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MODULAR UNITS
INSIDE CYCLOTOMIC UNITS

BY

DANIEL S. KUBERT and SERGE LANG (*)

RESUME. — On considere les unites de Siegel-Ramachandra-Robert dans Ie corps
de classes de rayon p sur Ie corps quadratique imaginaire Q (\/—p). Les normes par
rapport au corps cyclotomique Q (Up) sont des unites. On demontre qu'elles sont
contenues dans les unites cyclotomiques, et Fon donne une expression explicite des unes
en fonction des autres. La demonstration se fait en ecrivant les valeurs des series L
en s = 1, provenant d'une part de la formule limite de Kronecker, et d'autre part de
1'expression usuelle pour les series L de Dirichlet. On obtient ainsi suffisamment de
relations pour r6soudre les equations lineaires liant les logarithmes des unites modulaires
et les logarithmes des unites cyclotomiques.

ABSTRACT. — We consider the Siegel-Ramachandra-Robert units in the ray class
field of conductor p over the imaginary quadratic field Q (\/—p). The norms to the
cyclotomic field Q (Up) are units. We prove that they are contained in the cyclotomic
units, and give explicit expressions of the former in terms of the latter. This is done
by writing the values of JL-series at s = 1, both from the Kronecker limit formula, and
from the usual Drichlet L-series. Enough linear relations are obtained between the
logs of the two kinds of units to solve for each in terms of the other.

In a series of papers, we have studied units in the modular function
field, and in [KL 1] we already mentioned the possibility of investigating
their specializations to number fields. On the other hand, SIEGEL [Si],
RAMACHANDRA [Ra], and especially ROBERT [Ro] have investigated
certain units in the complex multiplication case, obtained as values of certain
theta functions.

In the present paper, we begin the special case of units in the cyclotomic
fields of^-th roots of unity, p prime. For ease of exposition, we separate
the results in two parts: p = 1 mod 4 in this part, and p = — 1 mod 4

(*) Texte recu Ie 16 mai 1978.
Supported by N.S.F. grants. KUBERT is also a Sloan Fellow.
Daniel S. KUBERT, Mathematics Department, Cornell University, Ithaca, N.Y. 14853

(U.S.A.), and Serge LANG, Mathematics Department, Yale University, New Haven,
Conn. 06520 (U.S.A.).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE H



162 D. S. KUBERT AND S. LANG

in the next part. We show how the units obtained as values of modular
functions (Siegel units) in the cyclotomic field can be expressed in terms
of cyclotomic units, by means of an explicit formula. In particular, these
modular units are contained in the cyclotomic units.

In paragraph 1, we give general facts and notation. In paragraph 2,
we write down a system of linear relations relating the modular units
and cyclotomic units by using the decomposition of appropriate L-series.
In paragraph 3, we complete these relations for the trivial character. In
paragraph 4, we solve for the modular units as power products of the
cyclotomic units. This pattern is followed in both parts.

We let
K=Q(^/~^p) and H = X(^).

We let p = (^/—p) be the prime ideal in the ring of algebraic integers
o^ = o. We let K(l) be the Hilbert class field of K, and K(p) the ray
class field of conductor p. This notation applies to both parts.

Part one : /? = — 1 mod 4

1. General facts

We assume p •=.—\ mod 4 and p ^ 5. Then K c Q (^p) = H. If
a e o and a = 1 mod p, then N a = 1 modp, so H is contained in the ray
class field K(p).

THEOREM 1.1. - ^(l)Q(^) = K(y).
Proof. — Let a be an ideal of K prime to p. It suffices to show that if

(a,K) fixes Q (^) and K(l), then (a, K) fixes ^(p). Since (a,K) fixes
K(l), it follows that a is principal, a = (a). Since (a, K) fixes H, it follows
that a = ± 1 mod p, so a is in the unit class for K(p), as was to be shown.

We let Cl (ff/K) be the ideal class group isomorphic to Gal ( H / K )
under the reciprocity law mapping

C\->ac or a(C).

Observe that all non-trivial characters of Gal ( H / K ) w Cl ( H / K ) are primi-
tive, with conductor p, because H is totally ramified over K at p.

