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DISTRIBUTION OF CLOSED GEODESICS
ON THE MODULAR SURFACE

AND QUADRATIC IRRATIONALS
BY

MARK POLLICOTT (*)

ABSTRACT. - In this note we show that closed geodesies, when ordered by length, are
equidistributed with respect to the Poincare measure. Our main application of this result
is to distribution of quadratic irrationals in the unit interval with respect to an appropriate
ordering.

0. Introduction

In a recent paper SARNAK proved some striking asymptotic results for
averages of class numbers of quadratic forms [17]. A basic ingredient in
his proofs was the relationship between quadratic forms and closed geode-
sies on the modular surface (and other surfaces corresponding to principal
congruence subgroups of SL(2, Z)). The asymptotic averages for class
numbers are then a consequence of certain "Prime Orbit Theorems" i. e.
asymptotic estimates for numbers of closed geodesies in terms of an upper
bound on their lengths.

In this paper we shall begin by proving a prime orbit theorem for the
modular surface (claimed by SARNAK and Woo cf. [17]) and extend to the
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432 M. POLLICOTT

modular surface a result of Bowen on the equidistribution of closed
geodesies in terms of the Riemann measures for compact manifolds of
constant negative curvature [4]. (We should recall that the modular
surface is the classic example of a non-compact surface.)

As a first application we will be able to derive various results about
the distribution of geodesies which also reflect geometric features of the
surface. As a second application we shall invoke the correspondence
studied by Sarnak to prove some curious results about the distribution
of quadratic irrationals in the unit interval (with respect to a natural
ordering).

The actual extension of Bowen's equidistribution result to the modular
surface will be modelled on Parry's elegant proof in analogy with Dirichle-
fs theorem (for the case of Axiom A flows on compact manifolds)
[11]. The most important requirement for this analysis is a result on the
domain of an appropriate zeta-function. This poses somewhat different
problems to those encountered in the compact case ([II], [14]). Our
approach is to translate the problem of the zeta-function into the setting
of continued fraction transformations. We then prove the required results
in this context by extending a theorem of Mayer [10].

In the first section we relate the modular surface to the continued
fraction transformation. In the second section we define the necessary
zeta function and deduce the results we need on its domain. In section 3
we prove the asymptotic and equidistribution results for closed geodesies
on the modular surface. In the penultimate section we explain the rela-
tionship between quadratic irrationals, quadratic forms and closed
geodesies. In the final section we use the proceeding results to study the
distribution of quadratic irrationals.

I would like to acknowledge the hospitality and support of I.H.E.S.
whilest this paper was being written.

I am grateful to David Ruelle for some interesting remarks.

1. The modular surface

In this section we recall the close connection between the modular
surface and the continued fraction transformation ([18], [19], [1]).

Let H4' denote the Lobetechsky upperhalf plane { s € C | / ( 5 ) > 0 } with
the Poincare metric ds2=(dx2-^dy2)/y2. With respect to this metric
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433CLOSED GEODESICS ON THE MODULAR SURFACE

geodesies on H + are either semi-circles centred on the real line or vertical
lines [2]. The group PSL(2, Z) acts on H^ as linear fractional
transformations, z ->• (az + b)/(cz + d); a,b, c, del, with
ad—bc= 1. Furthermore, all of these transformations are isometrics with
respect to the Poincare metric [2]. The modular surface is the quotient
space ^=H^/PSL{2, Z), with the induced metric. The modular surface
has three singular points: a cusp and two ramification points of orders 2
and 3 at i and (1 + / 3 0 / 2 respectively [8].

-1/2 0 1/2

The curvature of M with respect to the Poincare metric is K= — 1. Our
interest in M stems from it being non-compact, although M has finite area
with respect to the corresponding Riemann measure (The area of M is
27l2/3).

Consider now continued fractions in the unit interval [3]. If 0<;x<l
has the following expansion

a^\_
^2+1

f l 3 + . . .; fli, 02, 03, . .. eZ"

then we denote this by x=[a^ a^ a^, . . .]. The expansion terminates
after finitely many terms if and only if x is rational.

