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ON THE HILBERT-SAMUEL PARTITION
OF STABLE MAP-GERMS

BY

James DAMON (*) and André GALLIGO (*)

RESUME. — « Sur la partition de Hilbert-Samuel des germes d’applications stables ». Soit
S: k"0 — k?, 0 (k=R ou C) un germe d’application stable de type Z, i.e. dim (Ker dfy) =2.
On démontre premiérement la lissité des strates de la partition de Hilbert-Samuel de I'espace
source, deuxiémement que cette partition est un invariant topologique si p—n est assez
grand.

ABSTRACT. — “On the Hilbert-Samuel partition of stable map-germs”.

For a stable germ f: k*,0 — k?,0 (k=R or C) of type X, i.c. dim Kerdf=2. We prove
first that the Hilbert-Samuel partition of the source space is a partition by smooth manifolds
and secondly, if p—n is not too small, this partition is a topological invariant and must be
preserved under topological equivalence.
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328 J. DAMON AND A. GALLIGO
Introduction

For a germ f: k" — k?, k=R or C and f smooth or holomorphic, one
important problem is to understand the structure of the versal unfolding
(see § 1) of f. This can be approached by decomposing the versal unfol-
ding into strata defined by certain intrinsic invariants. One such method
of decomposition (or stratification) has been carried out by Thom and
Mather ([20], [21]) for their conmstruction of topologically stable
germs. However, the problem of explicitly determining these strata has
remained largely intractable, and work has concentrated on the cases
where the singularities can be listed (e. g. [3], [6], [10)).

In this paper we begin to address this problem in the first situation
where the preceding methods don’t generally apply, namely for finite
germs f with n<p and of type Z,, i.e. dim, Ker dfy,=2.

We consider the Hilbert-Samuel partition of the source space for the
versal unfolding (see § 1), then we prove two main results about the
partition. First it is a partition by smooth manifolds. Secondly if p—n
is not too small (in a sense to be made precise) this partition is a topological
invariant and must be preserved under topological equivalence.

In preprint form this paper was originally entitled “The Hilbert-Samuel
Partition of £,” and has been referred to by this title in other papers.

0. Preliminary definitions and notations

We let k[[x,]] denote k[[x,, . . ., x,]] with maximal ideal m,. Also we
denote the algebra of C® or holomorphic germs k* 0 — k?, 0 by €, with
maximal ideal also denoted by m,. If f: k" 0— kP O then f induces
f*:€,— %, and the local algebras Q (f) and Q,(f) are defined by:

Q(f)S¢€,/)f*m,%,

Q(N)SE,/f* m, €, +m*".

In fact Q,( f) only depends on the I-jet j'( f) (0). As usual J'(n,p)
denotes the l-jets of germs k", 0 — k?, 0. By [19], IV; 2.1, there is an
algebraic group X' (the contact group) acting on J'(n, p) such that two

I-jets f and g are in the same X '-orbit if and only if Q,(f) > Q,(g).
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ON THE HILBERT-SAMUEL PARTITION OF STABLE MAP-GERMS 329

We let ;= {zeJ'(n, p) : dim, Ker(dz),=i}, and Z{ = J'(n, p) denotes
the I-jets whose associated 1-jets belong to Z;.

We consider only finite map germs f: k", 0 — kP, 0 so that n<p and f
has finite singular typei. e. dim Q ( f) < + o0; we let 8(Q) =dim, Q ( f).

If fis of type Z, then Q (f) S k [[x,]}/I with I < m2.

The order of an ideal 1, denoted by v(I), is defined by
v(I)=min{jeN: I¢m/*'}. We also define the order of f or Q (f),
f as above, by v(f)=v(Q(f))=v(I). That this is independent of the
representation follows from the alternative description:

v(Q (f)=min { : dim, Q (f)/m/** #dim, ¢ [[x])/m/* " }
For a function h: N — N we define the order of h :

v(h) =min {j : h (j) #dim, k [[x,]}/m** where h(1) =r+1}.

The Hilbert-Samuel function h of a local k-algebra Q with maximal
ideal m is a function:

h: N — N defined by h(j) =dim, (Q/m’*").

If h is the Hilbert-Samuel function of Q then v(h) =v(Q). Lastly, we will
also denote the Hilbert function of Q by h,,.

We will consider the decomposition of a set (or set germ) X into a
union of distinct sets (or set germs) U,. (We describe the situation for
sets. For set germs it is analogous, see e. g. [6], 1.) If the decomposition
is locally finite we will refer to such a decomposition as a partition. If
moreover the X and U, are smooth manifolds and the { U,} satisfy the
axiom of the frontier: U, N\ Ug# @ = U,< Uy, then the decomposition is
a stratification. If the U, are only topological manifolds the decomposi-
tion will be called a topological stratification.

Finally, we recall that an unfolding of f: k", 0 — k7,0 is a germ
F:k"*9,0 - kP*9, 0 of the form F(x,u)=(F(x,u),u) such that
F(x,0) =f(x). Then, F is versal if any other unfolding F, ( x, v) of fcan
be obtained from F(x, u) by a mapping u=AXA (v) up to X -equivalence (see
MARTINET [18]). For our purposes the important property of a versal
unfolding is that as a germ F is infinitesimally stable in the sense of
MATHER [19], this implies that the germ j' f: k"*2, 0 J'(n+q, p+q) is
transverse to all )"-orbits (MATHER [19], V).
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330 J. DAMON AND A. GALLIGO
1. Statement of Results

We first describe how to partition X! by the Hilbert-Samuel
functions. Given b : N = N, we define:

2.,={Z€J‘(’1,P) :le(z)=b}‘

We note that the decomposition of J'(n, p) by I, respects the X! since if f
is of type Z,, by, (1) =r+1. Thus, we obtain a partition of Z, by those
Z,cX,. Such a X, will be referred to as a Hilbert-Samuel stratum. For
a germ f: k", 0 — k?, O this leads to a partition of k" by the set germs
{Zy(f)=/"(f)"'(Zy) }. We will refer to this as the Hilbert-Samuel
partition of k".

The first result concerns the partition by these strata.

THEOREM 1’. — IfZ,cZ) cJ' (n, p), then T is a smooth submanifold.
Then, for infinitesimally stable germs, it follows that:

THEOREM 1. — If f: k", 0 = kP, 0 is an infinitesimally stable germ of
type I, then the Hilbert-Samuel partition of k" is a partition by (germs of)
smooth manifolds.

Remark. — For X} the result follows because the Hilbert-Samuel strata
are the X '-orbits. '

To describe how topological properties of an infinitesimally stable germ
determines its Hilbert-Samuel partition we consider the multiplicity m ( f)
of a germ f: k", 0 — k?,0. The definition of real multiplicity given in [7]
did not depend on k=R, thus, the definition can be equally given for
k=C.

m( f) =min {; : for any representative
f: U, 0 — kP and neighborhood of
OeV kP thereis a yeV so that |/~ (y) NU|=j}.

