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ON THE GEL’FAND-KIRILLOV CONJECTURE
FOR INDUCED IDEALS IN THE SEMISIMPLE CASE

BY

ANTHONY JOSEPH (*)
[Tel-Aviv University]

REsumE. — Soient g une algébre de Lie semi-simple complexe, p une sous-algébre
parabolique de g, E un U (p)-module simple de dimension finie, M le U (g)-module
induit par E, et I = Ann M. La représentation de U (g) dans M définit une injection y
de U(@)/1 dans la partie ad g finie de Homg (M, M). Supposons que M est simple
et y surjective. Alors I est un idéal primitif, donc U (g)/I admet un anneau de fractions
Fract U (g)/I. Notons m = codim p, et <7, 1’algébre de Weyl d’indice m sur C. On
démontre que Fract U(g)/I = End E ® Fract &,, a isomorphisme prés et que
Fract U (g)/I contient un sous-corps maximal commutatif qui est ad g stable. Pour g
simple # sl(n + 1) : ne N*, on montre que ce dernier résultat n’est pas toujours vrai
pour un idéal primitif quelconque.

ABSTRACT. — Let g be a complex semisimple Lie algebra, p a parabolic subalgebra
of g, E a finite dimensional U (p)-module, M the U (g)-module induced from E, and
I = Ann M. The representation of U(g) in M defines an injection y of U (g)/I into
the ad g finite part of Hom¢ (M, M). Suppose that M is simple and y surjective.
Then I is a primitive ideal, and so U (g)/I admits a ring of fractions Fract U (g)/I.
Set m = codim p and let &/, denote the Weyl algebra of index m over C. It is shown
that Fract U (g)/I = End E ® Fract &«/,, up to isomorphism and that Fract U (g)/
admits a maximal commutative subfield which is ad g stable. For gsimple # sl(n + 1) :
neN*, it is shown that this last result is not a general property of an arbitrary primitive
ideal.

1. Introduction

1.1: Let k be a commutative, algebraically closed field of characteristic
zero, g a k— Lie algebra which is finite dimensional and algebraic. Let U (g)
(resp. K (g)) denote the enveloping algebra (resp. field) of g, and Prim U (g)

(*) Texte recu le 2 juin 1978. Work supported by the Centre National de la
Recherche Scientifique.
Anthony JosepH, Mathematics department, Tel-Aviv University, Ramat Aviv (Israél).
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140 A. JOSEPH

(resp. Spec U (g)) the set of primitive (resp. prime) ideals of U (g).
Given 7 € Spec U (g), then by Goldie’s theorem U (g)/I admits a ring of
fractions which for some neN* is isomorphic to the matrix ring M,
over a skew field K. We call n the Goldie rank, and K the Goldie field of I.

1.2: Givenr, seN, let &, ; denote the generalized Weyl algebra of
order r and index s over k. &, , is isomorphic to the associative k-algebra
with identity and generators x;, 0/0 x; :i = 1,2, ..., r+s;j=1,2, ..., r.
GEL’FAND and KIRILLOV conjectured ([12]-[14]) that K (g) is isomorphic
to the generalized Weyl field Fract o/, , with dim g = 2 r+s, index g = s.
This generalizes naturally to the conjecture that the Goldie field of any
IeSpec U(g) is isomorphic to the Weyl field Fract o/, ¢ with
Dim U (g)/I = 2 r+s, Dim Cent (Fract U (g)/I) = s, where Dim denotes
GEL’FAND-KIRILLOV dimension. This has been established for g solvable
([3], [25]) and for the minimal primitive ideals in g semisimple [6]. Yet
outside g solvable the conjecture may be too strong. This is indicated
by representation theory [14] and algebraic geometry. Indeed take
r = sl (2, k), g = r @ m, where m is commutative, satisfies 3 < dimm < oo
and is simple as an ad r module. Let S (m) denote the symmetric algebra
over m, and C(g) the centre of K(g). Since C (g) = (Fract S (m))", the
most natural conscruction of the Weyl field for the zero ideal of U (g)
requires Fract S (m) to be a pure transcendental extension of (Fract S (im))";
but this is generally false (SERRE, unpublished). To avoid this difficulty
one might demand that only some algebraic extension of the Goldie field
be isomorphic to a Weyl field. This is established in [14] for the zero
ideal in g semisimple, with the Weyl group being the Galois group of the
extension. Yet it is technically easier and perhaps more natural to just
restrict the conjecture Lo primitive ideals as suggested in [17]. Furthermore
the orbital method for constructing induced ideals suggests the further
conjecture [17] that Ie Prim U (g) is induced if, and only if, the Goldie
field of I admits a maximal commutative subfield which is ad g stable. The
analysis of [19] shows that this holds for g solvable.

1.3: Under certain minor technical restrictions, the main result of this
paper (Theorem 4.3) establishes the first conjecture for induced primitive
ideals in g semisimple. It obtains by refining the Goldie rank computation
of ConNze-BERLINE and DUFLO [7] (Sect. 8), through the preparation
theorem of [20]. A new feature derives from having to consider primitive
ideals of Goldie rank > 1 and for this we derive a general ring theoretic
result in Sect. 2. The second conjecture is discussed in Sect. 5.
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ON THE GEL’FAND-KIRILLOV CONJECTURE 141

I should like to thank M. DUFLO for explaining to me what had been
proved in [7].

