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THE STANDARD FORM
OF A REPRESENTATION-FINITE ALGEBRA

BY

0. BRETSCHER and P. GABRIEL (*)

RESUME. — On connait depuis [RI 1] et [BG] 1'importance de la technique des
revetements pour Fetude des representations des algebres de dimension finie. Dans la definition
du groupe fondamental <I> d'une algebre A, qui est donnee dans [BG] lorsque A a un nombre fini
de representations indecomposables a isomorphisme pres, les modules indecomposables sont
supposes connus. Dans ce qui suit, nous donnons une description directe de <X>, du revetement
universel et de la tonne standard de A.

ABSTRACT. - The importance of covering techniques for the investigation of the
representations of finite-dimensional algebras is well-known since [RI 1] and [BG]. When the
algebra A admits only finitely many isomorphism classes of indecomposable representations, the
definition of the fundamental group 0 of A given in [BG] requires the knowledge of all
indecomposables. In the sequel, we describe <1>, the universal cover and the standard form of-<4
directly in terms of A.

A very convenient way to determine whether a given algebra A is
representation-finite (and to compute its representations) consists in finding a
simply connected cover of a suitable degeneration of A ([BG], [G2],
[GO]). In theorem 3.1. we describe the standard form A of A, which is the
best possible degeneration, and we determine the universal Galois covering
of A in terms of A (Theorem 1.5 and Remark 3.3 a). Our results heavily
rest on the existence of a multiplicative basis in A, i. e. of a basis such that the
product of two basis vectors is again a basis vector or else is zero. The
existence of such bases in representation-finite algebras was first stated by
KUPISCH in the symmetric case [K] (see also [KS]). It was then proved by
BONGARTZ for algebras whose quiver contains no oriented
cycle [B 1]. BONGARTZ' proof is easily extended to simply connected locally
representation-finite "algebras" [BRL], a case to which our existence proof

(*) Texie recu Ie 20 avril 1982, legerement revise Ie 10 decembre 1982.
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22 0. BRETSCHER AND P. GABRIEL

can be reduced. Our own researches were started by ROITER 's publication
[RO], in which the existence of a multiplicative basis for general
representation-finite algebras is stated. Clearly, ROITER 's work lies on a
higher level of difficulty, and we have not been in a position to check all the
points in his developments. Paraphrasing Picard's comment on Poincare 's
Duality Theorem (Picard et Simart, Theorie des Fonctions Algebriques,
tome I, chap. II, 1897), we might say: « ROITER a donne une demonstration
generate de Fexistence d'une base multiplicative. Sa demonstration repose
sur des considerations entierement differentes, mais peut-etre plusieurs points
auraient-ils besoin d'etre completes. Aussi, avons-nous suivi une autre voie,
mais avons du nous limiter au cas des algebres standard. »

Well-read mathematicians will easily interpret our proofs as statements on
singular homology of triangulated topological spaces associated with the
considered algebras. In fact, our intuition is geometrical, and so were our
original proofs. The translation from geometry to algebra has been worked
out during the spring vacation 1982 in order to take care of pure
algebraists. For them we replaced short references to algebraic topology
(to [ML], IV, 11.5 or [GZ], Ap. 11,3.6 for instance) by longer elementary
variations on the snake-lemma. We hope that these variations will not be
dismissed as mere exercises for a first-year course in homological algebra,
since they come from, rest on and elucidate a mass of examples in
representation-theory ([NR], [BGP], [L], [SZ], [BR], [BG], [BRL],
[B2],[CG]).

The method used here was presented in June 1981 in Oberwolfach, where
corollary 2.2, 2.6, 2.11 and 3.3 b were stated. The remaining results were
presented in november 1981 in a lecture at the university of
Trondheim. Since then, we received from MARTINEZ and DE LA PE^IA the
proof [MP1] of an older conjecture of ours which simplifies the
demonstration of Theorem 1.5. Nevertheless, we maintained the first proof
in paragraph 2 because of its own virtues (2.6-2.8). As they informed us at
the beginning of March, MARTINEZ and DE LA PE^A also noticed that our
Oberwolfach-proof for the existence of a multiplicative basis in schurian
algebras extends to standard algebras [MP2].

Our investigations commenced with BONGARTZ and ROITER as a joint
discussion which diverged too rapidly. We like to express our thanks to
both of them.

The notations are those introduced in [G I], [BG] and [G 2]. In particular,
*• always denotes an algebraically closed field.
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STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 23

1. The group of constraints of a representation-finite algebra

1.1. We first fix the notations: Let A be a locally bounded ^--category
([BG], 2.1). By A (a, b) we denote the space ofmorphisms from a to b in A,
by ^o^(a,b)==A(a,b)^^lA{a,b)^^2A(a,b)... the radical series of
A (a, b) considered as a bimodule over A (b, b) and A (a, a). We say that
a morphism [ieA(a,b) has level ne^ if He^"A(fl, ^)\^"'"1 A(o, b)',
the zero-morphism has level oo by definition.

In the sequel, we assume that A is locally representation-
finite ([BG], 2.2). We denote by 7==indA the category formed by
chosen representatives of the isoclasses of indecomposable finite-
dimensional A-modules, and we agree that o*=A(?,fl) is chosen as a
representative for each aeA. Given two objects a.be\. we set
g(a, b,n)=sup{p : ^ I ^ a * , &*)=^"A (o,fc)*} for each w 6 ^ u { o c } ,
where J=>^J=>^ 2 1 . . . is the radical series of J([BG], 2.1). Wesaythata
morphism [IE A (a, b) of level n has grade gW^g (a, b, n) in A. In case
^(n)=^< °o. this implies the existence of irreducible morphisms ([AR], § 1;
[Gl],1.6)

* pl p2 ^ i.*cr -^ Wi -»• w ^ . . . w^_ i --»• b*

of J such that p* - ̂ ... ̂  p^ e ̂ n + A A (a, b)* (remember that ^n +1 A (a, A)
has codimension ^1 in ^A(fl, A); see [G2], 2.4).

v
In the following lemma, we denote by m -* n the arrow of r\ (= the

Auslander-Reiten quiver of A) which is associated with an irreducible
morphism v : m -»n.

