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CHARACTERIZATION OF NUCLEAR FRfiCHET SPACES
IN WHICH EVERY BOUNDED SET IS POLAR

BY

SEAN DINEEN (*)(°), REINHOLD MEISE (\ DIETMAR VOGT 0(**)

In his investigation of control sets in locally convex spaces LELONG [13]
gave a sufficient condition for a Frechet space to have the property that
every bounded subset B is polar in some neighbourhood of B (see also
LELONG [12] and KISELMAN [14]). He remarked that this condition is
satisfied by the spaces H(C") of all entire functions on C" and asked for
a classification of the Frechet spaces having this property.

In the present article we prove the following two main results concerning
this question: A nuclear Frechet space £ contains a bounded subset which
is not uniformly polar if and only if E has the linear topological invariant
(fi) introduced by VOGT [24]. If, moreover, E has the bounded approxima-
tion property then E contains a bounded non-polar subset if and only if
E has (ft). Property (ft) is of the same type but stronger (resp. weaker)
than the linear topological invariant (Q) (resp. (f2)) which has been used
to characterize the quotient spaces of power series spaces of infinite (resp.
finite) type (see VOGT and WAGNER [27] (resp. VOGT [23] and WAGNER
[28])).
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42 s DINEEN, R. MEISE AND D. VOGT

In order to obtain these characterizations we first show that a closed
bounded absolutely convex subset B of an arbitrary Frechet space F is
uniformly polar and hence pilar in F if F does not have the property
(Us)' ^^ns implies that non-polar compact subsets can only exist in
Frechet-Schwartz spaces and that property (ft) is necessary for the exist-
ence of bounded subsets which are not uniformly polar. In order to show
that (ft) is also sufficient in the class of all nuclear Frechet spaces we use
the following fact: If E has (ft) then there exists a bounded subset B of £
such that for every continuous semi-norm p on E there exists a zero
neighbourhood V such that for all x e V there exists a holomorphic path
in the canonical Banach space Ep which passes through the canonical
image of x and has values in the canonical image of B on a non-empty
open subset of C.

To prove our second main result we use that from NOVERRAZ [18] and
SCHOTTENLOHER [22] it follows that a dense linear subspace F of a Frechet
space E with the bounded approximation property is non-polar in £ if
and only if the holomorphic completion Fy of F coincides with E. We
get the desired result by then proving that a nuclear Frechet space E with
(!i) contains a total bounded absolutely convex subset B with the property
that every holomorphic function on the linear hull Ey of B has a holo-
morphic extension to £. This property is established by an interpolation
argument from MEISE and VOGT [16], which is based on the fact that
nuclearity implies that holomorphic functions locally have an absolutely
convergent monomial Taylor expansion.

We also obtain for a certain class of Frechet spaces, including all
Schwartz sequence spaces ^°(A), that the property (ft) is equivalent to the
existence of a bounded subset which is not uniformly polar. The proof
uses the fact that for these spaces the bounded sets are essentially weighted
/"-balls.

It is reasonable to conjecture that for a larger class of Frechet spaces £
property (ft) characterizes the existence of a bounded subset of £ which
is not uniformly polar. However, our methods use strongly the nuclearity
and the structure of the bounded sets.

Concluding, we want to remark that the present article and [16] influen-
ced each other in various ways. For example the interpolation argument
used in Theorem 10 originally appeared in [16] for nuclear Frechet spaces
with basis. For such spaces a first proof of Theorem 10 showed its
importance for the present article. This observation motivated the further
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BOUNDED POLAR SETS 43

development which finally led to Theorem 10 and to the results of [16],
section 3.

The main results of the present article have been announced in [6]. We
wish to indicate that Theorem 2 (resp. Cor. 3) of [6] should be replaced
by Theorem 10 (resp. Thm. 11) of the present article since they were based
on a result of NOVERRAZ [18] which is not known to hold in the generality
stated in [18] (see the remark preceding Theorem 10).

1. Preliminaries

We shall use standard notation from the theory of locally convex spaces
as presented in the books of PIETSCH [19] or SCHAEFER [20]. A 1. c. space
always denotes a complex vector space with a locally convex Hausdorff
topology.

For a Frechet space E we always assume that its l.c. structure is
generated by an increasing system (||.||j,eM of semi-norms. Then we
denote by £„ the canonically normed space E/H.H,"1^) and by £, its
completion, n^: E -»• £„ denotes the canonical map and 17, denotes the
set { x 6 E [ || x ||, < 1}. Sometimes it is convenient to assume that (I/.), „ ̂
is a neighbourhood basis of zero.

If M is an absolutely convex subset of E, we define:

||.||& : £'-[0, oo] by \\y\\i : = sup,^\y(x)\,

where £' denotes the topological dual of £. Obviously |[. ||̂  is the gauge
functional of the polar of M. Instead of (|.||̂  we write ||.[|;. We
remark that the adjoint ̂  of n, gives an isometry between:

(£,),=(£,.), and (£|/?J|.||;).

By £j^ we denote the linear hull of M, which becomes a normed space in
a canonical way if M is bounded.

(i) SEQUENCE SPACES.
Let A^(a^ ^\j k)ciM2 b® a matrix which satisfies:
(1) 0<a^ t^ k+i for allj, k e M
(2) for eachjeM there exists k e N with a^ k>0.