The extensions H and K(l) of K are linearly disjoint over K because H
is totally ramified at p. Thre is a natural identification

Gfil(HIK) w GSL\(K(P)/K(I))

TOME 107 - 1979 - N° 2



MODULAR UNITS 163

from the diagram

K(y)=HK(l)

H <^ ,> K(l)

K

Q
Under the class field theoretic isomorphism between ideal classjgroups
and Galois groups, we have a commutative diagram:

Cl (HIK) ̂  Gal ( H / K ) c Gal (Jf/Q)i i
o(p)*/±l—^Z(p)*2

The arrow on top is the correspondence'Cl—^ac, arising from the above
field diagram. The ideal classes of Cl ( H I K ) are precisely the principal
ideal classes, modulo those generated by elements =. 1 mod p. This
gives rise to the vertical arrov/ on the left.

The bottom arrow is induced by the norm^map. Taking into account
the natural isomorphism

o(p)»Z(p),
the norm map amounts to the squaring map x h-» x2.

The right vertical arrow arises from the usual correspondence between
elements of Z(>)* and Gal(J7/Q):

^i-^a» ^h aal->=^af

The elements a corresponding to elements of Gal (H/K) are precisely
the squares. Consequently an ideal class C e Cl ( H / K ) corresponds
uniquely to an element ae Z (^)*2, and we shall write this correspondence
as

C^a.

Let 5C be a non-trivial character of Gal ( H I K ) . The induced character
to Gal (HIQ) is the direct sum of two characters /i, ^? wt^ one °^ them
odd, the other even. Say ^ is odd. These are the two characters of
Gal (HIQ) restricting to % on Gal (H/K). If C contains a principal ideal (t),
then

xCQ^a^xiO2)^^2).
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



164 D. S. KUBERT AND S. LANG

2. Linear relations for ^ ^ 1

We shall apply the above considerations to the L-series. We note that

X2 == XiZx?
^d XK ls odd- By classical formulas pertaining to cyclotomic fields
(c/1 for instance [L 1]), we have:

Ll ^(l,Xi)=1^^^)^,^
P

L2 ^(l,X2)==-- l-5(x,)E^z(.)*X2Wlog|l-^|.
P

As usual, *S (v[/) is the Gauss sum formed with a multiplicative character v|/
on Z (/?)*, and the additive character

x^e2'^^^ where ^=^2T"7P .

We have the L-series decomposition (cf. [L 3], chapter XII, § 2):

L 3 L(x, W, s) = LOci, ^/Q, 5)L(X2, HIQ, s),
and also
L 4 L(x, ̂ /iC, s) = LOc, X(p)/i<:, s).

The values of the L-series over K at 1 are given in terms of the Siegel
functions as follows.

Let f (z, L) be the Klein form (cf. [KL 2] and [L 2], chapter XV).
We define

gl2p(z,L)=tl2P(z,L)A(LY.

Let Cl (p) be the ray class group of conductor p. For C ' e Cl (p), we
define

^(C^g^l.pc-1),

where c is any ideal in C\ The value is independent of c. If
CeC\(H/K), we define

^(0=N^/^(C'),

for any C ' lying above C under the canonical homomorphism

Cl(p)-^Cl(^/2C).

These are the invariants defined by RAMACHANDRA and ROBERT [Ro],
paragraphs 2.2 and 2.4 (ROBERT uses the letter (p where we use g). See
Iso the last section of [KL 1].
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MODULAR UNITS 165

From the Kronecker limit formula one obtains the value of the L-series
in L 4 at s = 1, as in MEYER [Me], SIEGEL [Si].

L5 LCc.W 1)=————~2n——,=EceciwK)X(C)log|gH(C)|.
6^i(p)S'K(x)V^K

We have used the usual notation:
w^ (p) = number of roots of unity in K which are =. 1 mod p. Since

we took p ^ 5, it follows that w^ (p) = 1;
dj^ = p = absolute value of the discriminant of K;
SK (x) is the Gauss sum relative to K, that is

^(X)=I;.eo(p).X(W)^IT^(')/p.

