exists in F.

Now suppose E and F are locally convex spaces. An F-valued function
defined on a finitely open subset of E, U, is a continuously holomorphic
(resp. locally bounded holomorphic) function if it is G-holomorphic and
for each £, e U, y -> T(^ ^ (y) defines a continuous (resp. locally bounded)
function on some neighbourhood of zero (8). When U is open/e ̂ Q (U; F)

(8) The tf topology is finer than any locally convex topology on E and hence every
open subset of E is finitely open.
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is continuously holomorphic (resp. locally bounded holomorphic) if and
only if/is continuous (resp. locally bounded) on U. We let ^ (U; F)
(resp.Jf^((7;F)) denote the set of all continuously holomorphic
(resp. locally bounded holomorphic) functions from U into F.

The following is a useful result and the proof is immediate. We use
the above notation.

LEMMA 3.1.

(a) If F = lim;g^ (F,, TT,) is a surjective limit then /e^f (£/; F) if and

only if n, ofe Jf (U; F;) for all i e A.
(V) If F is a normed linear space then ̂  (V\ F) = J^^y (U; F) where U

and E are arbitrary.

(c) If^ (£/; F) = ̂ ^ (U; F) for any locally convex space F and any
finitely open subset U of E then E is a normed linear space.

A G-holomorphic F valued function defined on an open subset of a 1. c.
space is hypoanalytic if its restriction to compact sets is continuous.
HIRSCHOWITZ [17] defines a hypoanalytic function as a G'-holomorphic
function which is bounded on compact sets. Our definition is obviously
more restrictive and is not equivalent since the identity mapping from
an infinite dimensional Hilbert space with the weak topology into itself
with the norm topology maps compact sets onto bounded sets but is not
continuous on compact sets. We let J'f^y((7; F) denote the set of all
hypoanalytic functions from the open set U into F.

An F valued G-holomorphic function, /, defined on a finitely open
subset, U, of a locally convex space E is said to be scalarly holomorphic
at x e U if for each (^.-valued continuously holomorphic function, g, defined
on a neighbourhood off(x) in F the function gof is continuous in some
neighbourhood of x. f is said to be scalarly holomorphic on U if it is
scalarly holomorphic at all points of U. We let ^f^(£/; F) denote the
set of all scalarly holomorphic functions from U into F.

If F is a locally convex space and F^ denotes F with the o- (F, F7)
topology then the elements of j^ (U; Fy) are the weakly holomorphic
functions from U, a finitely open subset of the locally convex space F,
into F.

The proof of the following proposition, which shows the relationship
between the various definitions of holomorphic function, is immediate.
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PROPOSITION 3.2. — Let E and F denote locally convex spaces with U
a finitely open subset of E. We have the following inclusions;

^ -3C^(U;F) C: ^€(U;F^) Q^
^{U,¥) (Z^(V.,¥) ̂  ^ ^G^F)

^•3CHY(U;F) c^

The next proposition gives conditions under which (j-holomorphic
functions are hypoanalytic.

PROPOSITION 3.3. — A G-holomorphic function from U c: E into F, /,
is hypoanalytic if any of the following conditions are satisfied :

(a) f is bounded on compact sets and each polynomial from E into F
which is bounded on compact sets is hypoanalytic.

(b) fe^^(U; F) and F = lim;g^ F, where each F, is a normed linear

space and the closed unit ball of (F;)' is weak^ sequentially compact (9).

(c) E is separable and f is scalarly holomorphic.
(d) /ej'f (U; F^) and each closed bounded subset of F is compact.
(e) f is bounded on compact sets, (E\ a ( E ' , E)) is separable and E

satisfies the Mackey convergence criterion ([22] p. 285) (10).

(/) / l s bounded on compact sets and E is metrizable.

Proof. — (a) Since E is locally convex we may assume that U is convex
and balanced. Let K denote a balanced compact subset of U. Now /
is bounded on K and hence, since K K <= U for some K > 1, we may
use the Cauchy integral formula to show

l/n^V(O)lim^ ——— <1.

A further application of Cauchy's integral formula shows that dnf{0)|n\
is bounded on compact sets for each n and hence is hypoanalytic by our
hypothesis. It is now trivial to complete the proof.

(9) Separable locally convex spaces, Schwartz spaces and reflexive Banach spaces
all have representations of this form.

(10) i. e. if (Xn)S=i is a null sequence in E then there exists a sequence of scalars,
(^n)^i, which diverges to +00 such that (^nXn)^=i is a null sequence in E.
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(b) The bounding subsets of F, are precompact for all ie A [8].
Hence if K is compact in U and 7r,OW) is not a precompact subset
of F, then there exists a ge^(F,;C) such that || ̂ o jr, o/||^ = oo.
This contradicts the fact that /e^(£/;F). Hence / maps compact
subsets onto precompact subsets of F. Now if (^)^r is a convergent
net in 7s: then (/(^))^r is a precompact net in F. If (/(^))^
and (/(^)),,r. are two subnets of (/(^)),,r then

l™^,,^ <P(/(x,)) = lim^,^(p(/(^))

for any (pe^f(F^ C). By the Hahn-Banach theorem it follows that
(/C^ocer is a convergent net and hence/is hypoanalytic.

(c) Suppose { ̂  }^i denotes a dense sequence in U and F is a Banach
space. Let Fi denote the closure of the Banach subspace of F generated
by (/(^X=i. If cpeF', (p|^ = 0 then (po/(xj = 0 for all n and
since /e^ (£/; F) it follows that (p o/ = 0. Hence /(£/) c F^. Now
let K denote a compact subset of U. If f(K) is not a precompact
subset of F, then we can find (see [8]) ((pj^i, a sequence of elements
of F,, such that ^ = E;L i C ̂  (^i) and | | ^o / [^=oo . Now
supn || ^Ijpi < 00 and hence we may use the Hahn-Banach theorem
to find^(9^i, a sequence in F', such that $„ |̂  = ̂  for all w and
^Pn || ̂  HF < °o. It is now easy to see that g = ̂ °̂  <p^ e^f (F) for
some open subset V of F which contains F^. Hence g°fe^(U)
and | |^°/ | |K=0 0- This contradicts the fact that /ejf^(£/;F).
Hence f(K) is a precompact subset of U and the F and the proof may
be completed as in (b) (u).

(W) If/e^f (£/; FJ then (p (/(X)) is a bounded subset of C for each
compact subset K of U and each (p e F'. Hence/is bounded on compact
subsets of U. By our hypothesis on Fit follows that f(K) is a precompact
subset of F for each compact subset K of U. The proof may now be
completed as in (&).

(e) If (£", a (F', E)) is separable then each compact subset of E is
metrizable and hence it suffices to consider sequential convergence.
By (a), we may suppose that / is an w-homogeneous polynomial.
If (^n)^ i is a sequence in E which convergence to 0 then, by hypothesis,

(11) In particular if E is a Qi^JK space then ^(U',F) = ̂  (U;F)== j^yy (U;F)
for any domain U spread over E.
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there exists a sequence of scalars, (^n)^=i which diverges to + oo
and ^nXn -> 0 as n -> oo. Since f is bounded on compact sets

[jnf^nXn)=[jnW^

is a bounded subset of F. Hence/(x») -> 0 as n -> oo and this completes
the proof.

(/) Trivial.

We now briefly discuss one further definition of a holomorphic
function ([6], [27]). If B is a closed convex balanced bounded subset
of a locally convex space E we let Ey denote the vector space spanned
by the set B endowed with the norm [[ x \\y = inf { X > 0 j x e ̂  B }.
^M (c/- P^]) ls trle fi^51 topology on E for which the injections Ey -> E
are continuous for all such B. A locally convex space (E, r) for which
T == Tj^ is called superinductive (note that (E, Tj^) will not, in general,
be a locally convex space). Frechet spaces and Q)^' y spaces are
examples of superinductive locally convex spaces.

Let E and F denote locally convex spaces. A G-holomorphic F valued
function defined on an open subset of E, U, is S-holomorphic or Silva
holomorphic if it is continuous when U is given the induced T^ topology.
We let J'fs (U; F) denote the space of all 5-holomorphic mappings
from U into F.

PROPOSITION 3.4. — Hypoanalytic and weakly holomorphic functions
are Silva holomorphic.

Proof. — Let /; U <= E -> F denote a G-holomorphic function and
let B denote a closed convex balanced bounded subset of E. To show /
is Silva holomorphic it suffices to prove that/is bounded on each [( \\y
convergent sequence in U. Now if {^}^i is a || \\y convergent
sequence then it is also a convergent sequence in E. Hence if/e ̂  (U\ -FJ
or /e^f^y (U\ F) then/ is bounded on { x^ }^L i and this completes the proof.

We now give an example in which the converse is true. E, a locally
convex space, has property (S) [21] if for each compact subset K of E
there exists a balanced convex closed bounded subset of E, B, such that K
is contained and compact in Eg. Strict inductive limits of Frechet spaces
and strong duals of infrabarrelled Schwartz spaces have property (S) [21].

PROPOSITION 3.5. - If E has property (S) then ̂ y ( U ; F) = ̂  ( U ; F)
for all open subsets U of E and any locally convex space F.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



460 S. DINEEN

Proof. — Let T denote the locally convex topology on E. If K is a
compact subset of (E, r) and 2? is a closed convex balanced subset of E
such that K is compact subset of Eg , then it follows that T, T^ and || [[5
induce the same topology on K. If/ej'fg ((7; F) then the restriction of/
to (K, T) is continuous and / is hypoanalytic.

Notation. - When F = C we shall write Jf((7), etc., in place
ofj^(£7; C), etc.

A manifold spread over E, a locally convex space, is a pair (0, p)
where Q is a connected Hausdorjf space and p is a function from Q
into E which is a local homeomorphism. Holomorphic functions on Q
are defined by means of the function p and the holomorphic functions
on E (see [4] and [39] for further details).

We now consider holomorphic functions defined on surjective limits.

DEFINITION 3.6. — Let U denote a connected finitely open subset of
the locally convex space E, let (E^, Ti^-g^ denote a surjective represent-
ation of E and let F denote a locally convex space.

(1) U has the weak (resp. strong) local F factorization property with
respect to the surjective representation (Ei, Ti^g^ if for eachfe^ (U; F)
(resp. ̂ ^ (U; F)) there exists an ie A with the following properties:

(a) There is a neighbourhood of each x in U, V^ , and a neighbourhood
of Hi (x) in E i , W^ such that n, (V^) <= W^.

(b) There is an f^ e^f (W^; F) (resp. 2^^ (W^; F) such that

f\v^ ^fx^Avx-
(2) U has the weak (resp. strong) global F factorization property with

respect to the surjective representation (E^K^^^ ;/ it has the weak
(resp. strong) local F factorization property with respect to (E^, 7Ti)ieA an(^

fx \m (U)n w^n Wy = fy \ni (U) n w^n Wy
for all x, y in U.

HIRSCHOWITZ [16] proves the existence of open subsets of H^Li C
which have the local (12) factorization property with respect to (C", ^n)^=i

(12) We define various holomorphic properties of locally convex spaces using
the prefixes weak and strong to distinguish between properties which refer to continuous
and locally bounded holomorphic functions respectively. We use no prefix when
the prefixes are interchangable (as is the case here).
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but which do not have the global factorization property with respect to
the same representation (13). NACHBIN [32] proves that E has the
global factorization property with respect to any open surjective represen-
ation of E by normed linear spaces and also proves, that J'f (C) (with the
compact open topology) does not have the local C-factorization property
with respect to the canonical normed surjective representation of ^f (C).
A balanced open subset which has the weak (resp. strong) local F
factorization property for some surjective representation can easily be
shown (via Taylor series expansion and analytic continuation) to have
the weak (resp. strong) global F factorization property with respect to
the same surjective representation.

If 7i is a linear mapping from the vector space E^ onto the vector
space E^ and F is a locally convex space we let ^ denote the transpose
function which maps /e^ (TI ((7); F) onto /"TTGJ^W^)- II is

immediate that
'71 GT (7i (17); F)) c: ̂  (17; F) and ^ (X^ (n (17); F)) c ̂  ([/; F).

U, a finitely open subset of F, has the weak (resp. strong) global F
factorization property if and only if

^f(£7; F) -' U-A^W^OO; F))

(resp. ̂ (^; F) = U.e/- •(^LB(^); F)).

In discussing holomorphically complete locally convex spaces [10] we
introduced the concept of co-space. We rephrase and slightly generalise
this definition so that it is now a concept involving factorizing locally
bounded holomorphic functions on locally convex spaces. Our new
definition was also motivated by our use of hereditary Lindelof spaces
in the study of the Levi problem [13].

DEFINITION 3.7.- Let E and F denote locally convex spaces. E is an
F— w-space if the following conditions are satisfied.

(1) each open subset ofE has the strong global F factorization property
mth respect to the canonical metrizable surjective representation of F.

(2) for each U open in E and fe^^(U; F) there exists a sequence
of bounded subsets of F, W^i, such that U = |jn°°=i (/-1 W)° (14)-

(13) Kn is the usual projection ]~[^C onto the space spanned by the first n
coordinates.

(14) A° denotes the interior of A.
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Now let/ej'f^ (£/; F) where (7 is an open subset of the F— co-space E.
Let (^n)^Li denote an increasing sequence of convex balanced bounded
subsets of F such that

^U^ia"^))0.
For each n let F^ denote the vector subspace of F spanned by B^ and
normed by the Minkowski functional of B^. G == lim^ F^ is a (Z)F)-space

in the sense of GROTHENDIECK [15] and the canonical inclusion of G
in F, 7, is continuous. By condition (1) it is now possible to find a locally
convex metrizable space, £\, a continuous mapping K from E onto £\
and/eJ'f^g (71 (£/); G') such that the following diagram commutes

This shows that each F-valued locally bounded mapping from an
F—co-space is, modulo two linear mappings, a locally bounded mapping
from a metrizable space into a DF- space.