BULLETIN DE LA SOCIETE M ATHEMATIQUE DE FRANCE



434 M. POLLICOTT

Let T: (0, 1) -^ [0, 1) be the continued fraction transformation given by
Tx=l/x—[l/x] i.e. the fractional part of \jx. If x=[a^ a^ a^ . . .] is
irrational then it is easy to see that
{ x } = 0^-1 T~°'~1) [l/(a^ 4-1), 1/aJ. In general we shall not be interested
in rational points.

The periodic points for T are precisely those numbers with periodic
continued fraction transformations i.e. there exists p>0 such that
a^==^, for all n^O. We then denote x=[fli, a^ .. ., dp].

There is a unique T-invariant probability measure on (0, 1) equivalent
to Lebesgue measure called the Gauss measure. The Gauss measure p
can be defined by the Radon-Nikodym derivative

^(x)~.——— [3].
dl log2 (1+x)

Let 7\ M be the unit tangent bundle of M. Define the geodesic flow
(p,: TI M ->• TI M as follows: Given (x, iQe 7\ ̂ . Let y : R -^ be the
unique (unit speed) geodesic with (y(0), y(0))=(x, u) then set
(p^(;c, y)=(y(r), y(r)). Thus closed (p-orbits correspond exactly to closed
geodesies of the same length. In addition, there is a natural (p-invariant
measure m on T^M induced by the Riemann measure m on M and
Lebesgue measure in each fibre (m is called the Liouville measure).

The natural extension of the continued fraction transformation is given
by

f: (0, l)x(0, 1)-.(0, 1) x(0, 1);

where

f: [flo, a^ . . . ] x [ a _ i , a_2, . . .]-^[fli, a^ . . .]x[flo, a^ . ..].

The product measure [i x n is invariant under T and there is a natural
correspondence between T-closed orbits and T-closed orbits. (This defini-
tion of T is not adequate for the case of rational co-ordinates. However,
since these form a set of HXji-measure zero and do not contain the
f-periodic points this will not lead to any difficulties).

Let r : (0, 1) x(0, 1) x Z^ -^ R^ be a function which is finite and conti-
nuous a. e. (n x (i) and let

^{(jc,^, e; t)€(0, l)x(0, l ) x Z 2 x R + | 0 $ r ^ r ( x , ^ e ) ,

TOME 114 - 1986 - N' 4



CLOSED GEODESICS ON THE MODULAR SURFACE 435

where (x, y, e\ r(x, y, e)) is identified with (f(x, >0, <?+1 (mod 2); 0). We
can define a suspended flow ̂ : X-^Xby ^(x, ^, e; ^)=(x, ^, ^; ^+r),
with appropriate identifications.

The following proposition summarises results from [18], [19], [1].

PROPOSITION 1. — There exists a suspension function r and p : X ->• 7\ M
such that

(i) p^^tP'
(ii) A closed ^f-orbit corresponding to a closed

T-orbit {[a,, . . . . a^ a,, . . ., a,. J}?:,

has least period -Hogfl^ol^ • • • ' a^ a^ • • - ̂ -il-
(iii) The map p gives a one-one (period-preserving) correspondence between

closed ^-orbits and closed ^-orbits.
(iv) For a closed T-orbit {[a,,. . ., a^, a^ . . ., flj }^ i the two correspon-

ding closed geodesies (for ^=0 or 1) hai^ /(/ts to H wi'rA endpoints

y(+oo)=[fli, ...,fl2n]»Y(-oo)=-4fli, ...,flJ-1

or

-y(+ x)=[fl3. .... a^,. ^i]. y (—oc)= -[^^. . . ., a^ ^ i ] ~ 1

Y(-oo) -1 0 y(+oo)
Remark. — A n alternative way of generating the continued fraction

expansion for a geodesic was presented in [18]. Consider a geodesic y

BULLETIN DE LA SOCIETE M ATHFMATIQUE DE FRANCE



436 M. POLLICOTT

and call the segment between successive crossings of the fixed geodesic
passing through +00 and i a rotation (about either the cusp or the
ramification point of order 3). Then a,, f= 1, . . ., In counts the number
of successive clockwise (or anti-clockwise) rotations. A sequence which
terminates (corresponding to a rational co-ordinate) is interpreted as a
geodesic which "escapes" up the cusp to infinity.

2. The r|-function

In order to pursue Parry's proof of equidistribution in the next section
we need to establish certain properties of an appropriate complex function
(c/:[H]).

