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COMMUTATION THEOREMS
AND GENERALIZED COMMUTATION RELATIONS

BY

MARC A. RIEFFEL
[Berkeley]

RESUME. — On demontre un theoreme de commutation pour une structure qui generalise
les algebres quasi hilbertiennes de Dixmier de telle facon qu'elle peut manier des paires
d'algebre de von Neumann de tallies differentes. On se sert de ce theoreme de commuta-
tion pour donner une demonstration directe de la relation de commutation generalisee,
de Takesaki pour la representation reguliere d'un groupe (etendue au cas non separable
par NIELSEN), evitant des reductions par representations induites et integrales directes.

SUMMARY. — A commutation theorem is proved for a structure which generalizes
Dixmier's quasi-Hilbert algebras in such a way that it can handle pairs of von Neumann
algebras of different size. This commutation theorem is then applied to give a direct
proof of Takesaki's generalized commutation relation for the regular representations
of groups (as extended to the non-separable case by NIELSEN), thus avoiding reductions
by induced representations and direct integrals.

Let G be a locally compact group, and let H and K be closed subgroups
of G. Let L2 (G) be the usual Hilbert space of square-integrable functions
on G with respect to left Haar measure. Let M(K, G/H) be the von
Neumann algebra of operators on L2 (G) generated by the left translations
by elements of K together with the pointwise multiplications by bounded
continuous functions on G which are constant on left cosets of H. Similarly,
let M(H, K\G) be the von Neumann algebra generated by the right
translations by elements of H together with the pointwise multiplications
by bounded continuous functions which are constant on right cosets of K.
TAKESAKI [19] showed that, when G is separable, these two von Neumann
algebras are each other's commutants. He called this theorem a generalized
commutation relation, since, as he showed, it is closely related to the
Heisenberg commutation relations.

Takesaki's proof was restricted to the separable case because of the use
he made of direct integral theory. NIELSEN [10], by using the theory
of liftings of measures, extended Takesaki's theorem to non-separable
groups. In both papers, the strategy of the proof consists of using the
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206 M. A. RIEFFEL

theory of induced representations to make a reduction to a situation in
which Dixmier's commutation theorem for quasi-Hilbert algebras [5] can
be invoked. In the present paper, we give a proof of Takesaki's theorem
(in the general case) whose strategy consists of first proving a commutation
theorem for a structure which generalizes Dixmier's quasi-Hilbert algebras,
and then showing that this commutation theorem is directly applicable
to Takesaki's situation., Our commutation theorem is directly applicable
in part because, unlike Dixmier's, it is able to handle pairs ofvon Neumann
algebras which are of different size, such as those which arise in Takesaki's
situation. For this reason, our theorem may also be useful in other
contexts. Because our commutation theorem is basically algebraic, and
applies directly, our proof of Takesaki's theorem avoids both induced
representations and most of the measure-theoretic difficulties in which the
proofs of Takesaki and Nielsen become embroiled.

In the course of Nielsen's proof, he obtained a generalization of a theorem
of MACKEY [8] and BLATTNER [2] concerning intertwining operators for
induced representations. We will show elsewhere [15] that this genera-
lization has a natural interpretation and proof within the version of the
theory of induced representations developed in [12], and that, in fact,
it is a major part of the statement that certain C*-algebras associated
with the situation are strongly Morita equivalent [13]. These results are
independent of the present paper. Nevertheless, the structure we introduce
here to generalize Dixmier's quasi-Hilbert algebras was motivated by the
"imprimitivity bimodules" [12] used in discussing Morita equivalence,
and some of the formulas used here in applying our commutation theorem
to Takesaki's situation were motivated by the formulas used in [15] to
discuss Nielsen's generalization of the Mackey-Blattner theorem.

The reader is referred, to [19] for a discussion of the connection between
the generalized commutation relations and the Heisenberg commutation
relations, and to [10] for the connection with the Takesaki-Tatsuuma
duality theory for locally compact groups [20]. Finally, we remark that,
as Takesaki points out at the end of [19], essentially the same generalized
commutation relation has been obtained by ARAKI [1] for the case in
which G is a Hilbert space, and H and K are closed subspaces, all acting on
the Fock representation. It would be interesting to see how to fit Araki's
theorem into the framework of the present paper, but so far this has eluded
me. However, it was in studying this question that I did find a fairly
simple proof [14] of Araki's theorem whose lines are rather parallel to
those of the present paper.
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1. The Commutation Theorems

In this section, we introduce a structure which generalizes the quasi-
Hilbert algebras of DIXMIER [5], and we then prove the analogue for this
structure of Dixmier's commutation theorem for quasi-Hilbert algebras.
The axioms for this structure are motivated by the needs of the next section,
and by formulas and structures appearing in [12], [13] and [15].