BULLETIN DE LA SOCIETfe MATHfeMATIQUE DE FRANCE



44 S. DINEEN. R. MEISE AND D. VOGT

Then we define for 1 ̂ 5^ oo and 5=0 the sequence spaces :

^(A): ^{xECN\ \\x\\,: ^^.d^l^^^ooforallke^l},

1^5<00,

^(A): = { x 6 C ~ | ||x||k:= sup,^|x^|fl,^<ooforallkeN},

X°(A) :={x6r° (A) | lim,^x,a,^=0 for all k€^} .

Obviously ^s (A) is a Frechet space under the natural topology induced
by the semi-norms (||. \\^\^ ̂  We write 'k(A) instead of ̂  (A).

We recall that ^(A) is Schwartz (resp. nuclear) iff for every k € ̂  there
exists me ̂  and H€CO (resp. ^eJ1) such that

a^ k^^fl^ „ for all je N.

We recall from BIERSTEDT, MEISE and SUMMERS [I], 2.5, that for s=0
and 1^5^00 the sets {A^lfle^'^A), a>0} form a fundamental system
for the bounded subsets of ^s (A), where:

N^Le^A^J'^^Y^ll for 1^5<oo

and:

N^ : = L6?i°°(A)| sup -^ ̂  11,
I ^ J

N; : =Le^°(A)| sup J^L ̂  11

If a is an increasing unbounded sequence of positive real numbers
(called an exponent sequence) and if R = 1 or R = oo then we define for
Ks^ oo the power series spaces:

where:
A!,(a):=^(A(^,a)),

A(R,a)={(^),^|k6^1}, r^R,
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BOUNDED POLAR SETS 45

\^ (a) is called a power series space of finite (resp. infinite type) if R = 1
(resp. jR == oo). We remark that well-known examples of nuclear power
series spaces are:

^(^(S^A^Oogn-H)^),

H(C^A,((\/n),^) and ff(D^A,((\/n)^),

where D stands for the open unit disk in C and where H (ft) denotes the
space of all holomorphic functions on ft endowed with the compact-open
topology.

(ii) POLAR SETS.

Let £ be a I.e. space. /: £-»[—oo, oo[ is called plurisubharmonic
(psh.) i f / i s not identically —oo, if / is upper semi-continuous (i.e.
/~1 ([—oo, c[) is open for every C€R) and if 2»—^/(a+z&) is subharmonic
or identically —oo for every a, beE. /is called uniformly plurisubhar-
monic if there exists a continuous seminorm/? on £ and a plurisubharmonic
function g on the canonical Banach space £p such that /==g° v.y

A subset B of £ is called (uniformly) polar, if there exists a (uniformly)
psh. function / on £ such that:

Bc={x6£|/(x)=-oo}.

We shall use that an absolutely convex bounded subset B of £ is not
(uniformly) polar if the canonical space Ey is not (uniformly) polar. This
is an immediate consequence of the fact that for each psh. function / on
£ its restriction to £j, is — oo or plurisubharmonic for the canonical norm
topology on Ey and that B is a zero neighbourhood for this topology.

For more information on psh. functions on I.e. spaces we refer to
Noverraz [17].

(iii) HOLOMORPHIC FUNCTIONS.

Let £ be a 1. c. space and let ft c £ be open, ft^<Z). /: ft -^ C is called
holomorphic if/is continuous and its restriction to each finite dimensional
section of 12 is holomorphic as a function of several complex variables. Dy
H (ft) (resp. JJ00 (ft)) we denote the space of all holomorphic (resp. bounded
holomorphic) functions on ft. For details concerning holomorphic
functions on 1. c. spaces we refer to the books of DINEEN [5] and
NOVERRAZ [17].
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46 S. DINEEN. R. MEISE AND D. VOGT

Here we only recall that there exists a unique maximal subspace Ey of
the completion £ of £ with the property that every feH(E) has a
holomorphic extension to £ .̂ The linear space E^ is called the holo-
morphic completion of £.

2. DEFINITION. — Let E be a Frechet space.
(a) Let B c. E be closed bounded and absolutely convex. E has property

(fi^) if the following is true:
For every pe N there exists qe N, C>0 and d>0 such that for all y e E ' :

ii^r'^c^nsii^r
(b) E has property (^) (resp. (f^)) if there exists a closed absolutely

convex bounded (resp. compact) subset BofE such that E has (Hy).
(c) £ has property (Q) if:
For every ̂ 6 N there exists qe N and d>0 such that for every k € N there

exists C>0 such that for every y e E ' :

ii^ii '̂̂ cii^iifii^r.
Remark. — (a) Property (fi) was introduced by VOGT in [25], sect. 5.
(b) It is easy to check that the properties (ft,,), (fl^) and (ft) do not

depend on the choice of the semi-norm system and that they are linear
topological invariants which are inherited by separated quotients. It is
obvious that the implications (fi^) => (ft,,) => (ft) are true.

3. PROPOSITION. — (a) Every Frechet space with (fl^) (resp. (fi^)) is
quasi'normable (resp. a. Schwartz space).

(b) For Frechet-Schwartz spaces the properties (£^), (He) ̂  (ft) are
equivalent.

Proof. — (a). If £ has (fi^) then there exists a closed bounded absolutely
convex set B in £ such that 2(a) is true. From this one obtains, using
the idea of proof of Lemma 2.1 and Corollary 2.2 of VOGT and
WAGNER [27], that for every peM there exists ^€N, C>0 and d>0 such
that for all r>0:

>(1) U^CrB+.Up.

