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ANALYTIC ISOMORPHISMS OF INFINITE DIMENSIONAL
POLYDISCS AND AN APPLICATION

BY

ReinuoLp MEISE and Dietmar VOGT (*)

ABSTRACT. — Let A(P) be a Kothe-Schwartz space. In its strong dual A (P), we consider
_open polydiscs D, of finite radii and show that D, and D, are holomorphically equivalent iff
there exists a linear automorphism @ of A (P), with ¢ (D,)=D,. For power series spaces resp.
their duals a complete classification can be given and a parameter representation of the
group Aut(D,) of all holomorphic automorphisms of D, is obtained. As an application one
gets a characterization of the isomorphism classes of the 1. m.c. algebras (H(D,), 1,) of all
holomorphic functions on D,.

RESUME. — Soit A (P) un espace de Kothe-Schwartz. Dans son dual fort A (P), on considére
des polydisques D, ouverts avec des rayons finis et on montre que D, et D, sont
holomorphiquement équivalents si et seulement s’il existe un automorphisme linéaire @ de A (P),
satisfaisant @ (D,)=D,. Pour les espaces Af(a) respectivement Ag(a), on donne une
classification compléte et on obtient une paramétrisation du groupe Aut(D,) de tous les
automorphismes holomorphes de D,. Comme application on donne une caractérisation des
classes d’isomorphismes des algébres 1. m.c.(H(D,), t,) de toutes les fonctions holomorphes
sur D,. i

Preface

Let A(P) be a reflexive Kothe-Schwartz space. Then its strong dual
A(P), is a sequence space again and for a>0 varying in:

A®(P) :={xeCN|sup,.y|x,|p,<co for all pe P}

the set:
[[Da j={,\'EA(P);,lsupnelenlan<1}
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4 R. MEISE AND D. VOGT

is an open subset of A (P),, called an (infinite dimensional) open polydisc of
finiteradii. We investigate necessary and sufficient conditions for such open
polydiscs D, and D, in A(P), to be holomorphlcally equivalent. The
treatment of this question is motivated by a result of our article [7], showing
that for every nuclear power series space A, (o) there exist open polydiscs of
finite radii D, and D, in A, (a), which are not holomorphically equivalent.

The main results of the present article are the following: First we show that
two open polydiscs of finite radii D, and D, in A(P), are holomorphically
equivalent, if and only if, there exists a linear topological automorphism ¢
of A(P), with ¢(D,)=D,. Moreover, we determine the structure of all
possible holomorphic equivalences. Then we derive a necessary condition
for such automorphisms @, which turns out to be also sufficient in the case of
power series spaces, resp. their duals. From this we get a classification of the
holomorphically equivalent open polydiscs of finite radii in Ag(a),
resp. AP(a) for R=1,00 in the following way: D, and D, are
holomorphically equivalent, if and only if, there exists a bijection n of N with:

0<mfle~ a,- <Supjen u;;” <o
such that (a;/b,;))en and (b, ;/a;)jen belong to the diametral dimension
A(Ag(a)) of Ag(a). This result has two further consequences. The first
' one is the existence of a continuum of open polydiscs in Ag (a), resp. A’ (a)
which are pairwise not holomorphically equivalent. The second one is that
under the hypotheses given above, the locally convex algebras (H (D,), 1,)
and (H(D,), t,) of all holomorphic functions on D, resp. D, under the
compact-open topology 1, are isomorphic, if and only if, the conditions in the
classification result are satisfied. Hence there exists also a continuum of

non-isomorphic nuclear Fréchet algebras (H(D,), to).

Knowing the structure of holomorphic equivalences between open
polydiscs of finite radii, one can use the arguments from the proof of the
classification result in order to give a parameter representation of the group
Aut(D,) of all holomorphic automorphisms of D,.

The proofs of our results are based on general arguments from functional
analysis, on specific properties of sequence spaces and power series spaces and
on ideas used by H. Cartan to determine the group of holomorphic
automorphisms of bounded domains in C".

TOME 111 — 1983 — wN° |



ANALYTIC ISOMORPHISMS 5

The authors thank E. Dubinsky for a valuable discussion which led to the
final form of Lemma 8 and the referee for a remark which simplified the proof
of Proposition 13.

1. Preliminaries

The following conventions and definitions will be used throughout the
whole article.

A l.c. space E means a locally convex Hausdorff complex vector space E;
the topological dual of E is denoted by E’. For the usual 1. c. topologies
on E resp. E' we use the notation of HorvATH [5], resp. PieTscH [11].

(i) Sequence spaces

Let P be a family of non-negative sequences (p,),.n With the following
properties:

(1) For all neN there exists pe P with p,>0.