(| A|=cardinality of a set A). We call m(f) the local multipli-
city. Using the local multiplicity we define a partition of k". Let f,,
denote the germ of f atx. We let T;={xek":m( f,) =j}. Then,
J ={T,} is a partition of the set germ k" at 0. From J, we obtain the
minimal C%refinement 7° of . The strata of J ° consist of equivalence
classes where x, is equivalent to x, if there is a germ of a homeomorphism
¢ : (k" x,) = (k" x,) preserving the strata of . By [6},II, 7° is a
topolneical stratification refined by the Thom-Mather stratification. The
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ON THE HILBERT-SAMUEL PARTITION OF STABLE MAP-GERMS 331

topological structures of °( f) and F ( f) are related to the algebraic
properties of Q ( f) by:

THEOREM 2. — If f: k", 0 — kP, 0 is an infinitesimally stable germ of
type Z, withp—n2=2v( f) —1 then:

(i) the topological type of I ( f) determines the Hilbert-Samuel function
of f.

(ii) the topological stratification J°( f) refines the partition
{Zy(f)}. (i.e eachstrataofT°( f) iscontainedinastrataZ( f)).

As a consequence of this result, we can state for C°-stable germs (finitely
X -determined germs all of whose unfoldings are topologically equivalent
to trivial unfoldings).

THEOREM 3. — The Hilbert-Samuel function of Q (f) is a topological
invariant for all C°-stable germs f:k",0 — k’,0 of type X, with
p—n2v(f)-L

Lastly, there is a consequence for generic stairs of local ideals (see § 4).

THEOREM 4. — If f: k", 0 — kP, 0 is an infinitesimally stable germ of
type X, with p—n>v—1, then the generic stairs of the local ideals will be
constant on the strata of the Thom-Mather stratification.

These last two results suggest a possibly very close relation between J°
and the Thom-Mather stratification &*. If 5 denotes the Hilbert-Samuel
partition, then an elementary argument (see[5] or [6], II) implies
H#°=9"° Thus, any differences in the deformation theory of the Hilbert-
Samuel function is detected by J°. Already J° agrees with the C*-
stratification in the nice dimensions; and for general n<p, they agree on
the complement of a set of codim>6(p—n) +8 (by [6], IT). Thus, it is
not so unreasonable to ask.

Question: How closely does J° approximate the Thom-Mather
stratification? In particular, is it possible that with only minor corrections
T=9"

2. Remarks on the proofs

To prove the smoothness of the Hilbert-Samuel strata, we give in
paragraph 5 a modified local version of a result in [4] which constructs
blow-ups of the closures of contact class orbits in jet-bundles. In this
local version, the blow-up is constructed using the local Hilbert scheme
(Theorem 15 of paragraph 5). However BrIANCON [1] and IARROBINO [16]
have proven the smoothness of the strata of the Hilbert-Samuel partition
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332 J. DAMON AND A. GALLIGO

‘in the Hilbert scheme of k[[x,y]l We give a precise description of
this result in paragraph 4. Then the blow-up construction enables us to
transplant their results to the jet space to obtain smoothness there.

The blow-up construction is also used to determine the normal bundle
to the Hilbert-Samuel strata in the jet-bundles. This permits us to exa-
mine the local structure of the partition in a tubular neighborhood of a
stratum. In paragraph 7 we use this analysis to prove that the topological
structure of F ( f) detects the Hilbert-Samuel function of f. This is done
by relating both the Hilbert-Samuel function of f and the topological
structure of J ( f) with the corresponding data for near-by germs types g
withd(g) <3(f).

Specifically, using the Hilbert-Samuel function of such near-by germs
we define in paragraph 6 a deformed Hilbert-Samuel function by,
of f. Using properties of the generic stairs and results of Briangon, we
show that b, ) can be recovered from B'QU, and an invariant a(Q ( f)),
which measures the size of the last increase of by, Using induction on
the topological invariant 3(g)=m (g), we know that the topological type
of 7 (g) determine by, however for such near-by germs g, J (g) occurs
as a germ of 7 ( f) at points arbitrarily close to 0. Thus, the topological
structure of J ( f) allows us to recover EQU,. By induction, the closure
C1(Zp) of the deformed Hilbert-Samuel stratum Xy is determined by 7 ( f),
then it is enough to prove that a(Q( f)) can be determined by the

topological structure of Cl(Zp).
In paragraph 7, we shall explicitly determine the normal structure of

CI(Z;) near Z, to be topologically equivalent to a cone obtained by
collapsing the zero-section of a line bundle on a product of projective
spaces (Proposition 21). Then, from the computation in paragraph 3 of
the local cohomology of Cl(Z;) at a point of Z, using coefficients C,( =Q
if k=C or Z/2 Z if k =R), we obtain a topological expression for a(Q ( f)):

dim¢, H* (C1(Z5( f)); Cre=22(Q () -1

Once Theorems 1 and 2 are proven, the remaining results follow in a
straightforward manner using results about the Thom-Mather stratifica-
tion, C°stable germs and the relation between generic stairs and the
Hilbert-Samuel function, this is given in paragraph 8.

Remark 1. — One of the reasons that the proof only works for germs
of type X, is that the equality 8(f)=m( f) is known not to hold in
general for germs of type X,, r>3 by results of IaARrOBINO [15]). Thus
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there is no known way to give an induction argument using topological
invariants.

Remark 2. — It could also be suggested that other invariants such as
the Thom-Boardman symbols might be better invariants to investigate for
topological invariance. However, LoouENGA [17] has shown that this
seems not to be so.

Remark 3. — Tt is also possible to go in the other direction and
obtain information about the Hilbert-scheme from properties of stable map
germs. This has been done by GAFFNEY [9] and GRANGER [11].

3. Extending previous results from R to C

Several results proven in [6], I, and [7] for k=R have extensions to
k=C. We will need these extensions in later sections. The first such
extension is an algebraic computation of the local multiplicity m ( f) for
an infinitesimally stable germ.

THEOREM 5. — If f: C", 0 — CP, 0, n{p, is an infinitesimally stable
germ of type T, (or discrete algebra type) then

m(f)=38(f) (=dimcQ(f)).

Since Mather’s classification of infinitesimally stable germs [19], IV, is
valid for holomorphic germs (and the classification of discrete algebra
types is inclusive for complex germs), the proof follows exactly the proof
in [7] for k=R. '

We also wish to be able to extend to k =C the results of [6], I, describing
topological properties of infinitesimally stable germs. We summarize
these with:

ProrosiTioN 6. — If f: k", 0 — kP, 0 is an infinitesimally stable germ
with k=R or C, then the Ttype of f is a topological invariant. If moreover

i
p—n= , then the X, ;, type of f is a topological invariant.
2 »U)

More importantly, for Z,-type germs f we have, using the notation of
[6), L

ProPOSITION 7. — For infinitesimally stable germs f: k", 0 — kP, 0 (k=R
or C, n<p) of type Z,, the T 1 type is a topological invariant as
2.2,...2.0)
long as I<Sp—n+1. '

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



334 J. DAMON AND A. GALLIGO

However, we note that f is of type = 1 with j#3 if and only if
2,2,..,2, )
v(f) =1+1. Thus, we also have:

CoROLLARY 8. — For infinitesimally stable germs f: k", 0 — kP, 0 of type
Z,(k=Ror C,n<p),ifv(f) <p—n+1thenv( f) isatopological invariant,
and those f with v( f) <p—n+1 are topologically distinct from those f with
v(f)>p—n+1l.

Thus, the condition v( f) <p—n+1 which we impose in our results can
be detected topologically.

The analysis carried out in [6], I, for k=R can be repeated verbatum
for k =C with the exception of one step.