From this it is evident that for every zero-neighbourhood U there exists
another one V such that for every a>0 there is a bounded set At in £
with: FcM+al/.
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BOUNDED POLAR SETS 47

By GROTHENDIECK [II], p. 107, this shows that £ is quasi-normable.
If E has (ft<.) then we have (1) for some compact set B. This implies

that for every e>0 the set Uy can be covered by finitely many sets of the
form x •+- e Up. Hence £ is a Schwartz space.

(b) It suffices to show that (ft) implies (ft,,). This is obtained by a
suitable modification of the proof of Lemma 1.4 of VOGT [23].

4. PROPOSITION. — Assume that \^s<ao ws=0.
(a) ^(A) has (ft) if and only if A satisfies:
For each j^eN there exists qc^ and d>0 such that for each k e M there

exists C>0 such that for alljeM:

W ^k^^Ca]^

(b) ^(A) has (fl^)/or ae^°°(A), a>0 iff:
For each p€ M there exists qe N, C>0 and d>0 such that for allje^:

(2) <,<C^/.

(c) The following are equivalent:
(a) 'ks(A)has(£i);
(P) there exists ae1k<x>(A), a>0, satisfying (2) of(b);
(Y) \s(A)has(^).
Proof. — We first remark that for 1 <5< oo and 5==0:

^(A)'^ LeC^ | there exists keN: ||̂ ||?= (^ (^-T Y" <00}'

where:
_ 4- -̂  =: 1 and s' = 1 for 5==0.
5 5'

Here and in the sequel we let:
a 0- : =.oo for a>0 and - : =0.
0 0

For s=l we have:

^(Ay= LeC~ | there exists k e N : |b||?=sup^-^<ool.
t _ ^.k J
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48 S. DINEEN, R. MEISE AND D. VOGT

(a) If Xs (A) has (ft) we apply the definition to:

^=(8nAeNe^(Ay

and get:

o^^Ca^a^,

which implies (1). If (1) is satisfied we get for !<5<oo, and s==0 by
Holder's inequality, for every ye^3 (A)' with \\y [(^ < oo:

/ \v I V / \v I V/d+rf) / |v | \s'<t/(l+rf)ibr-E^i (J2U) ̂ '̂ E^ (-i^) F.L)
V fl/. 4 / \ flJ. k / V fl;. P /

( / I v I V\l/d+<*) / / I v I W/(l+<0«,.̂ £;.,(M)) (^,(M))
^c^^^ii^ii?^1^)^!!^1^),

which implies (ft). The case s= 1 is treated similarly.

(b) We remark that for 1 <s< oo and s=0 we have:

\\^(L^(^Wy"' for -l+l:=l
S S

and:
5'==1 for 5=0,

while II^IIXi^^P^eiMl^l^- From this it follows as in part (a) that
(fi^) is equivalent to (2).

(c) (a) => (P): For p 6 N we let:

^-4^ for ^^^flJ. <

and zero otherwise. Then we get from (1) that b^ is in ^°°(A). Hence
there exists a e ̂ 00 (A) such that &00 < Cp a for all p e IU This implies (P).

W^W'' This is an immediate consequence of BIERSTEDT, MEISE and
SUMMERS [I], 2.5 and (&).

(y) => (a): obvious.

TOME 112—1984—?1



BOUNDED POLAR SETS 49

5. EXAMPLES. — (1) For every exponent sequence a and l^s^oo the
power series space A\ (a) together with all its separated quotient spaces
has (fi<.). Since A^(a) is a Schwartz space (and hence A;°(a)==A?(a))
this follows immediately from 4(fc) with:

fl=(l)^ and d=C=l

since for every p€ N there exists q>p with r^r^.
(2) For every exponent sequence a and Ks< oo the power series space

A^(a) does not have (ft). In order to see this, choose JR=1, and take
S > 1 and d>0 arbitrarily. Then we get for T>S1 +rf that:

sup.^T^S-^^sup,^ (^-^J^ 00,

sincelim^ooa^oo.
(3) The following example of VOGT [25], 5.6, shows the existence of

nuclear Frechet spaces A* (N x N, A) which have (ft) and which are not
quotient spaces of finite type power series spaces.

The matrix:
^{(^.k^.OcNxNikeM}

is defined as follows:
Let a and P be exponent sequences, choose a strictly increasing sequence

o of positive real numbers with lim^ -. oo 0^== 1 and put:

rl+Ok for j<k,
P^k'-^ l Ok for j>k.

Finally define a^ j . » : =exp (pj. kOl^).
(4) An example of a non-normable Frechet space with (fii») which is

not a Schwartz space is given in [13].
In order to give a sufficient condition for a closed bounded absolutely

convex set B to be polar, we introduce the following notation which is
used to derive a technical lemma.

NOTATION. — Let £ be a Frechet space, B a closed bounded absolutely
convex subset of E and ^€N. A projection n on E is called B—p-
admissible if there exist ne N, x^eEs and y^Ey for I <j$n, such that:

^OO^.i ^00^-

BULLETIN DE LA SOCÎ lt MATHEMAT1QUE DE FRANCE



50 S. DINEEN. R. MEISE AND D. VOGT

6. COROLLARY. — Let E be a Frechet space and B a closed, bounded,
absolutely convex subset with dense linear hull. E has (ft^) tf ̂ e following
holds:

For each peN there exist geM, C>0, d>0 and a B—p-admissible
projection n on E such that for all y e Ep 0 ker w1:

(i) IMl̂ ^clHlslbr.
where:

IHI:,:= sup [\y(x)\ |x6ker^||x||,<l}.