Let F: M ->• R be a continuous function then we can weight a closed
FUy)

geodesic YQH^ by ^(y)= F(<p,x)A, where x is any point on y i.e.
Jo

IF (y) is the integral of F along the length of the geodesic y. Then the
function we will need to study is given by

^ ̂  F) = EY ̂  (Y) exp - sl (y), 5 e C.

Here the sum is over all closed geodesies, and is well-defined for Si(s)> 1.
In practice, we shall only require the family of F'5 to be L^dense. Set

Fr (x, y, e)

fe=f(^ ^ ^)= fp(x, y, e\t)dt then if yo, Yi correspond to
Jo

{k» • • • , ^2n. a^ • • • » ^-i]}?^! by Proposition 1 then:

exp-5/(y,)=n^i[^ • • - ̂  ̂  . . ., fl,_J25, 6?=0, 1

and

/F(Yo)+^(yl)=Z2:o(/o+/l)(k•, ..., ̂  ̂  ..., ^--i]).
By suitable approximation we need only consider the function

n^/)=£:=iZ.,...., ̂ {E^o/^.. • • •. "2,. a,,..., a...,])}
^.^il".' • • • , a ^ , a ^ ....fl,.,]25

where/is a bounded holomorphic function.

TOME 114 - 1986 - N 4



CLOSED GEODESICS ON THE MODULAR SURFACE 437

In order to actually prove the results we need on this r^-function we
shall define ^(z}=^^(z)^z2!le\pwf(z) (where ^(s)>l/2, coeC) and
consider the following zeta function studied by Mayer [10]:

z"
^(zx)=exp^^-^ ^n^iX(k-, • • ., ̂  ̂  • . • » a.-i])

We shall now briefly recall Mayor's results on the meromorphic domain
of this zeta function, where we have been obliged to make modifications
to suit our present needs. We let Z)^= { z | [ z — 1 1 < r} and define B to
be the space of analytic functions g : ^3/2 ̂  C which have a uniform
extension to 2).

Define a Ruelle-Perron-Frobenius operator Li : B ->• B by

(^)^)=E:L^f-l--W-L).\2+n/ \z+n)

Similarly we define a second operator L^ : B -» B by

(^)M-£.-.,^)xf—V—)'.n 1 \z-¥n} \z-¥n} \z^n}

By mimicing the arguments of Mayer [10] (after Ruelle [15]) we can prove
the following

(i) Li, L^ : B -* B are nuclear operators and we write their eigenvalues
as 'k\, \\^ ^3, . . ., and ^, ^.j, Xj, . . . respectively.

(ii) The following are both entire functions of z:

. / , v-oc 2 ^ n^i X(k, . . ., ^, a,, . . ., a,.J)^ ( z , X ) = e x p ^ ^ ^ ' ——————————————,
n " l- t- l) U,,ik, . . ., a^ fli, . . ., a,_i]2

^(z,X)=exp^^(^)n

n

v n^i x^p. • ^ ̂  Qp • • ^ ^-i])[flp • ' •. ̂  Qi^ • • ^ ^-i]2x f l 1 ' • •• '" ^(-irn^ii^ •-^i, ...^.-j2
and thus r - + ^ ( r ^ ) = r f i (r, ^ ) / d ^ ( z , ^) is meromorphic in the entire com-
plex plane [assuming Jf(s)> 1/2].

BULLETIN DE LA SOC1ETE MATHEMAT1QUE DE FRANCE



438 M. POLLICOTT

(iii) We can write d, (z, x) = m 10 - z x?) and

^^n^iO-2^2)-
We are particularly interested in the dependence of ^(zx) on x (and in

particular on s and (o).
Both Ruelle [15] and Mayer [10] observed that d ^ ( z , x) and d^(z, x)

depend analytically on L^ and 1.2, respectively (on the Banach space of
Fredholm Kernals on B). Furthermore, since x -)> L^ L^ are linear and
bounded (provided ^(s)>l/2) it follows that (s, co)-*-^(±l, Xs.J»
^ (± 1, ^ J are analytic, for 91 (s) > 1/2. We can therefore conclude that

Ti(s./)=dlog^(x,J^-X,J)L.oJco

is meromorphic as a function of 5 in a neighborhood of ^(s)= 1 (in fact
for ̂  (5) > 1/2).