All the algebras and vector spaces we consider will be defined over the
complex numbers. If C and D are algebras (not assumed to have identity
elements), then by a C-jD-bimodule we mean a vector space, X, on which C
and D act on the left and right respectively, with the action of C commuting
with that of D, and with both actions being compatible with the action
of the complex numbers. If C has an involution, then by a ^-representation
of C we mean a *-homomorphism of C into the pre-C*-algebra of those
bounded operators on a pre-Hilbert space, V, which have adjoints defined
on V. We will say that such a representation is non-degenerate if CV is
dense in V (using module notation). Analogous definitions are made for
a *-representation on the right, that is, an anti-*-representation. A repre-
sentation is said to be faithful if its kernel consists only of 0.

We now introduce our generalization of Dixmier's quasi-Hilbert
algebras [5]. Because we will not introduce until later the analogue of
axiom (v) of Dixmier's definition of a quasi-Hilbert algebra, we will use
the prefix "semi" instead of "quasi".

1.1. Definition. — Let C and. D be algebras, each equipped with invo-
lutions, which we denote by ff and b respectively. By a Hilbert
semi-C-D-birigged space we mean a C-jD-bimodule, X, equipped with an
ordinary inner product, [,], and with C and D-valued sesquilinear forms,
< , >c (conjugate linear in the second variable) and < , >p (conjugate linear
in the first variable), such that:

1° The representations of C and D on the left and right of X are faithful
-^-representations.

2° < x, y >c z = x < y, z >p for all x, y, z e X.
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208 M. A. RIEFFEL

3° < X, X)c is a self-adjoint set, that is, for any x, y e X there exist x^
Yi e X such that < ^, y ̂  = < ̂ i, Yi >c-

4° < ,̂ X >^ ̂  (the linear span) is dense in X.
We will say that X is a Hilbert C-D-birigged space if in addition:
5° < x, y Yc = < V. x >c and < x, y >^ = < y, x >^ for x, y e ̂ .
6° For any x e X both < x, x >^ and < ;c, ^ >^ act as non-negative

operators on X.
We remark that axiom 4 implies that the action of C is non-degenerate.

From axiom 2 it then follows that the action of D is non-degenerate. We
further remark that if x, y e X, ce C and d e D, then

c<x, yYc = <cx, y)c and <x, y^^d = <x, y d y ^ .

To see this, let z e X. Then

(< l<^};>c)^=:^(^<};^>Z))=(^)<}7^>D=<^};>C^

and we can now use the hypothesis that the representation of C on X is
faithful. From this we see that the linear span of the range of < , >^ is a
left ideal in C. But by axiom 3 this linear span is self-adjoint, so that it is,
in fact, a two-sided ideal in C. Since in the definition of a Hilbert
semi-C-.D-birigged space there is no hypothesis relating < , >p and the
involution on Z), we can not draw a similar conclusion about the linear span
of < , >^. However, the commutation theorem will concern itself with
the von Neumann algebra generated by Z>, and thus, in particular, with
the *-algebra generated by this linear span. Finally, we remark that there
is no real loss of generality in the assumption that the representations of C
and D are faithful, since if they are not, then it is easily seen that one can
factor by their kernels.

1.2. Example. — Every quasi-Hilbert algebra can be viewed as a Hilbert
semi-birigged space. Specifically, if A is a quasi-Hilbert algebra, let C,
D and X all be A, with the actions of C and D on X being just the left and
right regular representations. Using the notation from page 66 of [5],
we define involutions on C and D by

a JL.̂  h ^^ra = a" , a= a ^

for a e C and a e D. It is then clear that axiom 1 above is satisfied.
Define C and Z>-valued sesquilinear forms on X by

(a,bYc=ab\ < a , & > ^ = = ^ b
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COMMUTATION THEOREMS 209

for a, beX. Then it is clear that axioms 2 and 3 are satisfied. To see
that axiom 4 is satisfied, we note that from the hypothesis that A2 is dense
in A it follows by von Neumann's double commutant theorem [5] that
there is a net of elements of A which, as operators on the completion of A,
converge in the strong operator topology to the identity operator on A.
It follows that A3 (as AA2) is dense in A. But this is axiom 4 above. If A
happens to be a Hilbert algebra, then it is easily seen that axioms 5 and
6 above are also satisfied. In the verification just sketched, no use was
made of axiom (v) of Dixmier's definition of a quasi-Hilbert algebra. We
will see that this axiom corresponds to the Coupling Condition which
is used in the commutation theorem we will consider shortly.

Of course, for us the important example of a Filbert semi-C-D-birigged
space is that given in the next section in connection with the generalized
commutation relations.