Proof. — I fpeNis given we choose qeN, C>1, d>0 and n such that
(1) holds. Since || ||S, || |J? and |[ ||̂  are norms on Ep we assume that
C is chosen so large that (2) and (3) are satisfied:

M^CIHI,. ||̂ ||,<C|M|,,
(2) ||̂ ||̂ C||x|̂  forallxe£,
(3) ll^ll? l+<l<CII^IISlbll^ foraU^6im^cspan^,.. . ,^)c=£,.

Next we let KQ : = id^-w and note that for y e E p we have:

TCo^eE^nkerw1 and y^y^y.

Then we get for all xe£, because of (2), Woxekerw,

H^o^lL^O+0||^||, and ^y^noy(nox).

This implies:
(4) || ̂ o y II? < 0+0 II ̂ 11;,.

Hence we get from (3), (4), (1) and (2) that for all yeEy

||^||?l+<'<(2max(||^||?,||lc^||?))l+<l

^^maxtCll^llS 11^1)^, (l+O^^CHiCo^llS ll^o^ll?')
^C^^d+Q^^II^IISll^ll^.

Since this estimate holds trivially for all j/e£'\£p, it follows that E
has (fl^).

7. THEOREM. — Let E be a Frechet space and let B be a closed bounded
and absolutely convex subset ofE. If E does not have (Hy) then B is

uniformly polar in E.
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BOUNDED POLAR SETS 51

Proof. — If Es is not dense in £, then there exists y e E ' with y^O
and y\Es=0. Then /: xi-^log|^(x)| is uniformly psh. and
Bc :{xe£ | / (x )==—oo} . Hence we can assume for the rest of the proof
that E^ is dense in £.

Since E does not have (fi^) the hypotheses of Lemma 6 are not
satisfied. Hence we may assume without loss of generality that the
semi-norm system (|[. ||n),e^o of £ satisfies:

21 | ||̂ || ||̂  for all fce^o

and that we have for /?=0:
for every qeM, C>0, d>0 and every B—0-admissible projection n

there exists y e EQ 0 ker n^ with:

(1) ll^ll^.'-'x'll^llsll^lls'
Since the inequality in (1) is (1 -hd ̂ homogeneous it follows that for C^q9

and d^q there exists:

^€£onker7c1 with |H|S=-1-,
q

which satisfies (1). Since:

II 11:^11 11?<11 Its,
we get for all qe N and every B—0-admissible projection n there exists:

^e^nker^ with |H|?=-1
q

such that:
(2) ll^llrx^ll^ll^x'^ll^lls.

Now we determine inductively (y^eN i" ^o> (^^N 1" Ey and a
zero-sequence (a^gM of strictly positive real numbers with the following
properties:

(3)
IMS- ̂  M l̂ for all k€M,

^ (x^) = 0 for all 7, k 6 M with j ̂  k,
^(^)>^2, ^^II^IIS fo ra l lkeM.
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52 s DINEEN. R. MEISE AND D. VOGT

To begin the induction we apply (2) with g= 1 and TCQ : =°- Then we

get:
^e£o with |hi||S=l,

such that:
a,:«MT,.o>lhillS.

Since Ey is dense we have:

o<a,=|hJ|T<Ilbill5=^

which implies a\ < a^ Hence there exists Xi € Ey with:

K||,=l and ^(xO^ll^llT.^-^-

For the induction step we assume that for l<k<n y^ x^ and a^ have
been chosen in such a way that (3) holds for these fc.

Then we put ̂  : =(^(^))~1 and note that:

^: x^^^(x)^xp

is a B-0-admissible projection on E. Hence we may apply (2) with:

^=n+l and 71=71.. to get y^^EoC} ker TC;
with: •

lb..i ||S= —— and |h,., \\::!\ > ||̂ ..J|S.
n+1

We let fl^i : = |h î ||?+i. ̂  and remark that:

o<a^i =||̂ i ll«%i.«,< ll̂ i ll̂ i < ll̂ i US =^

and hence a^ i < a,+ r Note that £^ H ker TC, is dense in ker TC, since £^
is dense in E and w, maps E» into itself. Hence there exists:

and:
^+ie£Bnker7c. with ||x^J|,+i==l

^+i(^+i)^^+r

TOMEl l2—1984—N < l



BOUNDED POLAR SETS 53

Since:

and:
ker7c,={xe£[^0c)=0for l</<»i}

ker 7i; = (span (x^ . . ., x.))1,

^+1 satisfies all the conditions in (3). Since a^ i $ l/(n +1), the existence
of the sequences O^gM, (^k)kcM and (°k)k€M satisfying (3) follows by
induction.

Now we let:
a^^-tk^ogflk)"1 for keN

and define g : £o -»[- 00, oo[ ̂ •'

^-L"-!^10^^)!'
where we have identified £o = ̂ o with (£%g. We remark that under this
identification || ||g is the dual norm on £o- Since ||̂  ||$ = 1/k, for every
R>0 there exists m e N such that for all k € N with k>w and all z€£o
with ||z||o<^ we have |^(z)| <1 and hence log |^(z)| <0. Since c^>0
for all f ceN this shows that locally g is the decreasing limit of psh.
functions and hence is psh. on £o provided that it is not identically - oo.