LEMMA. — With the above notations, the homotopy-cluss ([BG], 1 .2 )
S(a, 6, n) of the path

* pl p; ^ i *cr -»Wi -> w ^ . . .w^-i -* o*

^/ r^ depends only on a, b and n.

Proof. - Let 71 : I\ -»• r\ be a universal covering and F : A (F^) -»- / a well-
behaved functor ([RI 2], 2.5;[BG], 3.1). Choose a sequence of morphisms

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



24 0. BRETSCHER AND P. GABRIEL

of fc(!\) such that Fv,-n,e^2/ for each L We then get
F ( V g . . .Vi)-^.. .pie^'"1/. Since we have

^d ^J/^1/^,^):^!

©^(^(rAV^^rjHA', z^C^J/^^J)^, &*),
y is the unique point ofyc"1^*) such that

(^(rAV^WA))^, >Q M^W^1 -0 (a\ b*).
As a consequence, if we lift the path ^.. .pi of r\ to a path of FA ^th
prescribed origin x, the terminus y of the lifted path depends only on a, b
and^.

Remark. - Consider an arrow a ̂  b of the quiver Q/, of A and assume that

H is a representative ofjl, i. e. that H€^A(O, fQN^A^, b). Then we
simply write 5^1 instead of S(a, b, 1), and we have:

v=v^.. .Vi e^A(x, jON^A^, }0,

since F induces a covering A -» A (A denotes the universal cover of A which is
defined in [G 2], 2.1). In other words, if we lift H to an arrow v of Q^ with
tail x, the head of v is the terminus of the lifted path v^.. .v^.

1.2. Denote by GQ^ the free groupoid generated by Q^ ([GZ], II, § 6), by
G r\ the fundamental groupoid q/T\: the objects of GQ^ are the points of the
quiver Q^ of A; the(invertible) morphisms ofGQ^ are formal compositions of
arrows and of formal inverses of arrows of Q^. Similarly, the objects of G r\
are the vertices of r\, i. e. the objects of /; the morphisms of G r\ are the
homotopy classes of paths of I\.

The map p ̂  S H described in 1.1 defines a functor S : GQ^ -^ G r\ such
that 5fl==o*=A(?,f l) iff l6A. We denote by S^ = S(a, a) the induced group
homomorphism from

n((^, a)=(GQ^)(a, a) to 11(1 ,̂ a^=(Gr^) (^, a*).

By definition, H(Q^ a) is the fundamental group of the quiver QA at a, and
n(r^, a*) is the fundamental group of the translation-quiver FA at a* (or
equivalently of A at a).

PROPOSITION. — Let A be locally representation-finite and connected, a a
point of A, a a point of the universal cover A which lies over a. Then S^ gives
rise to an exact group sequence:

1 ̂  Tl(Q^ a) -^ H(Q^ a) ̂  n(^, a*) - 1.
In particular, Yi(Q^, a) is identified with KerS^

TOME 1 1 1 - 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 25

Proof. — Let n : Q ->• Q^ be a covering of quivers and II a group acting on Q
from the right. Assume that Q is connected and that II acts freely and
transitively on n ~1 (a). Then each b € n ~1 (a) determines an exact sequence:

i^n(Q,b)^n(Q^a)^n^i,
where x is induced by n and T is defined by b'c(w)=wb (= terminus of the
lifting of w to Q with origin b).

This works in particular if Q =Q^b =oand II = II (I\, a*). In this case, n
is induced by the universal covering f\ ->• r^, and we define the action ofn on
I\ and QA in such a way that ou = va( = terminus of the lifting of v to f\ with
origin a). It then remains to show that T(w)=S^(u?) for each weH(Q^ a).
or equivalently that x(w)a=Sa(w)a. Now x{w)a is the terminus of the
lifting of w to Q^ with origins. Similarly, Sa(w)a is obtained by lifting
5,,(u0. Since U1 is a composition of arrows and of inverses of arrows of Q^,
our statement follows from the remark at the end of 1.1.

1.3. In the sequel, the kernel of S^ (1.2) will be called the group of
constraints of A at a. It coincides with the group defined in [G 2], 2.2, and
our purpose here is to produce a set of generators. For this sake, we first
recall that a schurian category in the terminology of Roiter is a locally finite-
dimensional ^-category M such that [M(a, b) : k]^'l for all a, beM. The
terminology is justified by the fact that M is schurian if it is locally
representation-finite and if M (o, a) -^ k for each a e M. This last condition
is satisfied in particular if M is locally bounded and directed (i; e. the
quiver Q^ contains no oriented cycle).

Assume M to be locally bounded and schurian. We say that a path

of Q^ is a zero-path of M if the composition-map

M(A-o, A-i) X . . . xM(A-p_i , Xp)-^ M(A-o, A-p)

is zero. We call non-zero contour ofM a pair(r, w) of non-zero paths i; and w
with the same origin x and the same terminus y (compare with [RO]). We
call the non-zero contour simple if A- and y are the only common vertices of v
and u/\ Finally, we denote by C^(r, w) the conjugacy class of the element
u~1 w~1 vueTl(Q^, a) associated with a walk i/from acM to the origin of
the contour (r, w). This conjugacy class is independent of u.