If X is a Hilbert semi-C-D-birigged space, we will let X denote its Hilbert
space completion, and our notation will not distinguish between the
elements of C and D viewed as operators on X and their extensions by
uniform continuity acting as operators on X. We will let E ' denote the
commutant of any set of operators, E, on X. Thus C " ^ D' (and D" c c').
We will say that C and D generate each other's commutants on X if in
fact C" = D' (so that D" = C). The commutation theorem gives a
necessary and sufficient condition, which we call the Coupling Condition,
for C and D to generate each other's commutants. This condition is the
appropriate analogue for the present situation of axiom (v) in Dixmier's
definition of a quasi-Hilbert algebra, and our proof that the condition is
sufficient is obtained by trying to imitate the proof of Dixmier's commu-
tation theorem for quasi-Hilbert algebras [5]. We will see later that the
Coupling Condition is automatically satisfied if X is, in fact, a Hilbert
C-D-birigged space. This generalizes the commutation theorem for
Hilbert algebras ([5], [11]).

1.3. The commutation theorem for Hilbert semi-blrigged spaces, —
Let X be a Hilbert semi-C-D-birigged space. Then C and D generate
each other's commutants on X if and only if the following condition is
satisfied:

Coupling Condition: Ifm, n e X and x, y e X, and if

[m<x, z>p, w] = [z, n<^, w>j for all z, weX,
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210 M. A. RIEFFEL

then for any fixed z, w e X there is a net, [ c^ }, of elements of C such that

and
Cfe z converges to m < x, z >j),

cjl ^ converges to n^y, w )> .̂

Proof. — We first prove the sufficiency of the Coupling Condition.
Imitating the proof for quasi-Hilbert algebras, we set:

1.4. Definition. — An element, m, of X is said to be D-bounded if for
every x e X the linear map y \-> m < ^, y >j) from Z to J^ is bounded, and so
extends by uniform continuity to a bounded operator on X, which we will
denote by Z^ ^ . We will let X^ denote the linear manifold of D-bounded
elements in X.

1.5. LEMMA. — Let me X^. Then Z^ ̂  is in D' for every x e X.
Furthermore, i f T e D ' , then TmeX^, and

L^Tm,x>= TL^^ for every xeX.

Finally, X ̂  X^, and L^y^ ̂  = < y, x >c for all y, x e X.
This lemma is verified by routine calculations.
1.6. LEMMA. — Let J == { Z^ ^ ; m e X^, x e X ] , and let K = J n ./*,

where * denotes the adjoint operation on operators on X. Note
that L^ ^ e Kfor all x, y e X. Then K" = D ' .

Proof. — It is axiom 3 which ensures that L^^ yy e K for all x, y e X.
Now let T e D' and x, y, z, w e X. Then from Lemma 1.5 we see
that Z* y TL^ ^ is in J. But equally well its adjoint is also in J, so
that it is, in fact, in K. Thus if we let E be the linear span of the range
°f < 3 )c (^ich we saw earlier is a 2-sided ideal in C), then it follows that
the linear span of K, and so K " , contains e Tffor every e,fe E and Te D ' .
Now from axiom 4 we see that EX is dense in X, so that by von Neumann's
double commutant theorem there is a net of elements of E which converges
in the strong operator topology to the identity operator on X. If in the
expression e Tf we let first e, and later /, range over this net, we find
that TeK\ Thus D' c K". But D' => K" by Lemma 1.5. Thus
D' = K".

Q. E. D.

Now let m e X^ and x e X, and suppose that L^ ̂  e K. Then from the
definition of K it follows that there exist n e X^ and y e X such that
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^m, x^ = L^, x > » that is [m < .x, z >^, w] = [z, n ( y , w >^] for all z,
wef. But then the Coupling Condition is applicable, and so we can
find, for any given z, w e X, a net { Cj,} having the convergence properties
of that condition. Suppose now that S e C\ Then for the given z and w,
we have

<L<^>Sz,u;>=<5z,L^y>w>

= < S z, n < y, w >p > == linifc < S z, c\w >
=lmifc<S'CfcZ, w > ==<5L<^>z, w>.

Since z and w are arbitrary elements of X, it follows that S commutes
with all elements of A. Thus C c K\ so that C" ^ A:" = 2)'. But C ^ D
so that C" c ^)', and consequently C" = D\ Thus the sufficiency of the
Coupling Condition has been shown.

We now prove the necessity of the Coupling Condition. Most likely
a proof of this which uses only bounded operators can be given, along
the lines of the necessity proofs for the commutation theorems
in [14] and [16]. Partly because of the connections with the developments
in the next section, we prefer to give here a proof which is shorter but
which involves unbounded operators. It is easily seen that a proof along
the lines presented here can also be used in [14] and [16].