In order to show that g^no and hence g is not identically ~oo we
remark that the series E7«i^ converges in E and defines an element
XQ^E since:

2|| 1^11 H,,, and ||xJ|,==l.

Because of (3), the identification mentioned above, and the choice of (Xjk
we have:

^(^o(^))=Z:^^log|^(x,)|>I^,^^=-E:.^>--co.

This shows that g is psh. on fio- Hence /: =g°no is uniformly psh.
on £. The proof is now completed by noting that for every xeB we
have, by (3),

f(x)^g(no(x))^ E^, a, log|^(x)| < S^i ̂  loglNIS
—k log a;^oo , , T^flo •"k Ŝ ̂  VOD 1 -^-^^^^^log^'-^r-00-k2 log a»

BULLETIN DE LA SOCIETY MATHfeMATlQUE DE FRANCE



54 S. DINEEN. R. MEISE AND D. VOGT

From Proposition 3 (a) and Theorem 7, we obtain the following Corol-
lary.

8. COROLLARY. — Let E be a Frechet space.

(a) IfE contains a bounded (resp. compact) subset which is not uniformly
polar then E has (fi^) (resp. (fi^)).

(b) If E is not Schwartz then every compact subset of E is uniformly
polar and hence polar in E.

Remark. — An alternative proof of 8 (b) is possible using limiting sets
and the fact that every non-Schwartz Frechet space has a non-Montel
quotient.

Now we show that in nuclear Frechet spaces the converse of
Corollary 8(fl) is also true.

9. THEOREM. — Let E be a nuclear Frechet space. The following are
equivalent:

(i) E contains a bounded subset which is not uniformly polar;

(ii) £hfl5(fi)=(fi,)=(fi,).

Proof. — By Corollary 8 and Proposition 3 (b), (i) implies (ii). In order
to show the converse implication we first remark that by the nuclearity of
E we can assume that ( [ [ ||,)neM is chosen in such a way that the
corresponding canonical spaces are Hilbert spaces for each
neJU Moreover we can assume that E has (Hy) for a closed bounded
absolutely convex subset B of £ which is a Hilbert ball, i. e. for which the
canonically normed space Ey is a Hilbert space.

By a remark in 1. (ii) it suffices to show that Ey is not uniformly polar,
i.e. that for every uniformly psh. function/on E there exists beEy with
y(b)>-oo. In order to show this, let / be given. Then there exists
pe N and a psh. function g on Ep with f^g °^ip.

Next we let A : = Up [ Ey : E^ -» £p and remark that by replacing the
norm on Es by a suitable multiple, we may assume || A || < 1/2. It is easy
to see that Ey is dense in £ since £ has (Hj). Consequently im (A) = Up (Ey)
is dense in Ep. Since A factors through the nuclear space £ it follows

TOME 112—1984—?1



BOUNDED POLAR SETS 55

that A is strongly nuclear. Hence the spectral representation theorem
(see RETSCH [19], 8.3) implies that A can be represented by:

AX:s^i^j(x\ej)Bfp

where { Cj \j e ̂ } is an orthonormal system in E^ { fj \j e M} is a complete
orthonormal system in Ep and (X^),^ is a decreasing sequence in s with:

0<^<- for all;eN.

Now we define (p^ef by <p^ : x^(Up(x) | f^)p and remark that:

(1) ||(pj|̂ sup,,J<p,(x)|

<sup,^J|̂ (x)|U|A||̂ l forall fceN.

Furthermore we have for all xeEy:

(2) <P*W=(^M|/k)p=(Ajc|/^=^^|e,)/

and hence:

(3) ||(pj|S=sup,^[<pk(x)|=^sup^B|(^|^)|=^

Now we choose qe M, q>p, C> 1 and d according to (fi^) and g01 from

(1) and (3) that:

(4) llcpjL^'^Cll^HSll^ll^^C^ forall kE^.

Since [7, is open in E there exists x € 17, with g (Up (x)) == / (x) > - oo.

We let ^ : == TC^(x)e£p and see from (4) that:

(5) |(^|A)p|=|(^M|/»)pl=l<PkW|<ll<pJI?^z)^

where a: == l /(l+d) and D=C1.
Next we let G : = {zeC[Rez>l /2} and we define for k e M the

functions h^: G ̂  C in the following way:

-^e2^^ if |^|>^2,
^(z):= |^|

^ if l^l^^2,
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where ̂  = (^ | f^y Because of (5) we have for each z € G:

Er.ii^^i^s^ii^i^^z^i^^00'
since \es. Hence the function h: G -^ Ep defined by:

A(2):=E^(z)/,,

is holomorphic. Consequently g°h is subharmonic on G since:

^(A(l))=^(y^(^(x))=/(x)>-oo.

Hence there exists w with Re w>2/o=2(l+d) such that
g(h(w))> —oo. Because of (5) and the definition of the functions h^ we
have:

(6) |A»(w)|<C2^ fora l lkeN.

Since 'kes it follows from (6) that:

. . yoo Mw).fc-Z^-^

defines an element of Es for which:

f(b)^g(n,(b))^g(Ab)^g(^h,(w)f,)^g(h(^))>-aD.

This completes the proof.

Remark. — In general it is an open question whether the existence of a
bounded set which is not uniformly polar is equivalent to the existence of
a bounded non-polar set. Under additional hypotheses on JE, this can be
shown by an application of a result of NOVERRAZ [18] (which for Banach
spaces with basis is also due to CoEURfe [4], Thm. 2). However, at present
it is not known whether this result holds in the generality stated in [18],
since the proof of [18], Prop. 10, is incomplete. Therefore we recall here
what is known to hold:

Let X be a dense linear subspace of the Frechet space £ and let;

Xy : = 0 {l7 |Xc= U c £, U open pseudoconvex}.