(2) For all p, ge P there exist c>0 and re P such that p+g¢ <cr.

Then we define the Kdthe sequences spaces:

A(P):={xeCN|m,(x) :=Y2, |x,|p,< oo for all pe P}
resp.:

A% (P) :={xeCN|ny (x) :=sup,.y | x,|p,< oo for all pe P},

which are given the natural l. c. topology induced by the semi-norm systems
(m,),ep TESP. (N5 ),cp.  We use the symbol A*(P)for A(P)and A (P) if we
don’t want to distinguish between them. By (e;);.n We denote the canonical
basis of A(P), where e;=(8
Throughout the whole article we shall assume that A*(P) is a reflexive
Schwartz space. We recall that the Schwartz property of A*(P) is
~ characterized by the following property (S) of P
(S). For all pe P there exist g€ P and a null-sequence ¢ with p<cg.

jn/neN-

The dual space of A(P) is again a sequence space, namely:
A(P)'={xeCN|there exist pe P and d>0 such that
|x,l<dp, for all neN }.

For a reflexive Schwartz space A(P), the strong dual A(P), is an
ultrabornological Montel space. Hence a subset B of A(P), is relatively
compact iff B is equicontinuous, and a fundamental system for the compact

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 R. MEISE AND D. VOGT

sets in A(P), is given by { N,|be A(P)'}, where:
N, :={xeCV||x,|<|b,| for all neN}

denotes the normal hull of b. From this and a standard compactness
argument it follows that the topology of A (P), coincides on the compact
subsets of A (P), with the topology induced by CV. Hence the dual basis
(€7);en Of the canonical basis is a basis of A (P);.

(i) Open polydiscs in A (P),

For all aeA*(P) and all xeA(P)’ we have lim,_, a,x,=0. This
follows easily from the description of A(P)’ given above and our: general
assumption that A(P) is a reflexive Schwartz space. Hence
7, : A(P) = R,, n,(x) :=sup,cn | X,a,|, defines a semi-norm on A(P)’
which is bounded on the bounded subsets of A(P),. Since A(P), is
bornological, 7, is continuous on A (P);,. Assuming a >0 for convencience,
we call the set:

D, :={xeA(P)|®,(x)=sup,.y | X,|a,<1}

an open polydisc in A (P);. From the considerations in part (i) it is obvious
that {N,|beD,} is a fundamental system for the compact subsets
of D,. The open polydisc D, in A (P),is said to havefinite radii if a>0,i.e.
a,>0forallneN. Since we are interested only in open polydiscs with finite
radii we consider only such weight families P for which A (P) contains
elements a>0 and we consider only open polydiscs D, in A(P), of finite
radii.

(iii) Power series spaces

Let a be an increasing unbounded sequence of positive real numbers (called
exponent sequence) and let 0<R< oo. Then the power series spaces A* ()
are defined as:

Af (@) :=A*(P(R, a)),
where:
P(R, o) := (™), |0<r<R}.

A% (a) is called power series space of finite type, if 0<R < oo and of infinite
type if R=00. For 0<R < oo all the spaces A¥ (o) are isomorphic, hence it
suffices to look at A¥(a), which is known to be not isomorphic to a power
series space of infinite type.

TOME 111 — 1983 — wN° |



ANALYTIC ISOMORPHISMS 7

Since the exponent sequences o are assumed to be unbounded, it follows
that A¥ (o) as well as A% (), are reflexive Schwartz spaces. We remark that:

AR (@)=A(Q(R, a))p,
where:
Q(R, 0)={geAf (x)|g=0}.

Let a be an exponent sequence and let n be a bijection of N. It is easy
to see that there exists a (linear topological) automorphism A, of
Af (@) (R=1, o) satisfying A4,(e;)=e for all jeN, if and only fif,
7 satisfies:

n(Jj)

. Oy Oy (i

’ O<inf,, =2 <sup,.y = < 0.
‘ & Q;

By I (a) we denote the set of all such permutations. Obviously, IT(x)is a

group under composition. We remark that for every bijection n of N there

exist exponent sequences B such that teII(B).

We recall that for ke N the spaces H (D¥) resp. H (C*) of all holomorphic
functions on the open polydisc D* resp. on C* as well as the space s of
rapidly decreasing sequences are classical examples of power series spaces,
since H(D*)~A, (@), H(CY=~A_(@"), where a®=(*./n),.x and
s=A, (In(n+1)),0).

