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Bull. Soc. math. France,
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ON A RELATION BETWEEN TORSION NUMBERS
AND ALEXANDER MATRIX OF A KNOT

BY

MADAN LAL MEHTA {*)

RESUM£. — Dans la theorie des nceuds, on considere deux sortes d 'in variants; Ie polynome
d*Alexander A (x) deduit d*une matrice A (x) dite d*Alexander, et les nombres de torsion d'ordre
n pour n =2.3,4,..., qui caract6risent 1'espace complementaire du nccud. Nous montrons que,
pour n'importe quel noeud, les nombres de torsion d'ordre 2 sont les diviseurs elementaires de la
matrice A (x) a x = — 1. On en deduit une mcthode rapide pour calculcr a Paide d*un ordinateur
les nombres de torsion d*ordre n pour tous n^2.

ABSTRACT. - In the theory of knots, one comes accross two sorts of invariants; the Alexander
polynomial A (x) derived from the so-called Alexander matrix A (x}, and the torsion numbers of
order n for n ss 2,3,4,... characterizing the space surrounding the knot. We show that for any
knot the torsion numbers of order 2 are the elementary divisors of the matrix A{x) for
x= — 1. A quick method is deduced to find torsion numbers of order n for all n^2.

1. A knot is a simple closed curve in the ordinary three dimensional
space. It can be represented as a diagram by its projection on a plane. The
plane may always be chosen so that every multiple point of the projection is a
double point. To indicate which segment of the curve lies over the other
one. usually a small portion of the underlying curve is omitted near the double
point (see Fig. 1 a). ALEXANDER [1] gave instead the following
prescription. Orient the knot arbitrarily. Imagine an observer describing
the projection in the positive sense (determined by the orientation of the knot)
thereby passing twice through each crossing point. As the observer passes
through a crossing point on the segment representing the upper branch he
marks with dots the two comers on his right; as he passes through a crossing
point on the lower segment, he makes no notation at all. The resulting
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82 M. L. MEHTA

system of dots will tell us which branch is upper and which is lower at every
crossing point. (See Fig. 1 b, which represents the same knot as Figure 1 a,
but in ALEXANDER'S notation.)

Fig. l a Fig. 1 b

The diagram of a knot divides the plane into regions. By studying how
various dots are distributed along the corners of these regions. ALEXANDER
and BRIGGS [2] and ALEXANDER [1] discovered quantities which remain
invariant under continuous changes of the knot curve. For example, for
each integer greater than one they derived a set of torsion
numbers. Similarly an invariant polynomial A(x), the Alexander
polynomial, is derived as the determinant of a matrix A (x) whose elements
are polynomials in a variable x.

We will show that the torsion numbers of order 2 are the elementary
divisors of the matrix A ( — 1). In particular, A ( — 1) is equal to the product
of the torsion numbers of orders 2. We show that the matrix A (x) contains
all the information about torsion numbers of all orders. This information is
not lost by elementary operations on A (x). Thus A (x) may be reduced and
for this purpose a computer can be used. We thereby give a quick method to
find torsion numbers of order n for all n^2.
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KNOT 83

2. Let M be a (rectangular or square) matrix whose elements are
integers. Its elementary divisors may be defined as follows [see for example
[5], Chap. 6].

By elementary operations on M, we will mean :
(i) exchanging two rows or two columns;

(ii) changing the overall sign of a row or of a column;
(iii) adding an integer multiple of a row to any other row, or of a column to

any other column.
These rules can be expressed in matrix notation as follows. The

transformation M -» PMQ is an elementary operation, if, and only if, the
square matrices P and Q (of suitable orders, so that the product PMQ exists)
have integer elements and det P== ± 1 ̂ det Q.