The result of NOVERRAZ [18] which we are going to use reads as follows:
If Xe^Xy then X is non-polar in £ iff X<p==£.
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Since X<,= 0 {17JX c: 17 c £, 17 a domain of existence}, Xe^Xy ob-
viously holds if the Levi problem for E has a positive solution, i.e. if
every pseudoconvex domain in £ is a domain of existence. From [18] in
connection with SCHOTTENLOHER [21], Thm. 1, it follows that Xe^Xy also
holds if E has the approximation property and if every holomorphically
convex open subset of £ is a domain of existence.

10. THEOREM. — Let E be a nuclear Frechet space in which every
holomorphically convex open subset is a domain of existence. Then the
following are equivalent:

(i) £ contains a bounded non-polar subset;

(ii) £ contains a bounded subset which is not uniformly polar;

(iii) £ has (ft) = (fi») = (ft,).

Proof. — It is trivial that (i) implies (ii). The equivalence of (ii) and
(iii) has been shown in Theorem 9. Hence it remains to show that (iii)
implies (i). In order to do this we choose (|| ||J,,N and B as in the
proof of Theorem 9. Then Ey is dense in £, since £ has (Aj). Hence it
follows from a remark in 1. (ii) and the result of NOVERRAZ stated in the
preceding remark that B is non-polar in £, iff (£^, TJE)(?=£, where Ey
carries the topology x^ induced by £. Thus it suffices to show that every
/ e H (Es, T^) has a holomorphic extension to £.

If/6H(£^, Tjg) is given then there exists/? 6 M such that/is bounded
on Es 0 Up. Hence we have for all x 6 £, 0 Up:

fW-^oPnW where P»(x)^——! ^dt.2 T C i j ( , j = i r

Moreover we have for all ne f^

sup{|^(x)| |^e£^n^}^sup{|/(x)| |x6£^ni7p}=:M.

Since Ey 0 Up is dense in Up this implies that there exist n-homogeneous
polynomials ?„ on Ep satisfying p^p^on^ and:

sup [\Pn(y)^ | |H|;<1}<M.
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Hence $^°.o ,̂00 converges absolutely and locally uniformly for all
ye Up, the open unit ball of Ey Since np(Ey) is dense in £„, this implies
that:

^ y^^pn(y\
is in Jf°° (l7p) and satisfies /1 (E^ H ̂ p) = 7° TC^

Since we have the same hypotheses as in the proof of Theorem 9 we
continue as in that proof by representing the map A: =Kp\Es and by
defining the functionals cp^eE' till we get (4) of Theorem 9. We shall
refer to (1)-(4) of Theorem 9 in the sequel without mentioning
Theorem 9. Moreover, we let:

EB
F^:=span{^|j€N}

and denote by n : Ey -» En the orthogonal projection of Ey onto F .̂ We
remark that ker 7c=£^nker^. Since / is bounded on EsC^Up, an
application of Liouville's theorem shows that:

f(x)^f.n(x) forall xeE^Up.

Since Ey 0 Up is open in (Ey, T^) this implies by analytic continuation
that/=/°7i.

Next choose 8>0 such that:

^(iy<..
For each z 6 C^ with [ Zj [ < S/j we have:

K^f^-^M2^^}2^
and hence:

£;-i^/}et/^
We let:

M : = { TO e My | my 9&0 only for finitely many j e M}
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and define, in the same way as BOLAND and DINEEN [2], for
m =s(mi, . . ., m,, 0 . . . )€M the m-th Taylor coefficient of/by:

( 1 Y f f Azi/i+-.-+^/.)^. .,
am '• ' [2ni) [^ • • • L^zT.-...^ d21 • • • dz"

where ̂ : =8/7 forje N. Then we have the estimate:

(5) l^ml^-,; fora11 W € M-

Since ^(^)=Ae,==A^ for all jeM and /=/o^ we also have the
following representation of a^i

^ --{^
f f /Qt,(( î)gi+ • • • +(z^^e.))j. ^L^'"L^ ^...^ 1 - - - ••

_ l / l Y f f /ftiei+... +W,,r dc
~^\2n'i)[^"}^ ;T1+1..•C"•+1 "•" ' '"

In order to obtain a further estimate from this representation we remark
that for r>0the set:

^(^-{Z^i^l N<^ foralljel^},

is compact in the Hilbert space £p. Hence it is compact in the topology
induced by E on E^, which implies:

sup{| /(x) | |xeX(t)}=: N(t)<ao for all t>0.

Since / is holomorphic on Ey with respect to the topology induced by
E we get from (6):

(7) |flJ^ N(o . for all meM and all t>0.
' ' ^•"H1"^1'11
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Now let r>0 be given. Then we let:,...^. ,..^, ,>:-,-,
and remark that:

(̂ ..-(̂ l\^k/kcM \0 /tcM

is in I1 since X is in s.
Hence J^/2 : = sup^i^U*'1 <oo. We let t=(Rr)ll'r and ^=C1.

