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CHARACTERIZATION OF NUCLEAR FRECHET SPACES
IN WHICH EVERY BOUNDED SET IS POLAR

BY

SeAN DINEEN (*) (%), REmNHOLD MEISE (%), DietMAR VOGT (°) (**)

In his investigation of control sets in locally convex spaces LELONG [13]
gave a sufficient condition for a Fréchet space to have the property that
every bounded subset B is polar in some neighbourhood of B (see also
LeLONG [12] and KiseLMAN [14]). He remarked that this condition is
satisfied by the spaces H (C") of all entire functions on C" and asked for
a classification of the Fréchet spaces having this property.

In the present article we prove the following two main results concerning
this question: 4 nuclear Fréchet space E contains a bounded subset which
is not uniformly polar if and only if E has the linear topological invariant
(®}) introduced by Vocr [24]. If, moreover, E has the bounded approxima-
tion property then E contains a bounded non-polar subset if and only if
E has (). Property () is of the same type but stronger (resp. weaker)
than the linear topological invariant (Q) (resp. ({3)) which has been used
to characterize the quotient spaces of power series spaces of infinite (resp.
finite) type (see VogT and WAGNER [27] (resp. VoGT [23] and WAGNER
[28])).
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42 S. DINEEN, R. MEISE AND D. VOGT

In order to obtain these characterizations we first show that a closed
bounded absolutely convex subset B of an arbitrary Fréchet space F is
uniformly polar and hence pg';lar in F if F does not have the property
(@5). This implies that non-polar compact subsets can only exist in
Fréchet-Schwartz spaces and that property ({}) is necessary for the exist-
ence of bounded subsets which are not uniformly polar. In order to show
that (§) is also sufficient in the class of all nuclear Fréchet spaces we use
the following fact: If E has ({}) then there exists a bounded subset B of E
such that for every continuous semi-norm p on E there exists a zero
neighbourhood V such that for all xe V there exists a holomorphic path
in the canonical Banach space E, which passes through the canonical
image of x and has values in the canonical image of B on a non-empty
open subset of C.

To prove our second main result we use that from Noverraz [18] and
SCHOTTENLOHER [22] it follows that a dense linear subspace F of a Fréchet
space E with the bounded approximation property is non-polar in E if
and only if the holomorphic completion F, of F coincides with E. We
get the desired result by then proving that a nuclear Fréchet space E with
(€)) contains a total bounded absolutely convex subset B with the property
that every holomorphic function on the linear hull E; of B has a holo-
morphic extension to E. This property is established by an interpolation
argument from MEiSse and Vogrt [16], which is based on the fact that
nuclearity implies that holomorphic functions locally have an absolutely
convergent monomial Taylor expansion.

We also obtain for a certain class of Fréchet spaces, including all
Schwartz sequence spaces A°(A), that the property (§3) is equivalent to the
existence of a bounded subset which is not uniformly polar. The proof
uses the fact that for these spaces the bounded sets are essentially weighted
1*-balls.

It is reasonable to conjecture that for a larger class of Fréchet spaces E
property ({)) characterizes the existence of a bounded subset of E which
is not uniformly polar. However, our methods use strongly the nuclearity
and the structure of the bounded sets.

Concluding, we want to remark that the present article and [16] influen-
ced each other in various ways. For example the interpolation argument
used in Theorem 10 originally appeared in [16] for nuclear Fréchet spaces
with basis. For such spaces a first proof of Theorem 10 showed its
importance for the present article. This observation motivated the further
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BOUNDED POLAR SETS 43

development which finally led to Theorem 10 and to the results of [16],
section 3.

The main results of the present article have been announced in [6). We
wish to indicate that Theorem 2 (resp. Cor. 3) of [6] should be replaced
by Theorem 10 (resp. Thm. 11) of the present article since they were based
on a result of NoverrAz [18] which is not known to hold in the generality
stated in [18] (see the remark preceding Theorem 10).

1. Preliminaries

We shall use standard notation from the theory of locally convex spaces
as presented in the books of PierscH [19] or ScHAEFER [20]. A 1. c. space
always denotes a complex vector space with a locally convex Hausdorff

topology.

For a Fréchet space E we always assume that its 1 c. structure is
generated by an increasing system (||.||).en Of semi-norms. Then we
denote by E, the canonically normed space E/||.|7!(0) and by E, its
completion. =, : E — E, denotes the canonical map and U, denotes the
set {x€E| ||x|l.<1}. Sometimes it is convenient to assume that (U,),en
is a neighbourhood basis of zero.

If M is an absolutely convex subset of E, we define:
|-t : E =10, 0] by ||yllk: = supsealy )|,

where E’ denotes the topological dual of E. Obviously ||. ||¥ is the gauge
functional of the polar of M. Instead of ||.||5, we write ||.|[¥. We

remark that the adjoint « of =, gives an isometry between:
(EJi=(E), and  (Epe|.|I.

By E,, we denote the linear hull of M, which becomes a normed space in
a canonical way if M is bounded.

(i) SEQUENCE SPACES.