Assume that C = D\ and let m, n e X and x, y e X be such that
\m < x, z >^, w~\ = [z, n < y, w >p] for all z, w e X. Define (possibly
unbounded) operators L^^y and L^^yy on X, with domain X, by
L^m, x> z = m < x? z YD ^or zeX, and similarly for Z^ y y . Then the
above relation says that each of these operators is contained in the adjoint
of the other. It follows that both operators are closeable. We will denote
their closures by L^^^ and L^ ̂ . Now routine calculations show
that the domains of L^ ^ and L^ yy are invariant under the action of D,
and that these operators commute with the action of D. Further routine
calculations show that this is also true with respect to the action of the
strong operator closure, D", of D. In other words, these operators are
affiliated [5] with D ' .

Now let L^ ̂  = PT be the polar decomposition of L^ ^, where P
is a partial isometry, and Tis a positive self-adjoint operator (see p. 1249
of [6]). Then it is not difficult to show (see lemma 4.4.1 of [9]) that P e D'
and that T is affiliated wUh D\ Let { E (r) } be the spectral resolution
for T, so that E(r) e D' for each r. Then PTE(r) e D' for each r.
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Now let z, w e X be given. Since C is assumed to generate Z)', it is
dense in D' in the strong-*-operator topology [17] by the Kaplansky
density theorem [5], and so for each r > 0 we can find Cy e C such that

||c,z-Pr£(r)z||^l/r and ||c;w-E(r) TP*w|| ^ 1/r.

But PTE (r) z = PE (r) T z, which converges to P T z = = m ( x , z >^.
Similarly £' (r) TP* w converges to TP* w, which equals

L<^y>w=n<^,w>p,

since L^. y> is contained in the adjoint of L<^ ̂  . Thus ^ z and c^ w
converge to m < x, z >^ and ^ < >», w >p as desired.

Q. E. D.

The above theorem is indeed a generalization of the commutation theorem
for quasi-Hilbert algebras [5], since we have:

1.7. COROLLARY. — If A is a quasi-Hilbert algebra, then its left and
right regular representations generate each others commutant.

Proof. — If we view A as a Hilbert semi-birigged space, as in Example 1.2,
then it is easily seen that axiom (v) in the definition of a quasi-Hilbert
algebra is essentially the Coupling Condition.

Q. E. D.

We remark that the Coupling Condition can be reformulated in a more
spatial form similar to the forms used in [14] and [16], and about to be
used in the next theorem. But the reformulation seems quite cumbersome,
involving taking certain linear combinations of the operators L^ ^ ,
and it does not seem to facilitate the application considered in the next
section.

We turn next to showing that if X is, in fact, a Hilbert C-Z)-birigged
space, then the Coupling Condition is automatically satisfied, so that we
obtain a generalization of the commutation theorem for Hilbert
algebras ([5], [11]). To do this we first consider another coupling condi-
tion which is closer in form to the coupling condition used in [14]. This
new coupling condition may conceivably also be useful in other situations,
but it does not seem to hold in general in Hilbert semibirigged spaces in
which the commutation property holds. I do not have an example to
show this, but I suspect one can be found among the Hilbert semibirigged
spaces which will be considered in the next section.
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1.8. SECOND COMMUTATION THEOREM. — Let X be a Hilbert semi-
C-D-birigged space "which also satisfies axiom 5 of Definition 1.1. Suppose
that the following condition is satisfied:

Second Coupling Condition:
If m, n e X and x, y e X, and if

(1) [m, ex] =+[c^, n] for all ceC,
(2) [m, y d ] = -\xd\ n] for all d e D ,

then m < x, z >^ = 0 = n < y, z >^ for all z e X.
Ifm, n e X, and x, y e X, and if [m < x, z >^, w] =^[z, ^< y, w >jJ for

all z, weX, then there is a sequence { d ^ } of elements of D such that
for all z e X:

< y dk, x >c z converges to m < x, z >^,
and

( x d ^ . y Y c Z converges to n < ^ , z > ^ .

In particular, the Coupling Condition of Theorem 1.3 is satisfied, so that C
and D generate each others commutants on X.

We remark that the first conclusion of this theorem says, more or less,
that the (unbounded) operator ^<^,.x:> can be approximated in the
strong-*-operator topology [17] from X (not X) by operators of the form
< y d, x y^ for d e D.