Now suppose that every open subset of the locally convex space E
is a Lindelof space. Let fej^^g^U; F) where U is open in E and F
is arbitrary. For each x in U choose a continuous seminorm on E, p ^ ,
such that Vy, = (Jy {f(.x+y);p^ (y) < 1 and x+ye U } is a bounded
subset of F. Choose a sequence of points of U, (x^=^ such that
Un°=i { • ^ n ' ^ y ' - ' Px^ (v) < 1 } == ^ /ls a l^^ly bounded function from U,
endowed with the topology induced by (^)n°=i9 mto F smd since (J^°=i ̂
is a countable union of bounded subsets of F we have shown that E is
an F— co-space.

If each open subset of E^ is Lindelof and E = lim^ En then each open

subset of E has the same property and thus a countable inductive limit
of separable metrizable locally convex spaces is an F—co-space for any
locally convex space F. A Q)^'^l space is a Suslin space (i. e. a continuous
image of a complete separable metric space) and hence it is a hereditary
Lindelof space and an F— co-space for any locally convex space F.

If F is a D ^ space, condition (2) of Definition 3.7 is always satisfied
(e.g. a locally convex metrizable space is a D ^—co-space).
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E. GRUSELL and M. SCHOTTENLOHER have given, independantly,
examples of locally convex spaces which are not C—co-spaces.

4. Pseudo-Convex domains (15)

An open subset, U, of a locally convex space, E, is finitely polynomially
convex if U n F is polynomially convex for each finite dimensional
subspace F of E.

PROPOSITION 4.1. — The collection of locally convex spaces in which
the finitely polynomial^ ^nvex open subsets are polynomially convex is
closed under arbitrary surjective limits.

Proof. — As in Proposition 1.7 of [13].

EXAMPLE 4.2. — The following are examples of spaces in which the
finitely polynomially convex open subsets are polynomially convex;

(a) Locally convex spaces with an equi-Schauder basis (see example 2.4,
and [13]).

(b) Nuclear spaces (see Example 2.2, and [13]).

(c) Locally convex spaces with the strong approximation property
([35], p. 69).

PROPOSITION 4.3. — The collection of locally convex spaces in which
the finitely polynomially convex open subsets are domains of holomorphy
(resp. domains of existence of holomorphic functions) is closed under open
surjective limits.

Proof. — (see Proposition 1.6 of [13]). - If U is a finitely polynomially
convex open subset of lim,g^ (E^, 71,) then there exists an ;' e A such that

U = T^"1 (n^ (U)) and TT, (U) is a finitely polynomially convex open subset
of Ei. Now suppose TT; (U) is a domain of holomorphy. If U^ U^ are
open subsets of E such that U^ <= U, U r\ U^ => U^ and for each/e^f(£/)
there exists an/i e^f (U^) with/)^ = /i (^ then, since TT, is an open mapp-
ing, this implies that Ki(U^) c: 7i,(£/). Hence U^ cz n^1 (n^U)) = U
and U is a domain of holomorphy. Now suppose TI, (U) is a domain of
existence for the function /. Now if U^ and U^ are two convex subsets

(15) A number of the results in this section were announced in [9], and proved
in [13].
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of E, £/2 c= £/ n ^ and there exists g e^f (£/i) such that g [^ = /o 71; (^
then it follows that K, (U^) c 71; (£/) and hence (7 is a domain'of existence
for the function fo 71;.

EXAMPLE 4.4.

(a) Every finitely polynomially convex open subset of a Frechet space
with a basis is the domain of existence of a holomorphic function. We
proved this result in [ 13 ] in a rather laborious fashion but noted that the
proof could be considerably simplified if we knew that there existed a conti-
nuous norm on E. It is now possible to use Proposition 4.3 and the result
in Example 2.4 to simplify the proof.

(b) (see [ 35 ] p. 81). Every finitely polynomially convex open subset
of ^ (X) is the domain of existence of a holomorphic function.

(c) If E is a hereditary Lindelof, barrelled space and possesses a basis
(e. g. a Q)^M space with a basis or a countable direct sum of Frechet
spaces each of which has a basis) then the finitely polynomially convex
open subsets of E are domains of holomorphy.

PROPOSITION 4.5. - The collection of locally convex spaces in which the
pseudo convex open subsets are holomorphically convex (resp. domains of
holomorphy, domains of existence) is closed under open surjective limits.

Proof. — As in proposition 1.6 of [ 13 ] and proposition 4.3 above.

EXAMPLE 4.6. - The pseudo convex open subsets of ^ (X) are domains
of existence of holomorphic functions for any completely regular space X
in which the compact subsets are metrizable ([ 35 ], p. 99).

Before discussing locally convex spaces in which the holomorphically
convex open subsets are domains of existence we obtain a result concerning
the metrizability of^(U) which is of independent interest (see also [ 21 ]).

PROPOSITION 4.7. — Let E denote an infrabar relied locally convex space
in which the convex hull of each compact set is compact then Jf (£/), endowed
with the compact open topology, is a Frechet space for all U open in E if and
only ifE is a Q^FM space.

Proof. - First let U denote an open subset of the 0)9"e^ space E. We
have already seen that U is a Lindelof space and hence U may be written
as a countable union of translates of convex balanced open subsets of E.

TOME 103 — 1975 — ?4



SURJECTIVE LIMITS 465

Now E is also a DF space and a Montel space and hence there exists an
exhaustive sequence of convex, balanced compact subsets of E, (A^)^i.
Let Q^n)^= i denote a sequence of positive numbers which strictly increases
to 1. If V is a convex balanced open subset of E then (^ V n K^)^ „= i
is an exhaustive sequence of compact subsets of V. It now follows that U
is hemicompact and hence J'f (U) with the compact open topology is
metrizable. Since E is a /;-space Jf (LQ is complete and we have shown
that (^f(£7), ^"o) is a Frechet space.

Conversly if (^f (£/), ^~o) ls a Frechet space for all U open in ^ then
E^ (the dual of £' with the compact open topology) is also a Frechet space.
Since the closed convex hull of each compact set is compact it follows that E
contains a countable fundamental family of compact sets. Now let B
denote an arbitrary bounded subset of E and let y'^ denote the topology,
on E\ of uniform convergence on compact subsets of E together with uni-
form convergence on £. Since E^ is a Frechet space it follows that (£", ̂ '^)
is also a Frechet space. By the open mapping Theorem and the Hahn-
Banach Theorem it follows that B is relatively compact. Hence E is a
semi-Montel space and since we assume E is infrabarrelled it follows that E
is a Montel space. Since E is Montel E'^ = £p is a Frechet space and
hence E ' is a Frechet-Montel space. Montel spaces are reflexive and
hence E ^ (jEpp is a Q)^^i space.

PROPOSITION 4.8. — A holomorphically convex open subset of a Q^M
space is the domain of existence of a holomorphic function.

Proof. — Let U denote a holomorphically convex open subset of the
Q)^M space E. Since each compact subset of E is a separable metrizable
space and U is hemicompact there exists a sequence of points
in § U (16), (̂ "n)̂ °= i, and for each n a sequence of points of U, (x^ (w))^= i,
such that Xn (ni) -> x^ as m -> oo for each n and the set { x^ }^= i is dense
in § U. Since U is holomorphically convex, we may choose an increasing
sequence of holomorphically convex compact subsets of U, (A^)^i, such
that each compact subset of U is contained in some K^. We may now
construct, as in the finite dimensional case, a G'-holomorphic function on
U, f, which is bounded on compact subsets of U and is such
that sup^ \f(Xn (m)) | = oo for all n. Since U is a A:-space it follows that
f e J ^ ' ( U ) and hence U is the domain of existence of a holomorphic
function.

(16) The boundary of U.
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5. Zorn spaces (17)

Let E and F denote locally convex spaces. E is called a weak (resp.
strong) F-Zorn space if each F-valued G-holomorphic function defined on
a domain spread over E has an open and closed set of points of continuity
(resp. points of local boundedness).

Since local boundedness and continuity are local properties we need only
consider domains which are open convex balanced subsets of E in the defi-
nition of Zorn spaces. We collect in the next two propositions some
elementary stability properties of Zorn spaces.

PROPOSITION 5.1.

(a) If E is a weak F^-Zorn space for each ie A and F == lim^ ̂  (F^ TT;)

then E is a weak F-Zorn space.
(V) Quotients of weak (resp. strong) F-Zorn spaces are themselves weak

(resp. strong) F-Zorn spaces.
y\.

(c) If E is a weak (resp., strong) F-Zorn space and E <= E^ c: E then E^ is
a weak (resp. strong) F-Zorn space.

Proof.

(a) Trivial.
(b) Immediate since quotient mappings are open.
(c) Let U denote a convex balanced open subset of E^ and suppose / is

a G'-holomorphic mapping from U into F which is continuous (resp. locally
bounded) at 0. It suffices to show that for each x^e U there exists a dense
subspace of^i, E^ (x^\ such that x^ e E(x^) and/|^^^y is continuous
(resp. locally bounded). Now if x^ e U, x^e E, x^ ^ 0, we let E^ denote
a closed subspace of E^ such that E^ = {x^ } + { x^ } + E^ where { ̂  }
is the subspace generated by x^ for i = 1,2.

We define an endomorphism of£i, TT, by

n(fk^X^+^2x2+w) = ^2 ;C1+^1X2+0)

for all T^i e C, ; = 1,2 and co e E^. n is a linear homeomorphism. Hence
TT (E) is a weak (resp. strong) F-Zorn space, which is dense in E^ and

(l7) A number of the results proved in this section were announced in [11] and [14].
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n (x^) = ^i e E { x ^ ) = TI (E). Now / |un£(xi) ls G'-holomorphic and
continuous (resp. locally bounded) at 0. Hence

/|^(^e^(C/n£(xi); F) (resp. ̂ (^^i); -0

and this completes the proof.

Now suppose Pi and G^ are locally convex spaces and that G^ may be
identified with a space of linear functionals on F^. A subset B of G^ is
Fi-equicontinuous if there exists a neighbourhood of 0 in F^, U, such that

Bcz C / ° = { ( p e G i ; | (p(x) |^ l for all xeU}.

PROPOSITION 5.2.

(a) IfExF^ is a C-Zorn space and the bounded subsets ofG^ are precisely
the F^-equicontinuous sets then E is a strong G^-Zorn space.

(b) If Ex Fp is a C-Zorn space then E is a strong F-Zorn space.
(c) If Ex F is a C-Zorn space and F is infrabar relied then E is a strong

Fo-Zorn space.

Proof.

(a) Let U denote an open subset of E and suppose/e^f^ (£/; F^) is^\.
locally bounded at XQ e U. We define fe^f^ (Ux G^) by the equation
f(x, y) = y(f(x)). By hypothesis there exists a neighbourhood of XQ
in E, £/i, such that/(L^i) is a bounded subset of G^. By our assumptions
on F^ and G^ there exists a neighbourhood of 0 in jF\, V,/\
such that/(£/i) c: V°. Hence f(U^ x V) is a bounded subset of C. Since
E x F\ is a C-Zorn space / is locally bounded at all points of U x F^ and
hence/eJf^(£7; G'i).

(fc) The strong topology on Fp is the topology of uniform convergence
on the bounded subsets of F. Hence the Fp-equicontinuous subsets of F
are precisely the bounded subsets of Fp and we may apply (a) to complete
the proof.

(c) When F is infrabarrelled the strongly bounded subsets of Fp are
equicontinuous [ 22 ], and we may apply (a) to complete the proof.

Our next result, the main result of this section, describes surjective limits
of Zorn spaces and other related results.
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THEOREM 5.3. — Let (£'„ ^i)^^ denote a surjective representation of
the locally convex space E and let U denote a connected domain spread over
E. Let F denote a locally convex space and let f denote an F-valued G-
holomorphic function on U which is locally bounded at some point of U. fis
locally bounded at all points of U if any of the following conditions are satis-
fied.

(a) Each E^ is a strong F-Zorn space.

(b) (E,, Ki)^A is a compact surjective representation ofE,fe^^ (U; F),
and each g ejfyy ( V ' ; F), V a connected domain spread over some E^ which
is locally bounded at some point of V is locally bounded at all points of V.

(c) (Ei, TT,)^^ is a bounded surjective representation of E, fe^^(U; F),
and each g e^ (V; F), V a connected domain spread over some E,, which
is locally bounded at one point of V is locally bounded at all points of V.

(d) (Ei, 7i,)^^ is an open surjective representation of E,fe^f^ (U; F),
and each g eJf^ (V; F), V a connected domain spread over some F,, which
is locally bounded at one point of V is locally bounded at all points of V.

(e) (Ei, 71;), ̂  is an open surjective representation of E, /e^f (U; F ),
and each g e^f (V; FJ, V a connected domain spread over some E,, which
is locally bounded at one point of V is locally bounded at all points of V.

Proof. - We may assume that U is a convex balanced open subset of E
and that/is locally bounded at 0. Choose i e A and W a neighbourhood
of 0 in E, such that n^~1 (W) c: U and/is bounded on^~1 {W). Now if
x e E and n, (x) = 0 then { ^ x \ f k e C } c z U . Hence if y is an arbitrary
element of U there exists a positive 5 such that

suppecd^Aa.F+P^)!, H ^§}<oo
for all (p e F ' .

By Liouville's theorem it follows that

(p°/(a^+px)=(po/(a^)

for all a, [ a [ ^ 5, and P e C. Hence

/(^+Px)=/00
for all p such that .y+pxe U. Now ifjeA and there exists a convex
balanced neighbourhood of 0 in Ep Wp such that 71:71 (Wj) c n^~1 (W)
then the same argument shows that/(j) = /(>+ P x) for any y in U, x e E,
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Uj (x) = 0 and y + P x e U. Let Uj denote the largest balanced Ej-open (18)
subset of U. We define fj on ^j(Uj) by the formula fj (co) =/(£) if
7 .̂ (o)) = o). /, is well defined, locally bounded at 0, G'-holomorphic on
Kj(Uj) and fj o 71, |y =/ |y. We now consider each case separately.