Conventions. — Terms like noetherian mean left noetherian. The
symbol # denotes the smash product defined in [25] (Remarks 2.9). It
defines a skew polynomial extension in the sense of [3] (Sect. 4). An
element of a ring is called regular if it is a non-zero divisor on both the
left and the right. A left ideal of a ring is called essential if it intersects
non-trivially with every non-zero left ideal of the ring. A ring R is said
to be torsion-free if mx =0,meZ, xe R implies m =0, or x =0,
For g semisimple, a primitive ideal I is said to be induced if I Ann M;
M = ind (N, a t g, where a is a subalgebra of g (possibly g itself) and
dim N < oo.

2. A stepping-up theorem

2.1: Let 4 be a torsion-free ring, X a locally nilpotent derivation of 4,
and set 4X = {aeAd; Xa=0}. From 4 being prime Goldie, it does
not follow that A% is prime Goldie. For example, take 4 = M,, X =ade
with e upper triangular. Yet we show that the converse does hold and
we analyse the structure of 4 with respect to A¥.

Given V a subspace of 4, set V¥ = V' n AX. Call V, X-stable if XV < V.
Clearly VX # 0, for any non-zero X-stable subspace V. Let S (resp. T')
denote the set of regular elements of A (resp. 4%).

LemMA. — T = S%.

T o> SX trivially. Conversely given ¢ € T, a € A such that ta = 0 (or at = 0),
choose n € Nsuch that X" ae AX—{0}. Thent(X"a) = 0(or (X"a)t = 0)
and so X" a = 0, contradicting the choice of n.

2.2: From now on we assume that A¥ is a prime Goldie ring.
LEMMA. — Given A # A%, then B: = {aed;XaeT} # .
Set U= {ued;u=Xv,for some ved}. Then U¥X is a two-sided

ideal of AX. If A # A%, then UX # 0. Since AX is prime Goldie,
UXNT+# O and so B # @.

2.3: From now on we assume that 4 # AX.

LEMMA. — For each pair be B, te T, there exists a pair b€ B,t'e T
such that t'b = b’ t.
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142 A. JOSEPH

Set s =XbeT. Since T is an Ore set for A%, there exists a pair
s’eT, ac AX such that as = s'¢. Then ae T and

X (bs't—sab) = ss't—sas = 0.
Hence there exists s” € T, such that
s"(bs't—sabye AXt < At.

This gives b’ € 4 such that s” sab = b’ t. Then (X ')t = 5" sas = s" ss' ¢.
Now teT so by 2.1, we obtain Xb' = s"ss’eT. Hence b'’e B and
setting ¢’ = s” sa, we obtain t'e T and t'b = b’ ¢, as required.

2.4: Given C a subring of 4 containing 4% and for which 7T is an Ore
subset, we denote by Cr = {t "' ¢; e T, c e C } the localization of C at T.
Let D be the subring of A generated by 4% and B. By 2.1 and 2.3, T is
an Ore subset for D.

LEMMA:

(i) For each a€ A there exists s€ T such that sae D;

(i) T is an Ore subset for A and Ay = Dy.

We recall our assumption that 4 # 4X. Then by 2.2, there exists x € Dy
such that X x = 1. Since A is torsion-free, one has

X,:=(n))"'x"eD; for each neN",

and this element satisfies X" x, = 1. For each m e N, set
A, ={aed; X" 'a=0}

Consider ae€ 4,\4,_;. Choose te T, such that b: = tx,e D. Then
X"(b(X"a)—ta) =0 and so b(X"a)—rtae Ad,_,. Yet b(X"a)e D and
so tae€ D+A,_,. Since A, = AX = D, we obtain (i) by induction on n,
and (ii) follows from (i).

Remark. — The above rather indirect proof of (ii) is necessitated by
the fact that we do not know that 4 is Goldie.

2.5:Set R = Fract 4X. Obviously (4;) ¥ =R. We have seen that there
exists xe Ay such that Xx =1. From X[x,R]=[l,R] =0, we
obtain [x, R] = R. Define the skew polynomial extension (R # Q [x])
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ON THE GEL’FAND-KIRILLOV CONJECTURE 143

of R by Q[x] to be the Q-algebra with underlying vector space
R ® Q[x] (where ® = ®¢) and multiplication

(a#x)(b#x°)=ab #x " +ra[x, b] # x""*"L

Since A% is a prime Goldie ring, there exists 7€ N* and a skew field K
such that R = M, ® K, up to isomorphism. By [20] (Lemma 6.3), we
may adjust ad x by an inner derivation of M, ® K to obtain

(R#Q[x]) = M, ® (K # Q[x]),

up to an isomorphism. Furthermore K # Q [x] is an Ore domain and
we set K’ = Fract (K # Q [x]).

THEOREM :

(i) Ar = (R # Q[x]), up to an isomorphism;

(i) A is a prime Goldie ring;

(iii) Fract 4 = M, ® K’, up to an isomorphism;

(iv) Ag is the largest X-stable subring of Fract A on which X is locally
nilpotent.

Recall that X is a locally nilpotent derivation of 4y x, Xx = 1, and
(47)* = R. By [18] (2.2 (i), Taylor’s lemma), this gives (i). We have
seen that Fract(R # Q[x]) = M, ® K'. Through the converse of
Goldie’s theorem, this gives (ii) and hence (iii). (iv) obtains from [18]
(2.6 (iv)) applied to (iii).

2.6: Let k be a commutative field of characteristic zero, 4 an associative
k-algebra, and m a finite dimensional k-Lie algebra of locally nilpotent
derivations of 4. By [18] (2.2), m is a nilpotent Lie algebra. Set

A™ = () {4%; Xem}. The following immediate consequence of 2.5 is
needed later on.

THEOREM. — Suppose A™ is a prime Goldie ring. Then A is a prime
Goldie ring and Fract A™ = (Fract A)™.