Proof. — The proof is similar to the first part of the proof of the commu-
tation theorem in [14]. Let X" denote X but with complex conjugate
structure (p. 9 of [5]), and form the Hilbert space X © Z\ If z e X,
then z will denote z viewed as an element of Z". Let x and y be given as
in the statement of the theorem, and let G denote the set of pairs (m, n)
in X © X~ such that

[m<x, z>^, w] = [z, n ^ y , w>j>] for all z, weX.

Let H = { ( y d , (xd^); de D }. Because we are assuming that axiom 5
is satisfied, it is easily seen that H c G. Of course, G and H are subma-
nifolds ofXQX".

Let H± denote the orthogonal complement of H in G, and suppose
that (wo, no) e H1. Then, for all de D,

0 == [(mo, no), ( y d , (xd^)] = [mo, yd]+[xd\ Ho].

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



214 M. A. RIEFFEL

But since (mo, n^) e ̂  there is a sequence, (m^, ^), of elements of G which
converges to (mo, no). Then for any z, w e X a routine calculation shows
that

[mo, <w, z>c^] = [<w, ̂ >^, ^o]-

But we have seen that < X, X >c (the linear span) is an ideal in C which
has the identity operator in its strong operator closure (see the proof of
Lemma 1.6), and so is strong operator dense in C. It follows that
[mo, cx~\ = [c* y, no} for all c e C. We can thus apply the Second Coupling
Condition to conclude that

mo < x, z >j) = 0 = HQ < y , z >j) for all zeX.

Now suppose that (m, n) e G. Then we have

(m, n) = (mo, no)+(^i» ^i)

where (mo, ^o)e Hl ^d (m^, ^i) e H. In particular, there is a
sequence { ^ 4 } in 2) such that

( y d k , (x^T) converges to (m^, n^).

Furthermore, from the previous paragraph we have

^o < ̂  z >D = 0 = ^o < ̂  z >D for all ^e Z.
It follows that

m < x, z >D = mi < x, z YD = lim^ ̂  < x, z >^,

^<^ ^ > D = ^ i<^ ^>D=1™^4<^ ^>^
for all z e X, which, upon using axiom 2, gives the desired result.

Q. E. D.

1.9. THEOREM. — Let X be a Hilbert D-C-birigged space. Then the
Second Coupling Condition is automatically satisfied, so that C and D generate
each others commutants.

Proof. — Let m, n e X and x, y e X, and suppose that they satisfy the two
equations of the Second Coupling Condition. In those equations set
c = < y, z >c and d = < z, x >j), where z is an arbitrary element of X.
Then we obtain

[m, 0, z>cx] = [<z, y V c y , n],

[m, ^ < z, x >^] = - [x < x, z >p, n]
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COMMUTATION THEOREMS 215

for all z e X, Using axiom 2 and rearranging, we find that

[ z ( y , y Y D , ^ ]=[m,^<z,x>^]=-[< .x ; ,x>cz ,n]

for all z e X. By continuity this is also true for z = n, that is,

["O^D, ̂ ]=-[<^^>c^ "].

Since the operators < x, x >^ and < y, y >p are assumed to be non-negative,
it follows that

\n<y,y^D. ̂ ]=o.
Now if D is viewed as a pre-C*-algebra with the C*-norm as operators

on X, then we see that X with the right action of D and the D-valued inner
product is a right D-rigged space in the sense of definition 2.8 of [12]
(except for the density of the range of the inner-product, which is irrelevant
here as in [13]). Consequently the generalized Cauchy-Schwarz inequality
of Proposition 2.9 of [12] is applicable, so that for any w e X we have

<y, ^>D<^ ^>D^||'O, w>D\\<y,y>D.
as an inequality for positive operators. Thus

[n0, w>^, n0,w>^] |^ | |<w, ^>D| | [n<37,^>^, n] = 0,

so that n < y, w >^ = 0 for all w e X. Now for any z e X :

[m<x, Z>D, w] == [z, n ^ y , w^^\ =0

so that m < x, z >^ = 0 for all zeX. Thus the conclusion of the Second
Coupling Condition is satisfied.

Q. E. D.

That the question of when two algebras of operators generate each
other's commutants can be fairly delicate may be seen by considering
the "factorizations which are not coupled factors" found by MURREY
and von NEUMANN (sections 3.1 and 13.4 of [9]). This question is closely
related to the subject of normalcy in von Neumann algebras (see references
in [21]).

2. Generalized Commutation Relations

In this section we show how to apply the commutation theorem
of the last section to obtain Takesaki's generalized commutation relations.
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216 M. A. RIEFFEL

Some of the formulas we introduce are suggested by the developments
in [12] and [15].

Let G be a locally compact group, and let H and K be closed subgroups
of G. We equip G, H and K with left Haar measures, whose modular
functions we denote by A, 8, and 5^, respectively. Let C^ (G) denote
the space of continuous complex-valued functions of compact support on G.