BULLETIN DE LA SOCIETE MATHEMAT1QUE DE FRANCE



26 0. BRETSCHER AND P. GABRIEL

LEMMA. — Let A be locally representation-finite and simply connected and
a e A. The fundamental group II ((^, o) ̂  generated by the conjugacy classes
Cfl(r, w) associated with the simple non-zero contours ofQ^.

Our original proof is given in §2.10 below. It uses Galois coverings
whose groups are torsion-free and mainly rests on [G 2], 3.6. The following
simpler proof rests on a conjecture recently proved by MART-INEZ and
DE LA PE^A.

Proof. — First consider the more general case where A is
schurian. Denote by P the subgroup of 11=11(0 ,̂ a) generated by the
conjugacy classes C^(r, w). Let Q^ be the universal cover of Q^ Q the
quotient Q^/P and n : Q -^ Q^ the canonical projection. Then, two paths of
Q with the same origin must have the same terminus, provided their
projections on Q^ make up a non-zero contour.

Q is the quiver of a locally bounded ̂ -category A' whose morphism-spaces
are defined as follows: A' (;c, y) == 0 if the projections of all paths from x to y are
zero-paths of A; otherwise, A'(x, y) is identified with A(nx, ny). The
composition A'(x, y) xA' (y, z) -^ A'(x, z) is identified with A(nx, ny) xA
(n y, n z) -^ A (n jc, n z), whenever A' (x, y) ̂  0, A' (y, z) ̂  0 and A' (x, z) ̂  0;
it is zero otherwise. By construction, the action of II/P on Q extends to a
free action of II / P on A\ and the quiver-morphism n extends to a (II /P)-
invariant functor F : A' -*• A. A path o!Q is non-zero in A' iff its projection
is non-zero in A. We infer that F is a Galois covering with group II /P. By
[MP I], n /P acts freely on ind A'. By [G 2], 3.6 F induces a Galois covering
ind A' —>• indA.

In the particular case where A is simply connected (hence directed and
schurian), the covering ind A' ->• ind A must be trivial. Hence II = P.

1.4. Let us now turn to the general case of a connected locally
representation-finite A.

a, a^ a,
LEMMA. — Let OQ -^ -» -^2' • •°n-l ~~^ an ^e a Pat^ °f SA an(^

a,r e 91 A (a,; _ i, a ̂ ) a represen ta five of a,^ (1.1). The following s ta temen ts are
equivalent:

(i) ^(a^...a2ai)==^^(a,);
(ii) a^.. .a^ a'i ̂ Ofor all representatives a; of the a,;
(iii) a^.. .a^ a^ u the projection of a non-zero path of A.

TOME 111 - 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 27

Proof. — Let XQ -^ .v, -^ x^ . . . x^_ ^ -*- x^ be a lifting of a,,... a^ ai to (^
and F : A:(r\)=7-^ J=indA a well-behaved functor. The formulae:

U (^J/W1/)^, z ) ^ ( ^ P I / ^ p + l I ) ( F x , F y )
F z » F y

(see [BG],3.2 and 3.3) imply that a.=F^-h^Fp^ for some
representative^, of ^ and some morphismsp^ with domain x ,_ i and
grade >^(a,)=^(^). Hence a,,.. .o^ai =F(^... .^ ^i)+P. where

^(P) > Z?= i ̂ i) (F preserves the grade). Accordingly, statement (i) means
that g(^...^i)=D^(^ o1' equivalent^ that ^...^i^O-
(Remember that 7^ Gr7 with the notations of [BG], 5.1). We infer that
(i)^(iii).

Now statement (iii) is independent of the choice of the representa-
tives a,. Therefore, (iii) also implies g(^... o^) = ]^= i ̂ (a;) < cc
and a^ . . . a i^0 . Finally, choosing a;=F^,, we see that (ii) implies
^...^^0. Hence (ii)^ (iii).

1.5. We call a path flo ̂  ̂ i ̂  °2 • • • ̂ n-1 ̂  °n of QA ̂ ^ tf it satisfies

statement (ii) of lemma 1.4. If this is so, the level / of a^.. .03 ai stays
constant whatever a, we choose as representative of a,. This constant level /
is by definition the level of the path a^.. .o^ai (compare with
[G 2], 2.4). The associated number g(do, a^ 1) (1.1) is called the grade of
a , , . . . a2CXi.

A stable contour of A is a pair(u, w) of two stable paths ofQ^ which have the
same origin, the same terminus and the same level. With each stable
contour(u, w) and each acA we associate a conjugacy class C^r, w) of
n(@A» a) as w did in 1.3.

THEOREM. — The group of constraints K^ (1.3) of a locally represen tat ion-
finite connected k-category A is generated by the conjugacy classes C^(t\ w)
associated with the stable contours(v, w) of A.

This immediately follows from 1.2,1.3 and 1.4. Notice that the stable
contours coincide with the non-zero contours if A is schurian.

1.6. COROLLARY. - Under the assumptions of theorem 1.5, let r, w be two
paths from x to y and u a path from a to x in Q^. Assume v to be stable with
level n. Then w is stable with level n iff u~1 w~l vueK^.

BULLETIN DE LA SOCIETl: MATHhMATIQUL Dh FRANC!



28 0. BRETSCHER AND P. GABRIEL

Proof. — The condition is necessary by theorem 1.5. Conversely,
suppose that u~1 w~l vu e K^ Let F : A -^ A be a universal covering. If
A'€A lies over A. the liftings? and w of v and w to Qy, with origin J? have a
common terminus}? by assumption. Since ? is non-zero, so is w ([BRL],
5.1). Therefore, w is stable (1.4). Finally, ? and w have the same
grade. So do i^ and w, since F preserves the grade.