(^) If Ej is a strong F-Zorn space then/, e^f^ (̂ . (£/,.); F).
(A) If (^, T^i)ieA ls a compact representation of E then, since

C/y = 7iy"1 (Tiy (Uj)), for each compact subset K of 7iy (£/y) there exists a
compact subset L of (7y such that nj (L) = ^T. If (^)agr ls a net m ̂  such
that Tty (x^) -> KJ (x) as a-> oo and (j^pgjs and (^aec are subnets of
(Xy)^ g r suc!1 ̂ at ^p -^ ^ as P -> oo and z^ ̂  z as a ->• oo then nj (y) = Kj (z)
and /, (TC, (x)) = f(y) == /(z). Hence if /e^y (£/; F) then

/,e^(7r,(£/,);F)

and the remaining assumption in (b) shows that fj e Jf^ (nj (£/y); F)
in this case.

(c) If (£p 71^)^^ is a bounded representation of £' and B is a bounded
subset of Ej then there exists a bounded subset of£, C, such that Kj (C) = B.
If f^^^(U\ F) then for each x^e U there exists a (xj > 0 such that
/(Xo+oc (Xo) C) is a bounded subset of F. If x^eUj we see that
/j (^j 0"o)+a O-o)J6) is a bounded subset of F and /, e^ (^(^); ^).
The remaining assumption in (c) shows that/, e^^g (Tty (^/); ^).

(J) If/ej'f^ (?7; F), 7? e Uj and g is a C-valued function defined and
holomorphic on some neighbourhood of f(p) then g o f = g o f j o ^ j is
holomorphic on some neighbourhood of p. If nj is an open mapping then
g°fj is holomorphic on some neighbourhood of nj(p). Hence
/,ejf^(£/;F). The remaining assumption in (d) shows that
/,e ̂  (TT, (£/,); F).

(e) Use the same method as in (d).

Thus we have shown that fj e ̂ ^ (^j (Uj); F) in all cases and hence
f\u^^LB(U,\F). Since

(7 = IJyl17^ 3 ^j a neighbourhood of 0 in £, and ̂ \W,) ci^\W)}

we have completed the proof.

(18) U^E = limfg^ (^,7Cf) is ^--open if there exists an open subset of Ej, V, such
that (nj)~1 (V) = U. Hence U is Ej-open if and only if nj (U) is an open subset of
Ej and U^nj-^njW)).
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It is possible to prove analogous results for continuously holomorphic
functions by imitating the proof of Theorem 5.3. However, in this case,
we must assume that there exists a continuous norm on F in order to cons-
truct y} and we must assume that (E^, T^^^A ls an °pen surjective repre-
sentation of E in order to get fj continuous at 0.

The following result may be proved in this manner.

PROPOSITION 5.4. — Let (-£? T^i)ieA denote an open surjective represen-
tation of E and let F denote a locally convex space on which there exists a
continuous norm. If each E^ is a weak F-Zorn space then E is also a
weak F-Zorn space.

On the other hand we may use Proposition 5.1 (a) and Theorem 5.3
directly to obtain results about weak Zorn spaces.

PROPOSITION 5.5. — If(Ei, 7^i)ieA ls a surjective representation ofE and
Ei is a weak F-Zorn space for any locally convex space F and any i e A then
E is a weak F-Zorn space for any locally space F.

Proof. — By Proposition 5.1 (a), we way assume that F is a normed
linear space. The locally bounded and the continuous holomorphic mapp-
ings into F coincide and hence we may apply theorem 5.3 (a) to complete
the proof.

EXAMPLE 5.6.

(a) Ylw C, co arbitrary, is an open surjective limit of finite dimensional
(and hence locally compact) vector spaces. Since each finite dimensional
vector space is a strong and weak F-Zorn space for any locally convex
space F it follows that ]~[̂  C is a weak (use Proposition 5.5) and strong
(use Theorem 5.3 (a)) F-Zorn space for any locally convex space F.

(V) HIRSCHOWITZ [18] gives an example of a locally convex nuclear
space which is not a C-Zorn space. Since every nuclear space is the sur-
jective limit of inner product spaces we may conclude that there exist inner
product spaces which are not C-Zorn spaces. NACHBIN [32] gives an
example of a holomorphic function on ^ (C) which is not uniformly
holomorphic. If (pn)^= i is an increasing family of seminorms on J'f (C)
which defines its topology it then follows that (J'f(C), pn) is not a C-Zorn
space for all n sufficiently large.
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(c) The product ofC-Zorn spaces is not necessarily a C-Zorn space [ 18 ]
however if E = f^g^ E^ and ]~[feAi ̂  ls a C-Zorn space for each finite
subset A^ of A then F is a C-Zorn space. In particular, an arbitrary
product of Frechet spaces is a weak F-Zorn space for any space F and an
arbitrary product of Qf^y spaces is a weak F-Zorn space for any space F.

(d) Frechet spaces are weak F-Zorn spaces for any locally convex space
F[ 34 ]. Thus ^ (X) is a weak F-Zorn space for any completely regular
space X.

(e) If ^ is a collection of locally convex C-Zorn spaces stable under the
formation of finite products then E e ̂  is a strong F-Zorn space for any
F e D (€. In particular, we note that the strong dual of the strict inductive
limit of Frechet-Schwartz spaces is a strong F-Zorn space for any ^y
space F and the surjective limit of Frechet spaces is a strong F-Zorn space
for any D ^ space F.

(/) Let F denote a Frechet space which does not admit a continuous
norm. There exists a continuous open linear mapping of Fp onto ̂ ^ i C
(see section 7) hence ^^•= i C is isomorphic to a quotient space of Fp.
Since ^ (C)x^i C [ 18 ] and ^ [ 0, 1 ] x^^ C ([ 5 ] and Propo-
sition 5.2 (c)) are not C-Zorn spaces it follows by Proposition 5.1 (b)
that^f (C) x Fp and ^ [ 0, 1 ] x Fp are not C-Zorn spaces. Since ̂  [ 0, 1 ]
is a quotient space of /i a further application of Proposition 5.1 (b) shows
that /i x ̂ ^, i C is not a C-Zorn space.

(g) Let F = fifeo ^i ^ere each F^ is a metrizable locally convex space
and suppose F is an arbitrary locally convex space, then

^f([7;F)=^f(l/;FJ

for any domain spread over F (there exists an F satisfying the conditions of
this example which is neither a C-Zorn space nor a /;-space).

(h) Let F denote the strong dual of the strict inductive limit of Frechet-
Montel spaces. If U is a domain spread over E and Fis any locally convex
space then the set of points of continuity of hypoanalytic and scalarly holo-
morphic F-valued functions on U is open and closed. The proof consists
in applying Proposition 3.3 (b\ the result of Example 2.10 and Theorem
5.3(&).

We complete this section by using the method of Theorem 5.3 to prove
a number of results.
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PROPOSITION 5.7. — Let F denote a locally convex space on which there
exists a continuous norm and let E = lim^^ (E^ 71,) denote an open surjec-

tive limit in "which Jf^ (U^; F) = ̂  (U^; F) for all domains spread over
E,, ie A, then JT^ (U; F) = ̂  (U\ F) for all domains U spread over E.

Proof. — Let/eJf (U; F) where U is an open subset of E. Since the
definition ofj^^g (U-, E) is purely local it suffices to show/is locally bound-
ed at any preassigned point x^ e U. Without loss of generality we may
assume Xy = 0 and f(x^ = 0. Let p denote a continuous norm on E.
Since / is continuous at 0 there exists an element ; of A and W a convex
balanced neighbourhood ofO in E^ such that/"1^) =) 7^~1 (W) where Vy
denotes the open unit/7-ball of E.

We define /: W -> F by the equation f(x) = f(y) if n^ (y) == x. Now
ifTi, (y) = 7i, (z) = x e ^and/00 ^/(z) then/^ (/00-/(z))^ 0. Hence
there exists a ^-continuous linear functional on E, (p, such that
(? (/CO) ^ <P (/(^)). The function (p °/is continuous and holomorphic on
U. Since (p is ^-continuous there exists a positive number £ such that
((? °/)~1 (2^ | Z [ < c) => TT^"1 (PF). By Liouville's theorem this implies
that/(x) = f(y). Hence/is well defined. Since E is an open surjective
limit / is continuous on W and hence, by hypothesis, it is locally bounded
on W. Hence/is locally bounded at zero and this completes the proof.

REMARK. — The requirement, in the above proposition, that there
exists a continuous norm on F is non trivial. Indeed any continuously
holomorphic function from C", n a positive integer, into an arbitrary locally
convex space is locally bounded. ]~J^=i C is an open surjective limit of
finite dimensional spaces and hence every continuously holomorphic fun-
ction from fl^i ^ mto a l0^^ convex space on which there exists a
continuous norm is locally bounded. However, since Y[^= i C is not a
normed linear space the identity mapping from f^Li C into itself is
continuous but is not locally bounded. We now prove a result concerning
local factorization of holomorphic functions.

PROPOSITION 5.8. — A connected open subset, U, of the locally convex
space E has the strong local F-factorization property with respect to the
surjective representation of E, (E^ 7rf),eA? if either of the following conditions
are satisfied.

(1) (Ei, 7T;),g^ is an open surjective representation of E.
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(2) (Ei, 7ii)ieA ls a directed surjective representation of E, U is E^-open
for some ie A and each E^ is a strong F-Zorn space.

Proof. — We may assume that 0 lies in U. In both cases we may choose
an ie A and W a convex balanced open subset of E^ such
that 7i,-1 (W) c £/, /(7c,-1 (W)) is a bounded subset of F and TT, (£/) is an
open subset of E,. We show that/factors through E, at each point of U.
We may assume that U is a convex balanced open subset of E. Now if
x e U, y e E and TC, (j) = 0 then there exists Xo > 0 such that

{ X X + P . F | [^|^o. PeC}c: F7.

Hence <P°/[^;c+py | i x i ^ X o , p e c } ls a bounded holomorphic function for
all (p e F'. This implies that /(a ^+P ^) =/(a x) for all oc, P such that
a ^+ P y e W and a x e W. Hence we may define / on 7^ (U) by the for-
mula /(9) = /(z) if H, (z) = 9. /e XG (71, ( £7); F) and / = /o 71,.

If (£p 7r,),e^ is an open surjective representation of E then
<^ fw

f^^LB (^i (£/)^ F)- /(^) ^ a bounded subset of F and hence if E, is a
strong F-Zorn space then / is locally bounded on U. This completes the
proof.

The corresponding result for continuously holomorphic functions may be
proved in an analogous fashion. We obtain the following result.

PROPOSITION 5.9. — A connected open subset of a locally convex space E
has the weak local F-factorization property with respect to the open surjective
representation of E, (E^ T^^^A if there exists a continuous norm on F.

6. Holomorphically complete and paracomplete locally convex spaces (19)

LetfeJ^^g (E; F) where E and F are locally convex spaces. Let

O y = { x e £ | 3 P ^ a neighbourhood of x in £

such that f(V^^E) is a bounded subset of F}.

By using Taylor series expansions of/, it is possible to show that Qy
y\. /v ^ /\

is an open subset of E and that there exists an/in ^j^ (Qy ; F) such that
f\^=f. We let Qy = (/)-1 (F) and call Qy the natural strong domain of

(19) A number of the results in this section were announced in [11] and [14].
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existence of/(note Oy is not necessarily an open subset of F). By the same
procedure as that used in [ 10 ], it is possible to show that

f \ff=^>LB(E,F)^'f

./<

is a vector subspace of E containing E and is in fact the largest subspace
of E to which all locally bounded holomorphic functions on E can be
continued as F-valued locally bounded holomorphic functions.

DEFINITION 6.1.
/^.

(a) Fj [F] = C ^ f e ^ L B C E ' F ) ̂ f ls ^l^d the strong F-holomorphic com-
pletion of E.

^ ^\ ^
(b) If ̂  is a collection of locally convex spaces Fj [^] = ( I re^ ̂  [^]

is the strong ^-holomorphic completion of E. E is called a strong ^-holo-/\.
morphically complete locally convex space if E^ [^] = E.

We now use the concept of strong holomorphic completion to define
weak holomorphic completion.

Let/e ̂ f (F; F) and let q e ̂  (F). Let
/v y\.

9 .̂ ̂  = { x e £ ] 3 V^ a neighbourhood of x

in E and Kq o f (Vy n E) is a bounded subset of Fqfq-i (Q)}

9^ is an open subset of E. We let 9^ = C\q^y(F)^f,q' Bv construction
there exists /e^f (9^; F) such that /[„ = /. We regard 9 .̂ = (/)~1 (F)
as the natural domain of existence of/with values in F.

/\
Again we find that ^\fe^(E',F)^f ls a vector subspace of E and is in

fact the largest subspace of E to which all continuously holomorphic
functions from E to F can be extended to continuously F-valued holomor-
phic functions.

If ̂  is a collection of locally convex spaces
^
EdW = ( l / e ^ ( £ ; F ) ; Fe^^f

/^
is called the weak ^-holomorphic completion of E. If E^ W = E then we
say that E is a weak ^-holomorphically complete locally convex space.

By allowing the collection ^ to become too large we do not achieve much
^s.

more than an existence theorem (e. g. E^ (F) = E for any locally convex
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space E) so we begin by defining a concept of completeness which is suitable
for our purposes ([ 10 ], [ 11 ] and [ 12 ]). This is the concept of very
strongly complete locally convex space which we may now interpret as a
particular case of complete surjective limit (Proposition 6.3).

DEFINITION 6.2.

(a) A net, (^p)p g^, of elements of a locally convex space, E, is very strongly
Cauchy if { Xp^ (Xp-x^) }(p^)eBxB converges to zero for any set ofscalar-s
^"P,a)(P,a)6BxB-

(b) E^, the very strong completion of E, is the subspace ofE consisting of
all limit points of very strongly Cauchy nets.

(c) IfE = E^ then E is said to be very strongly complete.