Remark. — Set R = Fract A™. Then R = M, ® K, for some ne N*
and some skew field X. By 2.5, Fract 4 = M, ® K', for some skew field
K’ which is the quotient field of some skew polynomial extension Q of K.
Furthermore each X € m is a locally nilpotent derivation of Q and Q™ = K.
Given Q™ < Cent Q (or K = Cent K') it follows by [18] (3.2), that O

is a generalized Weyl algebra over K. This generalizes [18], (3.2), to
the prime situation.
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144 A. JOSEPH

3. A theorem of Conze-Berline and Duflo

3.1: Let g denote a complex, semisimple Lie algebra with triangular
decomposition g =n @ h@n~ ([8], 1.10.14). Let u— u denote the
principle antiautomorphism of U (g). Let R (resp. R™) denote the set of
non-zero (resp. positive) roots for hin g. Let u — ‘u denote the antiauto-
morphism of order 2 of U (g) defined by ‘X, = X_, forallaeR, and ‘H=H
forall Hel. Setb = n @ b, and given p o b a subalgebra of g, we write

p=ma®dr, s=[r1], hy=hns and m ='m,

where m (resp. 1) is the nilradical (resp. reductive part) of p. Let R}
(resp. R;) denote the positive (resp. negative) roots for § in r. Let W
(resp. W,) denote the Weyl group for (g, h) (resp. (s, b)), and w, the unique
element of W, taking R, into R, Let p (resp. p,) denote the half sum
of roots of R* (resp. R"\\R}). One has p,ebh;. Seto, =p—p,. Let 2,
(resp. 2}) denote the set of integral (resp. dominant integral) weights
defined with respect to s. Given A, € 2}, let E, , denote the simple, finite
dimensional U (s)-module with highest weight A;. Given Aeb* such
that A, : = A |y, € 2}, let E, denote the simple U (p)-module whose
restriction to U (s) coincides with E; and whose restriction to b is A, and
let e, denote its highest weight vector. Set

M,(\) =ind” (E,,pTg) ([8], 5.1.1).
One has

M, M =U@® ye Er-p=UM)QE_,, =Um e,

up to isomorphisms. In particular, M, (A) is generated as a U (n™)-module
by a highest weight vector of weight A+o,—p. Set I, ,, = Ann M, (A).

Identify U : = U(g) ® U(g) canonically with U (g @ g), and consider
Hom¢ (M, (\), M, (\)) as a U-module through

(@a®b).Tym = (aTb)ym,
for all
a, beU(g), meM,(A), TeHomc(M,(}), M,(\)).

Define the embedding j:g— g @ g, through j(X) = (X,—* X), for all
Xeg. Setf=j(g) and let L (M, (A), M, (\)) denote the U-submodule
of Hom¢ (M, (), M, (\")) of T finite elements.
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ON THE GEL’FAND-KIRILLOV CONJECTURE 145

Consider U (g) as a U-module through
(@®b).u="aub, for all a, b, ucU(g).

The representation of U (g) in M,, (A) induces an injective homomorphism ¥
of U(9)/L 4, into L(M,(A), M, (A)). By [7] (2.12, 4.7, 5.5 and 6.3),
we have the following proposition.

PROPOSITION. —  Suppose that 2((A+0,), a)/(a, )¢ N*, for all
o€ R*™N\ R}, then:

(i) M, () is irreducible;

(i) ¥ is surjective.

Remarks. — Clearly ¥ is surjective if, and only if, ¥ (1) is a cyclic
vector for L (M, (A), M, (A)). Given p 2 b, it can happen that M, ™)
is irreducible, yet ¥ is not surjective [7] (6.5). On the other hand, it
can also happen that I, , , = I,.,,,, given A +c, € W (A" +0,), even though
A # A'. Furthermore, if—w, (A +o,) lies in the closure of che positive
Weyl chamber, then the hypothesis of the lemma is satisfied. For integral A
these induced ideals are just the primitive ideals minimal for given
“t-invariant” [4] (2.17d). An implicit conjecture in [7] is that these
are no further induced ideals; but this is false [24] (3.7). (i) is a special
case of [12] (Satz 3).

3.2: We assume from now on that M, (A) is irreducible (in which
case I, is primitive) and that ¥ is surjective, so we can identify
U (8)/h.+s, With L (M, (M), M, (A)). Set A = U(8)/l,+,,, and let S denote
the set of regular elements of 4. The following theorem is due to
Conze-BERLINE and DurLo [7].

THEOREM. — For each be(Hom (M, (A), M, (M)’ ™ there exists
se S such that a : = sbe A. Furthermore a # 0 if b # 0.

Remarks. — The theorem is not explicitly stated in [7]; but DuFLO
pointed out to me that it follows from their analysis. In detail, given
ne 9’; such that p |,,1 = 0, then the identity map on U (n~) induces by
passage to the quotient, a linear isomorphism 6, of M, (A) into M, (A—p)
Given b as above, then by [7] (5.9), one can choose p such that
0,beL(M,(\), M, \—p) and by [7] (8.4 and 4.8), such that M, (A—p)
is irreducible. Then by [7] (5.8), L(M, (\—p), M, (1)) is non-zero
and by [7] (8.5), there exists ¢, € L (M, (A—p), M, (A)) such that ¢, 6,
is a regular element of L (M, (A), M,(A)). The first part obiains on
setting a = 9,0, b,5s=¢,0,. The last part is explicitly proved in [23] (5.9).
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146 A. JOSEPH

4. Main theorem

4.1: Retain the notation of 3.1, and set M = M, (A), E = E,p,- Let
t: U(p)— End E define the irreducible representation of U (r) acting
in E. Given ae U(m™), be U(s), define

7. ® t(b)e(Hom (M, M)y’ ™
through

r.@T(b)u®e) =ua@t(b)e, for all ueU(n™), ecE.