1.7. For non-specialists we recall a celebrated example of Riedtmann: Let
<y

A be the /r-category defined by the quiver b±^a^> p and the relations 80 = p2,
5

<j5 = ap8, p4 =0. The maximal stable paths are op8, p3,5ap and p8a. So
there is "essentially" one stable contour, namely (p2, 5<7). The group
n (SA» a) is freely generated by p and 8a. The group K^ is generated by the
conjugates of CT~ 18~1 p2.

For a generalization of this example see [W I], [RI 3].

2. Directed and simply connected algebras

2.1. Let M be a schurian category (1.3) and S^M the set of its non-
degenerate n-simplices, i.e. of the sequences Xo, ..., x^ of distinct objects
of M such that the composition

M{.\^ A-, ) x . . . x M(.v^_ i, .\\) -^ M(A-o, .v^)
is not zero. By definition, S^ M is identified with the set ofpairs(A-, y ) such
that M (x, y) ̂  0; for n = 0, we agree that So M is the set of objects of M. The
family S^M^(S^M\^ is called the simplicial frame of M.

We denote by €„ M the group ofn'chains of M, i. e. the free abelian group
generated by S^M. The C,,M give rise to a differential complex
. . . €3 M -^ Ci M^ Co M such that:

^/(A-o, .....V^^o^l)1^, . . . , A - . - i , A - . + i , . . . , .VJ.

The homology groups of this complex C^ M are denoted by H ^ M and are
called the simplicial homology groups ofM. If Z is an abelian group, the
cohomology groups of the complex Hom(C^M,Z) are denoted by
H"(M, Z) and are called simplicial cohomology groups of M with
coefficients in Z.

2.2. Two schurian categories M, N are said to be equivalent if they have
the same simplicial frame and if there is an isomorphism M ̂  N which is the
identity on the objects.

TOME 111 - 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 29

LEMMA. - Let M be schurian. Then there is a natural bijection between
H2 (M, k*) and the set of equivalence classes of schurian categories N such that
S^N=S^M.

Proof. - Let N be schurian and such that S ^ N = S ^ M . Up to an
equivalence we can assume that N (x, y) = M (x, y) for all A-, y 6 So M. For
each ( x , y ) c S ^ M we choose a basis (y\x) of M(x,y). For each
(x, y , z)eS^ M, the composition of N defines a non-zero scalar c^.(.v, v, z)
such that:

(z\y^(y\x)=c,(x,y.z)(z\x).

The cochain c^ : S^ M -^ k * , (x, y , z) ̂  c^(x, y , z) obtained in this way is a
2-cocycle, because the composition is associative. The residue class
c^ e H2 (M, k*) is independent of the choice of the basis vectors (y | x). The
map N ̂  c^r yields the desired bijection.

2.3. On account of lemma 2.2, we have to determine second cohomology
groups. This presupposes some information about HQ M and H ^ M .

Clearly, if we map the homology class XE Ho M of an object x E So M onto
the connected component of M in which x lies, we obtain an isomorphism
between HoM and the free abelian group which has the connected
components of M as basis. From a dual point of view, H°(M, Z) is
identified with the space of functions So M -> Z which are constant on the
connected components.

For the interpretation of H^ M, we focus on the relevant case in which M is
connected and locally bounded. We denote by n=n(g^,a) the
fundamental group of the quiver Q^ of M at some vertex o, by P the normal
subgroup of n generated by the conjugacy classes C^(v, w) assigned to the
non-zero contours (i, w) of M(1.3). We construct a homomorphism
^ : n/P-* Hi M according to the following prescription: If w is a closed walk
of QM from a to a. consider the 1-cycle ^M'=^<p ( u ' ^ (p~ir~ (p)
< / ( p , /7(p)eC\ M, where / (p -^ /? (p is an arbitrary arrow of Q^j and u-' (p
(resp. w~ (p) the number of steps from /(p to /?(p (resp. from//<p lo / (p)
in w. The homomorphism^ is obtained from w\-^^w by passing to the
quotients.

LEMMA. — Assume M to be connected, locally bounded and schurian. For
each abelian group Z, the homomorphism ^ : H / P ^ H ^ M induces
isomorphisms

H1 (M, Z) ̂  Hom(^i M, Z) ̂  Hom(n/P, Z).

BULLETIN DE LA SOCIETI MATHEMAT1QUE 1)1 hRA\ ( 1:



30 0. BRETSCHER AND P. GABRIEL

Proof. — The differential complex C^ M yields exact sequences

O^Z,M^C,M^CoM-^HoM^O

and
C^M^Z^M^H.M^O,

where Z^ M = Ker rf. Since C^ At, Co M and Ho M are free abelian groups,
the first sequence splits and therefore remains exact when acted upon by an
additive functor. Applying the functor X»-»Hom(X, Z) == X*, we thus get
exact sequences

O^Z^M*^C^M*^CoM*^HoM*^0

and

C^ M* <- Zi M* 4- H^ M* <- 0,

which induce the first canonical isomorphism H1 (At, Z) ̂  Horn (fl\ M, Z).
The composition ff^M, Z) -» Horn (11/P, Z) of this isomorphism with