It is immediate that a net (.^pe^ is very strongly Cauchy if and only
if for each p e ̂ y (E) there exists P^ e B such that p (x^-Xy) = 0 for all
P, a ^ P^. E^ is a very strongly complete subspace of E which contains E.

PROPOSITION 6.3. — E is very strongly complete if and only if it has a
complete surjective representation by normed linear spaces.

Proof. — Let 9 = (27;, TT,);^ denote a surjective representation of E by
normed linear spaces and let EQ denote the 9-completion of E. Since each
locally convex space can be representend by normed linear spaces we may
complete the proof by showing EQ = E^. Each E^ defines a continuous
seminorm on E in the following manner p i ( x ) = p^ (TT, (x)) where /?,
is a norm on E^ which defines the topology of E^. It also follows by
the definition of surjective limit that (j5;);eA ls a directed family of semi-
norms on E which defines the topology. Now if x e EQ = f^g^ (%,)"1 (£',)
then for each i e A there exists x, e E such that

7T,(x) = 71, (X,), i.Q.Ki(Xi-x) = 0.

Hence if we let q^ denote the extension ofp^ to Eit follows that q^ (x^—x) = 0.
Hence (^)fg^ is a very strongly Cauchy net in E which implies that EQ <=. E^.

Conversly, if x e E^ and (^p)pea ls a ^0^ strongly Cauchy net such that
Xp ~> x as p -> oo then for any ; e A it follows that 71, (.Xp —xj = 0 for all P,
a sufficiently large. Hence TT, (Xp-x) = 0 for all P sufficiently large and
x e (Ki)~1 (£',) for all i. Thus E^ <= EQ and this completes the proof.
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PROPOSITION 6.4. - Let (F,, 71,)̂  ^o^? a complete surjective repre-
sentation of the locally convex space F. If E c E^ c: E are locally convex
spaces and E^ (F^) =D E^ for all i then E^ (F) => E^.

Proof. - Let f e J ^ ( E ; F ) . Now n^fe^(E',F,) and hence there
exists / e^f (E,; F,) such that / [^ = TT, o/. If (^)^ e E - ^ x e E , ^
a-> oo then ^(/(x^)) converges for all f e ^ 4 as a -> oo. Hence
(/(•^a))ae5 is a Cauchy net in F and /(xj -^ T| e ̂  as a ̂  oo. Thus
ni of(xy) -> ^i W) e Fi as oc -> oo and

^n^A^r'w)^
since 77 is a complete surjective limit. Hence there exists fe ̂ f (E^; F)
such that/I^; = /and this completes the proof.

PROPOSITION 6.5. — Let (Ei, T^i)ie^ denote a surjective representation
of E, The (Ei, n^^ ^-completion of E lies in the strong (resp. weak) F-
holomorphic completion of E for any locally convex space F (resp. any very
strongly complete locally convex space).

Proof. - Let E^ denote the (£',, TT,)^ ̂ -completion of E. We show
Ec c E^ [ F ] and the remainder is proved by using this result, the canonical
normed surjective representation of E and Proposition 6.4.

Let/eJfj^ (E\ F). By the methods of the proceeding section we may
find an ie A and /, eX^ (£',; F) such that / = /, ° TT,. We let n, denote
the extension ofn, to a continuous linear mapping from E^ onto E, and we
define / on E^ by the formula / = /; o 7^. Now if x e 2^ then we can find
y e E such that n, (x) = K, (y). Choose V a neighbourhood of 0 in E such
that/(j+ V) is a bounded subset ofF.

For any z e V we have

/O^) =/^0^) =/^00+7i,(z))
^(^OO+^OO) =/f°^(^+z)
=7(x+z).

Hence/is locally bounded at x and this completes the proof.

COROLLARY 1. — If F is a locally convex space (resp. a very strongly
complete locally convex space) then E^ c: E^ [ F ] (resp. E^ <= E^ (F)).
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COROLLARY 2. - IfE = lim;^ (£';, 7i;) and each E^ is a complete locally
•̂  /\. y\. /\

convex space then E^ [ F~\ = E (resp. E = E^ (F)) for any locally convex
space F (resp. any very strongly complete locally convex space).

We now give a number of examples in which the opposite inclusion is
true.

PROPOSITION 6.6. — Let E and F denote locally convex spaces and let
(Ei, T^i)ieA denote a surjective representation ofE -where each E^ is a strong
(resp. weak) F-holomorphically complete locally convex space. The
(Ei, Ki)^ ^-completion of E is a strong (resp. weak) F-holomorphically
complete locally convex space for any locally convex space (resp. any very
strongly complete locally convex space) F if any of the following conditions
are satisfied;

(a) (Ei, 7ii)ieA ls an ̂ n surjective representation of E.

(b) Each Ei is a C-Zorn space.

(c) Each Ei is a C-w-space.
^ /<

Proof. — By Proposition 6.5 we must show that TT, (E^ [ _ F ~ ] ) c E^ for
all ie A. Let x e E^ [ F ] (resp. E^ (F)) and let ^denote the subspace of E
spanned by E and x. Now if/e^f^ (£';; F) (resp. ̂ f (£',; F)) then there
exists /e^g (£'; F) (resp. ^f (E; F)) such that /|g = /o TT,. We now
obtain the following commutative diagram :

"rc'i

Id Id

Hi (E)

^ •̂
' g

where g ( y ) = f ( x ) if y = ni(x). If x ^ x ^ e E and TC; (xi) = TC, (x^)
then TT, (x^—x^ = 0 and hence x^—x^e E. Now if y e E then

f(y+ Xi-X2)=f^i(y+x^-X2)

=fo^i(y):=f(y)'
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Hence if y e E, y^ e E -> y as a -> oo then

/Cy+xi-x^) = lim^/O^+Xi-x;,) = lim^/C^) =f(y).

In particular letting y = x^ it follows that/(xi) = f(x^) and hence g is
well defined, g is a G'-holomorphic function and/ = ^ o ̂ .

(a) We complete the proof, in this case, by showing that ge^f^y (TT; (E); F)
(resp. ̂  (Ki (E)', F)). V p e ^ y (F) then fe^^a (^ Fp) and ^s there
exists a neighbourhood of 0 in E, V, such that

S U p y e V ; n = 0 , l , 2 , . . . ^ ( — — — — — (2 X + 2 ;;) ) < 00.
\ n\ )

Hence

SUpye^70Q,n=0,l,2,...pf—lu(2^(x)+2^))<00,
\ n\ )

where TT, (F) is the closure of TT, (V) in TT; (£'). (Note that any continuous
polynomial from E into F can be extended to a continuous polynomial

/s /^

from E into 77.) Using the above inequalities it follows that

SUp3,e.T^;"=0,l,2,...^fEnw=0^^\^W+^))^\ n\ )

Since n^ is an open mapping it follows that n^ (V) is a neighbourhood
of 0 in TT, (I?). If/e^f (£'; F) then by letting ^ range over ̂ y (F) it
follows that g e^f (TI, (£'); F). If/e^f^ (£'; 77) then we can choose V
independent of p and it follows that g eJ'f^ (TT, (E); F).

(b) An application of proposition 5.1 (c) shows that if E^ is a C-Zorn
space then

?),(C)={ze£,;E^o^)(Z)
[ n\

converges for all / = ̂  o ̂ /(0) e^f (£,)l.
n! J

Using this fact and the same construction as in (a) we see that
^ ys.

TT( (x) e (£',)j (C) = Ei. This completes the proof for (b).
(c) Now suppose that each E^ is a C-co-space.
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Then ^f (£',) = (Jme^ (E.) ^w (^f (^m (^i)) (^m ^ the canonical mapping
from Ei onto (£',)J and

ys.

E»°= o -hw (^m (^ W)) < o) for all ^1 e ̂  (n^ (£,)).
n !

Since TT^ (£',) is metrizable it follows (see [ 10 ]) that

^(^.^))e((^U(C)

for all m e^ (£',) and hence TT, (x) e (^ (C) = E,. This completes the
proof of (c).

REMARK. - If

E = F = {(C/^i en^i ̂  ^n = 0 for all n sufficiently large}

then Y[^=i C is the (C, 7^1 -completion of £• and (C^ (F) = C" for
all n. However the identity mapping from E into F cannot be extended to
a continuously holomorphic function from ]~J^ i C into F. We thus see
that it is necessary, in the case of continuously holomorphic functions,
to place some conditions on the range space F in Proposition 6.7.

EXAMPLE 6.7. — If E is a locally convex space of countable algebraic
dimension then E^ [ F ] = E^ for any locally convex space Fand E^ (F) = E^
for any very strongly complete locally convex space F.

Proof. - Now E = lim^^^ (£p , Up) and each £p is a normed linear
space of countable dimension. In [ 10 ], we showed that (E )^ (C) = E
and since C can be isomorphically embedded as a closed subspace in any
locally convex space of positive dimension it follows that

(£,),[F]=(£^(F)=£^

for any locally convex space F. Propositions 6.5 and 6.6 imply that the
(E? » ^p^p^y (^-completion of E is the strong (resp. weak) F-holomorphic
completion of E for any locally convex space F(resp. for any very strongly
complete locally convex space F). An application of Proposition 6.3 now
completes the proof.

EXAMPLE 6 .8 . - ^ (X)d \ _ E ~ \ = ( € ( X ) = C € (X\ for any locally convex

space F and ^ (X)^ (F) = ^ (X) for any very strongly complete locally
convex space F.
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The characterization of holomorphically complete locally convex spaces
may be looked upon as the problem of finding the largest domain of defi-
nition of a family of holomorphic functions. We now look at the dual
problem of finding the smallest range (20). Let U and V denote respec-
tively a connected open subset of E, a locally convex space, and a connected
domain spread over E and let F denote another locally convex space. We
say V is a weak (resp. strong) F-holomorphic extension ofUifU can be
identified with an open subset of V and eachfe ̂  (U; F) (resp. Jf^ ( U ; F))
can be extended (uniquely) to an element of ̂  (V; F) (resp. ̂ ^(V\F)).
(U, V) is then called a weak (resp. strong) F-extension pair over E.

DEFINITION 6.9. — 77, a locally convex space', is a weak (resp. strong)
E-paracomplete locally convex space if each C-extension pair over E is also
a weak (resp. strong) F-extension pair.

Before investigating paracomplete spaces we look at G-holomorphic
extensions.

DEFINITION 6.10.

(a) A locally convex space F is R-complete if each fe^(U; F), U an
open subset of an arbitrary locally convex space, can be extended to an ele-
ment of^Q (V; F)for any C-extension pair (U, V).

ys.

(b) The R-completion of F, F^, is the intersection of all R-complete sub-
spaces ofF which contain F.

PROPOSITION 6.11. — A locally convex space F is R-complete if any of
the following conditions holds :

(1) F is sequentially complete.
(2) F is a C-holomorphically complete C-^-space.
(3) F is a C-holomorphically complete C-Zorn space.

Proof. — If F is sequentially complete the proof follows immediately
from results in [ 2 ] and [ 23 ]. Now suppose F is a C-holomorphically
complete locally convex space and that (U, V) is a C-extension pair spread̂
over some locally convex space. If/e^f (U; F) then there exists, since F
is sequentially complete and hence TP-complete, an/eJf^ (V; F) such that

(20) We refer to [19] for a more precise duality statement.
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f\u ==/• To complete the proof we must show that f(V) a F. Now
(p o/e^(D for all (p e F ' since F is a C-extension of U. Hence the res-

tW

triction of/to finite dimensional submanifolds of Vis continuous. Since
E is locally convex and V is connected it suffices to show the following to
complete the proof; if (p : [ 0, 1 ] -> V is a continuous curve such that
<p (0) = x e U, (p (1) = y e V and (p ([ 0, 1 ]) is contained in a finite dimen-
sional complex submanifold of V then

M=sup{5,/o(p([0, r ])c=F all t<S}==l.

Since xe U it follows that 0 < M ̂  1. If M + 1 then there exists
(p^i, 0 < ?„ < 1, t^t as ^ ->. a), such that /((p (^)) eF and
/((p (0) e F\F. Since (p ([ 0, 1 ]) is contained in a finite dimensional
complex submanifold of V it follows that

7((POn))-J(<P(0)

as 72 -> oo. Now if F is a C-co-space then we can find g in e^f (F) such that
^(/((? (^)))-^ °o as n—> oo ([ 10 ], Proposition 5) and this contradicts
the fact that (U, V) is a C-extension pair and completes the proof with
condition (2). Now if F is a C-Zorn space and

sup«|go/o(p(^)| < oo for all g e ^f(F)
then

P(g) = sup,, | g(/((p(^))) | e^(Jf(F), ̂ ) [12].
Hence

yoo ,/^g(0r
/\.

E^opf-^-^) < oo for all ge^(F)
\ "' /

Ln=oP( ————-
\ n\

and this implies that
^

^^^(/((pa)) < oo for all ge ^(F)
n!

where 6?" g (0)/n ! denotes the unique extension of d" g (0)/n ! to a conti-/\
nuous polynomial from E into C. The proof of proposition 6.6 now
implies that/((p (Q) e F^ (C) = F and this completes the proof with condi-
tion (3).

Proposition 6.11 implies that the ^-completion of a locally convexy\
space, F, is an ^-complete subspace of F which contains F. Since the
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intersection of jR-complete spaces is 7^-complete, we may easily construct
examples of ^-complete spaces which do not satisfy any of the conditions
(1), (2) or (3) of Proposition 6.11.

PROPOSITION 6.12. — Let { F I , Ki)i^A denote a complete surjective repre-
sentation of the locally convex space F. If each F^ is a weak E-paracomplete
space (resp. an R-complete space) then the same is true ofF.

Proof. — Let (U, V) denote a C-extension over E (resp. over an arbi-
trary locally convex space) and suppose/e^f (£7; F). Let/e^ (F; F^)
denote the G'-holomorphic extension of / to V. For each ie A there is

y\.