NotaTioN. — For V and W finite dimensional vector spaces let: Z
denote the set of linear maps of rank <1 in Hom, (V, W); V' * denote the
dual of V; P(V*), P(W) denote the associated projective spaces; Y’ and y
denote the canonical line bundles over P(V*) and P(W); E denote the
line bundle v ® v over P(V*)x P(W) (we also denote by v’ and 7y the
pull-back of y" and y). Also, S(E) denotes the sphere bundle of E and
Cone () denotes the cone construction.

ProPOSITION 9. — (Z, 0) = (Cone(S(E)), *).

The proof is almost identical to that given in [6], I, for k=R, except
that here we avoid introducing a Riemannian metric. The map
E — Hom, (V, W) is given by h®w +— @ where @ (v) =h(v) w. Asacorol-
lary of this proposition, we can describe the topological structure of Z,_,
near Z; in Hom, (V, W) where:

Z,={heHom, (V, W); dim, ker h=r}.

COROLLARY. — Near X, CI(XZ;_,) is locally homeomorphic to Cone
(S"(S E)), where S is the suspension operator and E=vy®Y’ for y and vy’ the
canonical line bundles over P (K*) x P (C) where K and C are the canonical
kernel and cokernel bundles over Z;.

In the case k=R, S E is a double covering of P(V*) x P( W), in the case
k=C, SE is an orientable S'-bundle. In either case, we can compute the
local cohomology. We will use coefficients C,=Qif k=C and C,=2Z/2Z if
k=R, we also use local cohomology of set germs (X, *):

H* (X),,.=H* (X, X—{*}).
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Then we have the following lemma which will be also used in
paragraph 7.

LemMA 10. — For k-vector spaces V and W and line bundle E as above,
we have:

dim¢, H* (Cone (S E); C}) jo.=2 min (dim, V, dim, W) —1.

Proof:

H* (Cone (S E); C)oc
=H* (Cone (S E), Cone(S E) —{* }; C})
~H*"'(SEC).
Then we can compute:

dim¢, H* (Cone (S E); Cp) o =dim¢, H* (S E; C,) —1.

Then, E is an oriented vector bundle using C,-coefficients. Thus, we may
use the Gysin sequence in the form (cf. e. g. [22]):

—PHi_’(X)—’HE(X)—'H"(§E)‘->H"-'+I(X) - ..

wherel=1if k=Rorl=2if k=C. Also, X=P(V*) xP(W).
If x=>b,(y) and y=b,(y) denote the first Chern classes or Stiefel-
Whitney classes (depending on whether k =C or R) then:

H*(X; C,) ~C,[x]/(x") ®C, )/(¥),

where r=dim, V and s=dim, W. Also, the map H* !'(X) — H*(X) is
given by multiplication by the Euler class (or mod 2 Euler class)
e(E)=b,(y) +b,(y)=x+y. Suppose for example that r<s.

Then, representing the cohomology of X as the integer lattice with (i, j)
corresponding to x!®y’, we see that in region I:

r-1

the image under multiplication by e ( E) has codimension 1 in each degree
and in region III, its kernel has dim=1 in each degree. In region II,
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336 J. DAMON AND A. GALLIGO

multiplication by e( E) is an isomorphism. Then, by the exact sequence:

dime, H* (S E; C,) =codim (image) +dim (ker)
=r+(r+s—1)—(s—-1)=2r.
Thus, from dim H*(Cone S E, C,),,, we can recover min(dim V,
dim W). Moreover, if dim ¥, dim W> 1, then (Cone(S E), *) is not the
germ of a topological manifold.

4. Generic stairs and the Hilbert-Samuel strata in Hilb' (k [[x,]])

We let Hilb'(k[[x,]]) denote the set of ideals Ick[[x,] such that
dim, k[[x,]]/I=1. To endow this set with geometric structure, we embed
it in a Grassmannian: by Nakayama’s lemma, dim, k [[x,]]/I=1 implies
mjcl. Thus, we can identify such anI in a canonical way with
I=I/m!*ck [[x,])/m!*!. We denote k [[x,])/m!*? by A4,(r), or just A4, if
there is no confusion. Thus, if m=dim, 4,(7) —I then we can embed:

Hilb! (k[[x,]) 5 G.(4:(7),
IHI/=I/m£+l’

where G, (A4,(r)) denotes the Grassmannian of m-planes in A4,(r). We
identify Hilb'(k [[x,]]) with its image in G, (4,(r)). Itis a standard fact
that Hilb'(k[[x,]])) is a Zariski closed subset of G,(4,(r)) in the case
k=C. Also, Hilb'(R[[x,]) is obtained by intersecting Hilb’(C [[x,]]) with
real Grassmannian; it is also Zariski closed for k=R.

To define the Hilbert-Samuel partition of Hilb’(k[[x,]]) we consider a
function h : N — N and define:

Sy={ IcHilb' (k[[x,]]) : b is the Hilbert-Samuel function of k [[x,]}/] }.

Such an Sy will be called a Hilbert-Samuel stratum. Then Hilb' (k [[x,]])
has a partition by the {S,}. Furthermore, each S, is a constructible
subset of Hilb' (k[[x,]]). In fact, if we define:

Vo={1=G, (A4,(1) : dim, (I N\ m}*?)
=m—(dim, 4;(r) b (j)), 0<j<!}
then V, is a Schubert cell and hence constructible. Also:
S|,= Vh N Hilb! ( k [[x,]]);
and thus Sy is also constructible. However, by a result of BRIANGON [1]

and IARROBINO [12], we can say more, namely.
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TueoreM 11. — In Hilb' (k [[x,]]) with k=R or C, the Hilbert-Samuel
strata are smooth manifolds.

To say more we describe the notion of generic stairs of an ideal. We
state the key properties for ideals Ick[[x,y]]. See[l1], or [8] for more
details. We consider the lexicographical ordering on the monomials x* y?
so that x*1 yP1 < x°2 yP2 if 4, <a, or @, =a, and B, <B,. Then, given
fek[[x, y]] with

f= Z(«.m o py X* VP
exp( f) =min {(a, B) in lexicographical ordering so that g, 5, #0).
Then, E(I) ={exp(f) : fel}iscalled the stairs of I.

E(I)

Also, E (I) has a boundary F(I), the minimal subset of E (I) such that:
E(D) = Ugpera (% B) +N2.

We denote the elements of F(I) by (a;, B;) with ag<a,<...<a, and
Bo>PB;>...>B. Then, a theorem of Grauert implies the following
about the structure of E (see [1] or [8]).

THEOREM 12. — For a generic set of formal coordinates for k [[x, y]), E (I)
is constant for a fixed 1. In this case, B,—PB;.,=1 for all i and B,=v(I);
thus B;=v(I)—i. E(I) is called the generic stairs. Furthermore we can
choose f;e I with exp ( f;) =(a;, v—i) so that f e m%*V ™%,

One consequence in [1] or [8] is that:

ProposITION 13. — Ideals I, and I,<k([[x,y]] have the same Hilbert-
Samuel functions if and only if they have the same generic stairs.

Furthermore, by the results of [1], if E(I) is the generic stairs of I, and
I< Sy, then there is a neighborhood U of I in Sy such that if I’e U, then
E (D) is the generic stairs of I’. Then, we can describe the tangent space
to S, at ] as follows. We may pick fel so that exp(f) =(o;,v—i),
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338 J. DAMON AND A. GALLIGO

fiem%*°"iso that fi=x"g, with g;=y*""'+a¥ (x) y* "1+ ... +a®,(x)
_andord af’ (x) >jwhiledeg a{ (x) <a;,;—@; LetA(I) besubspacespan-
ned by monomxals x* yP with (o, B) ¢ E(I).