Let A=(a;, i)(;, xyen? be a matrix which satisfies:
(1) OSG_,. .sa_,. k+1 for allj, kEN
(2) for each je N there exists k € N with a; ,>0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



44 S. DINEEN, R. MEISE AND D. VOGT
Then we define for 1 <s< oo and s=0 the sequence spaces :

M) ={xeC |x|k: =2, (|x;]8; )9 <o for all keN},
1<s<oo,
A2 (A): ={xeCN| ||x]|s: = sup;en]|x;|a;, x<oo forall keN},

A%(A): = {xer®(4)| lim, ., . x;a; ,=0 for all keN }.

Obviously A*(A) is a Fréchet space under the natural topology induced
by the semi-norms (||. || Jcen- We write A (4) instead of A' (4).

We recall that A*(A) is Schwartz (resp. nuclear) iff for every keN there
exists me N and pec, (resp. pel') such that:

a; y<wa; , forall jeN.

We recall from BIersTEDT, MEISE and SUMMERs [1], 2.5, that for s=0
and 1<s< oo the sets { N}|aeA®(4), a>0} form a fundamental system
for the bounded subsets of A*(A), where:

N::={xek‘(A)]Z;°=l( IZ’I >'<l} for 1<s<o
j

and:

N2 := {xexw(m sup £ sl},
a;

NO: ={xek°(A)| sup—lifl sl}.
a;
If a is an increasing unbounded sequence of positive real numbers

(called an exponent sequence) and if R=1 or R=o00 then we define for
1<s< oo the power series spaces:

AR(@) : =A*(A(R, a)),
where:

AR, )= {(r¥);en|keN]}, r. ~ R

TOME 112 — 1984 — N° |



BOUNDED POLAR SETS 45

& () is called a power series space of finite (resp. infinite type) if R=1
(resp. R=0o0). We remark that well-known examples of nuclear power
series spaces are:

s=cw (SI)ZAQ ((log n+ l)neN)’
HEC=A (" /muen)  and  HOH=A, (" /Maen)

where D stands for the open unit disk in C and where H (Q) denotes the
space of all holomorphic functions on Q endowed with the compact-open
topology.

(ii)) POLAR SETS.

Let E be a lL.c. space. f: E—[—o0, oo is called plurisubharmonic
(psh.) if f is not identically —oo, if f is upper semi-continuous (i.e.
£~ ([— o, ¢]) is open for every ceR) and if z+ f(a+zb) is subharmonic
or identically —oo for every a, be E. f is called uniformly plurisubhar-
monic if there exists a continuous seminorm p on E and a plurisubharmonic
function g on the canonical Banach space E‘, such that f=gon,.

A subset B of E is called (uniformly) polar, if there exists a (uniformly)
psh. function f on E such that:

Bc {xeE|f(x)=—o}.

We shall use that an absolutely convex bounded subset B of E is not
(uniformly) polar if the canonical space Ej is not (uniformly) polar. This
is an immediate consequence of the fact that for each psh. function f on
E its restriction to Eg is — oo or plurisubharmonic for the canonical norm
topology on Eg and that B is a zero neighbourhood for this topology.

For more information on psh. functions on l.c. spaces we refer to
Noverraz [17].

(iii) HOLOMORPHIC FUNCTIONS.

Let E be a l.c. space and let Q  E be open, Q#Q. f: Q- C is called
holomorphic if f'is continuous and its restriction to each finite dimensional
section of Q is holomorphic as a function of several complex variables. DBy
H (Q) (resp. H® (Q)) we denote the space of all holomorphic (resp. bounded
holomorphic) functions on Q. For details concerning holomorphic
functions on l.c. spaces we refer to the books of DINEEN [5] and
Noverraz [17].
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46 S. DINEEN, R. MEISE AND D. VOGT

Here we only recall that there exists a unique maximal subspace E, of
the completion E of E with the property that every feH(E) has a
holomorphic extension to E,. The linear space E, is called the holo-
morphic completion of E.

2. DerFINITION. — Let E be a Fréchet space.

(a) Let B < E be closed bounded and absolutely convex. E has property
(Qp) if the following is true:

For every pe N there exists ge N, C>0 and d>0 such that for all yeE’:

Iyl =“<cliy iy

(b) E has property (Q3,) (resp. (Q,)) if there exists a closed absolutely
convex bounded (resp. compact) subset B of E such that E has (Qp).

() E has property (&) if:

For every peN there exists €N and d >0 such that for every k € N there
exists C>0 such that for every yeE’:

Iyl =“<cliyliellyl*

Remark. — (a) Property ({}) was introduced by Voar in [25), sect. 5.

(b) It is easy to check that the properties (£3,), ({3,) and ({}) do not
depend on the choice of the semi-norm system and that they are linear
topological invariants which are inherited by separated quotients. It is
obvious that the implications (£3,) = ({3,) = ({}) are true.

3. ProposiTioN. — (a) Every Fréchet space with (§,) (resp. (8.) is
quasi-normable (resp. a. Schwartz space).

(b) For Fréchet-Schwartz spaces the properties (&,), () and (&) are
equivalent.

Proof. — (a). If E has (£3,) then there exists a closed bounded absolutely
convex set B in E such that 2(a) is true. From this one obtains, using
the idea of proof of Lemma 2.1 and Corollary 2.2 of Vogr and
WAGNER [27], that for every pe N there exists ge N, C>0 and d>0 such
that for all r>0:

1

(1) U< CrB+2U,

From this it is evident that for every zero-neighbourhood U there exists
another one V such that for every a>0 there is a bounded set M in E

with: VeM+al.