From (4), (5) and (7) we have the following estimate:

L..M'•""ll^l^;-lll^ll^^^£,.M'•l"lkl(^)'•
Î̂ .M Î̂ Î 'W'T

< .̂̂ -̂ )'(̂ )'.-).
^•"(,)

rV"l(^")T
^DM-NQ)

tV P"

.M I „- 1 '^^N(011^, l l--—— l <co.^M^WI,.^^)^^^)^^!-^)'1-

This implies that the series:

L,.M^n;.i(^w)^
converges absolutely and uniformly on rUy for each r>0. Hence it
defines a holomorphic function g : E -+ C. In order to see that g is the
desired extension of/it suffices to show/|F^==^|F^, since:

f^fon and g\F^(g\Es)on by (2).

To show that g [ Fy we remark that for

^I^i2^6^
we have with 2j==0, forj>n:

/(^-L.cM^2"
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where:

h P Vf f ^l^——-^),. AT ^m= I ̂  ) . . " I r"4^———rm^l ^1 • • • ̂ s=x fl^\2m/ JKii.n J|&il«r. ^i* • • • s*"

because of (6). From (2) we get that q>^ (z) = X^ 2» and hence:

^= L^M^^- L^M^- /OO-

Obviously, this implies / [ Fy =^ [ Fy and consequently /==^ | £ .̂

Remark. — (a) The hypothesis of Theorem 10 is, in particular, satisfied
if £ is a nuclear Frechet space with the bounded approximation property,
i.e. there exists a sequence (AJ,,^ of continuous linear operators on E
with finite rank such that

lim,-» goA,x»=x for all xcE.

By the remark preceding Theorem 10 this follows from SCHOTTENLOHER
[21], Cor. 3.4, where the Lcvi problem for E is shown to have a positive
solution.

DUBINSKY [9] has shown the existence of nuclear Frechet spaces which
do not have the bounded approximation property. For a simple example
of such a space we refer to VOGT [26].

(b) Examples of nuclear Frechet spaces without the bounded approxima-
tion property which do contain bounded non-polar subsets and which
have (Ci) are obtained by the following arguments: If 5 is a bounded
non-polar subset of the Frechet space E and if F is a (separated) quotient
space of £, then it is easy to see that q(B) is a bounded non-polar
subset of F(q : E ̂  F denotes the quotient map). Hence it follows from
Theorem 10 and part (a) of this remark that for every nuclear space ^(A)
with (H) each quotient space contains a bounded non-polar subset and
has (fi). However, DUBINSKY and VOGT [10] have shown that there exist
quotient spaces of ^(A) which do not have the bounded approximation
property.

(c) From part (a) of this remark and the proof of Theorem 10 it
follows that every nuclear Frechet space E which has (A) and the bounded
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approximation property contains dense non-complete linear subspaces F
for which the holomorphic completion F^ coincides with the topological
completion F=£. The only previous examples for this phenomenon were
certain algebraic hyperplanes given in DINEEN and NOVERRAZ [8].

From Theorem 10 and the preceding remark (a) we get the characteriza-
tion mentioned in the title of the present article which gives a reasonable
answer to the question of LELONG [13]:

11. THEOREM. — Let E be a nuclear Frechet space with the bounded
approximation property. Then every bounded subset of E is polar if and
only ifE does not have (ft).

As a further corollary of Theorem 10 we get the following characteriza-
tion of the compact non-polar polydiscs in the nuclear power series spaces
of finite type.

12. COROLLARY. — Let Ai(a) be nuclear and let aeAi(a) satisfy
a>0. The set:

N^:={x€Ai(a)| \Xj\^a,forallj€^}

is non-polar if and only if\im inf^_ ^aj^>0.
Proof. — If a>0 and lim inf^^a^'^O then there exists e>0 and

5>0 such that a^eS^ for allj. Let (r^^ be a strictly increasing
sequence of positive real numbers with lim^ 00^=1. I f p e N is given
choose d>0 such that:

f^-Y—o.
Vp+i / ^18^p-n / ^+18

Then we get for alljeN:

Ty^^W^^ry^.
e

By Proposition 4(b) this shows that A^(a)=Ai(a) has (fi^). Since
Nj is a Hilbert ball in A^(a) the proof of Theorem 10 shows that Nj is
non-polar in A? (a). Since Nj c N^ N^ is non-polar in A^ (a).

If N^ is non-polar then it follows from Theorem 7 that A?(a)=Ai(a)
has to have (fij^). Hence it follows from Proposition 4 (b) that for pe N
there exists q>p, C>0 and d>0 such that:

ry^Cfl^1^ foralljeN.
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This implies a>0 and also:

l^J^^C^a]^ foralljelU
\ ra / ra^/ ^

Hence:
liminf.^fl^^O.J-oo«T

Concluding we give a class of Frechet spaces which in general are not
Schwartz spaces but have property (fi^).

Let X be a locally compact, a-compact Hausdorff space. Let
A=(a^\^^ be an increasing system of non-negative continuous functions
on X which satisfy the following conditions:

0

(i) For each keN there exists n 6 N such that Supp a^ c: Supp a^;
0

(ii) UkeisiSuppa^Jf;
(iii) For each fe € N there exists ne N such that for each e>0 there exists

a compact subset K in X such that flt(xXea,(x) for all xeX\H
Let F be an arbitrary Banach space. It is easy to see that the space:

C(XA; F) :={ / | / : X^F is continuous and
||/||,:=sup,^||/(x)a»(x)||<ooforall keN}

endowed with the topology induced by (||. ||t)te N is a Frechet space which
in general is neither nuclear nor Schwartz.