To describe the tangent space we use a local representation of S, near I,
due to Briangon [III, 3.1, 1]. In a neighborhood V of I we can represent
I’ e V by the standard generators for the generic stairs, f;"=x% g;, where:

g&i=(y+usy) g;+1+z;=.-+1 ui; 8
and u; ;e k [x] satisfies:
ord (u; ;) >max { o;— &4y, j—i }
and deg u; j<o;—a

From this we can compute the tangent space. Let c{*), be the coefficient
of x* in u;,. Then we compute inductively:

0, i>l

af; xut Em i=l,
),

og og .
{(}’+ ii+1) a‘(:,l ZJ =i+2 lja(:) }, l<1.

Then, if we let p denote the projection onto A(I) along I, T, Sy is spanned
by elements of Hom, (k**!, A(I)) corresponding to triples (I, m, k) with
max {a, — 0., m—1} <k <a,—a;, (0<I<m). The map corresponding
to (I, m, k) is defined for the standard basis {e;, 1<i<v+i} for k**! by:

ofi-s
e (222).

5. Blowing up singular submanifolds of J(n, p) using Hilb™

In this section, to describe a local version of a result in [4], we will have
to consider images of mappings. For the complex case it is enough to
consider constructible sets and use Chevalley’s Theorem [12], but for the
real case the situation is more difficult and we will use a theorem of
Hironaka [13].
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We define singular manifolds to be either:

(i) constructible sets in the case k =C or (ii) subanalytic sets of analytic
manifolds in the case k=R. We recall (see e. g. [13] or [14]) that subanaly-
tic sets X are sets whose germs at points x (not necessarily in X) belong
to the Boolean algebra of germs of sets at x generated by images of
bounded semi-analytic sets by local analytic maps. (We could obtain
similar results using instead semi-algebraic sets.) Both types X have the
property that they contain dense open sets X,, such that X is a smooth
manifold in a neighborhood of each point of X,. Then

dim X=max {dim of components of X, }.
A mapping f: X — Y between singular manifolds will mean:
(i) for k=C, fis defined on all of X by rational functions; and

(ii) for k=R a mapping which extends to an analytic mapping on some
neighborhoods of X and Y in the ambient space. Then a blow-up is a
proper surjective mapping f: X — X of singular manifolds such that
" for open dense smooth submanifolds U= X and UcX, f: 0 > Uis a
diffeomorphism.

We will examine a procedure for canonically constructing blow-ups of
singular submanifolds of J!(n,p) using Hilb™. To begin, we let Aut,(r)
denote the algebra of automorphisms of A4,(r). Then Aut,(r) is an
algebraic group and acts algebraically on A4,(r). There is an induced
actionof Aut;(r) on G, (A4,(r)) (m=dim A4,(r) —I). Wefurther note that
Aut,(r) preserves Hilb™ (k[[x,]]). Here we consider singular submanifolds
S < Hilb™ (k [[x,]]}) which are invariant under Aut,(r).

Given such an S c Hilb™ k [[x,]] we define:

Is={zeJ (n,p):Q,(2) 5 k[[x])/I, some I€S }.

We first describe the blow-up in the special case when n=r. We assume
that for IeS, m! =1 so that the problem is really one involving l-jets. In
A,(n) we have the maximal ideal m,/m,*!. Then, any proper ideal I in
k [[x,]] and containing m!*! corresponds to Icm,/m.*!. Thus, we can
just as well embed

Hilb" (k [[x,]) & Gn (m,/m* ).
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If v, is the canonical m-plane bundle over G,, (m,/m.*") and k?" denotes
the trivial vector bundle with fiber k? over the indicated space, then we
have a diagrgm:

Hom (k?", ¥,, | S) —= Hom (k", v,) = J'(n, p)

§ &G, (m,/m,*")

where we identify J'(n, p) with Hom (k*", m,/m!*!). Then, the composi-

“tion Hom (k?', v,,| S) = J!(n, p) is a diffeomorphism from an open dense
set of Hom (k”", ,,|S) (viewed as a manifold) onto £, If § is closed,
.then this is a blow-up of Cl (X5). These statements follow from the more
general version given in Theorem 15. While the case of n=r can be given
this especially simple form, the general case r <n requires some gymnastics
with constructions of bundles to first reduce the problem to one over
X, cJ! (n,p). Hopefully, this will clarify the general construction which
we turn to next.

We make several additional restrictions on S : if Ie S then m!<I and
Icm?. This guarantees that T, X! and that we are not really ignoring
part of S in constructing Z.

We first describe a canonical construction of the blow-up. Over X! are
canonical bundles K and C such that if zeZX!, K=ker(dz),,
C=coker(dz),. If W is a k-vector space, we let W. denote the trivial
vector bundle W x X — X over a topological space X. The space X will
be clear from the context. Then Kck! and C is a quotient bundle of
kP. Furthermore, if S'V denotes the ith-symmetric product of either
vector spaces or vector bundles, we use the following notation suggesting
for bundles the situation analogous to that for ideals in 4,(n):

MM =T, S* (k)
MiMI*t=Y_ S'(K*).

First, we give a standard blow-up of CI(X,). Over G, (k") xG,_,(kP)
(which we will denote by G, x G,., ¥ =n—r) we have canonical bundles ¥,
and v,  (pull-backs of the canonical bundles on each factor). There is a
natural map

Hom (k*/Y,, v,) = Hom (k". k?) = J* (n, p)
G, xG,
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(]
sending h+»> iohon where m: k¥ —» k¥/y,and i:y,  kP. Let
U= { he Hom (k*/v,, v, : rank h=n—r }.

This is an open dense subbundle and it is a standard result that
0: U-ZX, is a diffecomorphism. Then, 0 is proper (it is the composition
of an inclusion of vector bundles over G, x G,. together with the projection
Hom (k?, k?) - Hom (k", k?) which has compact fibers G, x G,). Thus,
0 is a closed mapping so 6 (Hom (k?/y,, v,)) is closed and contains X, so
it contains CI(X,). As 67'(CI(Z,)) is closed and contains u, it is all of
Hom (k’/y,, v,.); thus 6 is a blow-up. We build upon this blow-up to
obtain one for Cl (Zg).

Over G, x G,. we have a mapping of vector bundles:

Hom (k', M}/M!*') @ Hom (K*/y,, v,) = J' (n, p)
G, xG,
whose restriction yields a diffeomorphism:
Hom (k?', M2/M!*}) xU - X!
The mapping is induced by:

Hom (k?*, M2/M,*') @ Hom (k%/y,, v,")
— Hom (¥_, S*(k%), k?) @ Hom (k% k?).

Since we can identify an I-jet z with its derivatives (dz) o, (d%2) o, . . .,(d'2) ¢

J'(n,p) = Hom (Zi., §'(k"), k?).

Next, consider G, (M2/M!*1),

We denote it by G,,. It has a canonical bundle y,. By our avsumptions
on S, we can also view ScG,, (m?/m!*!). Itisinvariant under the action

of Aut,(r); thus we can form a subbundle & c G, (M?/M!*') with
fibers S. Then, the fibers in v,, | & are just the ideals in S.
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Then we have the diagram:
. o
L . = Hom (k?", M}/M}*!) ————= CI(Z:)
' .