TOME 112 — 1984 — N° 1



BOUNDED POLAR SETS 47

By GRrOTHENDIECK [11], p. 107, this shows that E is quasi-normable.

If E has ({2,) then we have (1) for some compact set B. This implies
that for every £>0 the set U, can be covered by finitely many sets of the
form x+¢U, Hence E is a Schwartz space.

(b) It suffices to show that (§}) implies (§}). This is obtained by a
suitable modification of the proof of Lemma 1.4 of Voar [23].

4. PROPOSITION. — Assume that 1<s< oo or s=0.

(@) 25(A) has () if and only if A satisfies:

For each peN there exists geN and d >0 such that for each keN there
exists C >0 such that for all je N:

n a;, . aj ,<Ca;’.

(b) A*(A) has (QNz)for ael®(A), a>0 iff:
For each peN there exists ge N, C>0 and d>0 such that for all je N:

2 4 ,<Caja;*}.

(¢) The following are equivalent:

(@) A*(4) has @);

(B) there exists ae L™ (A), a> 0, satisfying (2) of (b);
(1) *(A) has ().

Proof. — We first remark that for 1 <s<oo and s=0:

. s\ 1/s°
A (A) = {yeC” | there exists ke N: ||y||:=( i (—'—-XL!) ) <oo},
a; »

where:

Yilor amd s=1 for s=0.

s S

Here and in the sequel we let:

g: =0 for a>0 and

ol
Il
=)

For s=1 we have:

A4y = {yeC"‘ | there exists keN : ||y||:=sup,‘~—|!-’-|—<oo}.
aj.k

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



48 S. DINEEN, R. MEISE AND D. VOGT

(@) If A*(A) has () we apply the definition to:
€;=(8,)nenEA (A)
and get:
a;{*V<Cajia;,

which implies (1). If (1) is satisfied we get for 1 <s<oo, and s=0 by
Holder's inequality, for every y eA*(4)’ with ||y ||* < c:

. ® s . ] \S/1+d) 1 \® 4 +dy
Il =3z, (2L ) comengy, (Laly™ (1)

4, ¢ g, & 4j. p

s'/(l+d)( ) ( Iy I );'>1/(1+d)( © ( Iy I )")‘/(1"“)
<¢ — DI
=1\ 7, =1\

j- k j. p

=C:'/(1 +l)"y ": s'/(1+d) “y“; s'/(1 +d)’

which implies (). The case s=1 is treated similarly.

(b) We remark that for 1 <s<oo and s=0 we have:

(54

, , 1 1
;fx=(z;°=1(|}’j'aj)' ) for ;+;=|

and:
=1 for s=0,

while ||y||¥1=sup;.n|y;|a; From this it follows as in part (a) that
(€y:) is equivalent to (2).

(¢) (o) =(B): For peN we let:

a

(p) . — s

b .=+ for a; >0,
). q

and zero otherwise. Then we get from (1) that b is in A (A4). Hence
there exists ae L™ (A) such that b”<C,a for all peN. This implies ().

(B) = (7): This is an immediate consequence of BIERSTEDT, MEISE and
SuMMERs {1}, 2. 5 and (b).

(Y) = (a0): obvious.
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BOUNDED POLAR SETS 49

5. ExampLEs. — (1) For every exponent sequence @ and 1<s< o the
power series space Aj(x) together with all its separated quotient spaces
has (,). Since Aj(a) is a Schwartz space (and hence A () =A%(a))
this follows immediately from 4 (b) with:

since for every pe N there exists ¢> p with r,,srf.
(2) For every exponent sequence o and 1<s< oo the power series space

A%, (o) does not have (§}). In order to see this, choose R=1, and take
§>1 and d>0 arbitrarily. Then we get for T>S** that:

- . T \v
sup;en TS 0T ’=s“pf‘"(s—l77) -

since lim; , , a;=00.

(3) The following example of VoGT [25], 5.6, shows the existence of
nuclear Fréchet spaces A*(N x N, A) which have ({) and which are not
quotient spaces of finite type power series spaces.

The matrix:

A={(a;, ;; penxn|keN}

is defined as follows:
Let o and B be exponent sequences, choose a strictly increasing sequence
o of positive real numbers with lim, _, ., 6,=1 and put:

1+0, for j<k,
Pj.t"—‘{ o, for j=k.

Finally define a; ; ,: =exp (p;, x4 B)).

(4) An example of a non-normable Fréchet space with €, which is
not a Schwartz space is given in [13].

In order to give a sufficient condition for a closed bounded absolutely
convex set B to be polar, we introduce the following notation which is
used to derive a technical lemma.

NotaTioN. — Let E be a Fréchet space, B a closed bounded absolutely
convex subset of E and peN. A projection n on E is called B—p-
admissible if there exist neN, x;€ E, and y;€ E, for 1<j<n, such that:

r(x)=Y., ¥,(x)x;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



50 S. DINEEN, R. MEISE AND D. VOGT

6. CorOLLARY. — Let E be a Fréchet space and B a closed, bounded,
absolutely convex subset with dense linear hull. E has ({p) if the following
holds:

For each peN there exist geN, C>0, d >0 and a B—p-admissible
projection & on E such that for all ye E, N kern™:

M Iyl <cliyliEly iz,
where:
I7l1% «: =sup {|y (o) |xekerm, || x|l <1}.

