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WEIERSTRASS POINTS ON TRIGONAL CURVES
OF GENUS FIVE

BY
GIUSEPPE CANUTO (*)

RESUME. — On calcule la dimension des varietes des courbes trigonales de genre cinq
ayant un point de Weierstrass de type donne et on demontre que generiquement une telle
courbe a un seui point de Weierstrass qui n'est pas normal.

On demontre aussi que Ie groupe de monodromie des points de Weierstrass sur les courbes
trigonales de genre cinq est Ie groupe symctrique.

ABSTRACT. — We determine the dimension of the varieties of trigonal curves of genus
five with a Weierstrass point of given type and we show that generically such a curve has
only one non-normal Weierstrass point.

We prove also that the monodromy of Weierstrass points on trigonal curves of genus five
is the full symmetric group.

Introduction

Let 5 be the surface of degree three in P^C) image of P^C) under
the rational map given by the conies through a fixed point x. The surface
S is isomorphic to the blow-up of P^C) at x (in the notations of [3]
S is the rational normal scroll 512) . It what follows we work always
over C.

We fix the following notations:
7i, the projection map from S onto P2;
R, the lines of P2;
H, the hyperplane section of S;
£, the exceptional divisor of 5;
L, the lines of the ruling of 5;
D=n^R,
Ly the unique line of the ruling passing through the point z of 5.
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158 G.CANUTO

We have

Rc(S)=^.He^.£;
H=2D-£:

L==Z>~£
and the canonical divisor Ks of S is :

jCs=-3D+£.

We consider the complete linear system [ C | on X where C = 5 D — 2 £ i s
the proper transform of a quintic passing twice through x.

The smooth elements of this system are canonical curves of genus five
with a g^ given by the ruHng of S. On the other-hand the-generie-trigonal
curve of genus five lies on such a scroll ([8], [12]). It's well known that
the g^ is unique (see for example [7], Ex. 5.5, page 348).

We are interested at the Weierstrass points of the curves C. Recall
that if C is a smooth curve of genus g and p is a point of C we say that
the number a is a gap value at p if h°(a.p)^h°((a— 1)./?). To each p is
thus associated the sequence \^a^<a^... <dy<2g of gap values and p
is called regular if the sequence is 1,2,3,.. .,^ otherwise a Weierstrass
point. The weight of such a point is

W(p)^(a^i)

and the only points with weight one are those with the sequence
1,2,3, . . . ,g— 1, g-^ 1. They are called normal Weierstrass points. The
total weight of C is the sum of the weights of its points and this number
is W=(g—\)g(g+\). It's known that the generic Riemann surface of
genus g ' ^ 3 has only normal Weierstrass points (see [4], Chap. 2 or [10]).

Sequence Weight

12345 0
13579 10

hyperelhptic
12457 4
12458 5
12367 4
12356 2
12357 3
12359 5
12346 1

normal
12347 2
12348 3
12349 4
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WEIERSTRASS POINTS ON TRIGONAL CURVES OF GENUS FIVE 159

The gap sequences which a priori can occur on curves of genus five are
as follows:
The hyperelliptic sequence never occurs on smooth curves CeX, since

they are canonical.
This paper together with [3] is part of a general research program about

the following problems:

(a) existence (and non-existence) of Weierstrass points with a given gap
sequence (or having a given weight) on trigonal curves;

(b) dimension of the variety of trigonal curves with at least one
Weierstrass point of a given type or weight;

(c) generic behaviour of trigonal curves with a Weierstrass point of a
given type i. e. to see if generically such a curve has only one non-normal
Weierstrass point;

(d) monodromy of the Weierstrass points on trigonal curves.

To this purpose let's put X= | C| r^P17 and define

Z = { ( z , H ) such that zeS C\H ] ^S x P4*,

where P4* is the set of hyperplanes of P4.
The variety Z is smooth, irreducible, of dimension five.

Define then

7= {(C,z,H) such that m,(C.H)^5 } SXxZ,

where w,(C. H ) is the intersection multiplicity of C with H at z.

If ^P: I ->• X is the projection and C is a smooth element of X then
(C, z, H ) belongs to I exactly when z is a Weierstrass point of C and H
is a section of 0(K—5z), where K is the canonical divisor of C (see [3]).

In this paper we prove:
1. The generic curve C of X has only normal Weierstrass points. In

particular the map ^P: I -^ X has degree 120=4.5.6.
2. I has only one component of maximal dimension (seventeen) mapping

over X and the monodromy group is the full symmetric group on
120 elements.
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160 G. CANUTO

3. The generic element of the subvariety of X consisting of the curves
with at least one Weierstrass point with a given sequence of gaps (different
from 12346) has only one non-normal Weierstrass point.

In particular we get.

4. The dimensions of the subvarieties of X defined in (3) and their
rationality.

We recall that two curves C and C of X give the same point in the
moduli space M^ of curves of genus five if and only if there is an
automorphism <p of S such that

(p(£)=£ and <p(C)=C'.

In fact all these automorphisms are projective since the curves are
canonically embedded and the surface S must be sent to itself since it is
the surface of trisecants of C (resp. C) (see [7], page 348).

Finally £ must be sent to itself because it is the only line with self-
intersection — 1 and we get a six-dimensional group isomorphic to the
group of automorphisms of P2 fixing a point. In particular the image of
X in ^5 is an irreducible subvariety of dimension 11 and in general the
dimension in ̂ 5 of the images of the subvarieties of X under consideration
is just gotten subtracting six from the original dimension.