Hom (C*, M}/M;*")

11-1 > » Hom (k%/y, ¥,) : cy)

%1 x1

'

S' -—-——-——'G' —'—'—.Gr x Gr'

where L is the pull back of Hom(,) by A, which is induced by the
inclusion of v,,| ( the pull-back of the restriction of v,)) in MZ/Mi*!. Also,
H is the pull-back of Hom (k’/y,, v,) over &, and = is a projection map
of vector bundles both pulled over Hom (k/y,, v,) induced by the
projection MZ/M'*! - M2/M!*! along the ideal generated by Im(C*4)
in M,/M{*!. Here C* can be identified with the subbundle of k" which
annihilates ker (k? - C), and C** denotes the complement with respect
to the natural inner product on k?".

Now we can define:

Li={feL:n(f)+ :C*®(M/M*'®Y,|) = Yul
isontoand penod’ (f)eU}.

Here“ ” M,/M!*'®4,,| = ¥,|is induced by multiplication in the symme-
tric algebra. Then, Lg consists of those f such that the ideal generated
byn’(f) (C*)ismy o p’on’ (f).

Lemma 14. — If S is a singular submanifold of G,, (m,/m!*?) then L and
Lg are singular manifolds.
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Proof. — & be a sub-bundle of G, — G,xG,; hence by the local
triviality, & is also a singular manifold in either case. Then, both L and
L are subfiber bundles of algebraic vector-bundles over G,, (and hence %)
whose fibers are Zariski open-subsets. Thus, they are either constructible
or subanalytic.

We have a map Lg —» Xg; however it is not a priori clear that Zg is a
singular manifold. This, in fact, is included in the following theorem.

THEOREM 15. — If S is a singular submanifold of G,, (m,/m.*!) satisfying
the preceding restrictions, then:

(i) Z; is a singular submanifold of J'(n, p);
(ii) if S is closed, then L — Cl(Zy) is a blow-up;

(iii) Ly — Zg restricts to a diffeomorphism between open dense smooth
submanifolds;

(iv) if S is smooth then I is smooth.

Proof. — First, we show that if S is closed then L — CI(Z}) is
proper. For this we note that 6 : Hom (k¥/v,, v,) — ClI(Z,) is proper,
and if:

I
X/ » YI

Voo

X.__{._»Y

is a pull-back diagram with f proper then f’ is proper. Then, 0 is
equivalent to a pull-back diagram over 0, so 8’ is proper. Also, m isa
pull-back diagram. Next A can be factored as an inclusion of vector
bundles Hom(C*,y,|) =Hom (C* M?/M!*!) over H and a pull-
back of Hom (C* M?/M!*') over ”. In turn A” is a pull back over
¥ - G,, = G,xG,; this composition is a projection of a bundle with
compact fiber, and hence proper.

Thus (ii) will follow from (i) and (iii). For (i) we may apply Chevalley’s
theorem (see e.g. [12]) in the complex case to conclude image (Lg),
image (L) are constructible. For the real case we may apply a result
of Hironaka [13] or [14] to conclude that image(Lg) and image(L) are
subanalytic sets. However, it is easily seen that image(Ls) =X;. Then,
by properness Cl (Xg) =image(L).
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For (iii) we define:
Ws={heLg: ®jop’ on’(h) is a smooth point of & }.

This is the subfiber bundle Lg| (smooth points of ). The smooth points
of & form an open dense set; thus, Wy is open and dense in Lg.

We claim Wg — Im(Wj) is a diffeomorphism and Im (Wyj) is dense in
T Itis 1—1 since Im(n’(h)) uniquely determines I. It is trivially onto
and continuous. To show it is a local diffeomorphism, we note that the
maps are maps of fiber bundles. Thus, it is sufficient to prove it for a
fiber.

We define an inverse for a fiber F of £ over a z; € Z,. Thus, we have
a fixed K and C with ker(dz),=K and coker(dz),=C for zeF. We
further choose coordinates so that K=k, Im(dz,)o={0}xk""" and
C=k?""*"x {0}. Then we define:

y: F — Hom (k¥", M3/M'*Y)
by:
V(2)=(K C,I(2),(d2)}, ...,(d 2P,

where (d/2)$ : kP — §7 k™ is the dual of (d’z),. Also, I(z) is the image
of the ideal generated by y;°z 1<i<p, under the projection
mZ/mi*! > m?/m!*! along the ideal m,.(y;°z, p—n+r<i<p). Then,
V is an algebraic mapping and is clearly an inverse to 6’ o A’ | (fiber of Wy
over 67'(z,)). Thus, 8 oA’ | Wy is a homeomorphism. Since in some
neighborhood of any point, ¥ can be extended to an algebraic mapping,
it follows that 6o A’|(fiber of Ws) has maximal rank (as composition
with the extension of Y is the identity). Thus, 6’y | Wy is a local

diffeomorphism onto T and hence a global diffeomorphism.

To complete the proof of (iii) we must show that Im (W) is dense in
Zs. We note that any z € £g may be slightly perturbed to give z’ in some
4 ‘-orbi! with ideal I’a smooth pointin S. Then 2’ is in the image of Wj.

Lastly, if S is smooth, and z € X, then Ly= Wy so that z is in the image
of Ws. Now Wy is smooth and Wg maps onto a neighborhood of z in
Zs. Thus, Z is smooth near z.

As a corollary we have:

CoroLLARY 17. — The Hilbert-Samuel strata X, are smooth submanifolds
of Tb.
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Next, we use this result in the case S is smooth to determine the normal
bundle to Xg.

ProposITioN 18. — The normal bundle of Xg in X} pulled back to Wy is
isomorphic to Hom (C*, yt) /TS where y:=(M?/M.**)[y,, and TS denotes
the pull-back of the bundle along the fiber of ¥ — G, x G,..

Proof. — As @ is a diffcomorphism on (n o p)~* (U) and A|Ws is a
diffeomorphism onto its image, it is enough to compute the normal bundle
A* T Hom (k”", M2/M'*") [TLg restricted to Ws. As [ 1] is a pull-back
diagram, it is enough to compute the normal bundle of .. Now A can
be factored:

31 A2
Hom (C*, Y,,|) —— Hom (C*, v,)

[4]

1
g - G,, = Hom (k*/v,, 7»)

Hom (C*, M}/M,*")

[1] |

¥ G.

where [1],[2], and [ 4] are pull-back diagrams. Then, the normal
bundle of A is the sum of the normal bundles of A, and A, pulled back
to Hom(C*, v,, l). Then normal bundle of A, is then the pull-back of the
normal bundle of ¥ — G,,; while the normal bundle of A, can be computed
since is a pull-back diagram. By looking in a fiber it is easy to see
that the normal bundle of A, is the pull-back of Hom (C*, v3) /TG,, where
TG,, denotes the bundle along the fiber of G,, — G,xG,. The normal
bundle of A, is the pull back of TG, /TS (again the quotient of bundles
along the fibers). Thus, the normal bundle is given by:

= G, xG,

Hom (C*, v;) /TG, & TG,/TS

which is isomorphic to Hom (C*, v)/TS. O

We describe how to compute this for S,. By Briangon’s proof of the
smoothness of S, there is in a neighborhood of any point /=Sy, a vector
bundle F spanned by the generators {x%g;} of I’ in the

neighborhood. As we are only interested in elements of I, up to X''-
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equivalence, if p—n>v(h) —1, we may assume z € I, is an l-jet so that
the coordinate functions of z span F (which is generated by v(h) +1
elements). We may choose a complementary bundle F* to F in M,.y,,
(restricted to the appropriate neighborhood). Thus, we may project the
image of C* onto F. For a small neighborhood near z’, this mapping
will be surjective. Then Ker(C* — F) is a sub-vector bundle. Let E be
a complementary bundle. We have:

CoROLLARY 19. — The pull-back of the normal bundle of X, in X} is
given in a neighborhood of z’ by

Hom (C*/E, v;) @ Hom (E, v3)/TS,,

Proof. — It is immediate that:

Hom (C*, ;) = Hom (C*/E, v;) ® Hom (E, 7).