Proof. — If peN is given we choose geN, C>1, d>0 and = such that
(1) holds. Since || ||%, || ||* and || ||* are norms on E, we assume that
C is chosen so large that (2) and (3) are satisfied:

) Inxll<Clixllyy  llmxl,<Clix]l,»
&) [nx|ls<C||x|s forall xeE,

A) Iylrt+<C|lylsllylz¢ for all yeimn® = span(y,, . . ., y,) < Ej.
Next we let m, : =idg—n and note that for y e E, we have:
noyeE, Nkern' and y=n‘y+myy.
Then we get for all xe E, because of (2), n, xekerm,
[mox|,<(1+O|x|, and wHyx)=n%y(ryx).
This implies:
@ Insyll<a+O)|Insyll; «
Hence we get from (3), (4), (1) and (i) that for all ye E;
¥l <@ max(f|wp I3, ||=5p [IFD**

<2 max (C||my ||| xy |24 A+Or*C|nsylslmer |t
<C2'HA+0** 2|y |3llylz

Since this estimate holds trivially for all ye E"\(E,, it follows that E
has ({3,).

7. THeOREM. — Let E be a Fréchet space and let B be a closed bounded
and absolutely convex subset of E. If E does not have (@) then B is
uniformly polar in E.

TOME 112 — 1984 — N° |



BOUNDED POLAR SETS 51

Proof. — If Eg is not dense in E, then there exists ye E* with y#0
and y|Ep=0. Then f:xrslog|y(x)| is uniformly psh. and
Bc {xeE|f(x)=—o}. Hence we can assume for the rest of the proof
that Ej is dense in E.

Since E does not have ({};) the hypotheses of Lemma 6 are not
satisfied. Hence we may assume without loss of generality that the
semi-norm system (|| ||,), e n, Of E satisfies:

2|l [le<Il ks for all keN,g

and that we have for p=0: :
for every geN, C>0, d>0 and every B—0-admissible projection n

there exists y € Eg (M ker n* with:

1) Iylle s ><liylisllzlis*

Since the inequality in (1) is (1 +d )-homogeneous it follows that for C=¢*
and d=q there exists:

yeEyNkern®  with |[y|8=

k]

|-

- which satisfies (1). Since:
Il .<Il le<ll 18,

we get for all ge N and every B—0-admissible projection = there exists:

yeEoNkern®  with  |p|§=

|-

such that:
() Iles=lylis o=y ls.

Now we determine inductively (¥ )ien in Ep, (X )xen in Ep and a
zero-sequence (a,), 5 Of strictly positive real numbers with the following
properties:

|l yill§= [[x|le=1 forall keN,

1

P
y;(x)=0 forall j, keN with j#k,
n(x)=ai,  a=|y|s forall keN.

(3)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



52 S. DINEEN, R. MEISE AND D. VOGT

To begin the induction we apply (2) with g=1 and =, : =0.
get:

y1€Ey with "h Is=1,
such that:
ay =yt o=l 13-

Since Ej is dense we have:
1 1
O<ay=|yiflt<lIrlis=3

which implies a? <a,. Hence there exists x, € E; with:

[xills=1 and  y,(x)= |5 ]It%=a1

Then we

For the induction step we assume that for 1<k<n y,, x, and g, have

been chosen in such a way that (3) holds for these k.
Then we put A; : =(y,(x,))”* and note that:

m x=Y Y ()X,

is a B—0-admissible projection on E. Hence we may apply (2) with:

g=n+1 and n=n, toget y,.,€E;N ker x}

with: '
1
Ily.+1"8=n+l and "yn+1|l:::,l|->"yn+l";'
We let @,y @ =||¥u+1||8+1, », and remark that:
1
0<a,, = ".}’.n ":+1, "S ".Vn+1 ”:+1 < ".)’n+1 "3 = n—-l——l

and hence a?,, <a,,,. Note that E; N kern, is dense in ker =,

is dense in E and x, maps E, into itself. Hence there exists:

X,+1€EgNkerm, with ||x,,+,||,.+,=1
and:

2
Var1 (Xps1) 2054,

TOME 112 — 1984 — N° |
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BOUNDED POLAR SETS 53

Since:
ker n,= {x€E|y;(x)=0 for 1<j<n}
and:
ker n} = (span (x,, . . ., x,))*,

Va+1 satisfies all the conditions in (3). Since a,,, <1/(n+1), the existence
of the sequences (y)iens (Xi)ren and (@), n satisfying (3) follows by
induction.

Now we let:

o :=—(k*loga,)”! for keN

and define g : £y — [— 00, oof by:
g@@= 2:.1 Y loS‘J’k(’-)L

where we have identified Ey=E;, with (E')yg. We remark that under this
identification || ||$ is the dual norm on Ej.  Since ||y, || =1/k, for every
R>0 there exists me N such that for all keN with k>m and all zeE,
with || z||, < R we have |y, (z)| <1 and hence log |y, (z)| <0. Since o, >0
for all keN this shows that locally g is the decreasing limit of psh.
functions and hence is psh. on E, provided that it is not identically — co.

In order to show that gom, and hence g is not identically —oo we
remark that the series Zf_lx, converges in E and defines an element
X, € E since:

2| <l lhesr  and  [[xfl=1.