By a permutation of rows and columns one may bring any element of At in
the leading position, i. e. in the first row and first column. So let us suppose
that the element M 11 has the smallest non-zero absolute value. If M ij ̂  0.
then we may add to the;-th column a suitable multiple of the first column so
that the resulting M^j has an absolute value smaller than M^. If this
smaller absolute value is non-zero, then we may by an exchange of columns
bring this to the leading position and start the whole process again. Similar
remarks apply for the elements in the first column. Also if Mn does not
divide M ij;, i ̂  1 ̂  7, while all the elements in the first row and the first column,
except M 11, are zero, then we add the;-th column to the first column and add
to the i-th row a suitable (perhaps negative) integral multiple of the first row to
make the resulting Af»i have a smaller absolute value than M^. We may
then bring this smaller Mn to leading position and start the whole process
again. Hence, by elementary operations, we may transform M so that
among its elements M^ has the smallest absolute value, M^ =Mij=0, and
Mij is an integral multiple of M ̂  for every i and j different from 1.

The same process can then be repeated on the sub-matrix ofM ignoring its
first row and first column.

Thus, by elementary operations, we may transform M so that M^==0 for
i ̂  7, and Mpp divides Mp+i, p^. i for every p. In matrix notation given any
matrix M with integer elements we may always find square matrices P and Q
also with integer elements and det P= ± 1 =det Q, such that all off-diagonal
elements of PMQ are zero and the non-negative diagonal elements are
successively multiples of the preceding ones. Those diagonal elements which
are different from one are called the elementary divisors ofM.
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84 M. L. MEHTA

3. In a knot diagram let v be the number of crossing points and therefore
by Euler's formula v+2 the numbers of regions. We denote the crossing
points as Ci ,C2 , .... Cy and regions as Ri.R^. . . . . - R v + 2 - Ate very c. there
are 4 corners, two of which are dotted and two undotted. Every Rj has a
certain number of corners belonging in general to different c,'s. (In special
cases, two corners ofRj may belong to the same c<, but such a diagram admits
an obvious simplification. Also the two comers in question lie always
opposite to each other, one of them being dotted and the other
undotted. To include such cases only trivial modifications will be needed in
what follows.) A crossing point c, and a region Rj are said to be incident if,
and only if, c, lies on the boundary ofRp Ifc; and Rj are incident, then they
are said to be incident with or without a dot according as the comer of c,
belonging to Rj is or is not a dotted comer of the diagram.

According to ALEXANDER [I], we write a vx(v+2) matrix A as
follows. To every crossing point G( corresponds a row of A and to every
region Rj a column of A. We putAy=Oifc< and J^-are not incident. Now
suppose the four comers at c, belong respectively to Rp R^ RI and JR^, that
we pass through these regions in the cyclic order just mentioned as we go
round c, in the positive sense, and that two dotted comers belong to Rj and
J?t respectively. Then we put:

A,j==x. A^—x, A,j=l and ^4^==—1.

Thus each row of A contains four non-zero elements and the cyclic order with
the two dotted comers first is essential.

For example, to the knot of Figure 1 corresponds the matrix

R. | Ry J\3 J\4 S\ s f^6

Ci . . . . . . . . . . . . 1 —X X — 1
^.. . . . . . . . . . . . ^ _^ _^ ^

^ . . . . . . . . . . . . . ^ ^ _y y

^. . . . . . . . . . . . . _^ ^ __^ ^

The matrix A is the Alexander matrix and the determinant of any of its non-
singular v x v sub-matrix is the Alexander polynomial (they all differ from
each other at most by a factor ±x1") [1].

To define torsion numbers, ALEXANDER and BRIGGS [2] assign n variables
,v,a, a = 1,2, . . . , n to each c<. Thus each variable has two indices and there
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KNOT 85

are in all vn variables y^, i= l ,2 , . . . .v ;a==1.2 . . . . ,n . To allow a to take
all integer values one makes the convention ^i«=3^(«+n)- Corresponding to
Rj they write the equations of homologies

K j > £^k<«+L'^«x-n)==0, a = l , 2 . . . . , n ,

where the first sum runs over all c^ incident to Rj without a dot, and the
second sum runs over all Cy incident to Rj with a dot.

For example, corresponding to the knot of Figure 1. the homology
equations are

RI ^ ^i<x+^3o.=0,
R I ' - ^i«x-n)+^3.x+y4<«=0,

^3 ; ^Ka+D+.^x+.^C+l)^

^4 : 3^+^2«+y3(«+l)=0,

^5 '• ^(B+D'+'^Ca+l)^0,

R6 ^ ^2(a+l)+^3(a+l)+^4<x==0.