13. PROPOSITION. — For the space C(X, A; F) introduced above, the
following conditions are equivalent:

(1) C(X, A; F) contains a bounded subset which is not uniformly polar;
(2) C(X,A; F)has(^);
(3) C(X,A;F)hfl5(fi).

Proof. — By Corollary 8 (fl), (1) implies (2), while (2) implies (3)
trivially. Hence it remains to show that (3) implies (1).

In order to show this we remark that only F^ {0} is relevant and that
in this case C(X, A; C) is a complemented subspace of
C(X, A; F). Hence (3) implies that C(X. A; C) has (ft).
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If we apply this to the point-evaluations 5y we get, for each />6 N, there
exists q>p and d>Q such that for all k e N there exists C\>0 such that
forallxe-y:

ii8,r ̂ cjsj^Kr.
This implies that for all xe Y, : = {^6.Y| a^(y)>0} we have:

a^xr^^C^xr^a^x)-'
i.e.:

a£w—at(x)^C„ for aU XE Y, and all k e N.
a,0c)\i+rf

By condition (i) this implies that:

a^xY
8f: x^^

belongs to C (X, A; C) if q is chosen appropriately. It is easy to see that
there exists aeC(X, A; C), fl>0, such that for each ^eN there exists
My > 0 with gp < Mp a. Hence we get:

(1) There exists aeC(X, A; C), a>0, such that for every peN there
exists ^eM, C>0 and d>0 such that c^^Caa^4.

In order to show that:

B={/6C(XA;F) | ||/(x)||<fl(x)foraU xeX}

is not uniformly polar, we let:

Co(Yp, Op, F): == { / [ / : Yp~^F. f ^ continuous, for every e>0 there
existsKc c V^ such that sup {||/(x)a^(jc)|| |x€r^\K}<e}.

This becomes a Banach space under the norm:

ll/l^-SUP^yjI/W^Wll.

Using condition (iii) it is easy to see that for every feC(X, A; F) the
restriction/1 Yp is in Co(Yy Oy\ F) and that for:

n,: C(XA;F)-^Co(r^^;F), ^(/):=/|^

we have [| Tfp(f) |[y=||/ ||p. Since the continuous functions with compact
support arc dense in C^Yy Op\ F), this shows that Co(Vp, flp; F) can be
identified with the canonical space C(X, A, F)y
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Now let /be a psh. function on C(X, A; F)p for which f^Kp is psh. on
C(X, A; F). Then there exists geC(X, A; JF) with / (Tip (g)) > -oo.

Let:
i / :={x6yj ||^(x)||<a(x)}

and

V:^^Y,\\\g(x)\\>^;

and choose a continuous partition of unity l=q>i;+<p^ where
Supp (py c: 17, Supp (py <= K

LetG : = {zeC|Rez>0} and define h: YpXG-^Fhy:

h(x, z) : ̂ (x)g(x)^n>y(x)——— g(x) \\g(x)ap(x)\^
ap(x) \\g(x)\\

It is easy to check that h(., 2)eCo(Yp, flp; F) and that:

H : G^Co(y^flp;F), ^(z) :=h( . ,z) ,

is holomorphic.
We remark that from (1) we obtain q>p, C>0 and d>0 such that:

ap(x)l^^Ca(x)ap(x)a,(x)l^

Hence we have, with e= 1/(1 +d):

(2) \\g(x)ap(x)\\^C(a(x)ap(x)Y\\g(x)a,(x)\[

By condition (iii) there exists a compact set K in X such that:

snp{a(x)ap(x)\xey\K}<l
and

supdI^W^^IIClxerYKXL

Then for all xeX\K and all (> 1/e:

(3) \\g(x)a?(x) || < (a(x)ap(x)Y ^ (a(x)ap(x))llt.

Now we let Go : = { ze G 11/e < Rez < T } for some T> 1/e and we show
that there exists ^>1 such that H(Go) <= Kp(^B). If x 617 we get from
the definition of U that:

||<Pi/(x)g(x)||<||^(x)||«»(x).
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IfxeFandx^y^then:

^(x^OOll^a^x)!)*-^.

If xe(V\K) r\ Yy then we have for all ze Go;

h^ ̂ r1^^"'<aM-
Since K is compact, a>0 and all the functions involved are continuous

we can find M> 1 such that for all zeGo and all xeK we have:

\\9v(x)g(x)\\g(x)a,(x)^l\\^Ma(x).

If we let ^=1+M it foUows that H(z)€Kp(\B) for all zeGo, since it is
easy to check that for all z 6 Go the function h(., z) actually is the
restriction of a function in ^5.

Since H : G -^ Co (Yy dp; F) is holomorphic, /o JFf is subharmonic in G.
Since:

/off(i)=/(A(., l))=/(^te))> -oo,

/off is not identically —oo. Hence there exists 2o€Go with
/ (H (20)) > - oo. Since we have already remarked that H (20) = Kp (go) for
some go6^^ thls shows that C(X, A, F)s and consequently B is not
uniformly polar.

14. COROLLARY. — For a Fr^chet-Schwartz space X° (A) the following
are equivalent:

(1) In X° (A) there exists a bounded set which is not uniformly polar;
(2)^(A)has(!i\
This follows from Proposition 13 by taking X as the discrete topological

space M and by noting that (i)-(iii) are satisfied since ^°(A) is Schwartz.
For other examples and further information on polar sets in 1. c. spaces

we refer to our article [7].
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