Because of (3), the identification mentioned above, and the choice of o,
we have:

o —2loga,

7t (X = @ o lo X 2
g (mo (xo)) = 27, o 1og |y () | =! k% log a,

o 2
=—Z;=1;;>—°°-

This shows that g is psh. on E,. Hence f: =gomn, is uniformly psh.
on E. The proof is now completed by noting that for every xe B we
have, by (3),

f(x)=g(mo(x))= Z:osl O 103')’& (x)| < Z:osl oy loS"h"f:

® —kloga,___z;,o 1

<Y oukloga=Y. Tlog 3
_ k
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54 S. DINEEN, R. MEISE AND D. VOGT

From Proposition 3 (a) and Theorem 7, we obtain the following Corol-
lary.

8. CoroLLARY. — Let E be a Fréchet space.

(@) If E contains a bounded (resp. compact) subset which is not uniformly
polar then E has (8,) (resp. (83,)).

(b) If E is not Schwartz then every compact subset of E is uniformly
polar and hence polar in E.

Remark. — An alternative proof of 8 (b) is possible using limiting sets
and the fact that every non-Schwartz Fréchet space has a non-Montel
quotient.

Now we show that in nuclear Fréchet spaces the converse of
Corollary 8(a) is also true.

9. THEOREM. — Let E be a nuclear Fréchet space.  The following are
equivalent:

(i) E contains a bounded subset which is not uniformly polar ;
(ii) E has (@)=(&,)=(&,).

Proof. — By Corollary 8 and Proposition 3 (), (i) implies (ii). In order
to show the converse implication we first remark that by the nuclearity of
E we can assume that (|| ||),en is chosen in such a way that the
corresponding canonical spaces are Hilbert spaces for each
neN. Moreover we can assume that E has ({};) for a closed bounded
absolutely convex subset B of E which is a Hilbert ball, i. e. for which the

- canonically normed space Ej is a Hilbert space.

By a remark in 1. (ii) it suffices to show that Eg is not uniformly polar,
i.e. that for every uniformly psh. function f on E there exists be Ep with
f(b)>—oo. In order to show this, let f be given. Then there exists
peN and a psh. function g on E, with f=g o,

Next we let 4 : =1t,|£,: E,—»E, and remark that by replacing the
norm on E, by a suitable multiple, we may assume || A|| <1/2. It is easy
to see that Ej is dense in E since E has ({3;). Consequently im (4)= n,(Ep)
is dense in E,. Since A factors through the nuclear space E it follows
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that A is strongly nuclear. Hence the spectral representation theorem
(see PieTscH [19], 8. 3) implies that A can be represented by:
Ax=37 A(x|es i

where {e;|jeN} is an orthonormal system in Ey, { f;|jeN } is a complete
orthonormal system in E, and (;); . is a decreasing sequence in s with:

0<1j<% for all jeN.

Now we define ¢, € E’ by @, : x> (%, (x)| f;), and remark that:

(1) II P II:=supxe U,lq,k(x)'

<supey, ||, )|, || ill, <1 forall keN.

Furthermore we have for all xe E,:

2 )=, (¥)| £),=(Ax| fi), =M (x| €)s’
and hence:
B loulE=spes] 00| = husup | (xl )| =

Now we choose geN, g>p, C>1 and d according to (§;) and get from
(1) and (3) that:

(4) locllzt*<Clloulls] @ulls®< CA forall keN.
Since U, is open in E there exists x€ U, with g(r,(x))=f (x)>—o0.
We let & : =n,(x)e E, and see from (4) that:

) ] £, ] =1, )] £, =| @) | < | @ I3 < DN,

where a: = 1/(1+d) and D =C"
Next we let G:={zeC|Rez>1/2} and we define for keN the
functions h, : G — C in the following way:

Ee ool . 2
—==_¢*'™ f Az,
h(2): = IE,..I 1 l§.|> k
& if &l <AZ,
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where £, = (| f,),- Because of (5) we have for each zeG:
o @< Y |8 <D Y M<oo,
since Aes. Hence the function h: G — E,, defined by:
h(@): =3, h(2) i,
is holomorphic. Consequently g h is subharmonic on G since:
gh(M)=g@)=g(r,(x))=f (x)> — 0.

Hence there exists w with Rew>2/a=2(1+d) such that

- g(h(w))>—oo. Because of (5) and the definition of the functions h, we
have:

©) |ho(w)| < C*A2 for all keN.
Since A€s it follows from (6) that:
b:=Y,, %-(kl)e,,
defines an element of E, for which:
S ®)=g(x,(b))=g(Ab)=g 7, (W) fi)=g (h(W))> — 0.
This completes the proof.

Remark. — In general it is an open question whether the existence of a
bounded set which is not uniformly polar is equivalent to the existence of
a bounded non-polar set. Under additional hypotheses on E, this can be
shown by an application of a result of Noverraz [18] (which for Banach
spaces with basis is also due to Coeurt [4], Thm. 2). However, at present
it is not known whether this result holds in the generality stated in [18],
since the proof of [18], Prop. 10, is incomplete. Therefore we recall here
what is known to hold:

Let X be a dense linear subspace of the Fréchet space E and let:
Xy:=N {U|X < UcE, U open pseudoconvex }.