A straightforward computation gives the following lemma.
LeMMA:
(i) the map a ® 1 (b) > r, ® 1 (b) extends linearly to an isomorphism
of U(m™) ® End E onto (Hom (M, M))’ ™;
(ii) for all X ex, one has;

—((X).(r,®1 (b)) = (rx, 0 @ T(B) + (1, ® T [X, b]);

(iii) (Hom (M, M)y ™ is j(s) finite and so generated by the action
of j (s) on (Hom (M, M))’ ™,

4.2: Set B = (Hom (M, M)’ ™. By 4.1(1), B is a prime, noetherian
ring and Fract B = K(m~) ® End E, up to an isomorphism. Assume the

hypotheses and notation of 3.2, and in particular identify 4 : = U(g)/], 4.0,
with L (M, M).

PROPOSITION. — A™™ admits a ring of fractions, and Fract A™™ = Fract B.

Let us recall the basic structure theorem for U (g) given in [20] (3.4).
Define the subalgebra ¢ (m) (or, simply, ¢) of b as in [20] (2.6), and
set ¢~ ='c. Let my denote the nilradical of ¢”. Then ¢~ =my; @I
with I a subalgebra of ) and n~ > mgy > m~. Furthermore by [20]
(2.6 (iii)), we have Z(my) < U(¢™)™ = Z(m™). By [20] (2.4), there
exists ze Z (my) such the localized algebra U (g), is defined and takes
the form

U (g)z = (U (g)mo # Z(mg) U (C_ ))z =((U (9)“‘6 ®Z (mg) U ("18 )) # U (I))z

Here the smash product # is defined through the adjoint action of ¢~
in U(g). Suppose I e Spec U (g) satifies I n Z (my) = 0. Then through
the methods of [3] (Sect. 4) applied to the above formula (as show in [20],
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ON THE GEL’FAND-KIRILLOV CONJECTURE 147

Sect. 6) it follows that the localized algebra (U (g)/I)M is defined and is
prime noetherian. Take / = I,,, . Since the restriction of ind™ (t; p 1 g)
to U(m™) identifies with its left regular representation, it follows that
In U@™) =0. Hence the localized algebra AT is defined and is prime
noetherian. By 2.6 applied to my /m~, it follows that AT is defined and
is prime, Goldie. By 2.6 applied to m~, we have

(Fract A)™" = (Fract A,)™ = FractA]' = FractA™ .
On the other hand by 3.2 and 4.1 (iii), we have Fract A > B and so
(Fract A)™ o FractB o FractA™",

which with the previous equality gives the required assertion.

Remark. — From Ie€ Spec U (g), it does not follow that (U (g)/I)" is
prime. For example take I of finite codimension > 1.

4.3 (Notations 3.1, 3.2, 4.1): Set

I=1, n =dimE, 2m = 2codimp = Dim U (g)/I
([1], 2.3 (b)). Recall that I = Ann M.

THEOREM. — Suppose that M = ind” (E, p T g) is simple, and that the
representation of U (g) in M sets up a bijection of U (g)/I onto the -finite
part L (M, M) of Hom¢ (M, M) (¢f. (3.1)). Then

(i) Fract U (g)/I = M, ® Fract &,,, up to an isomorphism;

(ii) one may choose
o =C[xq, X3, ..+, Xy, 00Xy, 0/0%,, ..., 0/0x,]

so that C [xq, X, ..., X,,] is ad g-stable.
Define ¢, m™, [ and z as in 4.2. As in 4.2, we obtain from [20] (3.4),
that A, is defined and takes the form

A, = A" #2em U (), =(((A" @ z(m-) U(mg)) # U®)..

We remark that (4™ @ (,-) U(mg)) = 4™ ®, gy U (my)), and that
the smash product is defined through the adjoint action of [ in U (g). This
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148 A. JOSEPH

coincides with the action of j (I) in U (g) considered as a U-module. Let S
denote the set of regular elements of A™. Then ze S and

S74 = (Fract A™ @ z m-, U(mg)) # U (D),
=(KM)@EdE)® z(m-) U(mo)) # U®D, by 4.2,
=EndEQ® (KM ) zm-)U(my)) # UWD),
up to an isomorphism. The last step was obtained by adjusting each ad X :
X e I by an inner derivation of End £ ® (K(m™) ®z -y U (m7)). This

is achieved by dropping the second term in the right hand side of 4.1 (ii).
It follows that up to an isomorphism

Fract(K(m™)® zm-yU(mg)) # U(D) =FractU(m™ ® ¢7)/J,
where J is the two-sided ideal generated by the semi-invariants
yR®1-1®y:yeZ(m").

Obviously J is a prime ideal and the Lie algebra m~ @ ¢~ is solvable
and algebraic. Noting that

Dim U(g)/I = DimU(m~ @¢”)/J =dimm+dim¢— Dim Z(m™ ) = 2dimm™,
by [20] (2.6 (ii)); we obtain (i) from [25] (Cor. 6.4 (1)) or from [3] (6.8).

(ii) obtains on adapting [19] to prime ideals or as follows. Observe
that in the identification of U (g)/I with L (M, M), the restriction to U (im™)
defines the left regular representation of U (m~) and furthermore from
Fract A™™ we get a second copy of U (m™) which (¢f. 4.1) identifies with
the right regular representation of U(m™). Then since

Dim (U (M) ® 7 m-y U (M3)) # U (D) = 2dimm™ = 2m = Dim ,,,

it follows from [20] (5.2) that «,, may be chosen so that g is represented
by first order differential operators on C[x, x,, ..., x,] (with a zero
order part depending also on t). Hence (ii).