For the proof see also [L 4] (chapter 22, § 2, Theorem 2). In the notation
of that chapter, we take y = 1/p, and b = (^/—p), so bp = (p). Further-
more, for any character ^ we have

X(C)=X(C).

Indeed, C contains principal ideals (0, and ^ s 7 mod p. Finally, as
explained in the last section of [KL I], we have

g,(C)=(D,(C).

These remarks show how the formula in the above reference imply the
formula as stated here.

From the values of the L-series at 1, and the factorization L 3, we find
the following Lemma.

LEMMA 2.1. - For a non-trivial character % of Gal ( H / K ) w Cl ( H / K ) :

EcX(Qlog|g^(C)|

=3I- lS(Xl)5(X2)^(X)^l,Xl^eZWX2W10g|l-^|.

^ / P
We note that

^(x)=LeZ(p)^(^)^l2z/p

and therefore
5x(x)=^(2)5(^).

As a special case of the Davenport-Hasse relation (cf. for instance [LI],
Chapter 2, § 10), we have

5(Xi)5(x2)=X?(2)5(x?)5(^).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



166 D. S. KUBERT AND S. LANG

Furthermore, the sign of a Gauss sum is always positive (cf. for
instance [L 3], chapter IV, § 3), and so we have

S(%K)=i^/P.
Therefore the linear relation becomes:

LEMMA 2.2
£cX(C)log|^(C)|=-3pB^^l:,^^^(&)log[l-^|.

3. The relations for all characters
We now restate the linear relations, including the trivial character.
THEOREM 3.1. - Let % be any character of Cl(H/K), trivial or not.

Then
ZcX(C)log|g^(C)|=-3p^^^,^^^(fo)log|l-^|.

If^ = 1, then Xi = Xi = XJG-
Proof, — The statement for non-trivial % has been proved, so we suppose

that 3c is trivial. Then:
Ec6CI(H/K)log|gff(C)|

=Ec6d(p)log|^(C)|
= Zc e ci (D EC' c: c log | gp (C") |

[where Cl (1) is the group of ordinary ideal classes]

^cecid^log -A(c ) by [Ro] (§ 2.3, Theorem 2 (iii))
2 A(pc }

[where c is any ideal in C], and since p = C\/^) is principal,
^EceCK^plogP
=^3j?logp.

But the classical class number formula for K gives

^=:wJ-JB^J=-2?i^.f-1^ ,^=-Bi , .
I ^ - ' ^K / ^^JK:

The Theorem follows from the obvious value for the sum
E» log 11-^|= log p.

4. Modular units as cyclotomic units
For any element u in K* we consider the regulator map p given by

PO^Zclogl^lac-1.

TOME 107 — 1979 — N° 2



MODULAR UNITS 167

This map will be applied to j^-units. Writing C = Ca with a e Z (/?)*2,
the above map can be viewed has having its values in the group
algebra C [G], where

G==Gsi}(HIK)wZ(p)*2.

We shall take u = ga (C\), and take into account the fact that
g^c^^cc).

We may write

P(^(Ci)) = Sc log | gff(C) | ac1 = E.log | gn(C^ \ a;1.

THEOREM 4.1. — W^ tov^

P(^(Cl))=-12pE.^BY/^a\Vog|l-^|a;l.

77^ ^MW^ ̂  ^A^ right are taken over a, beZ Cp)*2. In particular

log|gH(C,)|=-12pE,B//fclla\)log|l-^|.
\ \ P I )

Proof. — Apply any character ^ to p (gg (Ci)). From paragraph 3
we find:

£aXW10g]gH(C,)|=-6p^,^E,X2(fc)iOg|l-^|.

On the other hand applying % to the right hand side of the formula to be
proved, we find:

-^pEJ.BY/^^logll-^lx^)
\ \ P I )

—^pEtEoBY/^Vogli-^lxzWLOO
=-6p5i.x,EtX2Wlog|l-^|

because ^i and ^2 have the same values on squares. Furthermore,

2£oBY/fl\)xl(a)=:I,ezw5Y/-(\)xl(()=^„„
\W7 \ \P/ /

because B^ is an odd function, and — 1 is not a square mod;?. This
proves the Theorem.