We recall also that in the plane model of a curve C of X the unique
g^ is just given by the lines through x and the dual ^j is given by the
lines of P2.

In the following table we collect the results about the dimensions of
subvarieties of X (resp. ^5) consisting of curves with a Weierstrass point
p with given gap sequence.

The computations in the last column refer to the present paper.
The dimension 9 relative to the sequence 12367 (these curves are all

trigonals) contradicts the second part of Rauch's result [10] which is not
correct as already pointed out by several authors.

The dimension 10 relative to the sequence 12357 is due to H. Pinkham
and it's based on the following three steps:

(1) Using a result of DELIGNE ([9], page 75) or BUCHWEITZ ([2],
Theorems 11.2.1 and 11.2.2) one computes that the dimension of the

TOME 113 - 1985 - N 2



WEIERSTRASS POINTS ON TRIGONAL CURVES OF GENUS FIVE 161

versal deformation space of the semigroup ring corresponding to the
semigroup of ^V generated By 4, 6, 9, 11 is 12.

(2) Another computation ([10], II. 1.5) shows that dim^o © Tl (^0=l

and then using theorem 13.9 of [9] one shows that the variety of curves
having a point with sequwce 12357 has dimension^ 10 in moduli.

(3) Now use Arbarello's result [1]: W^^ has dimension 11 and is
irreducible; by Rim-Vitully generically the gap sequence is 12356. Thus
the locus where the gap sequence is 12357 is a proper subvariety.

The author would like to thank H. Rnkham for very helpful comments
and for providing the computation relative to the sequence 12357, J. Harris

Gap
sequence

13579
12457

(^-ppD
12458

(g\-\^p\)
12367

(^=|X-5p|)
12356

12357

12359

12346

12347

12348

12349

Dimension
in moduli space

of all curves
with a

Weierstrass point
with given

gap sequence

9
10

(RiM-VmjLLl(ll])
9

9

11
(RIM-VITULLI[II])

10
(Computation due
to H. PINKHAM)

9
(RlM-VlTULLl | l l l )

12

11
( PINKHAM (9j)

10
(PINKHAM [9])

9
(PINKHAM (9))

Dimension
in moduli space

of all
trigonal curves

with a
Weierstrass point

with given
gap sequence

0
10

(Sec. 2, Cor. 2)
9

(Sec. 2, Cor. 2)
9

(Sec. 3, Cor. 3')
10

(Sec. 3, Cor. 3)
0

(Sec. 3, Lemma 2)

0
(Sec. 3, Lemma 2)

11
(Sec. I, Prop. 2)

10
(Sec. 4, Cor. 4)

9
(Sec. 4, Cor. 4)

8
(Sec. 4, Cor. 4)
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162 G. CANUTO

for suggesting originally this area of research and G. P. Pirola for useful
conversations during the preparation of this paper.

1. Components of I and monodromy

With the notations we introduced before we can prove the following.

PROPOSITION 1. — I has only one component of maximal dimension 17
mapping over X.

Proof, — Let's look at the hyperplane section H of S. We can have:
(A) H is smooth: in this case H is a rational normal curve in P3;
(B) Jf=L-hD: the projection n(H)^P2 consists of two distinct lines

meeting at a point different from x;
(C) H=£+Li+L2: the projection n(H) consists of two distinct lines

meeting at x\
(D) / f=£+2L and n(H) consists of two coincident lines containing x.
If H is smooth, [C| cuts on H^P1 the complete linear system of

degree 8. In fact if

P: |C|-|C|^,

in the restriction map, Ker(p) % [ 3 D — £ | and

9=dim|C| -dimKer(p)=fc°(H, (9 (C^)).

In the same way |C| cuts on D^P1 the complete linear system of
degree D. C=5 and cuts on L the complete system of degree 3.

We study now the projection map <D: I -^ Z, and denote by p = (2, H ) a
point of Z and by Xp^X the set V(<D- l (p)).

The variety Z is the union of the following subvarieties:

A-= {p=(z, H) s. t. H is smooth};
Bi={/?=(z, L+D)s. t. 2^L.zeD} ;

^2={P=(^ L^D)s. t .zeL,z^D} ;

B3={^=(z,L+D)s.t.z=L.D};

Ci= {^=(2,£+Li+L2)s. t. zeE.z^L., i=l, 2} ;

C^{p-(2, E-hLi+L^s. t. Z€L ( ,Z^£ } ;

TOME 113 - 1985 - N 2



WEIERSTRASS POINTS ON TRIGONAL CURVES OF GENUS FIVE 163

C^ {PSSS(Z, E+Li+L^) S. t. Z==L,.£};

D^= {^==(2, £+2L)s. t. ze£, z^L};
^2- {/^(^ £+2L) s. t. z^£, zeL};

D3== {^==(z, £-h2L) s. t. z=£.L};

If peAUB^ clearly Xp^P12 because |C| cuts on H and D complete
systems.

If p^B^\JC^ Xp is contained in the proper subvariety X^ on X
consisting of singular curves because m,(C. H)^5 only when L^c.

By the same argument if peC^U D^ Xp^X^ (in this case CcXp when
£cQ.

Let now consider a point peB^ Since L and D are transversal at z
a non-singular C can have m^(C.H)^5 only when m,(C.H)=l and
m,(C.D)^4.

It follows that X^cp13 u^i where

P13^ {CeJIfs. t. w,(C.D)^4}.

On the other hand dim(B3)=3 sothat ^^^B^) cannot give rise to a
component of dimension 17 mapping over X.