Let G/H and K\G denote the left and right homogeneous spaces with
respect to H and K respectively. Our notation will not distinguish between
the points of G and the corresponding cosets, because our notation will not
distinguish between functions on G/H or K\G and the corresponding
functions on G which are constant on cosets. Now K acts as a transfor-
mation group by left translation on G/H, while H acts as a transformation
group by right translation on K\G. If we view C^ (G/H) and C^ (K\G)
as pre-C*-algebras under pointwise multiplication, then the above actions
define an action of K as a group of automorphisms of C^ (G/H) and
an action of H as a group of automorphisms of C^ (K\G). We can
then form the corresponding transformation group algebras as in [7]
and [18]. Specifically, let C= C^KxG/H) with product defined as
in 3.3 of [7] by

II*2:Q?,x)= ^(q,x)^(q~lp,q-lx)dq
J K

for II, S e C, p e K, XG G/H, and define an involution on C as in 3.5
of [7] by

n^^nQr1,?-1^^-1).
Similarly, let D = Cc (Hx K\G) with product defined by

Q*X(5,x)= Q^x^Cr^.xOA
J H

for Q, % e Z), s e H, xe K\G, and with involution defined by

0*(s,x)==Q(s-l,;c5)§(s-l).

Let X denote Cc (G) equipped with its usual inner-product,

[/^]=fJc
f(x)g(x)dx

for/, g e X. Left translation on G by elements of K gives a unitary repre-
sentation of K on the pre-Hilbert space X, while pointwise multiplication
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on X by elements of C^ (G/H) gives a representation of C^ (G/H) on A".
These two representations together give a covarianf representation [18]
of the pair (K, C^ (G/H)), and so define a -^-representation of C on X,
defined (following 3.20 of [7], or [18]) by

(II*/)(x)= f Tl(p,x)f(p-lx)dp.
J K

Let ̂  denote the Hilbert space completion of X. Then routine arguments
show that the von Neumann algebra generated on X by the representation
of C is the same as the von Neumann algebra M (K, G/H) defined in
the introduction of this paper. Similarly we define an action of D
on the right of X by

f
/*Q(x)= /(xr^AO-^QO.xr1)^.

J H

We do not expect this action to preserve the involutions in general, since
the action of H by right translation on X need not be unitary if G is not
unimodular. But routine calculations show that this action is by bounded
operators (since Q has compact support), and that it commutes with the left
action of C on X. Furthermore, if the adjoint of the action of an element fi.
ofDis calculated, it is easily seen to be given by the action of the element ̂
of D defined by

^(t,x)=^(t)^(t,x).

Thus, if we define a new involution, b, on D by this formula, we do obtain
a *-antirepresentation of Z). As with C, routine arguments show that
the von Neumann algebra generated on X by D is the same as
the von Neumann algebra M (H, K\G) defined in the introduction of
this paper. Finally, it is easily seen that the representations of C and D
on X are faithful. Thus axiom 1 in the definition of a Hilbert semi-
birigged space is satisfied.

In 7.8 of [12] a sesquilinear form on X with values in C ^ ( G x G / H )
was defined. If the values of this form are restricted to Kx G/H^e obtain
a sesquilinear form on X with values in C^ (Kx G/H), defined by

<f,g>c(p,x)= \ fwg^a^x-1?)^JB
for f,geX, where g* (x) = g(^~1) A (x~~1) as usual. (The restriction
map from C^ (G x G/H) to C^ (Kx G/H) is essentially a generalized condi-
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tional expectation, as discussed in [15].) If axiom 2 in the definition
of a Hilbert semi-birigged space is to be satisfied, this determines what
the Z)-valued sesquilinear form must be. A straight forward calculation
shows that we must set

<g,h\(t,x)=J(t)2\ g * ( x ~ l p ) h ( p - l x t ) d p
J K

for g, h e X where y (t) = (A (t )/8 (t ))172 as in 4.2 of [12], and that with
this definition axiom 2 indeed holds. Similar formulas are used in [15].

We now consider axiom 3. A simple calculation shows that for/, g e X
we have

(0; S>cf(P, ̂ ) == ̂ P)\^Dc^ ̂

where P is defined on K by P ( p ) = (A (p)/8^ {p))1'2, as in [15].
As shown on page 56 of [3] (or in [4]), we can find a strictly positive
continuous function, p, on G such that p (px) = P (p)2 p (x) for all p e K
and x e G. Considering p ( p ~ 1 x), we find that

PQO^p^/pQ^x).

A simple calculation using this shows that

P (P)2 < g, />c (P, x) = < p g, flp >c (p, x).