By the result of Briangon, TS, is a subbundle of Hom (E, vz). O

Now, exactly as in [6], I, we will identify this normal bundle with a
tubular neighborhood of Z,; and to identify the Hilbert-Samuel partition
near I, it is sufficient to identify it in the normal bundle.

6. The deformed Hilbert-Samuel function

To transform information about the Hilbert-Samuel partition in the
normal bundle to topological form, we use a topological induction argu-
ment with induction on 6. For this, we shall relate information about
the Hilbert-Samuel functions of near-by algebras Q' with 3(Q’)<8(Q)
with properties of the Hilbert-Samuel function of the algebra. To do
so, we define the deformed Hilbert-Samuel function of Q, EQ. We say the
family Q; is near by Q if Q; = k [[x,])/I, with I,=(h, (x,t), . . ., h,(x,1t))
for some m,s>0 and h;(x,t) ek {x,, t } so that Q; 5 Q. We define:

EQ (j) =max { r : there is Q; near-by Q with 5(Q;) <4 (Q)
for t#0 so that by, (j) =r for t#0 }.

Remark. — There is a potential problem in relating the algebra and
geometry here. If Q S Q (f), f: k", 0 —» kP, 0, then even though Q;
occurs near-by Q, we may not be able to realize Q; S Q ( f,) for
x(t) - 0ast — 0. In fact, by [prop. 4.1; 6, I}, the condition we need is
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that p—n>—i(Q;). However, using the structure of the generic stairs
for Ick[[x,]], we have —i (Q;) <v(Q;) —1. If Q; occurs near-by Q then
v(@)<v(Q)=v(Q(f)). Thus, our assumption on p—n Yyields
p—n=vf)—12v(Q;)—1= —i(Q;). Hence, there is no problem.

To relate EQ and by, we also define the invariants:

B(Q) =inf {j: bo(j) =8(Q) } —1,
a(Q) =bo(k+1) —bo(k)  where k=B(Q)
and

B(@) =inf {j: b (j) =8(Q) -1} —1.

Then, B(Q) is the last integer at which b, increases; B(Q) is (as we shall
see in what follows) the last integer at which SQ increases; and a(Q) is the
size of the last increase of by The Hilbert-Samuel functions can then be
related by: '

PrOPOSITION 20. — The functions b, and §, are related by:

b bo (), i<B(Q), or j=B(Q) and a(Q)=1,
‘“”={ be () +1, j>B(Q), or j=B(Q) and «(Q)>1.

Proof. — By the upper semi-continuity of b(j) (see e.g. [Prop. 2.3,
6, 1), bo(j) <bg(j), j=0. We consider the generic stairs of I where
Q =k [[x,]]/I with Icm?2.

Suppose j<PB(Q). If there are r standard generators not in mj*! then
dim INmy*'/mi*2=j4+2—(v—r). Thus, the remainning v—r—1
standard generators can be deformed to the remaining generators of
mi*'. Thus, there is a near-by family Q; with by (j)=bg(j),
j<B(@). Henceby(j) =ho(j),j<B(Q),sowemusthaveequality.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



348 J. DAMON AND A. GALLIGO

Forj>B(Q) and any a(Q) we can deform

B —__
N |__,..]

a(Q > 1 a(Q =1

the standard generator x* to x~!. We obtain a Q; with
bo, (J) =bo(j) —1(=38-1) for j=B(Q).

Thus, Bo(j) =8—1for j>B(Q) or be(j) =bo()) +1 for j>B(Q).
Now it is a simple matter of observing that:

: if «(@=1, B(Q)=B(Q)-1,
while
if «(@>1, B(Q=p(Q). O

Thus by the preceding Proposition, by, is determined by Scu»
B(Q(f)),anda(Q( f)). Thefirsttwoinvariantsarebyinduction, topolo-
gical invariants determined by the topological structure of J ( f) or
J°(f). It remains to show that a(Q( f)) is also determined by the
topological structure of these partitions. In fact, we shall see that it is
determined by the topological structure of the deformed Hilbert-Samuel
stratum X/ near X,.

Remark. — v(b) =v(bh) except when b is the Hilbert-Samuel function
of mj, some j. In that case, m} can be characterized topologically as the
ideal whose deformed Hilbert-Samuel function has lower order. The
topological description given in the next section will be valid in these
cases; however the proof must be slightly modified for m2 for f is then a
Hilbert-Samuel function of a Z,-type (in fact, then Cl (Z;) near I is the
same as Cl (X,) near X,).

7. Topological structure of the deformed Hilbert-Samuel strata

We have shown in paragraph 6 that we can topologically recover
from § if we know whether a(Q)=1 or >1. We now show how to
determine which condition « satisfies using the topological structure of Zy
near X,
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PROPOSITION 21. — If f: k* O — k», 0, is an infinitesimally stable germ
of type X, with Hilbert-Samuel fonctionl and p—n>=v( f) —1, then as
germs: -

Cl(Z;(f), 0) = (Cone (S E) x k<, (*, 0)).

Here the notation is the same as that of paragraph 3 where E=y' ® v
and v’ and vy are the pull-back to P (k%) x P(k®) of the canonical bundles
on the factors. Here g is an integer depending on b and g>a. Using
local cohomology and the fact that, with S denoting suspension,

Cone(X) x R° 5 Cone(S°X),

we have for total cohomology:
dim H* (C1 Z5( f); C e
=dim H* (Cone ($° S E)); C,),.=dim H* (Cone (S E); C,) ..

As g=a, by Lemma 10, the dimension equals 2a—1. Hence we have
as a corollary, the topological determination of a.

COROLLARY 22. — With f as in the preceding proposition:
dime, H* (CL(Z5( f)); Che=20(2 (f)) -1

In particular, Cl (Z;( f)) has the local cohomology of a topological
manifold at 0 exactly when a=1.

Proof. — We begin by performing several reductions. We recall the
following diagram from paragraph 5, for the special case of the Hilbert-
Samuel strata T, c I},

Ws=Ls 6 L —Hom (k? ,M2/M'*') —s=CI (Z})

]

H— UcHom (k:./‘YZ’ 'Yn—Z)_’Cl (22)

|

S'.—'-G,' - GZXGH—Z

where U consists of linear maps of rank n—2.
We remark that the image of L via the top line is exactly Z,.
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1) Let z be the l-jet of f and I=1(z) be the ideal generated by z. We
have zeZ, and m'cl To establish Proposition 21, it is enough to
determine Cl (Xy) in a tubular neighborhood of X, which we can identify
with the normal-bundle to X in X} (see [6], I, for details).

2) Both I, and Z;c X are fiber-bundles over X, (except for the special
case described in the Remark at the end of paragraph 6; however, this
case already satisfies Proposition 21 by [6], I). Thus, to describe the
closure of ;" near I, it is sufficient to consider fibers over a fixed 1-jet
Z,EX,.