Remarks. — The proof of the theorem is entirely algebraic and
consequently the base field can be any algebraically closed commutative
field of characteristic zero. Yet excepting the case p = b ([6], Sect. 6)
the proof of 3.2 (ii) is partly analytical. Part (ii) asserts that the Goldie
field of I admits a maximal commutative subfield which is g-stable. Yet
excepting s/(2) and s/(3) not all primitive ideals are induced ([4], [6]).

TOME 107 — 1979 — N° 2



ON THE GEL’FAND-KIRILLOV CONJECTURE 149

Thus it still remains to show that for such non-induced ideals the Goldie
field does not admit a maximal commutative subfield which is g-stable.
This is discussed in Sect. 5.

4.4: We round off the discussion by showing that an induced ideal is
primitive only if it is induced from a parabolic subalgebra. (We remark
that this condition is not also a sufficient one, even if the module from
which one induces is simple and finite dimensional ([4], [21]).)

Let Y (g) denote the invariants of the symmeiric algebra S(g) and
let Y, be the subspace of Y (g) spanned by homogeneous invariants of
positive degree. Identify g with g* through the Killing form and recall
[8] (8.1.3 (ii)), that the zero variety of S (g) Y, is the cone A" of nilpotent
elements of g.

LEMMA. — Let a be a subalgebra of . If Y, < S(g)a, then a is a
parabolic subalgebra of g.

We have a* = 4 and [a,a'] = a. Thus if we can show that a* = a,
it will follow that a' is a nilpotent subalgebra and hence that a is parabolic.
Let a, denote the algebraic hull of a and m the nilradical of a;, and h; a
Cartan subalgebra for the reductive part r of a;. By [8] (1.10.16), there
exists a triangular decomposition

g=nohen” with nom and §hoh,.
If X eris an ); weight vector of non-zero weight, then X en @ n~ and so
hinhcainhcatnhc A nh=0.

Thus §, = b and since [a,, at] = at, it follows that a' is spanned by root
vectors. Thus a = a't is also spanned by root vectors (and in particular
a; = a). Suppose a'd a. Then there exists a € R, such that X, €at,
X, ¢ a. This gives X_, € at, which contradicts the fact that X, +X_, ¢.4".

4.5: Let a be a subalgebra of g and W a U (a)-module. Set
M =ind (W, atg), = Ann M.

PrROPOSITION. — If I € Prim U (g), then a is a parabolic subalgebra.

Let gr be the gradation functor for the canonical filtration of U (g).
If IePrim U(g),then(In Z(g))eMax Z(g)andsogr(I)n Y(g) = Y,.
Yet I < U(g) Ann W and so gr (I) = S(g) a, in virtue of the Poincaré-
Birkhoff-Witt theorem. This gives Y, < S(g)a and so a is parabolic
by 4.4.
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5. The subfield criterion for induced ideals

Here we show that the Goldie field of a certain non-induced primitive
ideal constructed in [16] does not admit a maximal commutative subfield
which is ad g stable. These ideas are inspired by the work of NGHIEM
([26], [27]); but since we require results valid outside solvable Lie algebras
our analysis has to be somewhat different. It is motivated by [9].

5.1: Let g be a finite dimensional k-Lie algebra. Extend the gradation
functor gr for the canonical filtration of U (g) to K (g) through

gr(a™*b) =gr(a)"*gr(b); a,beU(g), a#0

(¢f. [22], Chap. II or [13], Sect. 3). Through the identification gr
(U (9)) = S (9); gr defines a Poisson bracket {, } on R(g) : = Fract S (g)
([22], 2.1,2.2). Given K a subfield of K (g), we set K’ = Fract gr (K).
A subfield K'of R(g) is called strongly commutative if {a, b} = 0, for
all g, be K.

Now assume that K is a commutative ad g stable subfield of K(g). Then K’
is a strongly commutative ad g stable subfield of R(g). Let g(K)
(resp. g (K')) denote ¢ K+ K (resp. ¢ K'+ K’) considered as a subspace
of K(g) (resp. R (g)) over K (resp. K’). The set {X w1 X eg, is said
to be a cobase for g (K) over K (resp. g (K') over K') if with the identity
adjoined it becomes a basis for g (K) (resp. for g (K’)). Obviously g (K)
and g (K ') admit cobases though these may not coincide. Observe further
that g (K ) (resp. g (K)) is closed under commutation (resp. Poisson bracket)
and so are Lie algebras (The Lie algebra g (K) and the notion of a cobase
for g (K') are due to NGHIEM [26], 1.2.3.) Recall that for a commutative
field, Dim coincides with transcendence degree (over k). Let dim denote
dim,.

LeMMA :

(i) Dim K’ <€ Dim K;

(ii) 14+dim g < dimy. g (K')+Dim K’;

(iii) dimg. g (K’) < dimg g (K);

(i) is elementary. Let {X;}}-, be a cobasis for g (K') over K’. One
has dimg. g (K’) = I+1. Since {X,}!_, generates R(g) over K’ and
Dim R (g) = dim g, this gives (ii).