When peC^ say z=L,.£, a curve C not containing £ or Li belongs
Xp only when w,(C.Li)=3 and w,(C.£)=2.

Since £ and L^ are transversal, the curve C is singular at z and X c^.
We are left with two more cases: p e D ^ and p e D y
In the first case wJC.H)=2.w,(C.L) hence CeX? when C contains

L or when z is a point of total ramification for the g\ of C.
If we call X^ the proper subvariety of X consisting of the curves C

having a point of total ramification, we have Xp X^ \J X^.
Finally if peD^ a curve C belongs to Xp when one of the following

happens:

L£C;
££C;

w,(C.£)=2 and w,(C.L)^2;
w,(C.£)=l and w,(C.L)^2.
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164 G. CANUTO

Only in the last case C can be non-singular and the non-singular curves
C belonging to Xp are contained in a P15^^.

Since dim (D 3)= 1, as before we do not get component of dimension 17
different from

V= closure of <D-' (A U BQ.
Q.E.D.

As in [3] or [6] it follows by standard arguments:

COROLLARY 1. — The monodromy of^f: Y-^ X is transitive.
We want to prove now:

PROPOSITION 2. — The generic curve CeX has only normal Weierstrass
points.

Recall that a Weierstrass point is normal if the gap sequence is 1, 2, 3,
4, 6 i. e. if its weight is one [3], [4], [5].

A point z on a smooth curve C is not normal when:

(1) fc°(K-4.z)^2,
or
(2) h°(K-6.z)>0 (see [3]).

Following [3], we define 7 <= J as

7={(C,z,Jf)s. t.m,(C.H)^6}.

I f p e / 4 U B i , i f s easy to see that ^'~l(p)^}^^Pll.
It follows Tr\ Y is a proper subvariety of Y and the generic C doesn't

contain points of type (2).
In order to prove that the generic C doesn't contain points of type (1)

define // c X x Z as

/'={(<:, z.H)s.t.m,(C.H)^4}

and call 4^ and ̂  the projections over X and Z.
The inverse image of a point Ce X under the map has positive dimension

exactly when C has points of type (1) (or C is singular) [3].
If every curve CcX has points of type (1), then /' would have at least

two components of dimension greater or equal to 18 mapping over X
(see [3]).

TOME 113 - 1985 - N 2



WEIERSTRASS POINTS ON TRIGONAL CURVES OF GENUS FIVE 165

We can exclude that this is the case looking at the fibers of 9\
If X^X is the set ^(O'"1^)) for any ^=(2, H) in Z, we can easily

check that:
iIpeAUB^X^P13,
i f ^ e B a U C z U C i U ^ i then^c^;
if^eD^then^^P1 5 .
When peB^ a non-singular C belongs to Xp if m,(C.L)==3 or

w,(C.D)^3 so that ^<=A\ U^UP1 4 where

P^^{CeXs.i.m,(C.D)^3}.

In the same way we see that when peC^ then Xp^X^ U X^ an<^ when
^6^3 then XpS p15 \j p15 (J ̂  where the two project! ve spaces of dimen-
sion 15 are given by the curves C s. t. m,(C.£)^2 and by those s. t.
m,(C.L)^2.

Since dim(D2)=2 ' dim(B3)==3 and dim(D3)=l, there is only one
component of dimension 18 mapping over X.

Q.E.D.
Since we know that the generic CeX has only normal Weierstrass

points, we can improve the statement of the Corollary to Proposition 1
showing.

PROPOSITION 3. — The monodromy group is t\vice transitive.
Proof. — We denote by X^ the proper subvariety of X consisting of

curves with at least one non-normal Weierstrass point. Then we fix a
point (Co, 2o, Ho)e Y such that:

ZQ does not belong to £;
Ho is smooth;
Co does not belong to X^\JX^\J X^ i. e. Co is smooth, has only normal

Weierstrass points and does not have points of total ramification for
the ^3.

The proposition will follow if we show that the stabilizer of (Co, ZQ, Ho)
in the monodromy group acts transitively on the remaining points of
r^-^CoXs^m^).

If Xo is the set of C€Xs. t .w, (C.Ho)^5 , then Xo^P12 and
following [3] we call Jo ^e closure in Xo x Z of the complement of the set
{(C,2o, Ho) where C eXo}.

BULLETIN DE LA SOCIETfe MATHfeMATlQUE DE FRANCE
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By a standard argument [6] we want to trove that Jo has only one
component of dimension 12 mapping over XQ looking at the fibers of the
projection map <po: /o -^ Z.

From Proposition 1 we know that it's enough to consider points
peA U Bi U Ba U J>3 since in all the other cases Xp^X^U X^

If;?o=(zo, Ho) and p3s(z, H), we notice also that we can suppose Z^ZQ
and H^ Ho-

In fact if Z=ZQ and H is smooth i. e. if p e A we have: XpHX^sXi if
H and Ho are transversal at

zo=z and ^n^po^n^

if H and Ho are tangent at ZQ because a non-singular CeXpC\XpQ has
/i°(K(;—5z)^2 since both H and Ho have a contact of order greater or
equal to five with C ar z.