(iv) Analytic mappings

Let E and F be l. c. spaces and let Q be an open subset of E. f: Q— Fis
called Gateaux-analytic, iffor any y' € F', any ae Q and any b € E the function
z+— V' of (a+zb) is a holomorphic functions in one variable on its natural
domain of definition. f'is called holomorphic, if it is Gateaux-analytic and
continuous and it is called hypoanalytic, if it is Gateaux-analytic and
continuous on the compact subsets of Q. By H(Q, F) resp. H,,,(Q, F) we
denote the vector space of all holomorphic resp. hypoanalytic functions on Q
with values in F, which will be endowed with the compact-open
topology 1,. We shall write H(Q) resp. H,,(Q) instead of H(Q, C) resp.
H,,(Q, C). Obviously (H,,(Q), t5) is a locally multiplicatively-convex
(1. m. c.) topological algebra and (H (R2), 1,) is a subalgebra of (H,,(Q), 1), if
the multiplication in H,(Q) is defined by pointwise multiplication.

If Uisopenin Eand Visopenin F, U and V are said to be hypoanalytically
equivalent, if there is a hypoanalytic map/f : U — F which maps U bijectively
onto Vandforwhichf ™! : VV — Eis also hypoanalytic. The map fis called

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



8 R. MEISE AND D. VOGT

a hypoanalytic isomorphism (or equivalence) between U and V. For
further details on analytic mappings and functions we refer to the books of
DiINEeN [4] and Noverraz [10].

2. LEMMA. — Let E, F and G be quasi-complete |. c. spaces, let U <E and
V<F be open. Assume that feH,, (V, G), that geH, (U, F) and that
gU)cV. ThenfogeH,,(U, G) and the chain-rule holds, i.e.:

(fog) (x)=f"(g(x))[g’'(x)]  for all xeU;

where f'(y) : F = G and g’ (x) : E = F are linear and continuous on compact
sets.

The proof of this Lemma can be given by standard arguments if one
remarks that the Taylor expansion of a Gateaux-analytic function f(see €. g.
Noverraz [10], Thm. 1.2.4)converges locally uniformly on compact sets if f
is hypoanalytic.

3. LeMMA. — For any we D, the mapping 1 : D, — A(P), defined by:

Z.—W.:

t(2)= i_ i
¢ 1-ad?w.z. ).\’
j*™i“i/jeN

is a hypoanalytic automorphism of D, and its inverse is the mapping
o : D, - A(P),, defined by:

[ _Citw;
MCF(“"‘% &;l'(:j)jeN'

Proof. — In order to show that t is continuous on the compact subsets
of D,, we first prove that for any compact set K in D, the set t(K) is
contained in a compact set of D,. This implies the desired continuity
property of t since the topology of A (P), coincides on its compact subsets
with the topology of coordinatewise convergence.

If KcD, is compact, then there exists ceD,, ¢>0, such that
KcN,.. Sincelim;_, |x;|a;=0forall xe A(P)’, there exists J € N such that
for all j>J we have for all zeC with |z|<c;:

Z—Ww

j 1 ajc;+a;|w;| 1
et
l—-ajw;z

€— ———— g —.
a; 1—a;c;a;|lw;| ~2a;

TOME 111 — 1983 — N° |



ANALYTIC ISOMORPHISMS 9

Since the mapping z+(z—w);)/(1—a?w;z) maps the disc of radius 1/a;
around zero onto itself, it follows that there exists de D, such that
N,ot(N,)>1(K). Hence 1(K) is contained in a compact subset of D,.

Since the Gateaux-analyticity of 1 is an easy consequence of the fact that all
the component functions of t are holomorphic, we have shown that t is
hypoanalytic and maps D, into D,. Since o is of the same form as 1, it has
the same properties as t. Hence the proof is completed by showings =171,
which is done by an easy calculation.

4. LEMMA. — Letf: D, — A(P), be a hypoanalytic mapping of D, into itself
satisfying f(0)=0 and f' (0)=id, py. Then f=idyp,.

Proof. — For neN we define i, : C"— A(P), and =, : A(P),— C" by
i,(z)=(zy, ..., 2, 0, ...)and m,(x)=(x,, ..., x,). Thenf,=mn,of0i,isa
holomorphic map of a bounded open polydisc D, = C" into itself, satisfying
f,(0)=0 and f,(0)=id... Hence /,=id by a classical result of
H. CartaN [1] (see also NARasIMHAN [9], p. 66). Since this holds for
all ne N and since U,y (D, ~Imi,) is dense in any compact subset of D,
we have f=id, ;. '

Lemma 4 is a version of the classical Lemma of Schwarz. which we will use
now together with an idea of proof of CARTAN [1], (see NaRAsiMHAN [9],
p. 67 f) to determine the structure of the bihypoanalytic isomorphisms
between open polydiscs.