Let { X, }r_, be a basis for g. Let B denote the set of all cobases
for g (K) over K formed from subsets of { X; }i_,. The set B is trivially
non-empty. Given be B, let b(K’) denote the linear span of {b, 1}
over K',andsetI(b) = {ie{1,2,...,n};X;eb(K")}. Choosebe®B
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maximizing card I(b). For (iii), it suffices to show that card I(b) = n.
We can assume that b = { X; }™, and set X, = 1. Given card I (b) < n,
choose re {m+1, ...,n},réI(b). Sinceb is a cobase for g (K) over K,
there exist x; € K such that

¢.n Xr=Z;n=0xiXi'

Yet X, ¢ b (K’) by hypothesis, so leading terms on the right-hand side
of (5.1) must cancel. This defines a non-empty set J = {0,1,2, ...,m}
such that

(5.2) 0=);c,(erx)X;; grx;eK'—{0}.

Since K’ is a field, card J> 1. Choose jeJ\{0} and set
b = {b\X;}u {X,}. Sincex; # 0, we obtainb’ € B from (5.1). Since
X,eb’ and X; e b’ (K') by (5.2), it follows that card I (b") > 14-card I (b),
contradicting the choice of 5. Hence (iii).

5.2: In addition to the hypothesis of the above lemma assume that K
contains its commutant in g (K). Set dimgg (K) =m+1, and let ;;
denote the Kronecker delta.

LEMMA. — There exist x;€ K, y;eg(K), i,j= 1,2, ..., m, such that
@) [x:> yi] = 83

(i) [yi, y;]1e K;

(i) {y; }ho> Yo = 1, is a basis for g (K).

Obviously m = 0, if and only if, K = K(g). Suppose m > 0, and let /
be the largest non-negative integer such that x;e K, y;eg(K),
i,j=1,2,...,1 can be chosen to satisfy (i). Then {1, y;, ys, ..., ¥ }
are linearly independent over K and so / < m. Given yeg(K), then
a;: = [x;,y] € K, and we set

y = y—2;= 18:)i

Then [x;,y'] =0. Suppose a:=[x,y'] #0, for some xe K. Set
b; = [x, y;], X = Xpt1 Vg =a 'y, Yi =Yi—b; yj4y. Then
{x;, y;5i=1,2,...,1+1} satisfy (i) contradicting the maximality of /.
Hence [ K, y'] = 0, and so y’ € K since K contains its commutant in g (K).
It follows that {1, ys, 5, ..., ¥, } spans g(K) over K. Hence / > m,
which with the opposite inequality established above proves (i) and (iii).
Through the Jacobi identity [x;, [y;, »]] = 0. Yet [y;, »,] €g (K), and
so (ii) follows from (i) and (iii).
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5.3: Retain the hypotheses and notation of 5.2. By 5.2 (iii), the y,
generate over K a subalgebra S of K(g) containing U (g). Consider
ad x;,i=1,2, ..., m, as spanning a commutative Lie algebra n of locally
nilpotent derivations of S. By 5.2 (i), S"= K. By [18] (2.6 (iv)),
S admits a left quotient field Fract S which must obviously coincide
with K(g). By [18] (2.6 (vi)), K contains its commutant in K (g) and
in particular C(g) = K. Set K' = Fract gr (K).

Given L a skew field over k define T deg, L (or simply T deg L) as
follows. Let V denote a finite dimensional k subspace of L containing
the identity and given b e L, me N, let (b V)™ denote the k subspace of L
spanned by {a; a,...a,;a;€bV }. Define

T degL = supy infb*oﬁm_.mlogdlﬂ.
logm

PROPOSITION:

(1) m+T deg K < T deg Fract S = dim g;

(ii) dimg g (K)+Dim K = dim g +1;

(iii) Dim K = Dim K ’;

(iv) Dim K < 1/2 (dim g +index g), with equality if Dim C (g) = index g,
so in particular if g is algebraic.

The inequality in (i) follows from [18] (2.6 (iv), 4.2 (ii)) applied to 5.2.
(Note that in [18], Dim is denoted by Dim' and T deg by Dim). The
equality in (i) follows from the identity Fract S = K (g) and [18] (4.3).
One has Dim K = T deg K, since K is commutative and then (ii) and (iii)
follow from (i) and 5.1. Since K’ is strongly commutative, we obtain
Dim K’ < 1/2(dim g+index g) by [22] (2.7). By 5.2 (i), the x;
i=1,2,...,m, are algebraically independent over C(g) and so
m+Dim C (g) < Dim K = dim g—m, by (ii). Hence

m < 1/2 (dim g—Dim C (g)).
Then by (ii), we have
Dim K = dimg—m > 1/2(dim g+ Dim C(g)),
which gives (iii).
Remarks. — Unlike NGHIEM we do not assume that K is generated by
its intersection with U(g). This case is simpler; for example (iii) would

be a consequence of [22] (2.5), which does not required K to be ad g
stable. However this restriction is inappropriate outside g solvable.
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Again for g solvable one can show that any commutative ad g stable
subfield of K (g) can be embedded in a commutative ad g stable subfield K
which contains its commutant in g (K). This generalizes [26] (IIL.4);
but the argument given in [26] needs a little modification. Finally it is
noted above that a commutative ad g subfield K of K (g) which contains
its commutant in g (K') necessarily contains its commutant in K (g); i. e. it
is maximal commutative. This generalizes [26] (IIL.7).