The same argument works when pe B^ U B^ U ^3-
On the other hand if H = Ho but z 96 ZQ, Xp 0 X^ £ A\ because a smooth

C has only 8 intersections with H.
From now on we consider points p=(z, H) where Z^ZQ and

H^HQ. The set A is the union of the following sets:
A°^ {p=(z. H)eA s. t. z i H o and z^H},
A1^ [ p e A s. t. zeHo» zot^ or viceversa};
^[2= [ p e A s. t. zeHo an^ Z Q ^ H } ' ,

we define also
B? (resp. B°^ D^) as the set { p e B ^ (resp. ^3, D3> s. t. ZoeH and

^Ho};
B\ (resp. ^3, Z>3) as {^eBp (resp. ^3, ^3) s. t. ZoeL, z^D (resp. D,

E) where H=L+D (resp. L-hD, £+2L)};
Bf (resp. Bj) as {peB^ (resp. ^3) s. t. ZoeD, ZoiL where H==L-hD};
B? as {peBi s. t. ZQ=L.D here H=L+D}.
We show first that if pe^U^UB? then Oo1^)^?7. If peA°,

the curves C e A' of the form H -h R i. e. containing H as a component, form
a linear system of projective dimension 8 and they satisfy the condition
w,(C.H)^5. Since ZoiH, such a curve has w,(C.Ho)^5 when

m^(^.Ho)^5.
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On the other hand [ R [ cuts on HQ the complete system of degree 5. It
follows [3] that the requirement of having a 5-fold intersection with Ho ar

ZQ imposes 5 conditions on this linear system and that XpO-Y^%P7.
The same argument works when/?€Bi \J A^ (eventually exchanging the

role of p and po). When peD^ we know that the non-singular element
of Xp are contained in the set

{Cs. t. w,(C.L)^2} %P15.

Using again curves C containing H we see that the non-singular elements
of A^OA^ are contained in a P10.

V 1'v

In the same way iS- j^eB^ the non-singular elements ef XpC\XpQ are
contained in a P8.

If peB\ (resp. B\) taking the linear system consisting of cruves CeX
which contain D as a component we conclude as before that
XpC\Xp^^'1 (resp. the non-singular elements of XpC\X^ are contained
in a P8).

It's easy to see that if peB\\JB\, XpC\X^X^. In fact it consists
of curves C containing D since C. D ̂ 6.

Suppose now that peD\: since HQ. L= 1, z does not belong to Ho- I"
the linear system of curves C^HQ+R those having a contact of order
greater or equal to 2 with L at z form a subspace of codimension 2. It
follows that the non-singular elements of XpC^X^ are contained in a P10.

We are left with two more cases peA2 and /?eBj.
In the first case choose three distinct points f i , r^, {3 (resp. s? s^ 53)

on No (resp. on H) different from z and ZQ (resp. from z, ZQ, f i , t^
13). In XpC\X^ the curves C containing (p f^ ^3 ^d 5,, s^ 53 have
codimension at most 6. But in fact they contain Ho and H because they
have at least nine intersections with each. Since these curves form a
linear system of dimension two, XpC\X^ has dimension smaller or equal
to eight.

Finally if peBj, we know that the non-singular elements of X^X^
satisfy the following conditions:

{a) w,JC.Ho)^5;

(b) w,(C.D)^4.

Let's see that they are contained in a P8.
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168 G. CANUTO

In fact if Z^HQ, the curves C containing HQ i. e. of the form Ho^R,
form a linear system of projective dimension eight contained in J!^%P12.

Such a curve satisfies (b) when w,(J?.D)^4 i. e. when R contains
Z). This means that if we want (b) to be satisfied the dimension drops
by four on this linear system and a fortiori on Xy On the other hand if
zeHo, we can argue in the following way: choose three points Pi, P^ P^
on HQ but not on H and a point Q on D but not on Ho.

The curves C which in addition to (a) and (b) contain ?i, P^, ?3, Q
must contain Ho and D. In other words imposing four more conditions
we get a P4 and the result follows.

Taking into account the dimensions of the fibers and the dimensions of
the subsets of Z we defined before it's easy to check that /o has only one
component mapping over XQ.

Q.E.D.
We will show in section 4 that in fact the monodromy groups is the

full symmetric group.

2. Points of total ramification for the g\.

In this section we want to characterize the points of total ramification
for the g^ as Weierstrass points.

LEMMA 1. — Let C be a smooth element of X, a point z of C is a point
of total ramification for the g^ exactly when the gap sequence at z is 12457
or 12458.

Proof. — Notice first that in the gap sequence of any point of a smooth
C of X the first two values are always 1,2 since C is not hyperelliptic.

By Riemann-Roch.

h° (K- 3 z) == 3 if and only if h° (3 z) == 2.

Since the g\ on C is unique (see for example [7]) we see that z is a point
of total ramification for the g^ when the first missing value in the gap
sequence is 3.

This happens only when the sequences are 12457 or 12458.
Q.E.D.

We can easily distinguish the two cases: suppose first that z doesn't lie
on £, the exceptional divisor of S.
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We have:
h° (X-z)=4;
A°(K-2z)=3;
A°(X-3z)=3.

Since C.L,==3z, the sections of {K—3z) are exactly the hyperplanes of
the form L,+D i. e. containing the line Ly When the component D
contains z the intersection multiplicity with C goes up by one and
/i°(K-4z)=2.

Finally if Jf==£-h2L, the intersection multiplicity at z is 6 and:

h°(K-6z)=l;

/i°(X-7z)==0.

The sequence at z is then 12457. If ze£ it's easy to check in a similar
way that the sequence is 12458.

Let's now fix a point zeS and define

^={CeXs. t. m,(C.L,)^3}.

We have:

PROPOSITION 4. — The generic element C of R^ is smooth, irreducible
and the only point of total ramification of the g^ on C is z.