5. THEOREM. — Let A (P) be a reflexive Schwartz space andleta,be A* (P)
satisfy a>0 and b>0. A mapping f: D,— A(P), is a hypoanalytic
isomorphism between D, and D, if and only if, f=co(@|D,), where ¢ is a
continuous linear automorphism of A(P), with ¢(D,)=D, and where
o : D, - A(P), is defined by:

_ zituw; .
G(z)"<m>ﬁ'~ for u—f(O)elD,,.

Proof. — From Lemma 2 and 3 it is clear, that /' is a hypoanalytic
isomorphism, if it is of the form co(¢|D,).

To prove the converse implication, let f be any given hypoanalytic
isomorphism between D, and D),. For re R we then denote the mapping
e'id,py by M, and putg, :=M _, oy~ o M, o\, where Y =1 of'and where 1
is the mapping defined in Lemma 3. By Lemma 2 and 3 g,is a hypoanalytic

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 R. MEISE AND D. VOGT

automorphism of D, satisfying g,(0)=0, and the chain rule gives that
8:(0)=id, 5. Hence Lemma 4 implies g,=id,, and consequently
M, oY=y oM, for all rteR. Now fix xe D, and differentiate the identity
M, (¥ (x))=V (M, (x)) with respect to z. Then the definition of M, and the
chain rule give:

ey (x)=V'(e'x)[iex]  for all reR.

Hence we have (x)=V'(e"x)[x]. Since the function z+ ' (zx)[x] is
holomorphic in a neighbourhood of the closed unit disc, this implies
V(x)=V¥'(0)[x]. By Lemma 2 ¢ :=Vy'(0): A(P),— A(P), is linear and
continuous on compact sets. Consequently, ¢ is sequentially continuous
and hence continuous since A(P), is bornological. Since the previous
arguments apply also to { ~ !, we get that @ is a linear automorphism of A (P),
satisfying ¢ (D,)=D,. Since we have shown in Lemma 3 that ™' =0, we
finally get:

f=0o(tof)=coYy=00(p|D,).

Theorem 5 describes the structure of the hypoanalytic isomorphisms
between D, and D,. In order to get more insight from it one has to know
all linear automorphisms of A (P), satisfying ¢ (D,)=D,. The special form
of these automorphisms is described by the following Lemma.

6. LEMMA. — If ¢ is a linear topoIogicdl isomorphism of A (P),, satisfying
¢ (D,)=D,, then there exist a bijection = : N - N and a sequence A of
complex numbers of modulus 1 such that for any x=(x;),.y€ A(P),;

o a.
-— J
e(x)=} ;‘J_b Xj€q iy
j=1 ()

where e, denotes the k-th canonical basis vector of A(P),.

Proof. — For ce A* (P). ¢>0. it is easy to show that the polar D of D, is
the set: ’

v 1
D?={xeA(P) Y |xj|—<1}
[i=1 €j
and that the set of extremal points of D? is:
Ext D?={Ac;e;|AeC, |A|=1,jeN},
where e; denotes the j-th canonical basis vector of A (P).

TOME 111 — 1983 — wN° |



ANALYTIC ISOMORPHISMS 11

Since ¢ is a linear topological isomorphism of A (P), with ¢ (D,)=D,, its
adjoint y: A (P) - A(P) is an isomorphism satisfying ¥ (D})=DJ. Hence
we have y~!(D9)= DY and consequently ¢~ (Ext DJ)=Ext DJ. Because
of the preceding considerations this implies the existence of a sequence A of
complex numbers of modulus 1 and ot a mapping n: N - N such that
Y '(a,e)=A "'b,,, e, tor all jeN. Since ¢y~ 1s an isomorphism, = is
a bijection. From this we get:

Qn-1 (k)
V(e = }‘n"(k) b €rn' (k)
k

Hence we have for any je N and any ke N:
, , _ Ar- (k)
< (P(ej)a e =<ej, Ve —ajn"(kj'}"x"(k)' T
This implies:

’ a; .
(p(e,-)=7»j5—:_—)eu(j) for any jeN
nl

and consequently:

’ o«© ’ o a; ’
(p(x)=<p(Z}°=1x,-e,-)=Zj=1xj<p(e,-)=zj=1>»jb—’ €x iy
n (j)

We want to use Lemma 6 and Theorem 5 to give a complete description of
the holomorphically equivalent polydiscs D, in Ag (o), resp. AF (o) for R=1
and R=o00. Inorder to beable to do this we need the following two Lemmas
which extend [7], Lemma 3.1.