Hom(^, Z) is induced by the map which assigns the
value ̂ (u^ (p — w~~ <p) /(^ <p, A <p) € Z to each 1-cocycle /of Horn (C^ M, Z)
and each closed walk w from a to a in Qj^. In order to prove that this
composition is bijective, we just produce the reciprocal map: Choose a
walk ^w from a to each vertex x € Q^; for each (x, y) € S^ M choose a non-zero
path y p y from x to ^; denote by ypjc the image of the closed walk yW~1 yp^ w
in II I P . The reciprocal map sends g € Horn (II /P, Z) onto the cohomology
class of the 1-cocycle (;c, y)^g(^x)'

2.4. For practical purposes, the following interpretation of H1(M, Z)
turns out to be useful: Denote by QM the set of arrows
°f QM' A function /: Q]^ -^ Z is called c/oy^/ if ̂  / (u,) = ̂  / (i^) for each
non-zero contour(i;, w) of M (the v. and Wj denote the arrows occurring in v
and w respectively). The function/is called exact if there is a function
e : So M -^ Z such that /(<p) = ̂  (A <p) — e(f (p) for all (p e Q^.

LEMMA. — Let M be schurian and locally bounded. The canonical injection
QM "*• ^i M, <p^(/(p, A(p) induces an isomorphism from H1(M, Z) cwro /Ae
quotient of the space of Z'valued closed functions by the subspace of exact
functions. •

Clear.

TOME 111 - 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 31

2.5. LEMMA. — Assume A to be connected, locally representation-
finite. Then A is simply connected iff A is schurian and H^ A is a torsion-
group.

Proof. — First assume A = M to be simply connected. Then A is directed,
hence schurian. Denote by t H^ A the torsion subgroup of H i A. By 2.3
Hi A is identified with the largest abelian factor-group of II/P. We infer
that H ^ A / t H ^ A ^ T l / K for some invariant subgroup K of n which
contains P. By [G2],3.1, the connected Galois covering A ^ A with
group n/P constructed in the proof of lemma 1.3 yields a connected Galois
covering A / ( K / P ) - ^ A with group H / K = H ^ A / t H ^ A . Since H / K is
torsion-free, the Galois covering A / ( K / P ) -» A yields a Galois covering of
indA ([G2], 3.6) with group n / K . Since A is simply connected, H / K is
trivial and H^ A= t H ^ A.

Conversely, assume A = M schurian. By 2.3, H^ A / t H ^ A is the largest
factor-group of n/P which is both abelian and torsion-free. So, if H^ A is
torsion, { 1 } is the only torsion-free abelian factor-group of n/P. On the
other hand, the group of constraints K^ contains P by 1.2 and 1.4 (or
equivalently by [G 2], 2.4). Therefore, the fundamental group n (I\, a*) of
A is a factor-group of n/P; it is free non-commutative by [BG], 4.2. If it
was not trivial, n(r\, a*) and n/P would admit a non-trivial torsion-free
abelian factor-group.

2.6. Our main theorem in this section rests on some definitions, which we
introduce now: Let Q be a directed quiver (i. e. a quiver without oriented
cycles). Given two vertices x, y of Q, the inequality x^y means that Q
contains a path from x to y. We denote by [x, y] the interval {zeQ :
x ^ z ^ y ] and call Q interval-finite if all intervals [x, y] are finite. We call a
set C of vertices of Q convex if it contains [x, y] whenever x, ye C.

THEOREM. — Assume A locally representation-finite and Q^ directed and
interval-finite. Then H^ A is a free abelian group, and H^ A == Ofor i ̂  2. If
A' is a full subcategory of A whose set of objects is convex in Q^, the inclusion
A -^ A induces an isomorphism of H^ A' onto a pure subgroup ofH^ A.

Proof. — First we consider a partially ordered set Z and the associated k-
category Ej^ : Set 2^ (x, y) = k (y | x) = 1 -dimensional space with basis (y | x) or
2^(jc,}0=0 according as x^y or x^y, set (z\y)o(y\x)^(z\x) if
;y^<2. Assume that s is the largest element of £ and denote by
/(„: C^Sfc-^C^+i2:k the map sending (XQ, ...,^)to(xo, ..., x^ s)Vx^s
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or else to 0. Then we have dh^c^h^^i dc—(— lector each n^ 1 and each
c€ C, St. We infer that H^^OSn^L

Now consider the case where 2^=M is representation-finite. Then we
have fli 2^ =0: Indeed, assume M to be connected. In [G 2], 2.5 we have
shown that the fundamental group n=H(Q^,a) is generated by the
conjugacy classes attached to the contours of Q^. With the notations of
2.3, this means that II/P={1}. Accordingly, the equality ^£^=0
follows from lemma 2.3.

In a third step of our proof, we suppose that A contains a maximal element s
and denote by A' the full subcategory formed by the objects of A other
than s. We set £, = { t e A : A (r, s) ̂  0} and £, = Z,\{ s }, and we partially
order these sets by setting r$ t ' iff A(r', s) oA(/, Q^O. The associated k-
categories £,^ and S,̂  are clearly identified with subcategories of A, and we
have a short exact sequence of differential complexes:

r "iM MO-C^S;,——C.Z^CC^A^C^A-.O,

where u, v, i and j are induced by the inclusion-functors. Passing to
homology, we obtain the celebrated Mayor- Vietoris sequence:

... H^,^ ^£,,©^A^ H ^ A ̂  H^, S;,...

In a fourth step, we assume that A is associated with a finite partially
ordered set. Then, using induction on the cardinality, we suppose that
H^'^^Hn^'^O for n^l. Since £, has only one maximal element, we
have H,,£^==0 for n^l by our first step. As a consequence, the Mayer-
Vietoris sequence tells us that H^A=0 for n ̂ 2. Together with step two,
this proves that H^ A = 0 for n ̂  1.