5.4: Now let g be a simple Lie algebra. It is known that g* (identified
with g through the Killing form) admits a unique nilpotent orbit @, of
minimal non-zero dimension. In [16], we constructed a completely prime,
primitive ideal J, for which 0, U {0} is the zero variety ¥ (gr J,) of
grJo. The ideal J, can be described as follows. First there exists a
solvable algebraic Lie subalgebra r of g satisfying dimr = dim 0,,
index r = 0, and containing the highest root eigenvector E (see [16],
Sect. 4). Secondly there exists an algebra homomorphism o:U @—U@);
satisfying ) ], = Id (There is only one such homomorphism if
g # sl(n+1): neN*, [16], Theorem 4.3.) Set J, = ker ®. Then

¥ (grJo) = 0 u {0} ([16], Prop. 10.2). Furthermore ® defines, by
passage to the quotient and localization at E, a bijection ®:

(U@)o)g— U @)

whose restriction to U () is the identity. In [16] (Sect. 8), it was shown
that for g # sl (n+1), ne N, the ideal J, is not induced from any proper
subalgebra of g. This was obtained through a dimensionality estimate
which gave little insight into why J, is not induced. This motivates the
following theorem.

THEOREM. — Suppose g # sl (n+1), ne N*. Then Fract U (g)/J, does
not admit a maximal commutative subfield which is ad g stable.

Let K be such a subfield. Through ®, the subfield K may be considered
as a subfield of K(x). Set K' = Fractgr (K). From K’, we construct
for certain fe 0y, a polarization of g in f. Yet for g # sl (n+1), ne N*,
([16], Prop. 3.5), no f€ 0, is polarizable and this contradiction will prove
the theorem.

5.5: Define a map @' : g— R (x), through @' (X) = gr ® (X), for all
Xeg. Recall that deg extends to R (r) through deg a™! b = deg b—deg a.
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LEMMA
() (X)) =X, for all Xer;

(i) deg @' (X) = 1, for all Xe g;

(i) { @' (X), @' (Y)} = @' [X, Y], for all X, Ye g;

@) (f, ' (X)) = (f, X), for all X € g and all f € O, satisfying f (E) # 0.

(i) is immediate. (ii) obtains from the explicit formula [16] (Theo-
rem 5.3), for @, or as an easy consequence of (i) and the fact that R (x)*
reduces to scalars. (iii) follows from (ii). For each X e g, there exists
seN, such that E*(® (X)—X)eJ,. By (i), E* (@ (X)-X)egr J,.
Hence (iv).

5.6: Identify g with g* through the Killing form, and set f = ‘E (nota-
tion 3.1). Then fe @y, f(E) # 0 and r identifies with the tangent space
to O, at f ([16], Sect. 4). Consider @ = {ge 0y; g(E) # 0} in t* by
restriction. Then (always in the Zariski topology), we have the folloning
lemma.

LEMMA. — Q is a non-empty open subset of t*.
5.7: Define a linear map ¢ : g ® R (r) — R(r) through
(X ®x)=d (X)x.

Let {X; }i., be a basis for g such that { X; }™ , is a basis for r and for
each fe R(g), let 0,f denote its partial derivative with respect to X;.
Define a linear map d : R (t) » g ® R (r), through

da =7, (X;®(0;a) =21 (X;® (8;a)).

Define an antisymmetric bilinear two-form B on g ® R(r) through
B(x,y) = ¢[x,y]. Let V denote the linear span {da:aeK’} over
R (v), and let ¥+ denote the orthogonal complement of ¥ with respect to B.
Set N = ker B.

LeMMA :
) Vv
) [V V4] = v
(iii) N V = 0;
(iv) dimg g, ¥V = 1/2 dim ;
(v) rank B = dim t;
(vi) dimg ) V* = dim g—1/2 dim ¢;
i) BV, vhH =o.
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Given a, be K’, then

B(da, db) = Y7 ;1= 0 ([X;, X;]® (8;4) (8, b))
=201 =1[X:, X;](8,a)(3;b), by 5.6 (i)

={a, b} =0, since K’ is strongly commutative.
Hence (i).

Given x, yeg ® R(x), ac R(x), set a;= {®(X)),a} and
x=2l (X®x),  v=20(X;® )
b=, yda;, ¢=)i-1x;da;.
Then using 5.6 (i), (i), a straightforward computation gives
(5.3) B([x, y], da) = B(x, b)—B(y, c).

Now K is ad g stable, that is [® (X), K] < Kandso { @' (X), K’} = K,
for all Xeg. Then ae K’, implies that b, ¢ € V and so (ii) follows from
(5.3).

Given xe€ V' n N, write
x =Z§=1x,da,: x,€R (), a,eK'.
By definition of N, we have, for all i=1,2, ..., m,
(5.4) 0=B(X;, x) = Xi=1 Xj=1[Xis X;]x:(0;0).

Now index r = 0 and so det[X;, X; ] # 0. Substitution in (5.4) gives
x = 0, Hence (iii).

One has dimg,, ¥V = Dim K’ = 1/2 dim x, by 5.3 (iii), (iv) (the first
equality is elementary). Hence (iv).

For all X, Yeg, we have B(X® 1, Y® 1) =@ [X, Y] = S (¥).
Given fer*, such that f(E) # 0, define a two-form B, on g through
B, (X, Y)=(f,® [X, Y]). Then there exists a non-empty open set
Q' < r* such that rank B = rank B, for all feQ’. With Q as defined
in 5.6, choose feQ N Q. Then

(f, ®'[X, YD =(f, [X. Y], for all X,Yeg, by 5.5 (iv).
Hence rank B = dim @, = dim r, which gives (v). By (iii) and (iv),
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which gives (vi). Finally we have V+N < V%, by (i) and by (iii)-(v),
that Dimg ,, (V+N) = dimg , ¥*. Hence (vii).