The coefficient matrix B of the homology equations is rectangular of order
v n x (v n + 2 n) and its elements, either 0 or 1. Its elementary divisors are the
torsion numbers [2] of order n.

For n=2, the matrix B of order 2vx(2v+4) may be written as
.follows. To every Cf corresponds two rows and to every Rj corresponds two
columns. We partition B into v x (v + 2) blocks of sizes 2 x 2 each, so that to
every pair (G(, Rj) corresponds a 2 x 2 matrix. If c, and Rj are not incident.
then this 2x2 matrix is zero. Ifc; and Rj are incident without a dot then it is
the 2 x 2 unit matrix. And if c, and Rj are incident with a dot, then the
corresponding 2 x 2 matrix is

|-0 11
'-Li 0}

Let us add column (2j— 1) to column 2j for 7= 1, 2, .... v 4-2, and then
subtract row 2 i from row (2 i — 1) for i = 1. 2, ..., v. This does not disturb
the 2 x2 zero and unit matrices but replaces the CT'S by

C T -
-1 0'
1 1

BULLETIN DE LA SOC1ETE MATH^MATIQUE DE FRANCE



86 M. L. MEHTA

Finally, collect all odd numbered rows and columns in the upper left corner,
the even numbered rows and columns being in the right lower comer. These
elementary operations transform B into B' having the following structure :

B^31 °1w ^J
where B[,B^B^ and Oare matrices of order vx (v+ 2). The (i,j) element of
B i is 0,1 or — 1 according as c, and Rj are not incident, incident without a dot
or incident with a dot, respectively. The (ij) element of 83 is 0 or 1
according as c, and Rj ate not incident or incident (independently of the dot)
respectively. The structure of B\ is also clear, but it will not be needed.

4. The proof that the elementary divisors of B are identical to those of
A (x) for x= — 1, consists of two parts.

4.1. A ( — 1) and B [ differ by a change of sign of certain rows and certain
columns and hence have the same elementary divisors.

To see that, put a plus or a minus sign on each crossing point and each
region as follows. We decide arbitrarily c^ to be positive. Let Ci be
incident with Rp jRj^, Ri and R^, that we pass through these regions in the
cyclic order just mentioned as we go around c» in the positive sense, and that
the two dotted comers belong to Rj and Rj, respectively. Then we mark Rj
and R, to be positive and R^ and R^ to be negative. Any region having a
commun boundary with Rj or Ri receives a negative sign. Similarly any
region having a common boundary with R^ or R^ receives a positive
sign. We proceed step by step deciding the signs of regions surrounding
those already marked in such a way that any two regions having a common
boundary get opposite signs. This will never lead us to a contradiction for in
making a complete tour of the knot projection one goes around each region a
certain number of times and this number changes by one on crossing the
boundary separating any two regions. Thus the parity of this number
decides the sign of the region.

Now starting at c i we move along the curve passing through each crossing
point twice, once along the upper branch and once along the lower
one. When we reach c, following the upper branch, the two dotted corners
are on our right and belong to two regions having opposite signs. We
choose the sign of c, to be the same as that of the region containing the first
dotted corner we encounter. When we pass through c, following a lower
branch, we do nothing. (The sign of c, is either already decided or will be
decided later, during the upper pass.)

TOME 108 - 1980 - N° 1
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If we change signs of the rows and the columns of A (— 1) corresponding to
negatively marked crossing points and regions respectively, then what we
obtain is a matrix identical to B[.

4.2. B 3 has no elementary divisors. In other words B 3 can be reduced by
elementary operations to a matrix all of whose off-diagonal elements are zero
and all diagonal elements unity.

The reasoning of section 4.1 above shows that if we make the same changes
of signs (of rows corresponding to negative crossing points and of columns
corresponding to negative regions) in A (x) for x = 1, we will get B^. Thus
2?3 and A(l) have the same elementary divisors.