In step five, we turn to the case where A has finitely many objects. The
categories £^ and £^ are representation-finite because the extension by 0
yields full embeddings from their module-categories into that
of A. Therefore we have Hn^sk = ̂ n ̂ sk= ̂  ̂ or ^ ̂  1 by step four, and the
Mayer-Vietoris sequence reduces to H^ A' -^ H^ A for /? ̂  2 and to the exact
sequence:

0 -. Hi A' -* H , A -̂  f^o £;, ̂  /fo 2^©Ho A'-^ ^o A -^ 0.

By induction, we infer that H^A=0 for w^2. Moreover, Ho£^ is free
abelian by 2.3 and so is Ken. By induction we get that H^ A ̂  H^ A'QZ*'
is free abelian.

TOME 1 1 1 ~ 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 33

Step six: Let A have infinitely many objects. We may suppose that A is
connected. By lemma 2.7 below, A is the "union" of an increasing sequence
of full finite subcategories A^ such that A ,,4. i is obtained by adding to A „ an
extremal element of Q^. Therefore, H^ A ̂  lim^ A^ can be construc-
ted step by step by successively adding new basis vectors (step 5). Hence
H^ A is free. Moreover, H, A -^ lim^ R, A^ is zero for /^ 2.

Step seven: Let us now turn to the last statement. Suppose that A' has
finitely many objects. By lemma 2.7 below, A is the "union" of an
increasing sequence of full finite subcategories A^ such that Ao =A' and that
A^+1 is obtained by adding to A^ an extremal element of Q^,. Therefore,
HI A is obtained by successively adding new basis vectors to
H^ A'=HI Ao. Accordingly, H^ A' is identified with a direct summand of
H,A.

Last step: Let A' have infinitely many objects. By lemma 2.7 below. A' is
the "union" of an increasing sequence of full finite subcategories A;, such
that... We infer that H^ A' is identified with the union of an increasing
sequence of direct summands H^ A;, of H^ A. Therefore, H^ A' is pure in
HI A.

2.7. LEMMA. — Let C be a finite convex set of vertices of a directed, interval-
finite, connected and locally finite ([BG], 2.1) quiver Q. Then, the set of
vertices of Q is the union of an increasing sequence C == Co c: C i c: C^ c:... of
finite convex sets such that, for each n 6 N, the difference C\,+ i\C^ is empty or
consists of one extremal (= maximal or minimal) element o/C^+i.

Proof. - Let q^, . . . , ̂ , . . . be the vertices of@(a countable set). Let D^
be the union of the intervals [x, y], where x, y e C u {q, ; : i ̂  m }. Then D^ is
convex and finite, it contains C, and the set of vertices of Q equals
Urne^ ^m- ]t ^ therefore sufficient to construct for each m a finite sequence

D,=DS.cD,c=...<=D,=Z),^

of convex sets such that each D^ l is obtained from D^ by addition of a
maximal or of a minimal point. In fact, we construct D^1 from D^ as
follows:
If one of the sets

{xeD^^\D^ : A-^r fo r some y e D ^ }
or

{A-eZ\..n\D^ : A - ^ V for some y e D ^ } ,
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is not empty, we adjoin to D5^ a minimal point of the first set or a maximal
point of the second. If both are empty, we can add any point of D^ + i\D^
to D^, or else we have ^=Z)^+i.

2.8. COROLLARY. — Let A be locally representation-finite and simply
connected. A full subcategory A' of A is simply connected provided its set of
objects is convex in Q^.

Proof. - Q^ is interval-finite by [BG], 1.6. By 2.5 and 2.6 we have
Jfi A ==0. This implies H^ A' =0 by 2.6 and our statement by 2.5.

2.9. Assume A to be locally bounded and directed. For each s € A, denote
by Q, the full subquiver of Q^ formed by the vertices t ̂ s, by £; the partially
ordered set { t<s:A(t , s)^0} (where t ^ t ' i f fA(f \ s)oA(t, Q^O; see the
proof of theorem 2.6). We call s separating if each connected component of
Qs contains at most one connected component of Z,.

COROLLARY (Separation-criterion of Bautista-Larrion). — Let A be
representation-finite and directed. Then A is simply connected iff each of its
objects is separating.

Proof. — First we assume A simply connected. By 2.5 and 2.6 we have
Hi A = 0. We denote by A, and A, the full subcategories of A supported by
Q, and Q,u[s} respectively, by £, the partially ordered set
{ t ̂  s: A (t, s) ̂  0}. Since the set of objects of A, is convex in Q^ we have
HI A, <= f^ A == 0 by 2.6. The Mayer-Vietoris sequence (see 2.6)

H,A^ Ho^-VHo2^©HoA;

tells us that i is injective. By 2.3, we have Ho^^@ZC,
HO A, ̂ @ Z D and Ho S^ -^ Z £„ where C and D range over the connected
components of £, and Q, respectively. Furthermore, i maps C onto
Z,+C6ZZ,(^)^)ZZ)), where C denotes the connected component of Q,
containing C. Therefore, i is injective iff the map C^C is injective. We
infer that s is separating.

Conversely, suppose that the objects x^, . . . , ; ( -„ of A are separating. We
may assume that i<j implies x^x^. Denoting then by Ap the full
subcategory of A formed by x^, . . . , Xp, we shall prove by induction onp that
Hi Ap = 0 and then apply 2.5. Actually, assume Ap_ i simply connected and
set s^Xp. On account of the Mayer-Vietoris sequence:

O-HI Ap-i - Hi A,- H^ -. Ho^© HoAp-,.
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we have to show that i is injective, or equivalently that the map C h-» C' is
injective, where C' is the connected component of A^_ ^ containing C. But
this is true, because s is separating and Ap_ i <=A,.