We remark that for fixed z, the fibers of M2/M5*! and M2/M!*!
become the ideals m3/m4*! and m2/mi*!,

3) We fix z,eU and we consider the fiber S in S, lying above
(Kerdz,, Imdz,). In this fiber, there is a neighborhood V=S of I so
that all ideals I’ in V have the same generic stairs as I, with respect to
some fixed set of coordinates.

Let heLs map to z,eX,. Then, there is an open neighborhood V,
of h, in the fiber of Lg over z,, which maps onto a neighborhood of z; in
Z, by Theorem 15. Also, we may suppose that V, lies over V.

4) We can choose local coordinates such that:

Zy(Xgs 000y X)=(X3, ..., X, 0, ..., 0).

p—nr+2 times
This choice of coordinates gives us a splitting:

I+1

m3/m} o

c mZmtl
Note that x,, x, are coordinates for Ker(dz,), but we shall denote them
by x, y.

5) Since everything is invariant under the action of ', the normal
structure is preserved by the X '-action, so it is enough to examine it for
any point in the same X '-orbit of the given point. We shall use this
later to simplify our choice of z.

6) We may replace V, by a section of ¥, over V because every fiber in
V, over V lies in a single X"'- orbit. Thus, the normal structure of Iy ata
point in V, is independant of the point choosen in a given fiber.

Now we determine the normal bundle of X, restricted to V, using
Corollary 19.

Notice that y3 is a trivial bundle and can be identified with V, x A(I)
since the generic stairs are constant. (Recall A(I) is the subspace spanned

TOME 111 — 1983 — N°4



ON THE HILBERT-SAMUEL PARTITION OF STABLE MAP-GERMS 351

by monomials under the generic stairs). Also, C is a trivial bundle whose
fiber is the subspace corresponding to the last p—n+2 coordinates of
kP. Also, the subbundle E is trivial over V; therefore, E=V x E, for a
vector space E,. Then, if {¢;: 0<i<v} is a basis for E,, we define a
section of E over V by s(I’)=h’ where

h’ (¢;)=ith element of the standard basis for the generic stairs of I'.
By corollary 19, the normal bundle to Z, over s( V) is a quotient of:
V xHom (E,, A (I)) xHom (E}, A (I)).
7) To define the normal bundle map we first define a map:

V xHom (E,, A(I)) xHom (Eg, A (1)) = J' (n, p),
(L hy,hy) — h+h,+h,,

where h=s(I) and where we extend h, h; and h, to be zero on the
complements of E, or Eg.

Later we shall have to look at the induced map on the quotient; but
first we examine which conditions must be imposed on (h,, h,) to ensure
that the image lies in ;. These will be given by series of simple Lemmas.

We let:

h(e) = 0<igyv, and zero elsewhere,
h, (&) =v, 0<igyv, and zero elsewhere,
h,(e) =v, v<ig<p—n+1, and zero elsewhere.

Then, h+h, +h, has an ideal generated by { f;+v, 0<i<p—n+1}. We
let f=f;+v; and also let Q' denote the associated quotient algebra of
k [[x,]] by this ideal.

Lemma 23. — Ifby. () =bg (j),j<B(Q), then fori<v—a
exp (f)=exp(f) and  ord(f')=ord(f).

Proof. — The proof is by induction on i<v—a. If i=0, then
Jfo =fo+v, and f, is a monic polynomial of degree v. If ord(v,) <V, then
bo- (v—1) #bo(v—1). Also, if exp ( fg) <exp ( fo), then f, must contain a
term y', I<v, and again ord ( f;) <ord(f,).

Suppose by induction the result is true for i<l<v—a. As fi=f+v,
if exp(f;)<exp(f,) then since exp(v,)¢E((fi, i<l)) we have
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v ¢ (f,i<l) +m%*" ! (here (f, i<]) denotes the ideal generated by the
fi»i<l). Thus, by (y+v—1—1) <by(oy+v—I—1). Hence,

ord (f;") =ord(f));

thus, ord v,>ord f;. By the construction of the generic stairs, since
exp(v) ¢ E( f,,i<l), exp(v) >exp(f). O
Next, for the generators f, v—a<i<v we may choose f;=xP~i*!y

(B=B(Q)). Then,

LemMA 24. — Suppose (W, hy, h,) is as in lemma 23 and its image
belongs to X, then either ord(v;))=Pp or v;=0, for v—a<i<v.
Also, dim, (v, : v—a<igv)=1.

i—1

Proof. — If for some i, ord(v;) <P, then by the choice of v,
exp(v;) ¢ E( f,, i<v—a); thus we would have

bo (B—1) <bho(B—1).

Thus, ord(v) =P (if it were greater exp(v) €E(I)). Also, if
dim; (v; v—a<igv)>1 then by (B) <bg(P) —1. Thus, the image of
(K, hy, h;) would not belong to Zg. O

By Lemma 23, we have for i<v—aq, f,’=x% (g;) where g;=g,+v; with
x% v;=v, Thus, by our requirements that the v;e A(I) and our original
conditions on g, it follows that:

{x'g)x' g, 0Sj<v—a, v—a<iI<v, (i,)), (i, ) ¢ E(D) }
projects to a basis for A(I). Thus, we can write for 0<i<v—a.
(A) gi=(y+u;;sy) g;+1+z.-+1<_,~<,,_, ui,jg}+zy—usjsy u; ;8

(where we recall g;=y*"/, v—a<j<V); and for i=v—a—1.

(B) gi=(y+uiisq) 8:+1+zy-.<jsv U ;8j

Here u; ;e k [x].
With this representation, we can say:

LemMa 25. — 1) For 0<i<j<v—a, ord u; ;2> a;—a;,,, j—i and 2) for
O<i<v—a and v—a<j<v, ord(y;;) >a;—(a;.,+1) (where for 2)
0 — 04y Zj—isince o, g4y —®,_22).
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Proof. — The stairs E(I) and E(I’) agree beneath the stairs of
mbB. However, x% g eI, 0<i<v—a. We consider the largest i and, for
that i, the smallest j such that 1) or 2) fails. Then, multiply either (A) or
(B) by x%+1. Then, by assumption u;; x"+1gj.el’, j'<j. Thus, for
example, if j<v—o

_ @ ’ . ,
h_ZjSl<v—a Ui X it g1+2v—u€l$v Ui x%+1 81 € r.
However,

exp (h) Sexp (u; ; x%+1 g)) =(ord (u; ;) +0;4,, v—j) <exp(f))

contradicting E (I) = E (I') beneath the stairs of m§. A similar contradic-
tion occurs if 2) is false. [J

For h; and h, small, the u; ; will be in a sufficently small neighborhood
of the u, ; associated to h. If we replace g; by g; —wj, where w;=terms
of degree B—oy;,, in Y, .. 4,8, then the {x%g/} will be in a
neighborhood of h given by Briangon’s parametrization.