Proof. — The first statement is an elementary application of Bertini's
theorem after checking that the base locus of R^ is z itself. For the
second statement we show by dimension count that R, cannot be covered
by the union of the J?/s; t^z. If teLy then R^Px contains only
singular curves since they contain Ly

If t iL^ let's show that R, 0 R, is a project! ve space of dimension 11. In
fact if we take the curves C containing L, we see easily that those s. t.
w,(C.L,)^3 form a subspace of codimension three (they cut on L( the
complete system of degree three). Since z moves on S the proposition
follows.

Q.E.D.

COROLLARY 2. — The set of curves C having a point with gap sequence
12457 is a rational variety of dimension 16 and the set of those with a point
whose gap sequence is 12458 is a rational variety ofsimension 15.
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Proof. - Define J ^ S x X as

J={(C,z)s.t.m,(C.L,)^3}.

The variety J is rational of dimension 16. The corollary follows imme-
diately from the previous proposition looking at the projection map J -^ X.

If R^X is the image of J under this map, the smooth elements of R
form the set X^ of curves with a point of total ramification for the g\.

If z e £ we get the statement about the curves having a point with gap
sequence 12458.

Q.E.D.
We want to show now4hat a geaenc C with a point of total ramification

ZQ has only normal Weierstrass points outside ZQ.
Let ZQ be a point of S and R^ the set of curves C s. t. m^(C.L ) ̂ 3.
As we saw in the proof of Proposition 2 of paragraph 1, a point z on a

smooth C is not normal when:
(1) h°(K-4.z)^2
or:
(2) h°(K-6.z)>0.

In fact the only gap-sequence which gives a point of type (1) but not of
type (1) is 12356.

Let's prove first:

PROPOSITION 5. — The generic element C of R,Q does not contain any
point z different from ZQ such that h°(K—6.z)>Q.

Proof. — Let 7 be as in Proposition 2 of paragraph 1. We want to
see that the image of triples (C, z, H)e J where z ^ ZQ cannot cover R^.

For any p=(z ,H)€Z let Xp^X be the set of curves C s. t.
(C, z, H)e1. From Proposition 1 of paragraph 1 we know that:

ifp6^;^P11;
if peB^ ^SXi UP12 where P12^ { C s . t. w,(C.D)^5}.
In the remaining cases Xp^X^ \JX^. Since we already know that the

generic C€R,Q is smooth and doesn't have points of total ramification for
the ̂  different from ZQ it suffices to consider Xp when p e A \J B^.

Notice also that we can suppose z i R^: otherwise Xp H R^ c A\ because
it consists of curves C containing L^. When p = (z, H) e A the intersection
Xp H RSQ is isomorphic to P8 : in fact the curves C = L, -h C form a
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subspace of codimension one in L^ which intersects JL in a P8 because
C cuts on H the complete system of degree seven.

When/?=(z, H)cB^ we have H=L^D and 2==L^.D.
If ZQED the intersection ̂  0 R^ consists of singular curves since they

contain D.
If ZQ^D we take cuves of the form C=D+F: they are contained in Sp

and they belong to R^ when F contains R^.
It follows that the smooth elements of Sp n R^ are contained in a P9.
Since dim .4=5 and dim B = 3 the proposition follows.

Q.E.D.
We consider now points z s. t. h°(K—4z)'^2 and we prove:

PROPOSITION 6. — The generic C of R,Q does not contain any point z
different from ZQ such that h°(K—4z)^2.

Proof. — Let // be as in Proposition 2 of paragraph 1. We restrict to
the inverse image /o °f ^20 ^der the projection map onto X. As in
Proposition 2 of paragraph 1, /o has a component

y = closure of Uc e R^. z ̂  zo (c'z'H)-

Since C moves in /^ there is also the component

^ = closure of Uc.^.c.n,oothP(^°(C, G (^c-4zo))).

These two components have both dimension fifteen and map onto R^
. If every CeR^ has a point Z^ZQ s. t. ^i0 (JFQ. — 4 2) ̂  2, we would get a
new component of dimension greater or equal to fifteen mapping over X
from the union of P°(C, C1 {K-4z)))) where CeR^, and Z ^ Z Q . -

The map (p7 from /o to Z sends -Sf in the subset {(z^ , H) where
HeP4*}. It suffices then to show that the inverse images (p"1^),
where p = (r, ^) with r ̂  ZQ, give only one component of dimension fifteen
mapping over R^.

For any p e Z we denote by Xp the set ^'((p'"1^)) where ^/ is the
projection map from /o to X.

If zeL^ the set A^H /?^ consists of singular curves C since they have
four intersections with L^. So it suffices to consider points /?==(z, H)
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where z^L^. When we take a point p in A\JB^ the intersection
X'p H L^ is isomorphic to P10.

In fact the linear system of curves of R^, C=L^-hC' cuts on H (when
peA) and on D (when peB^) complete systems. If peB^ we know that
the non singular elements of X"p are contained in the P14 of curves C
s. t. m,(C.D)^3.

In case z^eL^D we consider the curves C==D-hF: they form a linear
system of projective dimension eleven contained in Xp. Such a curve
belongs to R^ only when it contains L^. Counting dimensions it follows
that the non-singular elements of Xp C} R^ are contained in a P11.

In case ZQ e D using the linear system of curves C = L^ -h C' contained
in R^ and imposing the condition m,(C.D)^3; we conclude again that
the non-singular elements of Xp 0 R,Q are contained in a P11.