We recall that for a 1. c. space E we denote by A (E) its diametral dimension
and that A(A}(a))=Ay (2) and A(A¥ ())=A ()"

7. LeMMA. — For R=1 or R=0 a diagonal map D: A¥(a) = A} (at),
D(x):=(d;x;)en, is an automorphism if and only if d and 1/d belong
o A(A}(a)).

Proof. — It is easy to check that for a Kothe space A* (P) a diagonal map
D: A*(P)— A*(P)is continuous, if and only if the corresponding sequence d
satisfies: For all p e N there exists ge N and C>0such that |d;| p;< Cq;forall

JjeN. Hence the Lemma is an immediate consequence of this and the
definition of the diametral dimension.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 R. MEISE AND D. VOGT

8. LemMA. — Let R=1o0r R= 0, let n be a bijection of N and let (d;); be a
sequence of complex numbers. Then there exists a linear automorphism A
of A (a) satisfying A(e;)=d,e, ; for all jeN, if and only if, (1) and (2) hold
true:

1) 0<inf, .y 1) <SUPjen i 10) <o, i.e. mell(a),
‘ o a;
1
(2) d and:i belong to A(Af(2)).

Proof. — Assume that (1) and (2) hold true. From 1 (iii) we know that (1)
implies that 4,: x+— Y %, x;e,; is alinear automorphism of A¥(x). From
this and (2) we get that d:=(d,-;)).y and 1/d belong to A(A¥(«)). Hence
we get from Lemma 7 that D: Af (o) = A% (), D(x):=(2'1’jxj)jEN is a linear
automorphism of A («) and hence 4 =D o 4, has this property.

On the other hand, if A is a linear automorphism of A%(x) which
satisfies (1), then A, defined as above is an automorphism. Then
D:=A0(A,)""isadiagonal map and an automorphism of A¥ (), hence (2)is
satisfied because of Lemma 7. Hence it suffices to show that A satisfies (1).

In order to prove this we remark that the continuity of 4 and A~ ! imply:
For any 0 <r <R there exist C=C(r)>0 and 0<p=p(r)<R such that:

3) |d;| o< Cp™,
@) ri<Cld;| poo,

are true for all jeN. Now fix r with O0<r<R and choose s with
p(r)<s<R. Dividing (3) with s by (4) with r then gives:

s\ p(s)\ .
5) (m) sC(r)C(s)<—r—> for all jeN.

Since s/p(r)>1 we get from (5) by taking logarithms that
SUPjen %, (jy/d;<c0. The same argument applied to 4™ ! gives
SUP;en 01/ ;< 00 and hence infiey a, ;/a; >0, which in total implies (1).

From Theorem 5, Lemma 8 and the proof of Lemma 6 it is now clear how
to prove the following Proposition.

TOME 111 — 1983 — N° |



ANALYTIC ISOMORPHISMS 13

9. PrOPOSITION. — Let R=10r R= o0 and let D, and D, be open polydiscs
in Ag(a), resp. in AZ (). Then D, and D, are holomorphically equivalent, if
and only if, there exists neIl(at) such that:

. b_ ..
(%) ( 4 ) and (-ﬂ) belong 10 A(A}(@)).
by Jen aj Jjen '

Remark. — In condition (%) of Proposition 9 one cannot get rid of the
permutation. This is a consequence of the following example:

Lel o be an exponent sequence satistying sup, . ,..,/®,<oc. Thentora
tixed r with O<r<1 the sequences a:=(1,r*,1,r%,1,r>, ...) and
b:=(,1,r~,1,r~,1,...) belong toA}(x) and the biectionn
ot N, detined by n(2n):=2n—1 and n(2n—1):=2n 1s inIl(a) and
satishies 9 (x). Hence D, and D, are holomorphically equivalent.
However, a/b and b/a don’t belong to A* (a)=A(A* (a)).

10. CoroLLARY. — For R=1 and R= oo there exists a continuum of open
polydiscs with finite radii in Ag(a), resp. in Ag (o) which are pairwise not
holomorphically equivalent.

Proof. — We distinguish two cases.

Case 1: A, (o), and AT (o).
At first we remark that without any restriction we may assume x L0 be
strictly increasing. Since A (2)=A(Q(1, o)), for

Q(l, 0)={geA¥(x)|g=0},

itis easy to see thatfor all R>1 the sequence ag:=(R™*),.yisin A* (Q(1, a))
and also in Af (¢). Hence Dg:=D,, is an open polydisc in Af (@) resp. in
A, (a),. If we assume that for some R>S>1 the polydiscs Dy and Dg are
holomorphically equivalent, we get from Proposition 9 the existence of a
bijection n of N such that (R*»/$%) .\ is in Af (a). This implies
lim sup;_, R*>»*/S<1 and consequently:

. o,
lim sup;., —2 In R<In S<In R.
- o
J
Hence we have:

: %y
lim sup;_, =

=p<l.