We may now translate this result into a multiplicative notation. Let

a=^LeZO,).2(l-^)'"(t"<'W^).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



168 D. S. KUBERT AND S. LANG

We wish to prove that a is a root of unity. We know that gg (Q) is a
p-unit because it is obtained as a product of values of Siegel functions
whose ^-expansions (and those of their conjugates) are/Minits in the integral
closure of Z [7] in the modular function field. Furthermore, a has
absolute value 1 at all archimedean absolute values by the above calculation.
Therefore a must have absolute value 1 at p by the product formula.
Therefore oc has absolute value 1.

Making the change of variables a \—> d and b~1 a \—> b in Theorem 4.1,
we have proved the following.

THEOREM 4.2. - For de Z(>)*2 we have
g^^^eWaez^d-^"1^^

where s (d) is a root of unity, and

m^-U^B/MV

The notation is standard: we denote by Bi the first Bernoulli polynomial,

B,(X)=X-1

For any real number r, we let < r > be the unique number satisfying
r = < r > m o d Z and 0 ^ < r > < l .

Remark. — If we write c (1) = T|£() with So = ± I? and T| e |Xp, then
eCrf)^ £o-

The numbers gg (C) are /?-units, and their quotients
§H<iQlgH(C),

are units (RAMACHANDRA and ROBERT). Let:
^p. H = (s)? = group generated by all values gn (C) and [IQ;
Ojj = 0 = group generated all quotients gs (C)|g^ (C') and n^;
^p (^a) = group of^-units of the form;

IWo"^
where the exponents n (C) satisfy the condition

^c n (C) N a (C) = 0 mod Wg,
where a (C) is any ideal prime to WH in the class C, and Wg = 2p is the
number of roots of unity in H. In the present case, we can write these
units in the form

rwcj^ = n^w^ad-^)-12"^
TOME 107 — 1979 — N" 2



MODULAR UNITS 169

where
^n(d)d=0modp and ^n(d)=0mod2.

The exponent v (A) is given by the formula:

vW=E^)B//^\)eZ.
\ \ ^ / /

Since e (d) = r^ So (c/. remark above), we have
n^w^^s^^ii2"^^!,

so that
O^^r^^n^i-^)"1^^

The root of unity factor has gone out.
Using similar notation, we let

°ff (w^) = subgroup of ̂  satisfying the above condition.
An element of 0^ jj lies in <S>s 1^ and only if, the exponents n (C) satisfy

1X0=0.
We have also given a proof in the present instance for Robert's result

that the elements of 0 (wjj) (or Op (w^)) are 12 7?-th powers in H. As
in ROBERT [Ro], this allows us to take 12^-roots, and we define:

Ep^cyc == group generated by \in and by the cyclotomic /?-units ^—1,
with&eZO?)*2 ;

^p, mod = group generated by [IH and all elements a e H such that
oc^e^O^).
We define E^ and £mod ln a similar way, taking the elements of degree 0
to get units instead of/?-units. We call the groups Ep^^ or E^^ the groups
of modular p-units or modular units respectively. The latter could also be
called the group of Robert units. For any element a ^ 0 of H, we let

P^^EaeGloglaaja"1 ,
where G w Z (p)*2 is the Galois group of H over K. Thus p is the usual
/regulator" map. Then

^.cyc/^.mod ̂  P(^,cyc)/P(^,mod).

Let 7? = Z [G], and let ^ be the element of C R given by
^=Ealog|^-l|o;1.

Let the Stickelberger element be

e-S,B.((̂ .->.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



170 D. S. KUBERT AND S. LANG

Let:
IH = ideal of elements ^ n (d) c^, n (d) e Z, d prime to 2p, satisfying

the conditions

^n(d)d=-0modp and ^n(d) = Omod2.

y = Stickelberger ideal = Iy © <= R because 2 divides Wg. Then

P(^cyc) = -R^, P(0p) = 12p^^©.
P(^mod)=^.