Reduce A (1) by elementary operations as explained in section 2 to a matrix
whose off-diagonal elements are all zero and the diagonal elements are
integers, say, fc i , ^2. • . . » ^v But the Alexander polynomial A(x), apart
from a factor ±xm, is equal to the determinant of the v x v non-singular sub-
matrix of A(x), and equals one at jc= 1, A(l)== 1. for any knot ([!]. [3], [7],
[8]). Thus the product of the integers b i, fc 2» . . . , MS unity and hence each
one of them is equal to one. Consequently, A (1) (or £3) has no elementary
divisors.

5. Alexander's recipe of writing A(x) as given in section 3. though
conceptually easy, is not convenient for routine programming. For
computer purposes it is easier to adopt other equivalent constructions ([3], [6],
[7], [8]). We indicate below one of these giving a (v-l)x(v-l) matrix
Ay,(x) such that the A(x) of section 3 above can be transformed by
elementary operations to the form

r i O^-D 012 1
L°(v-l)l A^(X) 0(v.i)2j

where <?„„ represents the m x n zero matrix. For mathematical details, see
for example, CROWELL and Fox [3].

Choose any point other than a double point of the knot projection as origin
and as before describe the projection in the positive sense. As we pass
through a double point along a lower branch we number it as 1, 2, 3, . . . in
sequence; as we pass through a double point along the upper branch, we do
nothing, the crossing point is either already numbered or will be numbered
later when we pass through it along the lower branch. Once all the crossing
points (or underpasses) thus numbered, we assign the number j to the arc or
segment of the curve lying between underpasses^' — 1 and j. The arc between

BULLETIN DE LA SOC1ETE MATHEMAT1QUE DE FRANCE



M. L. MEHTA

the underpasses v and 1 receives the number 1. Next we attach a sign to each
crossing point, +or — according as the priority of passage from the right,
say. is respected or not respected (Fig. 2).

Fig. 2

Thus to every crossing point correspond two numbers and a sign; the
underpass number, the arc number of the overpass and the sign of the priority
of passage. We construct a v xv matrix A ' ( x ) as follows. The rows of
A'(x} correspond the underpasses and the columns to the overpassing
arcs. Let j be the arc number of the overpass and s the sign corresponding to
the underpass No. f. The elements of A ' ( x ) are:

(i) i f j==i or7==i-H (mod v). then A«=l, A, '(f+i)==—1;
(ii) ifi^j^i-^1 (mod v) and 5== +. then A{(=
(iii) ifi^^i+1 (modv)and5= —,thenA^=
(iv) all other elements of A' are zero.

'•^•f ̂ i(i+l)~ "

•^^I'd+l)3

-X,A[^X——\\

= l , A y = X - l ;

Any (v—1) x ( v — l ) sub-matrix of A'(x} can be taken as Ai(x). As an
example, corresponding to the knot of Figure 1 a, we have the
correspondances:

number of the underpass
overpassing arc No.

sign
and therefore

^(x)=.

TOME 108 - 1980 - N° 1
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6. In what follows, a polynomial will mean a polynomial in x with
integer coefficients. Let us reduce A^(x) by the following elementary
transformations. (Compare with section 2):

(i) exchanging two rows or two columns;
(ii) multiplying a row or a column by ± x'. where a is any integer, positive,

negative or zero;
(iii) adding a polynomial multiple of a row to another row or of a column

to another column;
(iv) if the only non-zero element in a row and a column is found at their

intersection and if this non-zero element is 1, then we delete that row and that
column.

It is clear from the above rules that if a row contains only one non-zero
element and if this non-zero element is a monomial. ±x01. then we can delete
that row and the column containing the monomial in question.

Note that we do not allow multiplying a row by a constant c ̂  1. If we did
that, then A i (x), as any other matrix, can be reduced to the diagonal form
and the diagonal elements are polynomial multiples of the preceding ones ([5],
chap. 6); elementary polynomial divisors (with coefficients not necessarily
integers). As multiplying a row by a constant is not allowed, A ̂  (x) can not
in general be reduced to the diagonal form.

By a permutation of the rows and columns, if necessary, we can bring any
monomial element of A i {x) in the first row and first column. If any other
element in the first row is non-zero, we can make it zero by adding to the
column containing it a suitable polynomial multiple of the first column. We
can then delete the first row and the first column. Thus as long as a matrix
has an element ±x01 somewhere, we can reduce its size.