The result of Noverraz [18] which we are going to use reads as follows:
If Xy=X, then X is non-polar in E iff X,=E.
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Since X,= {U|X < U < E, U a domain of existence }, Xo=X, ob-
viously holds if the Levi problem for E has a positive solution, i.e. if
every pseudoconvex domain in E is a domain of existence. From [18] in
connection with SCHOTTENLOHER [21], Thm. 1, it follows that X,= X, also
holds if E has the approximation property and if every holomorphically
convex open subset of E is a domain of existence.

10. TueoreM. — Let E be a nuclear Fréchet space in which every
holomorphically convex open subset is a domain of existence. Then the
following are equivalent:

(i) E contains a bounded non-polar subset ;
(ii) E contains a bounded subset which is not uniformly polar ;

(iii) E has @)=(,)=@,).

Proof. — 1t is trivial that (i) implies (ii). The equivalence of (ii) and
(iii) has been shown in Theorem 9. Hence it remains to show that (iii)
implies (i). In order to do this we choose (" ll)xen and B as in the
proof of Theorem 9. Then E, is dense in E, since E has ({}5). Hence it
follows from a remark in 1.(ii) and the result of NOVERRAZ stated in the
preceding remark that B is non-polar in E, iff (Eg, 15)e=E, where Eg
carries the topology 1z induced by E. Thus it suffices to show that every
f € H (Eg, tz) has a holomorphic extension to E.

If f e H(Eg, tg) is given then there exists pe N such that f is bounded
on EgN\U, Hence we have for all xe E;N\U,;:

f()=F% pu() where p,(x)= —— j ACIPY
21[1 Jel=1 tn

Moreover we have for all ne N

sup{|p,(x)| |[xeEgNU,} <sup{| f(x)| |xeEzN Ul=:M

Since Ep ﬂ U, is dense in U, this nnphes that there exist n-homogeneous
polynomials p, on E satlsfymg Pa=D,° n, and:

sup {| 2, ) | Iyl <1} <M.
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Hence Z:"_o Pa(¥) converges absolutely and locally uniformly for all
€U, the open unit ball of E,. Since n,(Ep) is dense in E,, this implies
that:

FERETo0 300 A ()%
is in H*(U,) and satnsfi&sf|(E,n U,)= fom,

Since we have the same hypotheses as in the proof of Theorem 9 we
continue as in that proof by representing the map 4 : ==,|E; and by
defining the functionals @,eE’ till we get (4) of Theorem 9. We shall
refer to (1)4) of Theorem 9 in the sequel without mentioning
Theorem 9. Moreover, we let:

. .
Fp:=span {¢;|jeN

and denote by & : E; — E, the orthogonal projection of E; onto Fp. We
remark that ker n=EzNkerm, Since f is bounded on E;N\U,, an
application of Liouville’s theorem shows that:

f(x)=fonr(x) forall xeEzNU,

Since EzN U, is open in (Eg, tg) this 1mp11es by analytic continuation
that f=fon.

Next choose 6 >0 such that:

Yo (%)zkl.

For each ze CN with |z;| < §/j we have:

IS0, 2 =52, 5 P< 52, (}) <1,

and hence:
Z‘:- 1%) fl € 07‘
We let:

M : = {meN} |m, 0 only for finitely many je N }
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and define, in the same way as BorLanD and DINEeN [2], for
m=(m,, ..., m, 0...)eM the m-th Taylor coefficient of f by:

am:=(—l—_) J. j f(z’jr:+"'+z'j;)dz,...dz,,
2mi bzyl=m Ionl=na Z1° RS -

where p; : =8/j for jeN. Then we have the estimate:

()] |a,,,|<—M; for all meM.
i

Since m,(e;)=Ae;=A,; f; for all jeN and f=fo1|:, we also have the
following representation of a,:

l L]
(6) am_(2—1t_i)

J‘ L. ‘[ j(np((zl/ll)-..ell-" M +(2Jueu)) dzl .. dz.
lz1l=m I2n] =ba Pt et

=l _1_- f(C,e,+...+C,.e,.)d ... dg,.
)J"(Zui) J;(l"'l J.IC-I"'. CT1+1"'CH"+1 gl C"

In order to obtain a further estimate from this representation we remark
that for t>0 the set:

K@®:={Y" z2¢] |z|<tn; forall jeN},

is compact in the Hilbert space E;. Hence it is compact in the topology
induced by E on Eg, which implies:

sup {| f (®)| |xeK()}=: N(t)<oo forall t>0.

Since f is holomorphic on E, with respect to the topology induced by
E we get from (6):

1) |a| < =

< W for all meM and all t>0.
B _
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Now let r>0 be given. Then we let:

1
n:=—mo, Y= B:=1-—vy

1+d

Al k
(5
VAT ) keN
is in I! since A is in s.

Hence R/2: =sup, nAlH; <. We let t=(Rr)!* and D=C".