Sinfi in ^Q {V\ Fi) such that the following diagram commutes

f v i F ^-\
U

where J is the inclusion of F in F^ and TT; is the unique extension of n^ to
a continuous linear mapping from F^ into F,. The diagram is commu-
tative since T^ °f\u =/i and analytic continuation is unique. Now F^ is
a weak £-paracomplete space (resp. an ^-complete space) and
hence/,e^f(F;F;) (resp. ̂  (F; F,)) for all ie A. It then follows
that (7T,)-1 (/. (^)) <= W (Fi) tor all i. Hence / (F) c= ̂ ^ (re,)-1

(F^ = F and we obtain the following commutative diagram

f ^i

If Fi is ^-complete for each i e A then F is also ^-complete. If F^ is
£-paracomplete then TC, o/e^f (F; F,) for all ie A and /e^f (V,F).
Hence Fis F-paracomplete and this completes the proof of the proposition.
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In the next proposition, we give a number of examples of strong ^-para-
complete locally convex spaces. Proposition 6.12 and 6.13 may be used
to construct examples of weak .E-paracomplete locally convex spaces.

PROPOSITION 6.13. — Let E denote a locally convex space and let F denote
an R-complete locally convex space. F is a strong E-paracomplete locally
convex space if any of the following conditions hold.

(a) E is a strong F-Zorn space.
(b) E is an F-w-space.
(c) (J^ (U), y ^ ) is a barrelled locally convex space for any open subset

U of E and F is arbitrary.
(d) (Ei, T T ^ f g A ls a compact surjective representation of E, each E^ is a

k-space and F is a separable normed linear space.
(e) (Ei, n^i g ̂  is a compact surjective representation of E, each E^ is a

separable k-space and F is a normed linear space.
(/) ^LB (^' F) = ^ ( u ' ' F^for all U open in E.
Proof. — Let (£/, V) be a C-extension pair and let/ej'f^ (U; F). Since

F is ^-complete there exists/ee^f^ (V\ F) such that/jy = /. To complete
the proof we must show that/eJf^ [V\ F) in all cases. Case (a) is trivial
by the definition of strong F-Zorn spaces.

(b) By our hypothesis it suffices to prove the following; If U is a finitely
open subset of a metrizable space (E, pn)^=i, F is a complete D ^F space
and each/e^f^g (£/; F) can be extended to a (7-holomorphic function,/,
on a finitely open domain spread over E then/eJ'f^ (V\ F). Let (^)^L i
denote a fundamental sequence of bounded subsets of F. For any coun-
table cover of U, i^ = (Vn)^= i» we let^ (U) denote the subspace of^f (U)
consisting of all g such that

sup { ^ e V^ P, 00 < 1; [ ̂ % (̂  S (W) 001 < oo }
m

for all m.
^^ (£/), when endowed with its natural topology, is a Frechet space and

Jf (U) with the inductive limit topology, ^"5, generated by ^^ (U) as i^
ranges over all countable covers of U is a barrelled, bornological locally
convex space. Let

W={^V,ge^(lr)^,)^dng^)(x)eC

is continuous for all xeE and all n].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



484 S. DINEEN

Using Taylor series expansions about the points of Wit follows that W
is an open subset of V and hence W = K For each n, let

/\,
^ = {^£7, (pfe,,^^)) ^ i for all (pe^°, ^ (x) ̂  2!.

I \ n ' / n J

Fix T| in P^ and choose a positive integer ^V such that

|^0l)| ̂ sup,^,.^ sup^w^oc)^/. E^o^^Oc)
n !

for all h e^f (£/) and A e^f (V) such that A |y = A.

Hence | (p (^/(il)/w!) 00 [ < 1 whenever q> e ̂  ̂  (x) ̂ , 1/N and n is
arbitrary. This means that/is locally bounded at T| and we have completed
the proof in this case.

(c) Since (^f (£/), ̂ ) is barrelled it follows that each point of V gives
rise to a ^ ' ̂  continuous point evaluation on ^f (U). Hence if ^ e Fthen
there exists a compact subset of U, K, such that

l^)|^|H|jc tor all he^G(V) such that h\u e^(U).

Now if h ejf^(£/; .F) then there exists a neighbourhood of 0 in E, W,
such that [JxeK.yew;n=o^2,...(dnf(W>(y) = B is a bounded subset
of F. Hence Uy e TF ; n = o . 1.2.... (rfn/(0/^0 M lies in the closed convex
balanced hull of B and/is locally bounded at ^. This completes the proof
in this case.

(d) Since {U, V) is a C-extension pair /e^ (V;F). By Proposition
3.3 (&),/e^y (^;^) and an application of theorem 5.3 (b) completes
the proof in this case.

(e) Choose i e A and W an open neighbourhood of XQ in E^ such that
T^r1 (W) c £7, and/(7if1 (PF)) is abounded subset ofF. Now E, is sepa-
rable and hence /(7^~1 (W)) is contained in a separable subspace of F.
Since (U, V) is a C-extension pair we may use the Hahn-Banach theorem
to show that/(F) is contained in the same separable subspace of F. An
application of (d) now completes the proof.

(/) Trivial.

Results related to the above may be found in [28], [33] and [41].
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7. Hartogs' theorem (21)

In this section, we extend theorem 5.3 (Zorn's Theorem) by replacing
the local boundedness condition (theorem 7.12) and we extend Hartogs'
theorem concerning separate holomorphicity (theorem 7.15). We begin
by discussing very strongly and very weakly convergent sequences.

DEFINITION 7.1. — A net of elements in a locally convex space E, (Xy)^ g ̂ , is
very strongly convergent (resp. very weakly convergent) if(\ ̂ aeA conver-
ges to zero for any net of scalar s (^a)aeA (^P- /or some net of non-zero
scalar s (U^)'

We note that (x^g^ is a very strongly Cauchy net if and only if there
exists an x e E, such that (^ - x\ g ̂  is a very strongly convergent net. We
shall primarily be concerned with very strongly convergent and very weakly
convergent sequences in this section.

LEMMA 7.2. — If (Xn)^= i is a very strongly convergent sequence, then

{£n°°=i^n|^C arbitrary } c £^.

EXAMPLE 7.3.

(a) Every sequence in a metrizable locally convex space is very weakly
convergent.

(b) If E == ̂ i C and ^ = (0, .. 0, 1, 0 . . . . ) then (^i is not a
"̂"n^T^

very weakly convergent sequence.
(c) If every sequence in (E, r) is very weakly convergent and T^ is a

weaker topology on E than T then every sequence in (E, T^) is very weakly
convergent.

It appears that the topics very strongly convergent sequences, very weakly
convergent sequences and the existence of a continuous norm on a locally
convex space are rarely discussed in the literature and for this reason we
pause to give a number of elementary results concerning these concepts and
properties. We find that the concepts of very strongly convergent sequence
and very weakly convergent sequence are dual to one another in a certain
sense.

(21) Particular cases of some of the results of this section were announced in [14].
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PROPOSITION 7.4.

(a) If there exists a continuous norm on E then every very strongly conver-
gent sequence is eventually zero.

(b) If E is separable and every sequence in E is very weakly convergent
then there exists a continuous norm on En.

(c) IfE contains a very strongly convergent sequence which is not eventually
zero then E^ contains a sequence which is not very weakly convergent.

Proof.

(a) Trivial. The converse is not true.

(b) Let (^)^Li denote a dense sequence in E. By hypothesis there
exists a sequence of non-zero scalars, (^)^L i, such that ̂  x^ —> 0 as n —> GO.
Now p (q>) = sup,, [ (p (^ Xn) |, (p e E ' , is a continuous semi-norm on £p.
If p (<p) = 0 then (p (;€„) = 0 for all n and hence (p = 0 since the sequence
(^)^i is dense in E. Hence p is a continuous norm on £p.

(c) Let (x^ i denote a very strongly convergent sequence in E which
is not eventually zero. For each integer n choose (?„ e £" such
that (p^(^) =1. If (^°=i is any sequence of non-zero scalars then
p (<p) = sup^ | (p (xj'kn) | ls a continuous seminorm on ^p. Hence
P (^n ^n) ^ | ^n C^n) | = 1 a^ ^n <Pn -^ 0 as n —> oo. This completes the
proof.

We now restrict ourselves to Frechet spaces.

PROPOSITION 7.5.

(a) If E is a Frechet space then the following are equivalent.

(1) There does not exist any continuous norm on E.
(2) E contains a very strongly convergent sequence which is not eventually

zero.
(3) E contains a subspace isomorphic to Y[^= i C.
(4) There exists a continuous linear mapping from E^ onto ^°=i C.

(5) ^^°=i C is isomorphic to a quotient of E^.

(b) If E is a Frechet space which is not a Banach space then Ep contains
a sequence which does not converge to 0 very weakly.
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(c) If E is a Frechet space which is not a Banach space then ]~[^ i C is
isomorphic to a quotient of E.

Proof.

(a) (3) => (1) => (2) are trivial or well known. We now show (3) ==> (4).
If E contains a subspace isomorphic to ]~[^ i C then by the corollary to
Proposition 17 of [22] (p. 308) there exists a continuous linear mapping
of ̂  onto (n»°°= i C)p ^ ̂  i C. Hence (3) => (4).

Now every convex balanced absorbing subset of ^Li C is a neigh-
bourhood of 0. Hence every linear mapping from a locally convex space
onto ]̂  i C is an open mapping. This shows (4) o (5).

(4) => (1). Let T; E^ -^ ]̂  i C denote a continuous linear onto map-
ping. Let T° = { x e E, (p (x) = 0 all (p e ker (T) }. T° is a closed sub-
space of E and hence is a Frechet space. By the Corollary of [22] (p. 262)
there exists a canonical bijective linear mapping from £p/Ker(r) onto(T°)'.
Hence (T°y has a countably infinite basis. If there exists a continuous
norm on T° then (T0)' is either finite dimensional or has uncountable di-
mension. Since both of these eventualities are impossible, we conclude
that T° does not admit any continuous norm. Since T° is a subspace
(algebraically and topologically) of E this means that E does not admit
any continuous norm.

(2) => (3). If (2) holds then we choose a sequence of continuous semi-
norms, (pn)^=i, which define the topology of E and a sequence of elements
of E, (^)^i, such that p, (x,) ^ 0 and p^ (^) = 0 for all n > m. The
set { x^ }^L i consists of linearly independent vectors. We now consider
the subspace of E generated by (x^i and call it £\. For any integer n
we have

Pn (ET=1°^) ̂ =1 H Pn(x,).

Hence the sequence (̂ .)}°=i is a Schauder basis for E^ which has the
topology of coordinatewize convergence. Since E is complete it follows
that the completion of E^ is a subspace of E isomorphic to ]~]^ i C. Hence
(2) ==> (3) and this completes the proof of (a).

(b) If E is a Frechet space which is not a Banach space then there exists
on E an increasing sequence of non-equivalent semi-norms which define
the topology, (pn)^r Since E ' ^ (E,?^ for any n we can choose a
sequence of elements of E\ ((p^i, such that (p^+i is pn+i but not pn
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continuous for each n $? 1. Now suppose (P»)^°=i is a sequence of non-
zero scalars such that ?„ (?„ -)• 0 in E^ as n ->• oo. We can choose a se-
quence of elements of E, (^)^i, such that p^ (x^) < 1/n and
| ̂ n C^n-1) | > ^/Pn ̂ d this is impossible. This completes the proof of (A).

The proof of (c) can be found in [26] (p. 431).

EXAMPLE 7 . 6 . — Let 0 denote the set of all ordinals less than or equal
to the first uncountable ordinal with the order topology. The union of
an increasing family of compact subsets of Q is relatively compact. Hence
^ (Q) is a DF-space ([ 43 ], Theorem 12). Now Q is pseudo-
compact (i. e. every continuous function on D is bounded) by Theorem 11
of [ 43 ]. If (f^ i is any sequence of elements of ^ (Q) ihenfjn ||/J[^
converges to zero uniformly on 0 (and hence on all compact subsets of Q)
as n -> oo. Hence every sequence in ^ (P) is very weakly convergent.
This example shows that the result in (b) of the proceeding proposition is
sharp.

E, a locally convex space, is said to be very weakly complete if for any
sequence E, (^)^=i there exists a sequence in C \ { 0 } , Q^n)^=i suc^
thai lim^ ̂ , ̂  x^ = ̂  ̂  x, e E if | Pj ^ | ̂  | for all n.

If E is very weakly complete then every sequence in E converges to zero
very weakly and a sequentially complete locally convex space in which
every sequence converges to zero very weakly is very weakly complete.

E, a locally convex space, has the extension property if it contains a dense
subspace, E^ in which every sequence converges very weakly. If E^ is very
weakly complete we say that E has the complete extension property, if every
point ofE can be approached by a relatively compact net of elements of E^
then we say that E has k-extension property and if E^ is dense in (E, T^)
then we say that E has the Silva extension property.

EXAMPLE 7.7.

(a) Yliea ^i nas tne extension property (resp. complete extension
property) if and only if each E^ has the extension property (resp. complete
extension property).

(b) If X is a completely regular Hausdorff space then ̂  (X) (the complex
valued continuous bounded functions on X) is a dense subspace of ^ (X)
which is very weakly complete. Hence ^ (X) has the complete extension
property.
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(c) If X is a normal Hausdorff space and fe ̂  (X) we let
V^ = { x e X\ \f(x) \ ^ n }. By the Tietze extension theorem there exists
/„ in ^,00 such that ||/n |[x ^ ^ and /n-/|^ == 0. The sequence
C/n~/)/r=i converges very strongly and hence in the Tj^ topology on E.
Thus ^ (^) has the complete Silva extension property whenever X is
normal Hausdorff space.

(d) If there exists a continuous surjection from E onto ^^L ^ C then E
does not possess the extension property.