In matrix notation, we look for square matrices P(x) and Q(x) with
polynomial elements such that their determinants are monomials, det
P(x)= fx', det Q(x)= ±;cp. a, P integers, and P(x)A^(x)Q(x) has the
form

(6.1) P{x)A,(x)Q(x)J^ 0^^=EJ+A2(^

where / is a unit matrix and no element of A^ (x) is a monomial in x.

BULLETIN DE LA SOCIETE MATHEMAT1QIJE DE FRANCE



90 M. L. MEHTA

Now if we replace 1 and x in (6.1) by the n x n square matrices

1 0
0 1
0"0

and

0

0

0

J

1

0

0

0

0

1

0

0

... 0

... 0

... 0

... 0

0"

0

1

0.

respectively (these matrices have integer elements and determinants ±1),
then we see from the reasoning of section 4 that the elementary divisors ofB
are identical to those of A^{x}.

In general, A^(x} is a much smaller matrix than A^(x). And the
calculation of torsion numbers is thereby greatly simplified. We illustrate
this by two examples.

Fig. 3

7. Our first example is the knot 9*46 of Alexander and Briggs table,
depicted on Figure 3. One writes down A i (x) according to the prescription
of section 5 and it is straightforward to reduce it. One finds (c/. CROWELL
and Fox [3], p. 129) A^{x) to be a 2 x 2 diagonal matrix

^2(x)=[(l-2x)4-(2-x)].

TOME 108 - 1980 - N° ]
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And the n x n matrix

' 1

0

0

^2

-2

1

0

0

0 ...

-2 ...

0 ...

0 ...

0

0

1

0

0

0

-2

!

l-2;c=s

has one elementary divisor 2" -1. The elementary divisor of 2—x is the
same. Therefore, the torsion numbers of order n for the knot 9 * 46 {Fig. 3)
are2n-l ,2n-l .

As a second example, we take the knot depicted on Figure 1 (number 4*1
of Alexander and Briggs' table). Here, A^(x) reduces completely,
A 2 {x) = A (x) = 1 ~ 3 x 4- x 2. The corresponding n x n matrix

1

0

1

^-3

-3

1

0

1

1

-3

0

0

0 ...

1 ...
0 ...

0 ...

0

0

1
0

0

0

-3

1.

can by elementary operations be brought to the form
?,,+! b,-3-[

^-^L €„ rf,+lj

and for our purposes the (n—2)x(n-2) unit matrix can be ignored. The
integers a^, & „ , € „ , dn are to be determined recursively from the relations

fln+l=3fln+&n* &n-H==-^n»

c^i=3c^+ri^, r i»+i=-c^ ,

with the initial values

a^\, ^2=°. C2=-3, ^2=1-

The table below lists their values for a few n:

w= 2 3 4 5 6 7 8 9

a. . . . . .
b.
c.. . . . . .
d.

1
0

-3
1

3
-1
-8

3

8
-3

-21
8

21
-8

-55
21

55
-21

-144
55

144
-55

-377
144

377
-144
-987

377

987
-377

-2584
987
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92 M. L. MEHTA

The corresponding torsion numbers are
5; 4.4; 345; 11.11; 8.40; 29.29; 21.105; 76.76;...

8. For the reduction of A^ (x), one can use a computer. For
this purpose on the knot diagram we number consecutively the underpasses
and mark the overpassing arc numbers and the signs of the crossings, as
explained in paragraph 5 above. As the underpasses are numbered
consecutively, we give only the successive overpassing arc numbers with signs
to the computer on a card. From this information the computer constructs
the matrix A i (x) according to the rules indicated and performs the
elementary operations to reduce it as much as it can. The final result is
printed.

Thus among the 250 prime knots upto 10 crossings, listed in
D. ROLFSEN [7] :

(a) A i (x) reduces to a 2 x 2 matrix for the knots
9*35. 9*38. 9*47. 9*48. 9*49.

10*61. 10*65. 10*75. 10* 101. 10*103.
10*115, 10*140. 10*142. 10*157 and 10*160;

(b) it reduces to a 2 x 2 diagonal matrix for the knots
8*18. 9*37. 9*40. 9*46.