N3

and remark that:

From (4), (5) and (7) we have the following estimate:

Zmen™ ™ au| [T2, @l ™ < DX o™l | A7)
<DL cnam ™ @n [P (| an | Ay A7)

0Tt (M) (29 Y oy

" H t|"l
<SDMPN@)'Y.. . (ﬂ)l-l(ﬁ:)v

=DM N@'Y, .0 (Ri’ﬁ)"wwzv(:)n;;, ( - ;—i)_l<oo.

k
This implies that the series:
D l_I}'l 1 (@, (x))™,

converges absolutely and uniformly on rU, for each r>0. Hence it
defines a holomorphic function g : E—- C. In order to see that g is the
desired extension of f it suffices to show f | Fg=g| Fj, since:

f=fon and  g|Fg=(g|Ep)°m by (2.
To show that g| F we remark that for:

z= Z;-l z,ejEF.
we have with z;=0, for j>n:

f(z)fz...ubmz-’
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where:

Ly fCie+ ... +0e)
bn= -— f ...f 171 » . —am
(21ti) 1811 =rg lal =ra §T1+1 . c:..+1 d§1 dc. A Qy,

because of (6). From (2) we get that @, (z)=A, z, and hence:
E@=Y A" "=Y__ b= f(2).

Obviously, this implies f | Fy=g| F, and consequently f=g|E,.

Remark. — (a) The hypothesis of Theorem 10 is, in particular, satisfied
if E is a nuclear Fréchet space with the bounded approximation property,
i.e. there exists a sequence (4,),,n Of continuous linear operators on E
with finite rank such that:

lim, , ,A4,x=x forall xeE.

By the remark preceding Theorem 10 this follows from SCHOTTENLOHER
[21], Cor. 3.4, where the Levi problem for E is shown to have a positive
" solution. :

Dusinsky [9] has shown the existence of nuclear Fréchet spaces which
do not have the bounded approximation property. For a simple example
of such a space we refer to VoGT [26).

(b) Examples of nuclear Fréchet spaces without the bounded approxima-
tion property which do contain bounded non-polar subsets and which
have (f}) are obtained by the following arguments: If B is a bounded
non-polar subset of the Fréchet space E and if F is a (separated) quotient
space of E, then it is easy to see that q(B) is a bounded non-polar
subset of F(q : E — F denotes the quotient map). Hence it follows from
Theorem 10 and part (a) of this remark that for every nuclear space A(A4)
with ({}) each quotient space contains a bounded non-polar subset and
has ({3). However, DuBINsKY and VoGT [10] have shown that there exist
quotient spaces of A(A4) which do not have the bounded approximation
property.

(c) From part (a) of this remark and the proof of Theorem 10 it
follows that every nuclear Fréchet space E which has ({3) and the bounded
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approximation property contains dense non-complete linear subspaces F
for which the holomorphic completion F, coincides with the topological
completion F=E. The only previous examples for this phenomenon were
certain algebraic hyperplanes given in DINEEN and NOVERRAZ [8).

From Theorem 10 and the preceding remark (a) we get the characteriza-
tion mentioned in the title of the present article which gives a reasonable
answer to the question of LELonG [13]:

11. THEOREM. — Let E be a nuclear Fréchet space with the bounded
approximation property. Then every bounded subset of E is polar xf and
only if E does not have ({).

As a further corollary of Theorem 10 we get the following characteriza-
tion of the compact non-polar polydiscs in the nuclear power series spaces
of finite type.

12. CoroLLARY. — Let A,(a) be nuclear and let aeA, (o) satisfy
a>0. The set:

N,:={xeA,(@)| |x;|<ajforalljeN}
is non-polar if and only if lim inf; , ,, a}’%/>0.

Proof. — If a>0 and lim inf; | ,a}">0 then there exists €>0 and
8>0 such that a;>¢8% for allj. Let (r)ien be a strictly increasing
sequence of positive real numbers with lim, , ,r,=1. If peN is given

choose d> 0 such that:
d
(—'L> LIPS
Tp+1/ Tp+t 8

r:, < 801,,;’(14") < la r;'(l'l")

Then we get for all jeN:

By Proposition 4 (b) this shows that A3(a)=A,(a) has (Q,,g). Since
NZ is a Hilbert ball in AZ(a) the proof of Theorem 10 shows that N? is
non-polar in A}(a). Since N2 < N,, N, is non-polar in A, (a).
~If N, is non-polar then it follows from Theorem 7 that AJ(a)=A, ()

has to have (Q,,,). Hence it follows from Proposition 4 (b) that for peN
there exists g>p, C>0 and d>0 such that:

ryi<Ca;ryt*?) forall jeN.
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This implies a>0 and also:

4
(ﬁ) lgcll")a}"i for all jeN.

Te/ Ty

Hence:
lim inf; | , a}/>0.
Concluding we give a class of Fréchet spaces which in general are not
Schwartz spaces but have property (£3,).

Let X be a locally compact, o-compact Hausdorff space. Let
A=(a,),n be an increasing system of non-negative continuous functions
on X which satisfy the following conditions:

(i) For each k € N there exists ne N such that Supp a, = Suppa,;

(i) UrenSuppa,=X;

(iii) For each k e N there exists ne N such that for each £ >0 there exists
a compact subset K in X such that g, (x)<ea,(x) for all xe X\ K

Let F be an arbitrary Banach space. It is easy to see that the space:

C(X, A; F): = {f| f: X~ F is continuous and
| £l : =sup,ex|l f ()@ (x)]| < oo for all keN}

endowed with the topology induced by (||. ||\)n is @ Fréchet space which
in general is neither nuclear nor Schwartz.