Consequently we obtain an isomorphism.

THEOREM 4.3. - ̂  ̂ /^, ̂  » ̂  S/^ S » -R ^.
A similar isomorphism is obtained for ^cyc/^mod by considering the

elements of degree 0.

Remark. - For the record, it may be useful to have the expression
of the cyclotomic units as rational power products of the modular units.
In Theorem 4.1, we apply a character %, divide by -6pB^^^ and sum
over 7. We find:

--^ScloggHCOS——zCC)
6P ^i.xi

=E^(z(pwiog|i-^|E^W
=^log|l-S|.

Therefore, we have the following Theorem.

THEOREM 4.4

^gl1-^!- ~1 ̂ Zc^(C)log|g^(C)|,
^PIP-l)

wA^r^

^(o-Ex—xCO-
^l,Xi

In multiplicative notation, up to a root of unity, this yields

1-^ = £'(a)r[c^(C)- ——1—— m'(C/0.
3p(p-l)

TOME 107 — 1979 — N° 2
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Part two: p = 1 mod 4
1. General facts
As before, we have the following Theorem.
THEOREM 1.1. - K(p) = ̂ (l)Q(^).
The proof is similar and can be omitted. We let K* == Q (^/p).

We let
H=K(vi,)=Q(^

Then
[H:K]-=[K(^):K]=p-l,

so Gsi\(K(yip)/K) w Z(/?)* in a natural way. We have the following
diagram of fields.

w^ ..^

Q
Note that K(i) is unramified over K (because only 2 can ramify, and K(i)
is also obtained by adjoining ^ / p to K). Thus K(i) = K(\) n A"((ip),
and we denote

K(i)=Hi=HnK(l).
We have a diagram similar to the other case.

Cl(H/fii)A.Gal(ff/Hi)

I I
^w^w

Let % be a character on Gal (H/K). We denote by %Q the corresponding
character on the isomorphic group Gal (Q (Up)/Q), and also view %Q as
a character on Z (/»)* under the usual isomorphism.

ai-xjg.

As before, for any class C e Cl (H/K), we have

X(C)=X(C),

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



^ D. S. KUBERT AND S. LANG

because for any ideal c in C,

X(0=XQ(Nc)=3CQ(Nc)=x(C).
Note that %2 ^ 1 if and only if conductor of % = p.

There are three characters of order 2 on Z (4/?)*, corresponding to the three
subfields of degree 2 over Q, namely

%K. I K ' . XQ(Q, and we have X ^ = X K X Q ( O .
2. Linear relation for ^2 =^ 1
^° assume x2 ^ 1. We apply the Kronecker limit formula as in [L 4],

that is

L ( ^ H I K , 1)=-———27——-ZcX(C)log|g^(C)|.
6P^(X)^

In the notation of [L 4], ̂  0) == ^ (y bp) T(x, y), where b = (2 ̂ p),
and we can take y = 1/2/?. Thus

^(X)=5(XQ).
Also, d^ = 47?. We use the decomposition

L(x, ff/lC, 1) ==LOCQ, ^/Q, I)L(XQ, ^/Q, 1),
where ^Q is the other character on Z(4/?)* restricting to %. A priori,
we do not know which of ^Q or ̂  is even or odd, and we use again ̂ , ̂
to denote the odd and even characters respectively equal to %o or %Q. In
the specific determination of the values of the Z-series, we shall have to
distinguish corresponding cases. We have

XQ = XQ XK = XQ Xx' XQ (o-
We let m^ = conductor of ^2. Then

L(x,^/iC,l)=17Tf5(Xl)B,.,/—l)5(x2)
^P \ P ]
XZ^Z(m^X2(&)10g|l-^|,

where ^ = ^2"^ (resp. ^ = 2m^) according as m^ = 4p or ̂  = p. From
this we get the following relation.

LEMMA 2.1
£cX(C)log|gH(C)|

=-lL5(XQ)^(XQ)5(xQ)^,^^^^^(&)log|l-^|.
WP

We now simplify the Gauss sums and their products.