When p6Z>2 the intersection XpC^RsQ has codimension two in R^ as
we can see taking again curves C=L^-t-C' and imposing the condition
m,(C.L)^2.

Finally when p^D^ we have to intersect R,Q with two distinct P15 given
by curves C s. t. m,(C.£)^2 and by those s. t. w^(C.L)^2.

In the second case we see that the intersection with R^ is isomorphic
to P12 arguing as before.

For the curves C s. t. m,(C.E)^2 we have to distinguish two subcases:
if ZQ^E the intersection with R^ consists of singular curves since they
contain £. If ZQ^E, the curves C=£+N certainly satisfy the condition
m^(C.E)^2 and if we impose the condition w^(C.L^)^3 they must
contain L^.

It follows that among the curves C s. t. w,(C.£)^2 those belonging
to R,Q have codimension three.

In the remaining cases Xp^X^ \JX^ and we do not need to consider
the intersection with R^ as in Proposition 4.

Looking at the dimensions of the various subsets of Z we see that the
only component of dimension fifteen (mapping over R^) comes from the
inverse image of points p eA U B^.

Q.E.D
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3. Points with A°(X-4z)=2
We consider in this paragraph points s. t. A°(K—4z)=2. Since we

already characterized the points of total ramification for the g^ as those
having sequences 12457 and 12458 we consider only those such that
A°(K~3z)=2 or equiva .mtly such that 4 is the first missing value in the
gap sequence.

We can prove.

LEMMA 2. — Let C be a smooth element of X and ZQ a point of C such
that /i°(K—4zo)==2. If ZQ is not a point of total ramification for the g\,
the gap sequence ofC at ZQ is 12356 or 12367.

Proof. — Since fc°(X—4zo)=2, there is a singular H such that
m^(C.Jf)^4.

Suppose first that ZQ 6 £.
We have the following possibilities:
(a) H=£+L-hI/, Zo^L+L'
(b) H=£+L,,+L', U^L^

(c) H=Z^+D, Zo^D,

(d) H=£+2L,,.

In cases (a) and (c), the curve C should be singular against the
hypothesis. Case (b) cannot occur because C is smooth and
w^(C. L^) ̂ 2. Case ( d ) can be excluded because we should have

m^(C.L,,)=l and m,,(C.£)=2
or:

m,JC.L^)=2 and m^(C.£)=l.

But in each case the sections of Q (K—3zo) are E+L^^-L' where U
varies and fc°(X-4 zo)=l.

Suppose now ZQ ̂  E.
The possible configurations are:

(a) ^==£-hL+L' and ZoeL, ZQ^L,

(P) H=£+2L and Zo6L=L^,

(Y) ^=L+D, ZoeL=L^, ZQ^D,

(5) H=L+D, Zo=L.D, L=L^,

(P) H==L+D, ZO^D, Zo^L.
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The cases (a) and (y) cannot occur because C should be singular. In
(P) we must have w^(L.L^)^2, hence equality and the sections of
0(K—3zQ) are L^+D where D varies and contains ZQ. It follows
fc°(K—4zo)==l, the only section being £+2L^. In case (8) we must
have (C.D),^3. Ifw^(C.D)=3 it's easy to see that fc°(X--4zo)=l.

If w^(C.D)=4 the only section of (P(K-5zo) is D+L,^ and
fc°(K-6zo)=0.

We get the sequence 12356.
If w^(C.D)=5 then /i°(K-5zo)==2 and D+L^ is the only section of

(^-6zo).
The sequence in this case is 12367.
In the last case since m^(C.D) is again 4 or 5 we conclude as before

that the gap sequence is 12356 or 12367.
Q.E.D.

From the previous lemma we know that if ZQ is a point with gap
sequence 12356 (resp. 12367) there is only one curve DQ^K^RQ such
that w^(C.Do)=4 (resp. 5).

Its clear then how we can construct curves C e X with such a point. We
take a curve Do=7t ^ RQ, where RQ is a line of P2 not containing x, and
a point ZO^DO. Define

To== [CeXs. t.w^(C.Do)^4} ^P13.

The generic element C of To is smooth, w^(C.Do)=4, and ZQ is not a
point of total ramification for the g1^ on C since L^ is transversal to Do.

If w^(C.Do)=4 the sequence is 12356, if w^(C.Do)=5 the sequence
is 12367.

We can be more precise about the points of total ramification for the
g\ on a generic C e To:

PROPOSITION 7. — The generic C e To does not contain any point of total
ramification for the g\.

Proof. — Let z be a point of 5 different from ZQ. We want to show
that R^ r\ To=P10. If z^Do taking the curves Ce To which contain Do:

C=Do+F,
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we see that they belong to R, only if they contain Ly Counting dimen-
sions we get the transversality of R^ and To in X. If zeDo we take the
curves C of R^ containing Ly

C=L,+G.
Such a curve belongs to To when m^(G.Do)^4.

Since | G | cuts on Do the complete system of degree four the proposition
follows.

Q.E.D.
We can look now at the behaviour of the generic Ce To from the point

of view of the existence of non-normal Weierstrass points different from
^

Like in section 2 we prove first:

PROPOSITION 8. — The generic C € To does not have points z (different
from Zo) such that h°(K-6z)>0.

proof. - As usual 7= {(z , H, C) s. t.w,(C.H)^6} cZxX.
For each p = (2, H) e Z we want to consider the curves of Sp 0 To which

are smooth and do not have points of total ramification for the g\. Like
in Proposition (5) it suffices to consider points p e A U ^3.