Thus axiom 3 holds. We remark that <,>c could have been made sym-
metric by introducing the factor P into its definition, as is done in [15],
but this would complicate later calculations, and besides, it seems somewhat
interesting that such symmetry is not of importance for our present
purposes.

We consider next axiom 4. Now in [12] it was shown that the linear
span of the range of the inner-product having values in C^ (G x G/H)
is dense in C^ (G x G/H) for the inductive limit topology. The proof
consists of lemma 7.10 and proposition 7.11 of [12] together with
the easily seen fact that this range is an ideal in C^ (G x G/H), but the proof
uses no other parts of [12]. Now <,>^ is obtained by restricting to Kx G/H
the elements of the range of this inner-product from [12]. It follows
immediately that the linear span of the range of <,>c is dense in C
in the inductive limit topology. From this it follows that this linear
span contains an approximate identity for the inductive limit topology
of approximately the analogue of that described in lemma 7.10 of [12].
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From this it is easily seen that < X, X >c X is dense in X in the inductive
limit topology, and so in norm. Thus axiom 4 holds. We remark that
a somewhat similar argument is given in lemma 2.5 of [15].

We have thus verified:

2.1. PROPOSITION. — IfG is a locally compact group, H and K are closed
subgroups, and if X, C, D and their actions are defined as above, then X is
a Hilbert semi-C-D-birigged space.

It is natural to ask at this point under what conditions X will in fact be
a Hilbert C-D-birigged space. From the calculation made above in
the verification of axiom 3 it is clear that in order for axiom 5 to hold
we must have P = 1, which is just the condition under which there exists
an invariant measure on K\G. A small calculation shows that similarly
we need A (s)/S (s) = 1 for s e H so that there is an invariant measure
on G/H, and that we need A (s) •= 1 for s e H, so that the action of H on X
is unitary. (These last two requirements imply that H must be unimodular.)
Under these conditions axiom 5 will hold. Axiom 6 will then hold also,
as can be shown by imitating the proof of theorem 4.4 (due to BLATTNER)
of [12]. Thus under these conditions we can already conclude from
Theorem 1.8 that C and D generate each other's commutants.

To show that C and D generate each other's commutants in general,
which is Takesaki's generalized commutation relation, it suffices to show
that the Coupling Condition of Theorem 1.3 holds. Thus suppose that
m, n e X = L2 (G), that f,g e X, and that these satisfy

[m</,fc>^fe]=[^n<g,fe>^]

for all h, k e X. Initially m </, h >p is defined only as the extension to m
by continuity of the operator </, h >^ on X. What we will show is that
actually the operator / z i - ^ m < / , A > ^ is an integral operator defined
by a kernel function on K x G / H whose adjoint is the kernel function
for the operator k \—> n < g, k >^. We will then show that we can approxi-
mate these kernel functions in a suitable way by elements of C.

To describe the class of kernel functions we need to consider, we make
the following comments. Let n be a function on K x G / H which has
a-compact support, and which, when viewed as a function on KxG,
is locally integrable for the product Haar measure. Then in particular,
if h, k e C^ ((7), the function

(p, x) ̂  n (p, x) h (p~1 x) k (x)
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is integrable, and so we can apply Fubini's theorem to conclude that

xi->fe(x) Il(p,x)h{p~lx)dp
JK

is integrable. Since k is arbitrary, it follows that the function II * h
defined by

(n*/i)(jc)= ^ ( p , x ) h ( p ~ l x ) d p
J K

is determined except on a locally null set, and is locally integrable.
Actually, a simple calculation shows that the support of II * h is o-compact.
Thus it makes sense to ask whether II * h is in L2 (G). For II of the kind
we are considering, define IIs by

n\p, x) = ii(p-1, p-1^^-1).
Then it is readily seen that IIs is again a function on K x G / H which is
locally integrable as a function on K xG. Finally, if we let | II denote
the absolute value of II, it is readily seen that 11 has the same properties,
and that II* = 111 [ f t.

2.2. Notation. — Let Q denote the linear space of all those functions, II,
on Kx G/H of o-compact support, which are locally integrable on Kx G,
and which have the property that for any h e Cc (G) both II * h and
| n Is * h are in L2 (G).

It is clear that if II e 0, then for any h e C^ (G) both n * h and IIs * h
will be in L2 (G). If also k e C^ (G\ then

(p,x)->II(p,x)h(p~lx)k(x)

is integrable. By a small calculation involving Fubini's theorem,
we conclude that

[n*A,fe]=[A,n**fe].