2.10. Aw alternative proof for lemma 1.3. Let A be locally representation-
finite and simply connected, and let OQ — a^ — ... - a, — a^ +1 = flo» n ̂  2, be a
simple closed walk in @^. We have to show that it can be "decomposed"
into non-zero simple contours of A. Now, the union of the intervals [a,, a,] is
a finite convex set of objects of Q^. Replacing A if necessary by the full
subcategory formed by this union and applying 2.8, we may assume that A
has a finite number of objects and proceed by induction on this number.

Let s be a maximal point of Q^. If a^ ̂  s for all i, we apply our induction
hypothesis to the full subcategory A'=A, of A formed by the points other
than s. Otherwise, we may assume that flo= s and set
£ '=£,={ t eA' : A(f, 5)^0}. Since a ^ — . . . — a ^ is a walk of (^, a^
and a^ lie in the same connected component ofA\ Since s is separating, a^
and a^ are in the same connected component of 2V, and of course they are
maximal in 2Y. The following cases only can occur:

(1) 2Y contains a point b such that a^b^a^ If v and w are paths from b
to a^ and a,,, the given closed walk decomposes into the simple "contour"

v w v w
b — a^ ->• OQ ^- dn — b and the closed walk b — a^ — . . . — a^ — b in Q^.

Induction applies.
(2) S' is connected and has a third maximal point m besides a^ and

a^ (Remember that QA has at most 3 arrows heading for
aQ==s). Furthermore, £' contains two points c and d such that
a^^c^m^d^a^ In this case, we choose two paths v and v ' from c to a^
and w on one hand, and two paths w' and w from d to m and a^ on the
other. The given closed walk then decomposes into two simple "contours"

v l "' w
c — a ^ - ^ O Q ^ m — c, d — m ^ c i Q ^ - a ^ — d and the closed walk

w " l'
^i — . . . — a ^ — d — m — c — a . Again induction applies.

2.11. COROLLARY. — Assume A to be schurian, connected and locally
representation-finite. Let <l>==n(r\, a*) be the fundamental group ofF^ at
some projective vertex a* and Z an abelian group. Then H^AyZ) is
canonically isomorphic to Hom(<l>, Z).

Proof. — By Theorem 1.5, <I> is identified with the group n/Pof2.3. Our
statement therefore follows from lemma 2.3.
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2.12. COROLLARY. — Assume A to be schurian, connected and locally
representation-finite. Let Zbe a non-zero abelian group. Then A is simply
connected iffH^ A=0, or equivalently iffH1^ Z)==0.

Proof. — Being free non-commutative ([BG], 4.2), <D is trivial iff
Hom(fl>, Z) -^ H1 (A, Z) is zero (2.11), or equivalently iff the largest abelian
factor group H^ A of <I> == n/P is trivial (2.3).

3. The standard form of a locally representation-finite algebra

Let A be locally representation-finite.

3.1. The standard/arm A of A is by definition the full subcategory formed
by the projective points of the mesh-category k (I^)([BG], 2.2 and 5.1). We
know by [BG] that A is locally representation-finite, has the same Auslander-
Reiten quiver as A and is a degeneration of A in the sense of algebraic
geometry. The description of A is important from a practical point of view,
because some concrete algebras are proved to be representation-finite by first
exhibiting a representation-finite degeneration and then applying [GO], 4.2.

Let x, y be two objects of A. A morphism from x to y in the quiver-
category k Q^ is by definition a formal linear combination of paths from x to y
in the quiver Q^. We consider the subspace JA (^> y) o^ QA)(^» y) which is
generated by the non-stable paths and by the differences v—w, where (i\ w)
ranges over the stable contours with origin x and terminus y (1.5). In view
of lemma 1.4, it is clear that the family (7^ (;c, y))^ ye A is an ideal ofkQ^: we
call it the standard ideal.

THEOREM. — The standard form A of A is isomorphic to k Q ^ / I ^ .
Proof. — We first consider the case where A is simply connected and

therefore isomorphic to A. In this case, we have H^ A = 0 for n ̂  1 (2.5 and
2.6); equivalently, the sequence of free abelian groups

. . . C;f A -̂  Ci A ̂  Co A -̂  Ho A -* 0

is exact and splits. If we let the functor Hom(?, Z) act on it, the induced
sequence remains exact and yields ^"(A, Z)=0for n^ 1. In particular, we
have H2 (A, k*) = 1. By 2.2 this means that A admits a multiplicative basis
(in the terminology of [RO]), i. e. that we can choose a basic-vector (y [ x) in
each non-zero morphism space A (A', v) in such a way that
(z | y) o(y | x) =(21 x) ifA(>', z) o A (.v, y) ̂  0. This clearly proves our theorem
in the considered case (for historical comments, see the introduction).

TOME 111 - 1983 - N° 1



STANDARD FORM OF A REPRESENTATION-FINITE ALGEBRA 37

In the general case, we may assume A connected. We then denote by <1>
the fundamental group of the Auslander-Reiten quiver r\ at some projective
point a*. The universal covering n : r\ -> I\ induces Galois coverings

Ac=A:(r,)
^ I
A<=A:(r^)

with group C). We infer that A is identified with A/<1>([G 2], 3.1). On the
other hand, n induces a Galois covering k Q ^ / I ^ - ^ k Q ^ / I ^ (apply
lemma 1.4). Accordingly, k Q ^ / I ^ is identified with (A-^/J^/O. Now
we already know that k Q ^ / I ^ ^ A . The trouble is that we lack a
O-equivariant isomorphism, which would induce an isomorphism between
the quotients ofkQ^/I^ and A by 0.