J

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



14 R. MEISE AND D. VOGT

Now we choose ¢ with p<g<1.

Then there exists JeN such that «,;,<qa; for all j<J. Since a
is strictly increasing we get for j,:=1+max{J. max,n(j)} that
n{l, ....j; }={1, ..., j,—1}, which implies that m cannot be a bijection
of N. From this contradiction we get that Dy and D; are not
holomorphically equivalent.

Case 2: A (a), and AZ (o).

Since AZ (a)=A(Q (o0, a)),for Q(o0, a)={geAL(a)|¢=0},itis easy to
see that for every increasing unbounded sequence R=(R;),.y of positive
numbers the sequence a(R):=(exp(—R;a;));. is in A® (Q (o0, a)) and also
in AZ (a). Hence D, is an open polydisc in A3 (a) resp. in A3 (a),. If
D, and D, are holomorphically equivalent, we get from Proposition 9 the
existence of w € I1 () such that (a(S), ;/a(R);)enisin A, (). Thisimplies
that for some 7>0, some C>0 and all jeN:

exp(—S8, )% ) <Cexp(T—Rj)a)).

Since neIl(a) we get from this by taking logarithms:

Mz%w sy ! (RJ.— lnC -:r).
@ = S. &

v

Since lim;_. , a;= 0o, this implies the existence of some L>0 such that:
(1) R;<LS,; for all jeN.
We claim that (1) implies that the set E:={je N|R;<LS;} is infinite. In

order to prove this let us assume that Eisfinite. Then there exists J € N such
that:

) R;>LS; for all j>J.

Now take j>J and assume n(j)<,. Since the sequence S is increasing,
this implies S, ; <S;. Hence we get from (1) and (2) the contradiction:

R;<LS,,<LS;<R,

Consequently we have n({jeN|j=>J })={jeN|j>J }, which contradicts
the fact that = is a bijection. Hence we have shown that E is infinite.
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ANALYTIC ISOMORPHISMS : 15

Now we define for p> 1 the sequences R'”:=(;?),.x. Then the preceding
considerations show that for p> g the open polydiscs D, ) and D, g« are
not holomorphxcally equivalent, since:

lim;_  jP ¥4=c0.

Remark. — The assertion of Corollary 10, which does not hold in the finite
dimensional situation, might be considered as an outcome of the fact that
there are too many open polydiscs with finite radii in Ag(x), resp. in
Ag (o). However, this argument is not striking, as the following example
shows: Let @ denote the space (C*),, of all finite sequences. Every sequence
a>0 defines an open polydisc D, in . However, all these open polydiscs
are holomorphically equivalent, since for a>0 and 5>0 the mapping
A: ¢ = @,Ax:=(x;a;/bj),,is alinear automorphism of ¢ with 4(D,)=D,,.

We also want to remark that ¢ has the following property: For every
reflexive Schwartz space A (P) and every open polydisc D, (A (P),) in A(P),
the set D,(A(P),) N ¢ is the open polydisc D,(p). Furthermore we have
that for every hypoanalytic equivalence y between D,(A(P),) and
D,(A(P);) the restriction of { to D,(¢) is a holomorphic equivalence
between D, (¢) and D, (¢).

In order to derive further consequences of Theorem 5 and Lemma 8, we
introduce the following notation.

11. NoTATION. — (a) Let E be a 1. c. space and let G # @ be an open subset
of E. By Aut(G) we denote the group of all hypoanalytic automorphisms of
G, and we endow Aut(G) with the compact open topology 1,,.

(b) Let a be an arbitrary exponent sequence, let R=1 or R=x and let a
denote a sequence of positive numbers. We put:

( n(1)>
aj ieN

and( 4 ) belong to A(A,’{(a))}
Ax(j) Jjen

(R, a, a):={neﬂ(oz)

Remark. — We remark that:

ﬂ(l.a.a)={neﬂ(rx)lhm /a i -—l}
and that:
l'l(oo,a,a)={nel’l(a)l0<mf€~ J G <sup,
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16 R. MEISE AND D. VOGT

From this it follows easily that I1(R, a, a) is a subgroup of IT(x).
In the same way as Proposition 9 one obtains:

12. ProPOSITION. — For R=10r R= o0 let D, be an open polydisc in A (o),
resp. in AZ (a).

(@) A mapping f belongs to Aut(D,), if and only if, there exist pe(S*)V,
weaD, and nell(R, a, a) such that for all xeD,:

a; 1+w;a, X,

fx)=f, )(x)-=(ﬁ Mﬂ_)
[TRE"AS 3 . = .
jeN

(b) The mapping F: (S')NxaD,xII(R, a, a)— Aut(D,) dg‘ined by
Fu, w, n):=f, wx is a group isomorphism if the multiplication in
(S')MxaD, xII(R, a, a) is defined by:

(v, y, 6) o (1, w, m):=(VRq, M, (Yit,), Mo O),
where by=(b, (j))ien for a sequence b and where:

di+c;
mia=({4%)

i%i

for sequences ¢, d in DV,

Under the hypotheses of Proposition 12 it is easy to check that the
multiplication and the inversion in Aut(D,) is sequentially continuous with
respect to the topology introduced in 11 a).

For bounded open polydiscs D in C" it was shown by H. CArTAN [2] (see
€. g. NarAsIMHAN [9], p. 77) that the connected component of the identity
in Aut(D)is open and contains no permutations. We show that the arcwise
connected component of the identity in Aut(D,) contains no permutations
and give an example showing that every neighbourhood of the identity may
contain permutations.

13. ProprosiTION. — Under the hypotheses of Proposition 12 the arcwise
connected component of the identity in Aut(D,) is the normal subgroup:
M(D,):={Fp, w,idy)|pe(S"), weaD,}.
Proof. — It is straightforward to show that .#(D,) is arcwise connected

and by the inversion formula (F (A, b, 1))~ =F (A,-1, —b,-1 A1, 1~ ")is easy
to check that .#(D,) is a normal subgroup of Aut(D,).
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ANALYTIC ISOMORPHISMS 17

The following remark implies that .#(D,) is really the arcwise
connected component of Aut(D,): For every neN the mapping
B,: Aut(D,) = N, B,(f,. w. n):=n(n) is continuous.

In order to prove this, we remark that for every ne N and every xe D, the

functionfi— (f(x)), is continuous on Aut (D,) and thatforf=f,, ,, ,, we have:
|f(x))a—(f(0),]a,
|1=a2 (f(x))a(f(0),]

Hence the functionf,, . o Xz 18 :t:ontinuous onAut(D,). From thisit
follows by an appropriate choice of xe D, that B, is locally constant.

Ay oy | Xy | =

14. ExampLes. — (1) If o is an unstable exponent sequence i. e.:

. a
lim;_ , <% = oo,

a;

then we have:
II(R, o, a)=TI(a)={ | is a bijection of N
with n(j)#/ only for finitely many jeN},

for R=1, o and all positive sequences a.

(2) Let o be a given exponent sequence and put az:=(R™*),. for
R>1. InCorollary 10 we have already remarked that a, belongs to A{ (a)
and also to A~ (Q(1, a)). We claim that for all R>1:

I, «, aR)={n]n is a bijection of N with lim,_ 101} =1 }=: I, (a).
J
It is easy to check that Il (x)cTIl(1, @, az). On the other hand,
nell(l, o, ag) implies that (R*»™%). and (R%"™v) . are
in A¥ (x). Hence we have:

limsup,., R*»<R  and  limsup;., R™«w/*<R™"

From this we get:

. o, . o
limsup,., 21 and lim inf._ —2 >1,
J=x j=a
a; a;

and hence lim;_, o, /a;=1.
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18 R. MEISE AND D. VOGT

In connection with Corollary 10 this example shows that for the open
polydiscs D,, which are not holomorphically equivalent the automorphism
groups Aut(D, ) have the same ‘‘permutation part”:

Aut(D,,)/ 4 (D,,)=T1, ().

(3) Leta be shift-stable, i. €. sup;. &;, ; /a;= M < 0, and look at the open
polydisc D, in A2 (x). We claim that for every neighbourhood U of idp,
the set U {F(1, 0, )| neIl(x)\idy } is not empty.

In order to see this, we remark that for ae D, S>1 and €>0 the sets:
Ula, S, €):={feAut(D,)|sup,.y, supn|x;—f;(x)|S¥<e} -

form a neighbourhood basis of idy,.

Now wefix a, S and € and choose R> S such that SY <R.  Furthermore we
choose me N such that a; R <e/2forallj=>m. Then we define neIl(a) by
n(j):=jforj#m,m+1,n(m):=m+1and n(m+1):=m. From our choices
we get for all xeN, and all jeN.

[ x;=(Ag(x)); ] S¥<max (| Xp=Xps 1 | 8% | Xpps g = X | S*=+1)

<max(|a,|R*™+|ap. | R™, |Gy, | R*+]|a,|5%)<E,
since:

w1 /% \ Q&

)'<|a,,|R°-.

|a..|S*-~=|a,|R“-(Su

Concluding, we show how Theorem 5 and Proposition 9 can be used to
characterize the algebra isomorphism classes of thel.m.c. algebras
(H,,(D,), 7). In order to be able to do this, we need some preparations.