10*74. 10*99. 10*122. 10*123 and 10*155;
(c) it reduces to a 1 x 1 matrix, i. e. to the polynomial A(x), for all the

remaining 226 knots.
Thus for most of the knots (226 out of 250) the Alexander polynomial A (x)

contains all the information about torsion numbers of any order. For
9 knots listed in (b) above, torsion numbers of order n separate into two
sets. Only for 15 knots listed in (a) above, the A i (x) does not seem to reduce
further and therefore torsion numbers are a little more difficult to calculate
{see Appendix).

After this work was completed the author came to know that the torsion
numbers of any order as well as well as the Alexander polynomial can also be
derived ([4]. p. 150-158) from a 2h x2h matrix where h is the genus of the
knot. and from this one can deduce in particular that torsion numbers of
order 2 are the elementary divisors o!A(— 1). However, the 2 h x 2 h matrix
in question requires for its construction manipulating a Seifert surface
bounding the knot. hardly amenable to computer programming.
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I am thankful to J. DES CLOIZEAUX for separating B[ from 83 and for
pointing out that A (1) is related to Ba. I am also indebted to A. GERVOIS
and G. MAHOUX for many improvements in the presentation, and to
V. POENARU and F. LAUDENBACH for insisting that such things must be
known in the existing vast literature.

APPENDIX
Reduced form of the Alexander matrix for the prime knots upto 10

crossings, as listed in D. ROLFSEN [7]. For the non-diagonal 2 x 2 matrices,

we adopt the notation (a, b, c, d) to indicate the matrix , . where theLC dj
elements a, b, c and d are polynomials in x. When b and c are both zero so
that the 2x2 matrix is a diagonal one, we write simply fl-i-d. When A{x)
reduces to the 1x1 matrix A (x), the Alexander polynomial, it can be looked
up in Rolfsen's book and we do not reproduce them here.

Knot number Reduced form of A {x)

9*35 (x-2,3x-3,l-2x,x-2)
9*38 (5-9x+5x2,l•^-x.0, 1-x+x2)
9*47 • (l-3x+4x2-3x3+x4. x-2x2.2x-x2, 1-x+x2)
9*48 , (2+x2, 1-x+x2 ,-l+8x,x+x2)
9*49 " (1-x2,-l+3x-x2. l^x+x^^x2)

10*61 (1-x+x2, 0, 2, 2-3x+x2-3x3+2x4)
10»65 (1-x+x2, 0, 2. 2-5x+7x2-5x^+2x4)
10*75 (l-4x+3x2-x^0, l-2x, l-3x+4Jc2-x3)
10» 101 : (-1+jc-x3. 2-3jc+3x2, 2-5x-»-3x2. 3-2x)
10»103 (2-4x+3Jc2-Jc3,2-2x-^x2,2x-2x2+Jc3, -l+4x-3x2+2x3)
10»115 (l-8Jc+17x2-8Jc3+Jc4,2JC2,2x, 1-x+x2)
10*140 : (l'•x+x2.2.Q..l-x^x2)
10» 142 (2-x-x2-x3+2JC4. 2, 0, 1-x+x2)
10*157 (l-3x+4x2-4x3+2x^2-3x+2x2 , l-3x-^2x2-2x3-^x5 , 1+x3)
10*160 • (l-3x+2x2-3x3+x4 ,x-2x2 .2x-x2 , 1-x+x2)
8»18 (l-x+x2)+(l-4x+5x2-4x3+x4)
9*37 (l-2x)+(2-7x+5x2-x3)
9»40 (l-3x+x2)+(l-4x+5x2-4x3+x4)
9»46 (l-2x)-i-(2-x)

10*74 (l-2x)+(4-8x+7x2-2x3)
10»99 (l-2x+3x2-2x3+x4)+(l-2x+3x2-2x3+x4)
10»122 (2-3x+2x2)+(l-4x+5x2-4x3+x4)
10*123 (l-3x+3x2-3x3+x4)-i-(l-3x+3x2-3x3-^x4)
10»155 (l-2x+x2-x3)+(l-x+2x2-x3)
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