Let e : kQ^H^ -^A be an isomorphism. If x ^ y and A(A-, ^)^0, the
paths from x to y have a common image y6^ in A (x, ^). The basis vectors y£^
produced by e satisfy ^y o y£^ = ̂  whenever (.v, y , z) e 5^ A, i. e. they form a
multiplicative basis (y£^) of A. As a matter of fact, the map e i-» (y£^) yields a
bijection between the isomorphisms and the multiplicative bases. In this
bijection the e>-equivariant isomorphisms are associated with the ̂ -invariant
multiplicative bases, i.e. with the multiplicative bases (y£^) such that
y^xv= y^x(? f01' a^ ^ y an^ each q> e ̂ >. The existence of a ^-invariant
multiplicative basis is proved in 3.2 below.

3.2. Construction of a ^-invariant multiplicative basis of A. First we
choose a vector yT| ̂  ̂  0 in each A (x, y) ̂  0 such that x ̂  y. We assume that
y^\ x<p = y^ x^ f01'a^ (p e <1>. This can be done because the action of <1> on A is
free. In case (x, y , z)eS^A, we then have ;'nyOyr|^=c(A', >', z)j^, where
ceHom^^A, k*) is a O-invariant 2-cocycle, i.e. a 2-cocycle such that
c(A-(p, v(p, z(p)=c(A-, }\ z) for all (pe0 and all (A-, v, z)eS^A. From the
lemma farther on, we infer the existence of scalars b(x, y ) e k * defined
whenever ( x , y ) e S ^ A and satisfying b(x^>, yn>)=b(x, y ) and
c(x, y , z)=b(y, z ) b ( x , z ) ~ 1 b(x. v). The required ^-invariant multiplica-
tive basis is determined by y£^=^(.\', y ) ~ 1 yT^.

LEMMA. — Let Z be an ahelian group. For each n ̂  2 and each ̂ -invariant
n-cocycle ceHom(C^A, Z), there exists a ^-invariant ^6Hom(C\_ i A, Z)
whose coboundary is c.
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Proof. - Since 0 acts freely on S, A and H^ A is 0 for n ̂  1 (2.5 and 2.6),
the differential complex C^ A yields a free resolution of the trivial 0-module
Z ̂  HQ A. Accordingly, the w-th cohomology group of the differential
complex Hom^(C^A,Z) is identified with the w-th cohomology group
H" (<!>, Z) ofO with coefficients in Z. This group vanishes for n ̂  2 because <1>
is free ([ML], IV, 7.3). Our lemma follows from the fact that
Hon4(C^A, Z) is identified with the complex of ^-invariant cochains.

3.3. Remarks, (a) Among other things, theorem 3.1 yields a description of
the universal cover A ([G2], 2.1) of A: Assume A to be connected. Let (^ be
the universal cover of g^, KA the group of constraints of A, which is
determined by the stable contours of A (1.5). Then Q^ equals Q^ /K^. The
non-zero paths of A are the paths of Q^ whose projections on QA are
stable (1.4). By 3.1 we obtain A from the quiver-category kQ^ by
annihilating zero-paths and equalizing non-zero paths with the same ends.

(b) With the notations of 3.1, assume A to be schurian. Then S^A is
clearly identified with $„ A /$ and Horn (€„ A, Z) with Hoir^ (€„ A, Z). As
a result, lemma 3.2 tells us that ^(A, k*)=l, i.e. A has a multiplicative
basis and is identified with its standard form A.

We leave it to the reader to interpret 5, A/<D and Hom^(C^ A, Z) in terms
of A in the general case.

(c) With the notations of 3.1, assume that there exists a Galois covering
F : M-^A with group G such that M is standard. Then'A is standard:
Indeed, by restriction to the connected components of A and M, we can
reduce the problem to the connected case. If M is the universal cover of At,
the stable paths of A are the projections of the non-zero paths ofM by lemma
1.4 (indeed, F induces a Galois covering IndM-^IndA by [MP1] and
[G 2], 3.6; therefore, f\ is identified with f^, and A with M). We infer that
the stable paths of A are the projections of the stable paths of M. This
implies isomorphism (2) in the series:

A ^CA/JA ^(kQ^ll^)IG ^~M/G ̂  M/G ̂  A,
(1) (2) (3) (4)

where (1) and (3) follow from 3.1, and (4) from [G 2], 3.1.
(d) Assume that A is representation-finite and has a directed quiver. In

1979 BONGARTZ and RIEDTMANN constructed a polyhedron which is in fact the
geometric realization of the 2-dimensional skeleton of S^A (2.1). They
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conjectured that A is simply-connected iff their polyhedron is so (private
communication). Theorem 1.5 shows that r\ and the polyhedron have the
same fundamental group.

On this occasion, we like to repair a lack of precision in a reference to
BONGARTZ' contribution to [G 2]. Knowing about the theory developed in
[G 2], he had the idea of truncating the universal cover in order to get simple
projectives and to start the efficient construction of the AUSLANDER-REITEN
quiver which goes back to BAUTISTA and was exploited and transmitted to us
by RiNGEL([G2],4.2).

(e) Suppose that A is finite and self-infective. The universal cover A is
described in [RI 2] when A is of tree-class A^ In case D,,, Riedtmann
presented a description of A using her classification of the translation quivers
r\ (Ottawa, August 1979). In Puebia (August 1980), Waschbiisch proposed
a direct description of A in the "regular" selfinjective case (see [W 2]). Some
of his proofs seem defective, but it remains that Waschbiisch was the first to
propose the use of contours — considered independently by Roiter [RO] — for
a description of A.
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