(e) Now suppose E is a locally convex space with the complete extension
property and C/n)^°=i is a sequence of non-zero elements of^f (£/), where
£/ is a balanced convex open subset of E. We show that there exists an
x in E such that^ (x) 7^ 0 for all n. By the complete extension property,
since each f^ is continuous, we can choose a sequence of elements of £,
(^)^i, such that /„ (^) ^ 0 and ̂  X, ̂  e £/ if | \\ ̂  1 for all 72.
Choose X} e C, 0 ^ | \\ \ ^ 1/2, and Fi a neighbourhood of 0 in E such
that ̂  Xi + Pi c: £/ and |/i (?i^ ̂ ) [ > 0.

Now suppose (^f)i ^f ^ ^^ and V^ have been chosen so that;

(1) \\\\ ̂  1/214-1 for 1 ̂  i ^ ^.
(2) | ̂ '-^+1 | ̂  1/2-74-1 for 1 ^ i ^j ^ n.
(3)E?=i^^+^c= £/

and

(4) \fi (E?=i ̂  ^-+ Vn) | > 1/2 I/. (E}=i ̂  ̂ -) I > 0 for i = 1, ..., n.

Since non-zero holomorphic functions have nowhere dense zero sets we
may choose (^.+1)^ and Vn+ito complete the next step in the induction
process.

From (2), it follows that limy_oo ̂  = ^» exists for all i and
by (1) | ̂  | < 1/21.

By (1) and (2), and since x^—^O as n—>co, it follows that

D=i^->Er=i^=^-
By (4) it follows that/^ (x) ^ 0 for all n.

We now discuss the structure of the indexing set in surjective represen-
tations. Let (£^, ' J i y ) a e A denote a surjective representation of the locally
convex space E.
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IfB and C are subsets of A we let

B A C = = { a e A ; ^a^eB, o^eC SMC/? that a ̂  ai an^ a^o^}.

We write ̂  in place of B/\ B and note that B/\ C = B ' ^ C' = ̂ n C .
If ^ = '̂, we say that B is a full (or an £-full) subset of A. A subset B
of A is bounded (or ^-bounded) if

5 c : { a f = { p e A ; P ^ a } for some a in A.

77^ E-complement of the subset B of A, B\ is defined as follows

BC={y,eA; { a}AB=0} .

It is immediate that B c: (B^ B0 = (B^ == (B^, Bc is an £-full
subset of A and ^ c: C implies ^c ^ C0 for any subsets ^ and C of A.
We now define the supports of elements of E. I f x e E ,

N(x)={aeA;7T,(x)=0}

is the CE,, TT,)^ ^// set ofx and S (x) = N(x)0 is the (E^ n^^ support
of x. We use the terms null set and support when there is no possibility
of confusion. (E^ TT^^ is called a symmetric surjective representation
ofE ifN(x) = S (xYfor all x in E.

B c: A is called an E-neighbourhood of a e A if there exists an x in E such
that a e S (x) and S (x) c B. B is said to be E-open if it is an E-neigh-
bourhood of each of its points (in particular S(x) is an E-open subset of A).

(^a? ^oJaeA is an i (resp. j) surjective representation of E if for each
unbounded subset of A (resp. each unbounded subset of A which is the union
of a sequence of bounded subsets of A), £, there exists a sequence of E-open
subsets of A, (£^ ̂  such that

(7.1) B^ A B ^ 0 for each n
and
(7.2) ;/a e A then B^ A { a } = 0 for all n sufficiently large.

E is said to admit (E^ n^\^ local partitions of unity if for each a in
A and each E-neighbourhood of a, F, there exists an operator from E into
E, P, such that the following hold for any x in E,
(7.3) S ( P ( x ) ) c V.
(7.4) N ( x ) c z N ( P ( x ) ) .
(7.5) N (x - P (x)) is an E-neighbourhood of a.
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P is called an (E^ Ti^g^ local partition of unity at (oe, V) or at a when
the E-neighbourhood is not specified.

E is said to admit continuous (resp. hypocontinuous, Silva continuous)
(E^ n^\ g ̂  local partitions of unity if for each a in A and each x in E, n^ (x) = 0,
there exists a net of (E^ Ti^g^ local partitions of unity at a, (-Pp)peB, such
that Pp (x) -» 0 as P -> oo (resp. Pp (x) -> 0 SLS P -> oo a^ IJp^ Pp (x) ̂
a relatively compact subset of E, Pp (x) —> 0 m (£, T^) ̂  P —>- oo).

^4 collection of E-open subsets of A, (^p)peB ? ^ an E-open cover of A if
for each a in A there exists a P in B such that { a } A Vn ^ 0.

E admits continuous (E^, Ti^g^ partitions of unity if for each E-open
cover of A, (^p)pg5, and for each x in E there exists a family of mappings
from E into E, (7?^ g ̂ , such that

(7.6) For each y in C there exists a ft in B such that S (T^ (x)) c: Fp.
(7.7) S(T, (x)) c: S(x)for all-in C.

(7.8) The finite sums o/^yg^ 7^ (x) converge to x.

Moreover if the finite sums of ^gc T^ (x) form a relatively compact
subset of E then "we say that E admits hypocontinuous (Ey^, Ky)^ g ̂  partitions
of unity and if the finite sums of^^^ ̂  converge to x in (E, Tj^) then we
say that E admits Silva continuous (Ey^, TT^ g ̂  partitions of unity.

EXAMPLE 7.8. - ^ (X) = lim^ g ̂  ̂  (^ (K\ R^) where Jf (X) is the set

of compact subsets of X and R^ is the restriction (to K) mapping. ^ (X)
induces on Jf (X) the usual set inclusion order.

B c jf (X) is a ^ (JT) = neighbourhood of TCeJT (JT) if there exists a
neighbourhood of K in A", £/ such that Jf (£7) c: B. I f /e^OQ and
^z (/) = { x e AV(x) = 0} then Jf (/z (/)) is the (^ (K\ R^^ ̂  null
set of/and 5' (/) = Jf ({ x\f(x) ̂  0 }). (^ (K), R^K^W is a symmetric
surjective representation of ^ (^). We obtain further properties by placing
additional conditions on X.

(a) Let / denote a continuous function on a completely regular Haus-
dorff space X which is zero on the compact subset K of X. For each
positive integer n let V^ = { n e X\ \f(n) \ < 1 / n ] and let g^ denote a local
partition of unity at (K, FJ. fg^ —> 0 in (^ (X), Tj^) as n —> oo and hence
^ (^0 admits continuous, hypocontinuous and Silva continuous
(^ (A^), Rj^Ke^ (x) local partitions of unity.
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(b) If X is a completely regular Hausdorff space then (^ (AT), Rf^Ke^r (xy
is a f (resp. j) surjective representation of ^ (X) if and only if ^ (X) is
infrabarrelled (resp. countably barrelled (22)) [3].

Let f2 denote the set of all ordinals less than the first uncountable ordinal
with the usual order topology. (^ (AT), R^pe^ (Q) ls a ./-surjective repre-
sentation ([43], p. 276).

(c) If X is a paracompact space then ^ (X) admits hypocontinuous
(^ (A3, Rf^Kesfr (X) partitions of unity by Ascoli's theorem and if X
is a separated Lindelof space then ^ (X) admits Silva continuous
(^(70, RK)K^(X) partitions of unity.

EXAMPLE 7.9. — Let r denote an uncountable discrete set. CQ^ (F) is
the space Co CO with the topology generated by the semi-norms (^5)5 g^ (D
where Jf^ (F) is the set of all countable subsets of r and P^ (Z) = sup^ g 5 |Z |̂
for all Z=(Z,),^Co(r) and all Be^^(T). (Co (^), R^^ ̂
is a surjective representation of CQ^ (F) where ^((Z^gr) == (^a)aeB-
Since a countable union of countable sets is countable it follows that
(Co (B), Rj^Be^^ (F) ls a 7-surjective representation of CQ^ (F). Co ^ (F)
induces on Jf^ (F) the usual set inclusion order. If x = (^a)aer e ^o (0
and/2(^)=={ae^;x„=0}then^(x)=jrJ^(^))and5f(x)=jf,(^\^)).
Thus A c: jf^ (D is Co,, (r)-open if and only if it is Co,, (r)-full.

Since Jf^ (By = Jf^ (F \ B) for any subset B of F it follows
that (Co (B), Rg)y „ ̂  (F) ls a symmetric representation of Co, ^ (F).
{ ^ {a} }a e r ls a continuous, hypocontinuous and Silva continuous
(Co (5), ^5)56^(0 partition of unity subordinate to any CQ^(T) ^open
cover ofJf^ (F). If ̂  eJf^ (F) then Rg is a local partition of unity at (B, V)
for any Co^(r)-neighbourhood VofB. Hence Co^(r) admits continuous,
hypocontinuous and Silva continuous (C^ (j&), R^s e ^a (F) local partitions
of unity.

EXAMPLE 7.10. - Let r denote an uncountable set. For each a in F let
A^ denote a countable set and let A = (Jaer A^' Let ^ denote the set of
all subsets of A whose intersection with each A^ is finite. For each B e ̂
we let /i (B) = { x = (^B; || -^ |JB = LeB I ̂  I < °° }•

We let /i OD = { C^);^; (A-i)^B e /i (J?) for all B e ̂  }, and we endow
/i (^) with the topology generated by the semi-norms || ||g as B ranges
over ̂ .

(22) We refer to [24] for the definition, properties and examples of countably barrelled
spaces.
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(/i (B), Recess ls a surjective representation of /i (^).
An analysis similar to that undertaken in the proceeding example shows

that /i (SS) admits Silva continuous (/i (2?), R^^ess partitions of unity and
Silva continuous (/i (5), R^)y g^ local partitions of unity, /i (^) induces
on £ the usual set inclusion order and (/i (2?), R^y g ̂  is a symmetric f-
surjective representation of/i (^). A similar example is discussed in [10].

Now let U denote a convex balanced open subset of E and let / denote
a function of U. If (^ , ^y)^^A ls a surjective representation of E then the
{Ey, Tc^g^-null set of/, N(f), is defined as follows:

N(f)={aieA', 3 an E-neighbourhood of a, N((x), and

f(x+y)=f(x) for all (x, x-{-y)eUx U such that S(y) cz N(a)}.

S(f)-N(fY is called the (^,0^ support off.

If B is an jE'-open subset of A and B /\ S (f)¥:0 then there exists an x
in £/ and 21 y m E such that x+.y e U, S (y) c= ^ and/(x+^) ^ /(^).

The cru^ ial part of many of our proofs consist in showing that certain
functions have bounded support and factor through every bound of their
support.

PROPOSITION 7.11.— Let (X^o^aeA denote a symmetric i-surjective
representation of the locally convex space E. A Banach valued G-holo-
morphic function, f, defined on a convex balanced open subset of E has
bounded (£'„, 7ia)aeA ^Ppoy1 and factors through every bound of its support
if any of the following conditions are satisfied.

(a) E has the k-extension property, admits hypocontinuous C^a'^aeA
partitions of unity, admits hypocontinuous (E^, ^a)ioeA ^occu partitions of
unity and f is hypoanalytic.

(b) E has the Silva extension property, admits Silva continuous {E^, n^^A
partitions of unity, admits Silva continuous CEa^oJaeA ^oca^ Petitions of
unity and f is Silva holomorphic.

(c) E admits continuous (E^, ̂ )^g^ partitions of unity, admits continuous
(E^^\eA local partitions of unity and f is continuous.

Proof. — If S(f) is not bounded then we can choose, since (E^, TI^^A
is an f-surjective representation of E, a sequence of £-open subsets of A,
(^X=i» such that s(f) A vn+0 f01 al1 ^ and if a e^ then ae V^ for
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all n sufficently large. We now show that 5" (/) is bounded when condi-
tions (a) or (6) hold. By our continuity hypothesis on/and the extension
hypothesis on E we may choose null sequences in U, OcJ^i and
(^+^)n°=i, such that S(y,) c: ^, f(x,+y^^f(x,) for all n sufficently
large (since (E^ n^\ e A ls a symmetric surjective representation ofE). Hence
(Yn)^=i ls a verv strongly convergent sequence and (Xn+^nYn)^=i ^ a null
sequence in (E, T^) for any sequence of scalars (^)^°=i. By Liouville's
theorem we can choose Q^n)^=i such that ||/(^n+^^) [[ —> oo as n —> oo.
This is impossible and hence S (f) is an ^-bounded subset of A.

Now suppose condition (c) holds. We may choose two sequences
in U, (x^, and (x,+y^ such that/(^+^)^/(^) and S(y,) c ^
for all n. Since (^)^L i is a very strongly convergent sequence and / is.
continuous we may choose a positive integer N and a neighbourhood
of 0, V, such that { Ky^ \ K e C } c V for all n > ^V and/(x+X^)=/(^)
for all x in F, all "k in C and all n ̂  N. By Liouville's theorem, it follows
that/(x^+^)=/(x^) for all n ^- N, and this contradiction shows that S (/)
is an ^-bounded subset of A.

Now let

r| = ^ P7; W is an £-open subset of A and /(x + y) = f(x)
for all (x, x+y) in (7x (7 such that S(y) c: ^7}.

It is immediate that N(f)=[j^^ W. Now if S (f) c {a}' and V
is any £-open subset of A that contains a then T| u V is an £-open cover
of A. If (x, x+y)e Ux U and S (y) c: V then we may choose, in case (c)
(resp. (a), (b)\ a continuous (resp. hypocontinuous, Silva continuous)
(^a^JaeA partition of unity, (Tp)p^, such that

f(x+y) = lim/(x+Sp W) =f(x).

Hence / factors through every jE'-neighbourhood of oc. Since E admits
continuous (resp. hypocontinuous, Silva continuous) (£a,7Ca)aeA 1°̂
partitions of unity it follows thsitf(x+y)=f(x) for all (x, x-\-y) in Ux U
such that 7i^00==0 if/is continuous (resp. hypoanalytic, Silva holomor-
phic). This completes the proof.