13. ProposirioN. — For the space C(X, A; F) introduced above, the
following conditions are equivalent:

(1) C(X, A; F) contains a bounded subset which is not uniformly polar;

(@) C(X, A; F) has (&,);

(3) C(X, A; F) has ().

Proof. — By Corollary 8 (a), (1) implies (2), while (2) implies (3)
trivially. Hence it remains to show that (3) implies (1).

In order to show this we remark that only F # {0} is relevant and that
in this case C(X,A;C) is a complemented subspace of
C(X, A; F). Hence (3) implies that C(X, A; C) has ({}).
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If we apply this to the point-evaluations 3., we get, for each pe N, there
exists g>p and d>0 such that for all keN there exists C,>0 such that
for all xe X:

18,118 < Cell 8. 1l ] 8. II3
This implies that for all xe Y, : = {ye X| a,(»)>0} we have:

aq (x)‘(l e )sct a (X)- ! ap (x)-‘
lLe:

a, (x)*
e (x)1+4“k(")<ck for all xeY, and all keN.
q

By condition (i) this implies that:

g’: x._._aeﬂ

a' (x)l +d
belongs to C(X, A; C) if q is chosen appropriately. It is easy to see that
there exists aeC(X, A; C), a>0, such that for each peN there exists
M,>0 with g,<M_,a. Hence we get:
(1) There exists aeC (X, A; C), a>0, such that for every peN there
exists ge N, C>0 and d>0 such that a§<Caal**.

In order to show that:
B={feC(X, A; P)| || f @] <a(x) for all xeX}
is not uniformly polar, we let:

Co(Ypa,; ):={f|f:Y,—F, fis continuous, for every >0 there
exists K = c Y, such that sup {|| f (x)a,(x)|| |xe Y,\K} <¢}.
This becomes a Banach space under the norm:

1l : =supscey, || S ) a, )|

Using condition (iii) it is easy to see that for every fe C(X, A; F) the
restriction f | Y, is in Co(Y,, a,; F) and that for:
n,: C(X,A; F)»Cy(Y, a,; F), ﬂ,(f)5=f|Yy

we have ||z, (f)|[,=|| f||,. Since the continuous functions with compact
support are dense in C, (Y, a,; F), this shows that Co(Y,, a,; F) can be
identified with the canonical space C(X, 4; F),.
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Now let f be a psh. function on C(X, A4; F), for which fon, is psh. on
C(X, A; F). Then there exists ge C(X, A; F) with f (n,(g))> — .
Let:

U:={xeY,| |lg®)|<ax}
and

V:= {xeY,[ ||g(x)||>%x)};

and choose a continuous partition of unity 1=@y+¢, where

Supp ¢y = U, Suppo, = V.
Let G: = {zeC|Rez>0} and define h: Y, x G — F by:

1 g(x)
a,(x) |g@|

It is easy to check that h(., 2)eCy(Y,, a,; F) and that:
H: G-Cy(Y,a, F), H@):=h(., 2),

llg ) a, )"

h(x, 2) : =@y (x) g (x)+ @y (x)

is holomorphic.
We remark that from (1) we obtain ¢>p, C>0 and d> 0 such that:

a,(x)'**<Ca(x)a,(x)a, (x)' **.
Hence we have, with e=1/(1+d):
2 lle(x)a,(x)]| < C(a(x)a, (x))|| g (x) a, () ||
By condition (iii) there exists a corxipact set K in X such that:

sup {a(x)a,(x)|xe X\K} <1

and
sup {||g(*)a,(x)||C*|xe X\K} < 1.

Then for all xe X\ K and all t>1/e:
3 g (x)a, ()| < (@a(x)a, (x))* < (a(x)a, (x))'".

Now we let G, : = {z€G|1/e <Rez <1} for some 1> 1/e and we show
that there exists A>1 such that H(Go) c n,(AB). If xeU we get from
the definition of U that:

lev e <lle @] <a)
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If xeV and x¢ Y, then:

oy ()2 (x)||g(x)a, () |*~* =0.
If xe(V\\K) N Y, then we have for all ze G,:

g(x)
o Tl

Since K is compact, a>0 and all the functions involved are continuous
we can find M > 1 such that for all ze G, and all xe K we have:

<a(x).

Teoop 1E@S@I*

oy (x)g ) ||z () a, D) |~* || < Ma(x).

If we let A=1+ M it follows that H (z)en, (A B) for all ze G, since it is
easy to check that for all ze G, the function h(., z) actually is the
restriction of a function in A B.

Since H: G- Cy(Y,, a,; F) is holomorphic, fo H is subharmonic in G.
Since:

SeHM=f (., ))=f(x,(g))> — 0,

feH is not identically —oo. Hence there exists z,€G, with
S (H(zo))> —o0. Since we have already remarked that H (zo) ==, (g,) for

1 4
some g,€A B, this shows that C(X, A; F); and consequently B is not
uniformly polar.

14. CoroLLARY. — For a Fréchet-Schwartz space A°(A) the following
are equivalent:

(1) In A°(A) there exists a bounded set which is not uniformly polar;

(2) A°(A4) has (&)

This follows from Proposition 13 by taking X as the discrete topological
space N and by noting that (i)-(iii) are satisfied since A°(A4) is Schwartz.

For other examples and further information on polar sets in 1. c. spaces
we refer to our article [7].
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