We now need more information on the location of the poles for
T| (5, /). From (iii) we have that

^±x„J=^^=l( l :F^)/^^=l( l?x ?)
and therefore

~ ( n V (^\(. m 2\l(s,0)^'^-M^r'^-T^^
+y» (^\, o) ^-^^^
+2-=l^(0/s'())•l-(?l.2(5,0))2•

Using very simple arguments (cf. [12], [14]) one can see that if s= 1 -\-it
then

(a) 1 is never an eigenvalue for L^;
(b) 1 is an eigenvalue for Li if and only if f=0.
Furthermore, since X}==1 is a simple eigenvalue of L i ( s==l ) it follows

that 5=1 is a simple pole for s -^ r\ (s, /). Hence s -»- r\ (5, /) has a single
(simple) pole on ^(s)=l, at s=l, with residue
((d'k\ld(f))l(d\\/ds))(0, 1). (The existence of these derivatives is a conse-
quence of the analyticity of the eigenvalues.)

Following Walters ([22], p. 134) we know that

log^(a, (o)=P(-alogz24-co/(z))

TOME 114 - 1986 - N 4



CLOSED GEODESICS ON THE MODULAR SURFACE 439

= sup -^ [ — a log z2 + co / (2)] dp •+• h (p) | p T-invariant >
I Jo )

where 0<z<l and CT, (O€R. If (o>0 then

PMogz^co.nz))^^)- (logz^p+o) [ fd^

=P(~logz2)+(o(/4l

where H is the Gauss measure, since

P (- log z2) = h (H) - flog z2 ̂  (c/ [22]). Thus

PMogz^co/^PMogz2) f
hm^o+—————————————————^ J"H-

co J

A similar argument with (o<0 gives that

lim^o^^10^2^^^^-10^2^ [f^
(D J

and we conclude that

-^(-logz^co/),,^ f/^-rfco J

The same sort of reasoning can be applied to prove that
. /»i 5

—P^alogz2),^^ logz2^——.
da Jo 6 log

We summarize our conclusions in the following proposition.

PROPOSITION 2. — (i) The function s^r\{s,f) is analytic in a
neighborhood of^(s)^ 1, except for a simple pole at s= 1 with residue

w^.
^ Jo

BULLETIN DE LA S(K IC-TF MATHEMATIQUE DE FRANCE



440 M. POLLICOTT

(ii) The function 5-»r|(s, F) is analytic in a neighborhood o/^(s)^l,

except for a simple pole at s= 1, with residue Fdm (For an L1 (w) dense

set of functions F).
Remark. - In Mayefs original proof he defined L and B slightly

differently. However, since the complex variable seC occur as an expo-
nent we have to make changes.

Remark. — If we had tried to follow more closely the proof for axiom A
flows then we encounter problems. Although analogous results to the
compact case on the spectra of the appropriate Ruelle operator are still
valid the difficulty comes in trying to apply there to extending the zeta
function ([16], p. 93).

Remark. - Traditionally the analysis of closed geodesies on (compact)
manifolds of constant negative curvature is based on the study of the
Selberg trace formula. It is not known to the author if such an approach
could be used to prove Proposition 2 (ii).

3. Distribution of closed geodesies on the modular surface

In this section we want to apply the results we obtained in the previous
section to consider the distribution of closed geodesies on the modular
surface. Here we shall employ Parry's number theory analogy [11].

We can write

r°° {Fdm
t-sd^,(t)^l^)e-sl^=!———^^(s)

Ji s ^ [

where (p(5) is analytic in a neighborhood of ^(s)^l and
Af(0==i^i(y)^F(y) is a P31"11211 summation over closed geodesies y of
lengths l ( y ) satisfying el{'Y)^t(t>\). It immediately follows from the

Ikehara-Wiener Tauberian theorem ([23], p. 127) that A^(t)/r -^ Fdm as

t ̂  4- oo. (We denote this as Ap(0 — Fdm t.)

Let w, be the probability measure formed by equidistributing Lebesgue
measure around closed geodesies of length less than (>0 i.e.

TOME 114 - 1986 - N' 4



CLOSED GEODESICS ON THE MODULAR SURFACE 441

'"'(^L^^FClO/Zi^^/M. Then m, converges to the Riemann
measure on M (in the weak* topology) as t increases. This yields our
main result.