5.8:Set V; = Vin(g® S(x). Given fer*,

X =Z?=1(Xi®xi)€9® S(v),
set

<x’ f> =Z;‘=1Xi(xi’ f) and pf={<x, f>; erl}'

By 5.7 (ii), p, is a subalgebra of g. Since ¥, generates V over R (r),
there exists a non-empty open set Q" < r* such that dim p, = dimg ,, V',
for all feQ”. Choose feQ nQ”. Then by 5.5 (iv), we have for all
X, y€ Vy, that

s [<x 2.0, £ D =(f B(x, y)).
Then by 5.7 (vii), p, is subordinate to f. By 5.7 (vi),
dimp, = dimg—1/2dimr = dimg—1/2dim 0,,.

Hence p; is a polarization of g in f. This proves the theorem.

Remark. — Is a maximal commutative subfield of K (r) which is ad ¢
stable, necessarily a pure transcendental extension of k? (¢f. [19],
Theorem 2.3).

5.9: The above construction of a polarization differs from that given
by NGHIEM in [27] and which does not use the d map. NGHIEM construction
requires that K be generated by its intersection with U (g) (or some image
of U(g)). This is fine for g solvable, but too restrictive for g semisimple
as the following lemma shows.

LeMMA. — Take g semisimple and 1€ Prim U (g). Let K be a commu-
tative ad g stable subfield of Fract U(g)/I. Then (U (g)/I) n K reduces
to scalars.

After DurLo [11] (Theorem 1), there exists A e€bh* such that
I=Ann L (A+p), where L (A+p) is the unique simple U (g)-module
with highest weight vector e of weight A. Let n : U(g) — U (g)/1, be the
natural projection. It is clear that 4 : = (U (g)/1) n Kis an ad g module.
Then by [8] (4.2.5), A reduces to scalars or there exists ue[)*—{ 0 },
and a weight vector a_, e U(g)"~ for which n(a_,)eA4— { 0}. We have
Jr-p i =a_, e #0, for otherwise a_, el Since L(A+p) has a unique
highest weight, application of the simple root vectors to f,_, provides a
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weight vector a_, € U (g) of weight o, o simple, for which © (a_,) e 4—{ 0},
and a_,e, #0. Let s, denote the s/(2) subalgebra generated by X,
and X_,. We can assume that a_, is contained in a simple s, submodule V,
of U(g) with m(V,) = 4 and having lowest weight vector a_,,, te N™,
Then a_, = (ad X,)" "' a_,,, up to a scalar, and so a_,, e, # 0. Letm
be the nilradical of b @ k X_, and P*: U(g) — U (s,+bh) the projection
defined by the decomposition U(g) = U (s,+h) @ (* m U (g)+ U (g) m),
and 0 : U(g)*— U (h), the Harish-Chandra homomorphism [8] (7.4.3).
Then P*(a_,,) = X', a, for some ae U (s,+h)" satisfying [s,, a] = 0 and
P*(a,,) = X'a, where a,, : = (ad** X,) a_, € V,. Now

Aoty & = P (\a—toz) € = X—ue(a) €.

Hence 6 (a) (A) # 0, X X' , ¢, # 0, through the characterization of Ann e,
noted in [11] (1, Modules de Verma). Yet

[ata s a—tu] e). = ata a—tu el. = Pa(ata) Pa(u—tu) e)., = (9 (a) (}"))ZX::Xf-a el # 0’
which contradicts the commutativity of A.

5.10: If g = sl(n+1), neNT; then 0, admits polarization and the
inducing procedure gives a family J, (A € k) of completely prime, primitive
ideals [16] (3.5). These all take the form J, = ker ®,, for some homo-
morphism (_Iq)x : U(g) — U (v)g (notation 5.4). Furthermore for each A €k,
Fract U (g)/J, identifies with K (r) and admits a maximal commutative
subfield K, which is ad g stable.

K, can be chosen to be generated by its intersection with U(r);. Indeed
taking m = 1/2 dim r, one knows that U (r) is isomorphic to the subalgebra
of the Weyl algebra k [xy X5, ..., Xms Y1 Vas s Ymls ¥i = 0/0x; with
generators

y; (i=1,2,...,m),

Xjem (=12, ..,m=1),  GuYm—1227=1%;y)).
Then 6(g€|—)k) is spanned by y;, x;y;, x,-(Z;f‘=1xjyj+7»+2),
i,j=1,2,...,m, and we may choose K = k (x4, X5, ..., Xp).
Let us examine the polarization construction in detail for s/(2).
Setx = x;, ¥ = ¥;. The canonical basis {E, H, F } for sl (2) is represented

above through E =y, H= —yx—A, F=yx*+2x\ and satisfies the
relations [E, F] = —2 H, [H,E] = E, [H, F] = —F. Then

J, = U(g) (EF—H(H+1)+A (A-1)),
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and we set I = gr (J,) = S(g) (EF—H?. We have

t=kH®kKE, K,=k(E '(H+1), K =k(E 'H).
Set

u=HQE-EQ®H, v=EQH?>-2(HQ®EH)+FQ® E?,

considered as elements of ¢ ® S (r). Then (notation 5.7), V is spanned
by u, N by v, and ¥V* by {u,v}. Furthermore [u, v] = (1 ® E) v.
Taking f = ‘E, p, has basis { H, F}, that is p, = 'b (notation 3.1). It
is well-known that the J, are induced from the one-dimensional represen-
tation of ‘b defined in the obvious fashion by the character g, : H— A.

5.11: The analysis of 5.5-5.8 applies in principle to any I € Prim U (g),
though in practice certain technical difficulties arise. Yet just as the
results of [16] (as summarized in 5.4) are generalized in [20] (6.10, 6.14,
6.15), so the results of 5.5-5.8 admit a corresponding generalization.
The details are left to the reader.
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