TOME 107 — 1979 — N° 2



MODULAR UNITS 173

LEMMA 2.2. - S(XQ)5(XQ)==%(2)5(^)5^).

Proof. — This is a special case of the Davenport-Hasse distribution
relation (cf. for instance [L I], chapter 2, § 10).

In the present case, we have from the prime power decomposition (with
respect to the primes p and 2),

5(Xx) = 5(X^(W = 2 VA

because the signe of the Gauss sum is always positive (see for instance [L 3],
chapter IV, § 3). This yields:

LEMMA 2.3

EcX(C)log|g^(C)|
=-3pXQ(2)5i,;,E,ez(^XQWlog|l-^|.

We must then distinguish two cases.

Case 1: XQ = X2- — The expression in Lemma 2.3 is then equal to

-3^^(2)Bi,^^ezwXQWlog|l-^|.

Case 2: XQ = Xi- ~~ The expression in Lemma 2.3 is then equal to

-3pXQ(2)^.^S^Z(4p)*XQXKW10g|l-^|

=-3J?XQ(2)B^^^I:^Z(4p)^^lmod4ZQW(b)^^

-Eb6Z(4p)^^-lmod4XQW(-)log| l-^^41 | ,

\P/ J

where (bjp) is the quadratic symbol, E^ = ^27tI7p, ^4 = f.

3. Linear relations for %2 = 1

We distinguish two cases, depending on whether ^ is trivial or not.
Case % = 1. — Then case 1 of Lemma 2.3 also holds here, that is

Sclog|gH(C)|=3p(logj?)^=-3p(logp)Bi.^

The proof is the same as in the case p = — 1 mod 4, we did not need any
special property ofp for this relation.

Case X ^ 1, so XQ = X^- - Then

EcX(01og|gff(C)|=0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



174 D. S. KUBERT AND S. LANG

Proof. - As in the proof of the other case, we first write the sum as a
sum over elements of C / (p), and then as a sum

Ececi(i)X(g)Iog . (c ) =0,
ACc-1?)]

because p is principal, so we can use the homogeneity of the delta function,
and end up with the sum of the non-trivial character over all elements
of Cl (1), thus yielding 0.

4. Modular units as cyclotomic units

Let ^ = ^2"I/n. We wish to give an expression for the modular units

gn(c,) = eao-^r^a-^^r^a-^^T^
where m (b), r ' (6), r" (V) are rational numbers, and the product is taken
for b e Z (/?)*. Since

(1-S^4)(1-^^1)=1+^=1^,
1 ^P

we may assume that the expression has the form

( i r^r vw
^(C^entd-O"^ ——2^\ ,

l~~c^p (^4 /
where s is a root of unity, and

b\->m(b) is an even function,
bt->r(b) is an odd function.

THEOREM 4.1. — There is an expression as above, with

^)=-3^)fB//^.l\)-B//^-l\)1
\P/L \\ P 4/ / \\ P 4//J

i ( — — + .
\ P 4,
4-lb-l\r(b) =-3p - B,

\P
We have the regulator relation:

£clOg|gff(C))CTc1

=IJIt'n(fcfl-l)log|l-^j+(fl)»•(^-l)log 1-|̂  'L-1.
L V^/ - ^p^4 J

If c is an ideal in the class C, and a = N c, we also put

c=a.
TOME 107 — 1979 — N° 2



MODULAR UNITS 175

Then we may also write the above relation in the form:

log|^(C,)|=I:^(^•'l)lolg|l-^|+faV(^"l)log 1^^
\ P / 1 ~~ ^p ^4

Remark 1. — The expression in brackets [ ] in the definition of
m(b) is always 1/2 or —1/2. The product is taken over all b in Z (/?)*.
Consequently combining the values for w (6) and m (—fc), we see that the
factor involving w (6) already gives an integral representation in terms of
the cyclotomic numbers 1—^. A similar remark applies to the factor
involving r(b). As before, considering the subgroup generated by the
SH (^) satisfying the Robert congruence conditions on the exponents shows
that elements of this subgroup have p-ih roots in the cyclotomic units.

Remark 2. — The factor (a/p) in front of r (ba~1) in the formula arises
from the Galois action on the 4-th roots of unity.