THEOREM 7.12.—Let C^^aeA denote a symmetric compact (resp.
bounded) i-surjective representation of E, and let X denote a domain spread
over E. Then ̂  (X; F)=^y (X; F ) (resp. ̂ 5 (X; F)) for any locally
convex space F if E has the k (resp. Silva) extension property, admits hypo-
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continuous (resp. Silva continuous) (Ey,n^^^ partitions of unity, admits
hypocontinuous (resp. Silva continuous) C^^aeA local partitions of unity
and ^f(r;F)=^y(r;F) (resp. ^5 (V; F )) -/or o^ ^fow^ ^r^J
ov^r £^, a an arbitrary element of A, and any locally convex space F.

Proof. — Without loss of generality we may assume that X is a balanced
convex open subset of E and that F is a normed linear space. By Propo-
sition 7.11, there exists an a in A and/^ in J^(7i^(Z);F) such that
f=Aon^ 1{ f is hypoanalytic and (^.^aeA is a compact surjective
representation then f^ e^f^y (^ (X); F). By an appropriate choice
of a we may assume that Ky (X) is a neighbourhood of 0 in E^ and hence,
since ^f ( V, F) = Jf^y (F; F) for all domains spread over E^, /^ is contin-
uous in some neighbourhood of zero. This shows that / is continuous
at zero in E and completes the proof in the hypoanalytic case. The Silva
holomorphic case is completed in a similar fashion.

EXAMPLE 7.13.

(a) jf(£/;F)-^y(£/;F) for any domain U spread over ^ (X)
where X is a paracompact topological space and F is any locally convex
space. ^f(t / ;F)=^fs(£/;F) for any domain U spread over ^ (X)
where X is a Lindelof space and F is any locally convex space.

(b) Since ̂  (0°°= i C x Zn^ i Q^^y (]-[;"= i Cx^,, C) (otherwise
^(PJ^i Cx^°,i C) endowed with the compact open topology would
be complete [12]), we see that the /^-extension property is necessary in
theorem 7.13.

(c) Let X denote a discrete uncountable set and let E denote the subspace
of ^ (X) spanned by the functions of compact support, ^o 00? anc! the
constant functions. IffeE, then there exists a unique x(/)e^o(2?)
and a unique P (/) e C such that/=^ (/)+13 (/) 1 where 1 is the function
identically equal to 1 on X. We let (p (/)=?(/) for all/e E. Since X
is uncountable it follows that (p is bounded on bounded subsets of E and
hence (p is Silva holomorphic. Since (p [^^=0 and (p( l )=l it follows
that (p ^c^f^y (£'). Since all other hypotheses are satisfied this shows that
the Silva partition of unity requirement in Theroem 7.12 is necessary (every
sequence in E converges very weakly).

(d) Let CQ (F) denote the set of functions on F, an uncountable discreet
set, which vanish at infinity endowed with the sup norm topology. The
identity mapping belongs to ^ffr(Co,jr); Co (F)). Since all other
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hypotheses are satisfied this shows that the f-surjective representation
requirement in Theorem 7.12 is necessary.

Let (E^, TT^ g ̂  denote a surjective representation of the locally convex
space E. A vector valued function, f, defined on a convex balanced open
subset, U, of E has minimal (Ey^, Ky\ g ̂  support if there exists an E-bounded
subset B of A such that the following conditions are satisfied.

(7.9) IfB c= { a f , (x,x+y)e Ux U and ^(y)=Qthenf{x+y)=f(x).

(7.10) If W is an E-open subset of A and W A B^0 then there exists
(x,x-^y)e UxU such that S(y) a W and f(x-^y)^f(x).

B is called a minimal (E^, ̂ y\eA support off.

Since S (/) always satisfies (7.10) it follows that S (/) is a minimal
(E^, TT^^ support for/if and only if S (/) is bounded and/(x+^)=/(^)
for all (x, x -\-y) e UxU such that TT^ (y) = 0 for some a which is an £-bound
for S (/). Moreover i f / h a s a minimal C^a'^aeA support 2? then
S(f) =) B00 and S (/) is thus a minimal (^, TiJ^^ support for/if and
only if it is jE'-bounded. In this case S (/) is also the maximum (23)
minimal (E^n^\^ support for/.

Proposition 7.11 gives examples of functions with minimal support.
We now give further examples.

PROPOSITION 7.14. — Let (^a'^aeA aenote a symmetric representation
of E and suppose E admits continuous (E^ ^a)aeA local partitions of unity.
A continuous holomorphic Banach valued function, f, defined on a convex
balanced open subset of E has minimal (E^, T^^^A support if the following
conditions are satisfied.

(7.11) N(f)=S(fY.
(7.12) { a }" = F) { V', V is an E-open subset of A containing a }

= = ( ) ^e£ , aeS(x) S (x).

(7.13) If a, P e A and V is an E-neighbourhood of |3, then there exists
a j in A such that { ( 3 } A { y } = 0 and a e N (x) whenever V <= N (x)
and y e N ( x ) .

Proof. - Since/is continuous there exists a P in A such that/(^+^) =f(x)
for all x, x+y in U with Tip OQ=0. Let 6 e { P ̂  By (7.12), we may

(23) Maximum with respect to set inclusion.
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choose an ^-neighbourhood of 5, V, such that V A {p}=0 . Now
if y e E and ^(j) c: V then (3 e F0 c 5'OO^^Cy) since (.£'„, TT^^ is
a symmetric surjective representation of E. Hence { P }° c: TV (/).
Since S^^SW for all x in E and { P r-Flpescc)^) it follows
that { P f= { P ̂  and 5' (/) c: { p }'. Hence/has bounded (^, 71,),̂
support. Now suppose S (f) c: { a Y and F is an ^-neighbourhood
of a. By (7.13), we can choose y in A such that y e { a }° and Tip (x)==0
whenever V and y lie in N(x). Now y e { a }° c: S (f)c=N(f\ hence
we can choose an ^-neighbourhood ofy, W, such that W <= N(f). Let P
denote an (£'a,7Ca)aeA l00^ partition of unity at (y, W). Now suppose
y e E and F c= N(y). Since ^u { y } c: ^(^-P^)), it follows that
^00=^00).

Hence/(z+(^-P(^))=/(z) for all z e U, whenever z+(y-P(y)e U.
By analytic continuation if follows that/(z+^)=/(z) if z and z+y lie
in U. By using the continuous (E^ TT^ g ̂  local partition of unity, it is
possible to complete the proof in an obvious manner.

If X is a completely regular Hausdorff space then each continuously
holomorphic Banach valued function, F, defined on a convex balanced open
subset of ^ (X) has minimal (^(K\ ^)jcejf(x) support. It is immediate
that (7.12) is satisfied. Moreover, if

W= {/eW); F(/i+/2) = F(f,) for all f,,f, such that 5(^)c= S(f)}

then N(F)=[j^S(f). Now if Ke^ (IJ/e^ ̂ (/))cc then there
exists /i, .. .,/„ in W such that Ke^ (U?= i ^ (/»))". By using local
partitions of unity it follows that K e N ( F ) . Hence N(F)=N(F)CC,
and we may apply Proposition 7.14 to complete the proof.

We now extend Hartogs' theorem concerning separate analyticity.

THEOREM 7 .15 (Hartogs' theorems—Let (E^^aeA an^ (F^ Pp)peB
denote open i-surjective representations of the locally convex spaces E
and F respectively and let G^ denote a locally convex space. A G^-valued
separately locally bounded G-holomorphic function, f, defined on a domain
spread over ExF, X, is locally bounded if the following conditions are satisfied.

(1) For each a in A and each P in £, the G^-valued separately locally
bounded G-holomorphic functions defined on domains spread over E^ x Fn
are locally bounded.

(2) E and F satisfy the complete extension property.
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(3) Each C-valued continuously holomorphic function defined on a balanced
convex open subset of E (resp. F) has minimal (Ey^, n^ g ̂  (resp. (Fp, Pp) p g a)
support.

Proof.—We may assume without loss of generality that X== Ux V
where U and V are convex balanced open subsets of E and F respectively.
For each x in U and y in V\et f(x,y)=f^(y)=fy (x) and let B^ofv)
(resp. ^((po/J) denote a minimal (^^<x)<xe^ (resp. (^ppp)pea) support
for (p o/^ (resp. (p °/,) where (p e (C^)'. Let ̂  (/y) = U<pe(G,r ̂  (<P °/').
We now show that B^=[j^^y B^r (fx) is an -F-bounded subset of B.
Suppose not, then, since (Fp, pp)pg5 is an ?-surjective representation of F
we can choose a sequence of F-open subsets of B, (^)^Li, such that
W^ A B^0 for all 72 and if P e B then P e W^ for all sufficiently large n.

Hence we can find a sequence of elements in (7, (^"n)^°=i, and two
sequences in V, (y^=i, and 0^+z^i, such that S (z^) c ,̂ and
/(^^+^)^/(^^n) for all /z.

Since E satisfies the complete extension property we may choose x
in U such that f(x,yn-}-Zn)^f(x,Yn) and since F satisfies the extension
property we may assume that the sequence 0^)^L i converges to zero in F.
Since / is separately locally bounded we may choose a neighbourhood
of zero in F, W, such that W <= Fand/(x, W) is a bounded subset of G^.
Since (^)^Li is a very strongly convergent sequence we may choose an
integer N such that { y^ + ̂  z^ | X e C } c: .̂ This contradicts the fact
that we may choose, by Liouville's theorem and the Hahn Banach theorem,
(pe(G'iy such that | (p of(x,y^+'kz^) | —> oo as [ ^ [-^ oo. Hence B^
is an F-bounded subset ofB. Similarly A^ = (Jyev ̂  (/y) ls an ^-bounded
subset of A.

Now choose oco in A and Po in ^ respectively such that A^ c: { ao }"
and ^i c { po }'.

Suppose (^1,^1) and fe?^) are in Ux V and

(^o^l)' Ppo(^l)) = (^oC^). Ppo(^2)).

Let (p e (G\y be arbitrary. Since B ((p o/^) c: ^4^ is a minimal (2^, TiJ^^^
support for (p ofv and ^((p o/^) c: B^ is a minimal (Fp, pp)pg5 support
for (p oy^ it follows that

<p °/( î. ̂ i) = <p °fx, (yi) = (p °/xi (^2)
= (po^(Xi) = (poF2^) = (PO/(X,, ̂ ).
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Hence we may define the function /on n^ (U) x po (V) by the formula

/(^ y2)=f(^i. Yi)
if

Otao^l). PpofJl))^^.^).

Since n^ and pp^ are open mappings if follows that / is a separately
locally bounded G^ valued G-holomorphic function on n^ (U)x po (V).
By hypothesis (1) it follows that /e X^ (n^(U)x pp,(T); G^) and
since/=/o (n^, p^) it follows that /e^g (£/x F; Gi). This completes
the proof.

DEFINITION 7.16.— A triple of locally convex spaces (E, F, G^) is called
a weak (resp. strong) Hartogs' triple if every G^-valued G-holomorphic
separately continuous (resp. locally bounded) function defined on a domain
spread over E x F is continuous (resp. locally bounded).

PROPOSITION 7.17.

(a) If the locally convex spaces F and G form a duality such that every
F-equicontinuous subset of G is bounded and (E, F, C) is a Hartogs9 triple
then ^ (U; C7j=Jf (U; G)=^^ {U; G) for any domain spread over E
where G^ is the vector space G endowed with the < J ( G , F ) topology.

(b) If (E, F, G) is a weak (resp. strong) Hartogs' triple and E^ and F^
are closed subspaces ofE and F respectively then (E/E^, F / F ^ , G) is a weak
(resp. strong) Hartogs' triple.

Proof.

(a) Since Jf (U\ GJ ^ ^ (£/; G) ̂  ^^ (£7; G) it suffices to show
^(£/;GJc=^(£/;GJ. Letfe^(U^). Define / (x, y) = y (f(x)) for
all x in U and all y in F. By hypothesis/is separately continuous and, since
(E, F, C) is a Hartogs' triple,/e e^f (U x F). Hence we may choose, for each
xinU, a neighbourhood ofxin U, V, and a neighbourhood i fOin F, W, such
that/(Fx W) is a bounded subset of G. Thus/(T) is an F-equicontinuous
subset of G and / is locally bounded. This completes the proof.

(b) Trivial.

As an immediate corollary, we obtain the following result.
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COROLLARY.

(a) If (F, Fp, C) is a Hartogs9 triple then

^(U; FJ =Jf(l7; F) =^([// F).

(b) If (F, F, C) is a Hartogs9 triple then

^(U; F,) ==^(U; Fp) =^(£7; Fp) where F, = (F', a(r, F)).

We now use known extensions of Hartogs' theorem and theorem 7.15
to obtain new examples. We also show by various counterexamples
that most of the rather technical conditions imposed on E and F in theo-
rem 7.15 are necessary.

The following results are known;

(a) (F, F, G) is a strong Hartogs' triple if E and F are Frechet spaces
and G is a DF-space.

(b) (F, F, G) is a strong Hartogs9 triple if F and F are ^^'^ spaces
and G is an ^"^ space.

EXAMPLE 7.18.

(a) (^ Examples 2.8 and 7.7.) (^^ F,, fl^ ̂  ^) is a Hartogs5

triple if each F; and Fy has the complete extension property and
(n.iew3 E^ Yljew^^ 6f)is a strong Hartogs' triple for any finite subset ^3
of ^i and any finite subset ^4 of w^. In particular (f], ̂  ̂  F;, ["̂  ^ ̂  F,, G)
is a strong Hartogs' triple if each F( and Fy is a Frechet space and G is
a 2)F-space [34]. Since (^i C, ]~\^^ C, C) (24) is not a Hartogs9 triple,
we see that the complete extension property is necessary both in this example
and in Theorem 7.15.

(6) If X and Y are completely regular Hausdorff spaces and ^ ( X )
and ^ (V) are infrabarrelled then (^ (X\ ̂  (7), F) is a weak Hartogs'
triple for any locally convex space F. Let Q denote the set of all ordinals
less than the first uncountable ordinal. ^ (fi) is not infrabarrelled but
is countably barrelled (Example 7.8 (d)) and ^ (Q)p is a Frechet space
(Example 7.6). (^ (Q), ^(Q)p, C) is not a Hartogs' triple and this shows
that the f-surjective representation condition is necessary both in this
Example and in Theorem 7.15.