THEOREM 1. - The closed geodesies on M are equidistributed (bv length)
according to Riemann measure m.

Remark. - Using some elementary manipulations of partial summations
we can show that if

^(0=1^,-^- and "(r)=iti(0=Card{YJexp/(y)^r}

then 7t,-(0/it(t)-^jFaw. This is another way of expressing the above

equidistribution result (cf. [11], § 7).
As an immediate corollary we have the following

THEOREM 2 (Sarnak and Woo). - 7c(()~(/logt.
(We write f(t)~g(t) iff(t)/g(t) -»1 as t -^ + oo.)
Because of the way in which the symbolic dynamics were constructed

we can use these estimates to deduce results of a more geometric
flavour. A closed geodesic y corresponding to a periodic continued frac-
tion [a,, . .., a^J first circles a, times in one direction and then a; times
in the opposite direction, and so on. Thus 0(7) = 2 n is simply the number
of times a geodesic "changes direction" during its length. Similarly

"tCt^E.^iXd/t+i.i/itJa,, . . ., a,,, a,, . . ., a,_i])

is the number of times a geodesic orbits the cusp or ramification point
exactly k times any one direction.

^By suitably approximating by analytic functions we can take /= 1 and
/-/li/t+i. i/t) successively to deduce the following

PROPOSITION 3. — (i)

(L'<^,"(Y))/TC(r)~ (^^llogt.

(")

(£..^.(^(o~[^.og(^)],og.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Thus whilest ©(y) and a^(y) are erratically distributed under the ordering
by l(y\ "on the average" they grow as ?(y). [In particular, (0(7) and
Ok (y) are of order I (y) log ((y).]

Remark. — A natural generalization of our results would be to surfaces
formed from co-finite normal subgroups of SL (2, Z). Unfortunately, the
approach we adopted towards extending the r|-function in section 2 does
not readily adapt to these cases.

4. Quadratic irrationals

In this section we shall recount the beautiful relationship between qua-
dratic forms, quadratic irrationals and closed geodesies on the modular
surface (as used by SARNAK [17]).

Consider a primitive indefinite quadratic form e. g.

Q (x, y) = ax2 •+- bxy 4- cy2

where a, b, c are coprime integers [denoted (a, fc, c)= 1] and the discrimi-
nant d^-b2—^^ satisfies d>0 and d is not a perfect square. We say
two such forms Q and Q' are equivalent if we can transform from one to
the other under substitutions of the type

x'^ax-hp^
y=Yx+8y where a, (3, 7, 8eZ, and a 5 — p y = l .

This relation partitions forms with the same discriminant d>0 into equiva-
lence classes. Gauss showed that there are only finitely many distinct
classes for any particular d>0 ([5], § 6).

Those substitutions which preserve a particular form Q = [a, b, c\ are
called the automorphs of Q. There is a very elegant way representing
these automorphs in terms of the solution of Pell's equation. Let
(u, t)eZ x Z\(0, 0) be any solution of Pell's equation

t2-du2=4.

(There exist infinitely many such solutions.) Then this solution defines
an automorph for Q = [a, fc, c] by chosing

a=l/2(t-fcu), P==-CM,

TOME 114 - 1986 - N 4



CLOSED GEODESICS ON THE MODULAR SURFACE 443

y=au, 8=l/2(r+fru).

Let {to, Uo) be the solution for which ^ ^ o ^ ^ o / d ) / ! is least. Then
all solutions (u, d) are generated by

Wt^u^d)^±[\ll(t^u^d)}\ neZ.

(For an interesting account of Pell's tenuous connection with the equation
thet bears his name, see [7].)

The following proposition is due to SARNAK [17].

PROPOSITION 4 (Sarnak). — There is a one-to-one correspondence between
closed geodesies on the modular surface and equivalence classes of quadratic
forms. Furthermore, under this bijection the geodesic y corresponding to
an equivalence class with discriminant d>0 has length 21oge<(.

There is associated with a given quadratic form [a, b, c] two real quadra-
tic irrationals (algebraic numbers of degree at most 2) Q^S^ which are
the roots of the polynomial P(z)=az24-frz+c. The points 61 <6^ on the
real line define a unique geodesic y in H+ which meets the real line at
Y(-oo)=9i and y(+oo)==92. The induced (closed) geodesic y on Ji is
precisely the geodesic corresponding to [a, b, c] in the above proposition.