Thus 11 and II* define (probably unbounded) operators on L2 (G),
each of which is contained in the adjoint of the other. It is noc difficult
to show that the closures of these operators are affiliated with D', although
we will not need this fact. But this situation should be compared with
the part of the proof of Theorem 1.3 in which the necessity of the Coupling
Condition was shown. We remark finally that if two functions in Q
define the same operator on L2 (G), then they differ only on a locally
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null set. In particular, if 2 e Q and if the operator defined by 2 is contained
in the adjoint of II, then 2 agrees with II* except on a locally null set.

Now initially m </, h >^ is defined only by extending the operator
</? h >p by continuity. We need to show that actually it is defined
by "convolving" with </, h >p. For this purpose, we can use any element,
0, of D instead of </, A >^. If A: e C^ (G), then the function

(^, x)\->k(xt)m(x)^l(t, x)

is easily seen to be integrable, so that Fubini's theorem can be applied
to conclude, after making a translation, that

x^k(x)\ mOcr^Acr^QO.xr1)^
J H

is integrable for all k. Thus the function m * Q defined by

(m*0)(x)= mOcr^AO-^Q^xr1)^
JH

is locally integrable. It also cleaily has a-compact support. Furthermore,
another calculation using Fubinfs theorem shows that for any k e Cc (G) :

(m-k^)(x)k(x)dx == [m, A^Q^ = [mQ, k],
J G

where w Q is defined by extending the operator corresponding to 0 by
continuity. It follows both that m * Q is in L2 (G), and that it equals m 0.

We find next the kernel of the operator h ̂  m < /, h >^. If F e C^ (K x G'),
then it is easily verified that the function on GxKxH defined by

(x, p, t ) ^ F ( p , xt-i)m(x)(Af)(p-lx)A(^l)

is integrable. Applying Fubini's theorem and translating as before,
we find that the function < w,/>^ defined on K x G / H by

(2.3) <m,/>c(p,x)= f m^O/*^-1^-1?)^
JH

is locally integrable on KxG and has a-compact support in K x G / H .
It follows from the discussion before 2.2 that ifheCc (G), then < w,/>^ * A
is locally integrable. IfT; e C^ (G) and we let Fjust above be h {p~1 x) k (x\
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then a routine calculation using Fubini's theorem and the results of the
previous paragraph shows that

«m,fyc^h)(x)k(x)dx = [m*</, h)^ k].
J G

It follows that < w,/>^ * h is in L2 (G) and agrees with m *</,/? >^ a. e.
Since it is easily seen that

i<m,/>c|^<|m|,|/ ]>^

the above considerations imply as well that [ < w,/>^ [ * h is in L2 (G)
for any h in Q (G).

Now < 72, ̂  >^ is defined in the same way, and the Coupling Condition
relation implies that < n, g >^ agree a. e. with < w,/>;L Since, as above,
| < n, g > | * h is in L2 (G) for any h in C^ (G), it follows that [ < w,/>^, | * h
is in L2 (G) for any h e C^ (G). We have thus obtained:

2.4. LEMMA. - If m,neX and f, g e X, and satisfy the relation of
the Coupling Condition, then the functions < w,/>^ and < / 2 , ^ > c defined
as in 2.3 are f/2 g, a/^ each other's adjoints, and are the kernel functions
for the operators

h\->m(f,h)D and fe-^i<g,fc>^.

Thus the Coupling Condition will be verified once we have shown:

2.5. LEMMA. — Let n e Q and let h, k e X. Then there is a sequence,
{Ilj }, of elements of C such that

and
Ilj * h converges to II * h,

Il^-kk converges to II**^.

Proof. — First find an increasing sequence, { E^ }, of compact subsets
of K x G / H whose union contains the support of II. Define I., to have
value n ( p , x) if ( p , x) e E, and | n ( p , x) \ ̂  f, and value 0 otherwise.
Thus [ S, | ̂  [ I! |, and S, converges to n a. e. on Kx G. It is easily seen
that, in addition, [ Z? [ =$ (II* [ and that £? converges to IIs a. e.
Then several applications of the Lebesgue dominated convergence theorem
show that

£f*/i converges to H-kh
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and
£f*ft converges to IIs *fe

in L2 (G).
Thus it suffices to prove the Lemma when II is bounded and of compact

support in Kx G/H. In this case we can find 2 e C such that | II ] ^ 2,
and then we can find a sequence, { Hy }, of elements of C such that H,
converges to II a. e. and | Hj | ̂  E for all j. The Tl^ will have similar
properties. Once again several applications of the Lebesgue dominated
convergence theorem show that

and

as desired.

Tlj-kh converges to n*^,

I^j-kk converges to IIs * k,

Q. E. D.

This concludes the proof of the following theorem.

2.6. THEOREM (Takesakrs generalized commutation relations). — With
notation as above, C and D generate each others commutants on X.
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