We can now define a map from a subbundle of the normal bundle so
that the image contains Xy We let ¥V, be a neighborhood of h which
projects to a neighborhood in S, which has a Briancon parametrization
(here we assume that { f;} is a set of standard generators for the ideal
associated to h). Also, we let N denote the vector space with basis
{ x%™®-e+1 ¥ v—a<ig<v}. We define a map:

N
V: V,xHom (E, N) xHom (Eg, N) = J'(n, p). ¥ Yo

« e
To define y(h', @,, ¢,), we let the ideal associated to h’ have standaml
generators { x% g;}, then we define (via the natural identification

. ey~ ol
Hom (k?, M,/M,*!) = J (n,p)). bisbrasiz
, x% g, 0<igyv,
vV (H, ¢, 9;) = -1 .
xv-er17h @, (€44),  V<i<p, _
= o o1adw)
where g; is defined by: 1 nsdy (W 1o

gi=(y+uiiry) 8isa +z;;:+z U gy xoer TN, (e).
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We then have:

LeMMA 26. — The mapping V is an embedding in a neighborhood
of h. Furthermore, in a neighborhood of Y (h) =V (h,0,0) in J'(n,p),
Im (V) SX;

Proof. — In fact, the second statement follows from the three preceding
Lemmas, since they have shown that in neighborhood of X,, any element
of X must be of the form Yy (¥, ¢,, @,). ,

To show that ¢ is a local embedding in a neighborhood of A, it is
enough to examine the Jacobian of y. However, we already know that
V|V, is locally a diffeomorphism onto a neighborhood of WV (h)
in Z,, Thus, it is sufficient to show that the dV 0, restricted
to Hom(k?, N) is non-singular with image in the complement of
T Zyymy Nowdy (Hom (Eg, N)) cHom (E,, A (I)),whichisinthecom-
plement of TZ, It is then sufficient to show that the projection of
dy (Hom(E,, N)) in Hom(E,, A(I))/TS, is non-singular. However, if
pr: A(I) > x®-e+1"1 N is the projection along {x'y’eA(I): i+j<B}
(here B is as in paragraph 6) then from the Briangon parametrization we
obtain pr(TS,) =0. However, by the definition of ¥,

pr(dV (o) (e))=x~-=+1"1 g, (¢;)
so
pr(dy (Hom (Eo, N))) =Hom (Ep, x>-«*1"* N). O
Lastly, we can identify Xg in Im ().

LEMMA 27. — With the preceding notation, the Hilbert-Samuel function
of W(K, @,, ®,) agrees with §y for j<P if and only if there is a line Lc N
such that ¢, e Hom(E,, L), ¢, € Hom (Eg, L) and @, and @, are not both
identically zero.

Proaf. — We consider for h’ with standard generators { f;=x% g; }, the
standard relations:

XU1TH fi— (YU 1) fien _Z}I=i+z u,; ;=0

(where u; ;=x%+1y, ). If we replace f; by f;’=x%g; (as in the definition
of ¥), then instead of 0 we obtain

Xi+1 (x"v—ad'l-“l*l_l 9, (e‘)) =x%-e+171 ?, (ei)'
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Similarly, from the E terms we obtain x™-=+1"! @,(e). Thenif b’ is
the Hilbert-Samuel function of ¥ (', @,, @,), then b’ (B) <h(B) —1 unless

dim, { x™-e+1"1 @,(e) )=1. Thus, ¢;(¢) eLc=N

for some line L.

Conversely, let { f;} be a standard basis for the ideal associated to h’
and {fi=x%g;} be the corresponding generators for the ideal of
V (I, 9, ¢,). We first consider the Hilbert-Samuel functions below
degree B. By its construction, { f;/, 0<i<v—o; xP~17/y 0g<j<a}is a
distinguished deformation of { f, 0<i<v—o; x?P71 77/, 0gj<a}. Thus,
by an argument of Briangon in [1], if J' and J denote the ideals generated
by the respective sets of elements, then the Hilbert-Samuel functions of
these ideals agree, and the sets consists of the standard generators. Now,
these Hilbert-Samuel functions agree with those for (¥, @,, ¢,) and A’
below degree . Thus, they agree below degree B.

Lastly, for degree B, the only relations for { f/, 0<i<v—o; xP~1~JyJ,
0<j<a} are generated by the standard relations. Suppose
wexv-e+1"! Nand w=Y r, f’+Y a;s; with {s;} denoting:

{ps(e), v+1<i<p; f/, v—a<i<gv}.
Then: A
Yicernfi==Y a;s;+w=w, e x™-e«+1"1 N(mod m§*?).

Thus, Y r; f; —w, is generated by the standard relations:
- , -1
‘",3 r i _W1=Z:=o v; O;

with {o;} the standard relations for {f;, O<igv—oa; xP 1 /yJ
0<j<a}. Then, if corresponding to o, 0<i<v—a, we let:

5= {xu"“ Si=(y+ui4y) fi@l‘z;;.:.z u; fi i<v—ao,
‘ xW-att f7_ . j=v—q,

Then
2:;; nfi=Yi o0 C;

EZ:; Vio X™-e*171 @, (4,) € x-«+17! L (mod m§*').
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Also, by assumption £ g;s,€x™-++1"! L (mod m§*?); thus,
wexv-e+17! [ (mod m§*Y). O

Finally, to complete the proof of Proposition 21, we claim that the set
of elements Y (K, ®,, ¢,) with Hilbert-Samuel function §’=§ are, in fact,
dense among those just having ' (j) = (j) for j<B. This extra condition
just requires that the ideal of y(h’, @, ¢,) contains m§*!. However,
there is an (a— 1)-dimensional subspace K< N, so that x*-«+1 K is contai-
ned in the ideal. Then, a sufficient condition that the ideal contain m8**
is that: :

mbe(x*7 p, 0<jSv—a d+xv-e+17! (x L+y L+K) (mod m§*?).

This is true for generic choice of K and L. Thus, in a neighborhood
of h, we obtain:

C1(Z;) S5 Vv, xCl { mappings in Hom (k”", N) of rank 1}.

Hence by the results in paragraph 3 describing the local structure of the
closure of the set of mappings of rank 1, the result follows in the jet space.

The argument now follows exactly as in [§ 4, 6, I]. An infinitesimally
stable germ will have a jet extension transverse to ;. Thus it will project
submersively into a fiber of the tubular neighborhood. Then, locally
Cl1(Z; ( f)) will be the inverse image of C1(Z}) in the fiber of the normal
bundle. We can then apply Lemma 10.

8. CC-stable germs and the Thom-Mather stratification

Now, finishing the proofs of Theorems 3 and 4 is easy.

Proof of Theorem 3. — If f is a finitely ¥ -determined C°-stable germ,
then f has an infinitesimally stable unfolding F. However, F is a topologi-
cally trivial unfolding of . Now we can use general arguments (again
see e.g. [5]) to conclude that topological invariants for infinitesimally
stable germs which are constant under trivial unfoldings are topological
invariants for C°stable germs. Thus, 8( ) is a topological invariant,
and sois 7. Then we can inductively use 7 to prove the Hilbert-Samuel
function is a topological invariant since the only invariant which was
needed was dim H*( ), which is constant under trivial unfoldings. [
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Proof of Theorem 4. — The key property of the Thom-Mather stratifica-
tion which interests us is that the topological type of local germs is
constant on strata. Thus, topological invariants for infinitesimally stable
germs are constant on strata. By Theorem 2 the Hilbert-Samuel function
is constant on strata. However, by Proposition 13, the Hilbert-Samuel
function determines the generic stairs for ideals in k [[x,]]. O

We conclude with a remark in the case p—n<v( f) —1. We can still
topologically separate germs f,, with v( f,) <p—n+1 from those with
v(fiy)>p—n+1by Corollary 8. I T (f)={x:Vv(fy)>p—n+1}, then
we can still conclude with:

COROLLARY 26. — Even if p—n<v( f) —1 for an infinitesimally stable
germ f: k", 0 — kP, 0 there is still a topologically defined partition of k"
given by:

{Zy () : v <p—n+1} UT ().
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