We recall the standard fact that (reduced) quadratic irrationals are
precisely those numbers whose continued fraction expansion is periodic
([9], p. 144) and ([18], § 3).

In summary, there is a natural one-one correspondence between:
(i) Quadratic irrationals 6,=[flf, .... a^ ^i» • • •. ^-i] with i odd (or

i even).
(ii) Equivalence classes of quadratic forms (of discriminant d>0); and
(iii) Closed geodesies on the modular surface of length 2 log £^.
Thus we can induce a partial ordering on the quadratic irrationals

0<6< 1 by O^e' if and only if e^c^.
(We remark that fd ̂  e^ <^ e x p / 3 [7].)

Remark. - Another abstract application of the modular surface (which
is unrelated to the above) is to index isomorphism classes of elliptic curves
(or equivalently, homothety classes of lattices of C) [20].

BULLETIN DE LA SOCIRTE MATHEMATIQUE DE FRANCE
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5. Distribution of quadratic irrationals

The quadratic irrationals in the unit interval are precisely those numbers
with a periodic continued fraction expansion. Thus not only is the set of
all such numbers dense in (0, 1) but this suggests that there is a high
degree of structure in their distribution. Davenport and Schmidt chose a
particular ordering to prove the following approximation result [6]: There
exists C>0 such that for any 0<a< 1 there are arbitrarily large T>0 and
quadratic irrationals 9=6(T), corresponding to a quadratic form [a, b, c]
with [ a |, | f c | , |c| <T1/3, satisfying |a-e| < C/T.

We shall now consider the question of how evenly the quadratic irra-
tionals are distributed in the unit interval (with respect to the ordering
by £<,).

A quadratic irrational 6==[fli, . . ., a^J corresponds to a pair of closed
geodesic y of length 21oge^. From the symbolic dynamics outlined in
section 1 these closed geodesies correspond to periodic orbits for the
suspended flow (where the corresponding base points for the continued
fraction transformation (the base transformation) are
{[a,, . .., a^ a^ . . . , a,_ J }2^ i). In this context the results of section 2
can be used, as in section 3, as follows. Let n, (r > 0) be the purely atomic
probability measure on (0, 1) by equidistributing measure over quadratic
irrationals 0<6< 1, with e^r i. e.

^=(Z^§e)/P(0 where P(r)=Card {9|c^r}.

Then ^ converges to the Gauss measure 4 (in the weak* topology) as
t -> -+- oc. In this sense we can say the following.

THEOREM 3. — When the quadratic irrationals 0<9<1 are ordered
according to £^ then they are distributed according to the Gauss measure.

In particular, quadratic irrationals are not equidistributed (i. e. distribu-
ted according to Lebesgue measure) although the limiting measure is
equivalent to Lebesgue measure.

Following the lines of section 3 we can deduce additional information
about the distribution of digits in the continued fraction expansions of
quadratic irrationals.

Let e=[flp . . ., a^ and denote: a)(6)=/?, the period of the continued
fraction expansion: and 0^(6) the number of times fl,==fc,
f = 1, . . . , / ? . Then we have the following asymptotic avarages.

TOME 1 1 4 - 1986 - N 4



CLOSED GEODESICS ON THE MODULAR SURFACE 445

PROPOSITION 5:

(" .̂'"̂ [N )̂}̂
(") (^.^(e^PW^^^Iiogt.

This proposition shows that although the values of o^(9) and Q)(O) are
erratically distributed with respect to £„, "on the average" co(9) and 0^(9)
grow as the logarithm of ^ [and in particular 0^(0) and (o(0) are of order
^logej.

We recall Khintchine's classical result that for almost all
x=[a^ a^ a^ . . .]

^ IVN , , n°o r^+o'T8'71092
o) ^,,iog îogn^[ ĵ
If we take P (9)=^, log a, [and set/([;Co, x^, .. .])=logXo in section 2]
then we have the following proposition.

PROPOSITION 6:

(2-..,P(»»/(I,.,«>(e»<io,a-.,[̂ p"'"

Of course, since the algebraic numbers are denumberable (and thus form
a set of zero Lebesgue and Gauss measure) these two results are
independent. However, Proposition 6 supports our choice of ordering of
quadratic irrationals.
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