If p c /4, we can distinguish the following cases:
(a) p=(z, H ) e A and Z o i H ,
(b) p = ( z , H ) e A , Z o f = H , z i D ^
(c) p=(z. H)eA. zeDo, z ^ e H .
In cases {a) and {b) the intersection XpF} To is a P7. In the first case

it's easy to see that the curves C containing H belong to To only when
they contain also Do. In case (b} the curves C=Do+F belong to Xp
when w,(F. H)^6. Since | F \ cuts on H the complete system of degree
six, the statement about {a) and {b} is proved. In case (c) we choose two
points ti and t^ on H different from z and ZQ, and a point y on Do
different from z and ZQ. It's immediate to check that a curve Ce^pO To
contains r? t^ and v only when it contains H and Do. Such curves form
aP4.

It follows that also in this case J?H To^P7.
If p = (2, H) e ̂ 3 then H = L -(- D and z = L. D. The non-singular curves

of -?p are contained in

{ C s . t. m^(C.D)^5}2=P 1 2 ,
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so it suffices to intersect To with this linear space.
We distinguish the following cases:
(a) Zo^H,
(P) z^D,
(y) Zo<=L.
Arguing like in (a) we see that To 0 P12^?8 in case (a). In case (P)

TO OP12 contains only singular curves since they contain D having six
intersections with it.

Finally if Zo6L, let y be the point of intersection of D with Do (which
is supposed different from D because otherwise we would get only singular
curves). Choose a point t^H, teD^ and consider the curves of To 0 P12

containing y and r.
They contain Do an^ ^ smce ^cy have six intersections with each and

they form a linear system of dimension six.
It follows that To U P12^?8.
Counting dimensions the proposition is proved.

Q.E.D.
Using lemma (2) it's immediate to prove also.

PROPOSITION 9. — The generic CeTo does not contain any point z
different from ZQ such that h°(K—4z)^2.

Proof. — If D ^ n * R and zeD we have to show that To cannot be
covered by the T/s where:

T,={C€Xs.t.mJC.D)^4}.

where we let D and z vary (z^Zo).
Like in Proposition 8 we have to consider only the case D ̂  Do because

otherwise T, 0 To contains only singular curves.
For any couple (z, D) where zeD we have Z^DQ or ZQ^D.
Hence, as in proposition 5 (a)

T.HTo^P9

and the proposition follows.
Q.E.D.

Notice that we could prove the previous proposition along the lines of
Proposition 6 of this section or Proposition 2 of Section 1, i. c. without
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using Lemma 2, but the proof would be longer. In those two propositions
we used an argument which can be extended to more general cases i. e.
for the family of trigonal curves of any odd genus lying on the same scroll
we consider in the present paper and embedded in the appropriate projec-
tive space.

From the proposition we proved we get easily.

COROLLARY 3. — The set of (smooth) curves C of X with a Weierstrass
point whose gap sequence is 12356 or 12367 form a rational variety of
dimension sixteen.

Proof. — The couples (2, D) where D=n*R is the pull-back of a line
not containing x and zeZ), is a rational manifold of dimension three. We
take then triples (C, z, D) such that m,(C.D)^4.

The Corollary follows immediately by projecting into X and using
Propositions 4, 5 and 6.

Q.E.D.

If we define

Fo= [CeXs. t.m^(C.D^5] ^P12,

it's easy to prove that the generic C € To is smooth and does not have
non-normal Weierstrass points different from ZQ (proofs are almost identi-
cal to those of Propositions 7, 8 and 9 and left to the reader).

Hence we have.

COROLLARY y. — The set of (smooth) curves C of X with a Weierstrass
point whose gap sequence is 12367 form a rational variety of dimension
fifteen.

4. Points with h°(K-6z)= 1

In this section we want to describe the points with sequences 12347,
12348, 12349.

LEMMA 3. — Suppose that on a smooth CeX: h°(K—6z)= 1. The only
section H of H°(K—6z) is a smooth curve of S if and only if the gap
sequence at z is one of the following: 12347, 12348, 12349.

Proof. — A priori the sequence could also be 12457, 12458 or 12367
but in these cases we know from Lemma 1 and 2 that the only section H
of H°(K- 6 z) is singular.
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Lets show then that if the sequence is one of those given in the lemma
then H is smooth.

Suppose first H is singular outside z we can have:
(a) ff=£+Li+L2;z6Li,z^£+L2,
(P) H=£+2L;z€£,z^L,
(y) H=£+Li+L2; 2€£, z^L^+L^,
(p) H=L-hD;z€L,z^D,
(0 H=L-hD;z€D,z^L.
It's immediate to check that in each case the condition m,(C.H)^6

implies that C is reducible against the hypothesis that C is smooth.
Suppose now that H is singular at z.
The possibilities are:
(a) H=£+Li-hL2; z==H.Li,
(&) H=£+2L;z=£.L,
(c) H=£-h2L; zeL, z^£,
00 H=L-hD;z=L.D.
None of these cases can occure. In fact in case (a) the intersection

multiplicity m,(C.H) can be at most 4 (when m,(C.L)=3). In case (b)
the point 2 is a point of total ramification for the g^ otherwise m,(C.H)
is at most 5.

In case (c), w,(C.H)=6 only when z is a point of total ramification
for the ̂ , in the last case if D and C are transversal at z the intersection
multiplicity w,(C.H)<6, and if m,(C.D)=5 the sequence at z is 12367
(lemma 2).