If Ais an 1. m.c. algebra, then M (4)< A’ denotes the set of all nonzero
continuous multiplicative linear functionals on A.

15. LEMMA. — Let E be a complete reflexive Schwartz space and let U c E,
be open. Assume that any element of M (H,,(U), 1,) is a point-evaluation &,
Jor some zeU. Then the mapping Ay: U — (H,,(U), 10),, Ay(2):=3,, is
hypoanalyticand Ay *: M (H,,(U), 1o) = U equals 'i| M (H,,(U), 1,)), where
i: E- H, (U) is the canonical inclusion defined by i(x): y+ y(x).

Proof. — Since the topology o=0((H,,(U), 15); (H,,(U), 1)) has the
property ((H,,(U), 1,),)' =H,,(U), it follows immediately that foA, is
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ANALYTIC ISOMORPHISMS 19

Gateaux-analytic on U and continuous on the compact subsets of U for
every fe((H,,(U), 1o),)’. Hence Ay belongs to H, (U, (H,,(U), 1,),). -

For any ze U and any xe E we have:

C'i@.), x> =<3, i(x)>=i(x)[z]=(z, x),

which shows ‘ie Ay (z)=z for all ze U. This completes the proof since by
hypothesis A, is a bijection between U and M (H,(U), o).

16. ProrosITION. — Let E and F be complete reflexive Schwartz spaces,
let UcE, and VcF, be open subsets and assume that
M(H,,(U), 1,)={8,|ze U} and that M(H,,(V), 1,)={8,|ze€ V}. Then
®: (H,,(U), 15) = (H,,(V), 1) is a topological algebra isomorphism iff there
exists a hypoanalytic equivalence @ between V and U such that ® (f)=f o @ for
all feH, (U).

Proof. — It is easy to check that @ is a topological algebra isomorphism,
if @ is of the form given above. Hence let us assume that ® is a topological
algebraisomorphism. Then we denote by ig resp. i the canonical inclusion
of E resp. F in H,,(U) resp. H, (V) and we define ¢: V= E, resp.
V: U—>Fybyg:="igo'®oA,resp. y:="iro'(® ')oAy. Then the hypothe-
sis on @ together with Lemma 15 implies e H,,,(V, E,). Since E and E,
are Montel spaces, this implies o€ H, (V, E;). Because of the same
arguments we have yeH, (U, F}).

Since '® and (®~!) map multiplicative linear functionals into multi-
plicative linear functionals, we get from Lemma 15 and the hypotheses that
@oVy=id, and yo@=id,. This shows that ¢ is a hypoanalytic equivalence
between V and U. Furthermore we have for any ve V and any fe H, .(U):
Q) wl=<P(f), 8,>={f, @A, () >={f, Ayo'igo'®oA,(v))

=/, By e (v)>=f(o(v)),

which completes the proof.

17. ProposiTioN. — Let A(P) be a reflexive Schwartz space and let a,
be A” (P)satisfya>0andb>0. Then thel.m.c. algebras(H,,(D,), 1,)and
(H\,(Dy), 1o) are topologically isomorphic iff there exists a topological
isomorphism ®: (H,,(D,), 1,) = (H,,(D,), 1,) which is of the form
O (f)=foV, where Y is a hypoanalytic isomorphism between D, and D,,.
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20 R. MEISE AND D. VOGT

Proof. — The proof follows from Proposition 16 as soon as one knows that
MH,,(D,), 1,)={5,|zeD,} for all ceA*(P), c>0. This is a conse-
quence of Isibro [6], Prop. 4, but can also be derived easily from the fact
that the polynomials in the coordinate functions are dense in (H,,(D,), to)-

18. CoroLLARY. — Let R=1o0r R= 0 andlet D, and D, be open polydiscs
in Ag(a), resp. in AR (a). Then the l.m.c. algebras (H(D,), 1,) and
(H(Dy), 10) are topologically isomorphic, if and only if, there exists n eIl (a)
satisfying condition 9 (x).

Remark. — From Corollary 18 it follows that for an open polydisc D, in
A, (a), thel. m.c. algebras (H(D,), to) and (H (D), 1,) are isomorphic, if and
only if, 1/aeAyf(a). For nuclear spaces A;(x) even more is
known. In [7], Thm. 3.3, a linear topological invariant has been used to
show that the l. c. spaces (H(D,), o) and (H (D), t,) are isomorphic, if and
only if, 1/ae AP (a)=A, ().
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