(24) If (F, Fp, C) is a Hartogs' triple then F is a normed linear space.
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(c) Let X and F denote completely regular topological spaces and suppose
^(X) and ^(F) are infrabarrelled. By corollary (b)

^(^(Z); ̂ (7)p) =^(W), ̂ (Y)p).

Since ^ (X) is infrabarrelled the canonical mapping of ^ (X) into its
second dual is an isomorphism onto its image. Hence ^(V)? is not
a DF-space if Y is not hemicompact [43]. If X and Y are infinite dimen-
sional Banach spaces then ^ (^ (X); ̂  (F))= ^LB (^ ( x ) ' ^ (y)) and
^(F) is not a Z)F-space.

(0 (5<^ Example 7.9.) Since

(Co,.(r))p=^(r)
it follows (Co^ (F), /i (F), C) is not a Hartogs' triple if F is uncountable.
This example shows that the f-surjective representation condition in theo-
rem 7.15 may not be replaced by an equivalent y-surjective representation
condition. It is also interesting to note that ̂ f (C^ F)) = ̂  (Co (T)) [25]
but the above shows that ^ (Co^ ( T ) x F ) ^ ^ (Co (r)xF) for certain
Banach spaces.

8. Locally convex topologies on f̂ (£/)

In this section, we study locally convex topologies on spaces of holo-
morphic functions using the techniques developed in the previous section.

y5 will denote the topology of uniform convergence on Mackey conver-
gent sequences. If E and F are locally convex spaces, U is a convex balanced
open subset of E, and Q=(E^ Ti^g^ is a surjective representation ofE
we let y^(U\F) denote the set of all F-valued functions on U which
have minimal 9-support.

With the above notation, we obtain the following result.

PROPOSITION 8.1 .— Let 9 denote a symmetric f-(resp. j) surjective repre-
sentation of E.

(a) IfF'^ has the extension property and E has the Silva extension property
then every y ^ bounded subset (resp. sequence), B, of^^ (U; F) n y^ (U; F )
factors through some a in A.

(b) If Fp has the extension property, E has the complete Silva extension
property and is very strongly complete then every ST y (25) bounded subset

(25) i. e. pointwise bounded.
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(resp. sequence), £, of J^g (U; F) n ̂ e (U; F) factors through some a
in A.

(c) IfFis a Banach space then every ^"g bounded subset (resp. sequence), B,
of^ (U; F ) n ^Q (U; F ) factors through some a in A.

Proof.-For each / in B let A (/) denote a minimal 9-support for /.
If A^=[j^yA (/) is an ^-bounded subset of A then the required result
follows immediately. Otherwise, using the fact that 9 is an i (resp. j)
surjective representation when B is a set (resp. a sequence), we can find
a sequence ofF-open subsets of A, (W^)^^ with the following properties;

(8.1) A^ A W^ ^ 0 for each n.
(8.2) If a e A then there exists a positive integar ^ (a) such that

a e ̂ c for all n ^ /z (a). Hence we may choose a sequence of elements
in B, (/^i such that

(8.3) /„ (̂  +^) ̂  (̂ ) for all ^

and
(8.4) ̂ )c ,̂

(^) Since E has the Silva extension property we may assume that x^ —> 0
in (E, Tj^) as ^ -^ oo. Since Fo has the extension property, we may choose
a null sequence in Fp, ((pn)^°=i, such that

<Pn °/n (^n + Yn) + ̂  n °fn C^)-

Since (^ay^aeA ls a symmetric surjective representation, (8.1), (8.2)
and (8.4) imply that 0^)^= i is a very strongly convergent sequence. By
Liouville's theorem, we can choose a sequence of scalars, (^»)^°=i, such
that Xn+^nYn c ^ ^or an n an^ | ̂ n ° fn (^n + ̂ n Yn ) | -> 00 ^S ^ -> 00.

This contradicts the fact that B is a ^-bounded subset of^fs(£/; F)
and completes the proof of (a).

(b) If E has the complete Silva extension property then we may choose
an x in U such that fn (.x-}-yn)^fn 00 tor all TZ. Since (^)^°=i is a very
strongly convergent sequence and E is a very strongly complete locally
convex space there exists an integer N such that

X+{^=N^nyn\^C}^U.

By taking subsequences if necessary, we can find a sequence of scalars,
(Pn)^=i» ^d a null sequence in Fp, ((pn)^=i, such that

SUp^l^/^X+^jvPm^m)! = °0-
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This contradicts the fact that B is a ^-bounded subset of^^F) and
completes the proof of (b).

(c) Since (j^)^Li converges very strongly we can suppose

||/n(^+^)-^(^)||^0)

as n -> oo. Since each/in ̂ f (U; F ) is locally bounded/(^+^) =/ (>-„)
for all sufficiently large n. Now (^f (U; F\ ̂ "5) is barrelled hence

^(/)=sup^||/(^+^)-/(^)||

is a .^-continuous semi-norm on (^f (£/; F), ^"5). This contradiction
completes the proof of (c).

REMARK 8.2.

(a) We may replace the hypothesis that E has the Silva extension property
and B <= ̂  (U; F ) by the hypothesis that E has the ^-extension property
and B c.^^(U\F) in Proposition 8.1 (a) and (A).

(6) If 9 is a symmetric f (resp. j) surjective representation of E, F^ is
a dense (resp. dense separable) subspace of F^ in which every sequence
converges very weakly, (p o/has a minimal 9-support, B ((p o/), for all (p
in Pi then (J<peFi 2? (<? 0/) is a minimal 6-support for/if any of the following
conditions hold.

(b 1) / is continuous.
(b 2) /ej^5 (£/; F) and £' has the Silva extension property.
(& 3)/ej'f^y (£/; F) and £' has the ^-extension property.
(c) It is necessary to place some restriction on F in Proposition 8.2.

Let E=F=Y[^, C and let Q={C\n^,.
For each integer n let/, ((xj^i)=(a^ ̂ =1 where cr^=l if /z==w

and (T^=O if n^m. ^p=^^=i C does not have the extension property
and (/,)^i does not factor through any n.

THEOREM 8.3.— Let e=(£^, TCy)^ denote a symmetric i (resp.j) surjective
representation of the locally convex space E and let F denote a Banach
space (resp. a Banach space with separable dual). If E has the extension
property and J>f (U) c= y^(U) for every balanced convex open subset U
of E then the following results hold for any domain X spread over E.

(a) If 9 is a compact surjective representation of E and

^ H Y ( U , ; F ) = ^ ( U , ; F )
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for any convex balanced open subset of Uy^ of E^ a e A, then

^(X; FJn^y(X; F) =^(X; F).

(b) If 9 is an open surjective representation of E and

^(£/,/^)=^(^;FJ

for any convex balanced open subset U^ of E^ a e A, then

^(X;F)=^(X;F^.

Proof.—We may assume, without loss of generality, that X is a convex
balanced open subset of E. If 6 is an f-surjective representation, we let B
denote the closed unit ball of F^ and if 9 is a y'-surjective representation we
let B denote a dense sequence in the unit ball of F^ If/e^f (X; FJ
then 2?==((p °f\eB ls a bounded subset of (J^ (X), <^"o)- By Proposi-
tion 8.1, B factors through some a in A and thus, by the Hahn-Banach
Theorem/factors through the same a. Hence there exists/e ̂  Q (Ky^ (X ); F)
such that/o n^=f. If 9 is a compact surjective representation of E and
fej^HY^F) then /eX^y (^ (X); F), and we may complete the
proof of (a) in an obvious manner.

If 9 is an open surjective representation of E then n^ (X) is a convex
balanced open subset of E^ amd/e ̂ f (^ (X); Fy). We may now complete
the proof of (&) in an obvious manner.

EXAMPLE 8.4.

(a) If ^(X) is infrabarrelled, then ^ (^ (X); F)= ̂  (^ (X)\ FJ
for any locally convex space F.

(b) We have already noted that
^ (Co, (F); Co (F)) ̂  ̂  (Co, (F); (Co (F),)

if r is uncountable. Theorem 8.3 (b) shows that
^ (Co,, (F); ̂ )= ̂  (Co,, (r); ̂ )

for any separable Banach space.
Let ^"o,fc denote the bornological topology associated with e^o [12].

PROPOSITION 8.5.— Lei 9==(£^,7i^g ^denote a compact^ open, symmetric
representation ofE and let F denote a Banach space. IfE has the extension
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property, U is a balanced open subset of E, and J^ (U; F ) <= ̂  ( U ; F)
then the following are true.

(a) IfQ is an i-surjective representation ofE and the ^'o-bounded subsets
of ̂  (n^(U); F ) are equibounded for each oc in A then the ^'^-bounded
subsets of ^ { U ; F ) are equibounded (26).

(b) If 6 is a j-surjective representation of E, and

(^(7r,(C7); F), ̂ 5) = (^^(U); F), ̂ )

for each a in A then

(^(C7; F), ^5) = (^f([/; F), ^o,.).
Proof.
(a) Let B denote a ^-bounded subset of Jf' (U; F). By Proposi-

tion 8.1, B factors through some a in A. Since 0 is a compact and an
open surjective representation there exists a ^o-bounded subset of
^f(7i(Ly;F), B, such that \(B)=B. Since a ^-bounded subset of
^f (7t (H,); F) is equibounded and n^ is an open mapping it follows that B
and hence ^ (B) is an equibounded subset ofj 'f(£/;F).

(6) Since ^5 > ^o,b and ^o,b ls a bornological topology it suffices to
show that every ^"o bounded sequence, B, in ̂  (U\ F) is also ^"g-bounded.
By using Proposition 8.1, we see, as in part (a), that there exists an oc in A
and a ^"o-bounded sequence, B, in J»f (^ (U;F)) such that \(B)=B'
By our hypothesis, 5 is a ^-bounded subset ofj^ (^ (£/); F). Using
once more the fact that n^ is an open mapping we see that ̂  is a bounded
mapping and hence B is a ̂ -bounded subset of ^ (£/; F). This completes
the proof.

EXAMPLE 8.6.

(a) The e^o- bounded subsets of X7 (^ (1Q) are equibounded if, and
only if, ^ (X) is infrabarrelled.

Proof.-If ^(X) is infrabarrelled then Proposition 8.5 implies that
every e '̂o-1501111^ subset of^f(^(Z)) is equibounded. Conversly,
if every ^o-bounded subset of ^f (^ 00) is equibounded then every
strongly bounded subset of ^ OOp is equicontinuous and hence ^00
is infrabarrelled ([22], p. 217).

(26) i. e. locally uniformly bounded.
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(b) Since

WE^i cxn^i c), ̂ s) 9- (^E^i cxn^i c), ̂ o,.)D2],
it follows that the extension condition is necessary in Proposition 8.5.

PROPOSITION 8.7.— Let 9 =(E^, n^\^^ denote a compact, open, symmetric
j-surjective representation of E. If E has the extension property, U is a
convex balanced open subset of E and ^ ( U ; F ) c: y^ {U; F) then
(Jf (U; F), ^o,&) is barrelled if Of (^ ( U ) ; F), ^~o^) is barrelled for
each a in A;

Proof.—Let V denote a closed convex balanced absorbing subset os
Of (U;F),^o,b)' Since Of (U; F), ^~o^) is bornological, it sufficef
to show that V absorbs any ^"o-bounded sequence, B, in Jf (£7; F). By
Proposition 8.1, there exists an a in A and a ̂ "o-bounded sequence in ̂  (U),
B, such that \(B)=B. Let V==(\)~1 (V). Since ^ is a compact
mapping ^ is a continuous mapping from (^f (^ (£/); F), ^'o^) mto

•<^
(J^ (U', F), ̂ "o,b) an^ hence F is a closed convex balanced absorbing
subset of Of (^ (£/); F ), ^'o,fc)- Since (^f (^ (£/); F), ^~o,b) is barrell-
ed F absorbs B and hence F absorbs B. This completes the proof.

The above technique and Proposition 2.4 of [12] may also be used
to show that certain spaces of holomorphic functions are complete.

PROPOSITION 8.8.— Let Q=(E^, Ti^g^ denote a compact, open, i (resp.j)
representation of E and let U denote a convex balanced open subset of E.
If Jf(<7) c y^{U) then the following are true.

(a) IfE has the extension property then (^ (U), ^~o) is quasi-complete
(resp. sequentially complete) if (J'f (^ (U)), ̂ 0) is quasi-complete (resp.
sequentially complete) for each cue A.

(b) If E has the extension property and each F^ is a normed linear space
space then (J^ (U ), ^~Q ^ is quasi-complete (resp. sequentially complete).

(c) If each E^ is a normed linear space then (^ (U), ̂ "5) is quasi-complete
(resp. sequentially complete).

Proof.—Since 6 is a compact and open surjective representation of E
it follows that ^ is an isomorphism form (^f (^ (U)), ^~o) onto its
image in (e^F (U ), ^~o) for any convex balanced open subset U of E. This
fact and Proposition 8.1 may easily be combined to complete the proof
of (a).
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If B is a bounded subset of (^ (n^ (U)), ^o) and E^ is a normed linear
space then

^-0 (^ (^a (U))) \s = ̂ o. . (^ (^ W)) |B == ^5 (^ (^ W)) IB

(by [12] and [30]). Now using the identification between B and ^ (B)
to see that

^^^AUW\B ̂  ^W^))k(B)

since TT^ is an open mapping.

Also :
^6 (^ W) k (B) ^ ̂ 0, . W^)) k (B)

^o(^W)k(B)

=^0(^(^(^)))|B,

since 9 is a compact surjective representation of E.
We may now complete the proof for (b) and (c) by using Proposition 8.1,

our hypothesis and the fact that the different topologies coincide.
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