Q.E.D.
Define then:

as:

Vt (resp. V^ V^)

l^={C6Xs. t.w^(C.Ho)^8} (resp. ̂ 7,6),

where HQ is smooth and ZQ 6 Ho-
Clearly ^o^^^^S and they are projective space of dimension 9, 10

and 11 respectively.

LEMMA 4. - The generic element V^ is smooth (hence the same is true
for ̂  ^)-
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Proof. — By dimension count we see that not every element of V^
contains H^ It follows that the base locus of V^ is {z^} . ^n ^act ^
Ce^g and it contains a point ^ of Ho different from ZQ then it must
contain HQ.

Lets show now that we can find CeV^ which is smooth at ZQ.
If ZQ = £. J/o we ̂ ^ ^or example

C=Ho+W+^
where Zo^-hD.

If ZQ ̂  E we can take
C=H-hL+2D,

where Zo^L-h2D.
By Bertinfs theorem the Lemma follows.
(Notice that the generic C is irreducible hence connected because if not

it would contain singular points.)
Q.E.D.

From Lemma 3 it follows immediately that if C is smooth the gap
sequence at ZQ is

12347 if CeV^
12348 if ,C€VQ-V^
12349 if Cel^-I^.

As usual we want to see that the generic CeV^ (resp. ^, V^) has the
good expected behaviour from the point of view of Weierstrass points.

PROPOSITION 10. — The generic Ce V^ does not have any point of total
ramification for the g\,

Proof. — We already know that ZQ is not such a point. To show that
V^ cannot be covered by the R^s where Z^ZQ suppose first that Z ^ H Q .

Taking the curves C = Ho + C we see that they belong to R^ only when
they contain L,. It follows the V^ 0 R^ P6.

If z 6 HQ, then ZQ i L, and we can use the curves C = L, + G. Since | G |
cuts on HQ the complete system of degree we can check again that
^gn^p6.

The proposition follows by dimension count.
Q.E.D.
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The analogous statement is obviously valid for the generic Ce V^ (resp.
V^) using the same proof or as corollary of the previous proposition.

We can prove now.

PROPOSITION 11. - The generic CeV^ does not contain any points z
different from ZQ such that Ho(K-4z)^2.

Proof. — Since we already know that the generic C does not have
points of total ramification for the g^ we have to exclude points with gap
sequence 12356 or 12367.

From Lemma 2 we must consider couples (z, D)==p.
If Z ^ H Q taking curves C=Ho^-C we see that wJC.D)^4 only if C

contains D. Counting dimensions we get:

^U{Cs. t.m,(C.D)^4}^P5.

If zeHo, taking a point reD, r ^ H o we check that a curve Ce V^ contains
rand m,(C.D)^4 only when C2 HQ-^D.

It follows that also in this case

^H{Cs. t.m,(C.D)^4} ^P5.
Q.E.D.

Again we have a similar statement for the generic Ce VQ (resp. V^) as
a consequence of the previous proposition or proving it directly.

For example for the case of V^ the only change is that if z e H o we
look at the curves C s. t.:

(i) Ce^;
(ii) m,(C.D)^4;

(iii) C contains three more points y^ y^ r where reD, riH^
Yi and y^ lie on Ho, but not on D (and y^ is the intersection of D with
Ho different from z in case ZoiD).

Finally we prove.

PROPOSITION 12. - The generic Ce V^ does not contain any point Z^ZQ
such that h (K—6z)>Q.

Proof. - Since we already know that the generic C doesn't have points
of total ramification for the ̂  or points such that ho(K-4z)^2 we have
to exclude points with sequences 12347; 12348; 12349. In other words
we have to show that ^ cannot be covered by the union of the sets
^./^ { C e X s . t. m^(C.H)^6} where H is smooth and z e H .
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Notice that if H=Ho the intersection ^§0 ̂ H) consists of singular
curves C containing HQ.

If H + Ho and zeHo we get the same conclusion.
Finally if H^HQ and z^Ho taking the curves C=Ho-hC' we see that

(C cuts on H the complete system of degree five and) those
s. t. m,(C.H)^6 form a subspacc of codimension six.

The result follows by dimension count.
Q.E.D.

Remarks. - (1) The same results is true for the generic CeV^ (resp.
)̂.
(2) We could prove Proposition 12 along the lines of Proposition 6 i. e.

without using explicitely the characterizations of the various Weierstrass
points given in Lemma 1, 2, 3. This second proof is longer but can be
applied in more general situations and will appear elsewhere.

COROLLARY 4. - The variety X6 (resp. X^, Xs) of curves CcX having a
point with gap sequence 12347 (resp. 12348, 12349) is rational of dimension
\6(resp. 15, 14).

Proof. — It follows immediately from the fact the couples (z, H) form
a variety of dimension five using Propositions 7, 8, 9.

Q.E.D.

5. Monodromy

From the Propositions 10, 11, 12 of the previous section we know that
there is a point (Co, ZQ, Ho) of / such that:

(i) Ho ls smooth;
(ii) Co is smooth with ZQ as only non-normal Weierstrass point;
(iii) ZQ is a point with gap sequence 12347 (and weight 2). Since Ho ls

smooth on a neighborhood U of (2o» ^o) ln ^ ̂  "^P H > ' ' I ^ Z is a
fibration with fiber P12. In particulier <p~ l (U) is smooth and I is irreduci-
ble at (Co, ZQ, Ho). Since we already know that the monodromy group
is twice transitive, using the Lemma in section II, 3 of [6] we conclude.

THEOREM. — The monodomy group Mon(x^) of ^ : ! - ^ X is the full
symmetric group on 120 elements.
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