Proof of Theorem 4.1. — We apply an arbitrary character ^Q, to the
expression on the right hand side (RHS) of the regulator relation to be
proved, and verify that it gives the desired value from paragraphs 2 and 3

Suppose first that ^Q is even. The sum over the terms containing
r (ba~1) will be 0, because a\-> %Q (a) is even, and

a^^rdba-^

is odd. After a change of variables, we thus obtain

XQ(RHS) = E.L,XQ(a)xQ(fc) m(a)log 11 -^ |
=ZaXQ^)m(4a).S.XQ(4&)log|l-^|
=5^, say.

Furthermore,

^EoXQW^-'a-1)

v - r ^M"/4"^.^ y4"1 0 ^1
= EaXQ(^) - ( ———— + . ) - ( ———— - . )WL\ P 4/ \ P ^J
= L 6 Z ( 4 ^ ^ 1 m o d 4 X Q ( O f ^ - ) B i ( ( — — ) )

W \\4p/ /

~Zt6Z(4p)*.(5-lmod4XQ(0( - ) BI ( ( —— ) )•
\P/ \ \4p / /
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Note that

Sa = M4^ = LXQ^(OB/^y

is the sum defining the Bernoulli-Leopoldt number at level 4p with respect
to the character %g % .̂

If ^Q :̂ 5 ,̂ then /Q %K h^ conductor 4p, and we get the desired value
corresponding to Lemma 2.3.

If ^Q = %^,, then this Bernoulli number is 0 (corresponding to the value
found in paragraph). Indeed, the standard reduction for computing
Bernoulli numbers from one level to a lower level with one fewer prime
factor introduces the factor

1-XQ(P)X2C(P)=0,

because %^ ̂  (p) = %Q ̂  (p) == 1 (cf. for instance [L I], the Lemma
of chapter 2, § 8). This concludes the proof of the case when XQ ^ even.

Suppose now that ^Q is odd, so XQ = Xr Then

%2 = %i7jo

and the conductor of ^2 is 4/?. Then the term with m drops out, for parity
reasons again and we get a sum with the terms containing r (ba~1). For
simplicity, abbreviate

1 __fb y
7/M— ^P-'4Z(fc)= &/--1

1-^4

Then we find:

XoCRH^^^S^.E.XQ^f'y^^BY/l^^^loglZWl
\pA P J \\ P I J

=-3p^Q(4)5^S'fc,

where

S^^^Q^BY/^^^.^

^^^^oWf^loglZWi.
\^/

It now suffices to verify that S^ is equal to the sum in brackets in case 2 of
Lemma 2.3, namely we must show

^=LeZ(4p)*X2(010g|l^l.
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To do this, we decompose the right hand side, writing ^ = ^p (34, and sum
over b e Z (/?)* corresponding to values

t=bmodp, f = l m o d 4
and also

f=b mod p, t = — 1 mod 4.

The desired equality drops out.
As in the previous Case, let

^=n^-•^r(b)z(bY(b)igH(c,).
We want to prove that a is a root of unity. By the above calculations,
a has absolute value 1 at all archimedean absolutes values. Moreoever,
a is a unit outside of primes deviding p in Q (1^4?). We have

^(pip^-^2.
We note that the valuation of the numerator o faa tp i equals the valuation
of the numerator at p^ since the contributions come from elements of
Q (yip). The same is true of the denominator, as one can see from the
distribution relations (ROBERT-RAMACHANDRA). Thus this is true for a,
and then by the product formula, a must be a unit at pi and at p^-
Therefore a is a root of unity. This proves Theorem 4.1.

Remark. — In the present case, when ^contains a non-trivial unramified
extension of K, the group generated by the values gn (C) is not of finite
index in the cyclotomic /?-units. From ROBERT [Ro], we know that
unramified units formed with the delta function must also be taken into
account to get a full group of units. One can follow the same method to
carry this out. This will be done elsewhere. Cf. KERSEY'S thesis for a
treatment of the general case, of an arbitrary imaginary quadratic field
and nth roots of unity.
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