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ON THE COHOMOLOGY OF NILPOTENT
LIE ALGEBRAS

BY

CH. DENINGER AND W. SINGHOF (*)

RESUME. — A une algebre de Lie graduee Q de dimension finie on associe un
polynome P(fl). La longueur de P(fl) donne une borne inferieure pour la dimension de la
cohomologie totale de fl. II y a des applications au rang toral des varietes differentiables
et a la cohomologie des algebres stabilisateurs de Morava.

ABSTRACT. — We associate to a graded finite dimensional Lie algebra Q a
polynomial P(fl). The length of P(e) gives a lower bound for the dimension of the total
cohomology of fl. There are applications to the toral rank of differentiable manifolds
and to the cohomology of the Morava stabilizer algebras.

1. Introduction
Our main objective in this note is to give lower bounds for the

dimension of the total cohomology of finite dimensional nilpotent Lie
algebras. According to DIXMIER [4] all Betti numbers with the exception of
the zeroeth and the highest are at least two. Hence dimH*(^) > 2dimfl.
For dimensions one to six except five there exist nilpotent Lie algebras
with dimJJ^fl) == 2 for 0 < i < dimg. In dimension 5 however
dimJf*(fl) > 12 as the classification of these Lie algebras in [5] shows.
All other available evidence points to the fact that in higher dimensions
Dixmier's estimate is by no means best possible.

We are mainly concerned with graded finite dimensional Lie alge-
bras fl = ©,>i dj. These are necessarily nilpotent and admit nontriv-
ial automorphisms. Calculating their Lefschetz numbers we show that
dimJf*(fl) > length?, where P = n ( l - T "̂11^ and the length of a
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4 Ch. DENINGER AND W. SINGHOF

polynomial is defined as the sum of the absolute values of its coefficients.
In many examples even the actual values of the individual Betti numbers
can be read off from P.

The estimation of length P belongs to analytic number theory and
combinatorics; however, we did not find any result in the literature which
could be applied in our situation. In Section 3 we therefore develop a
method based on the consideration of normed algebras which for example
leads to the following result : For graded Lie algebras fl = ©^i aj with
n fixed, dim^f*(fl) grows exponentially with dimfl.

We have two applications in mind : The first is to the toral rank of a
differentiable manifold [8]. This will be considered in (3.3). The second
concerns the cohomology of the Morava stabilizer algebras and is dealt
with in section 4.

We would like to thank Th. BROCKER for a remark on the length of the
discriminant and D. WEMMER for his valuable help in writing computer
programs.

2. The polynomial associated to a graded Lie algebra
Let 0 be a finite dimensional Lie algebra over a field K of characteristic

zero and let / be a (Lie algebra-) endomorphism of Q. We define the zeta
function Q(T) € K(T) of / by the formula

C/(^)=^det(l-^/*l^(fl;^))(- l)^+l•
i

Although we will not need it we observe that Cf(T) has a functional
equation if Q is nilpotent and A = det/ ^ 0. Setting N = dims and
e = rLdetCri^giA')^-1^"* it takes the form

1 \<-^w-^)"
For N even we have e == ±1 since the Euler characteristic of g vanishes.

00 TV
(2.1) LEMMA . — C/(T) = exp^det(l - /"Ifl)— in K[[T]].

^=1 ^
Proof. — Clearly

(2.1.1) det(l-ng)=Y^(-l)i^r(r't\^iB^
i

=^(-l)iT[(rl'\Ht(e•,K))
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ON THE COHOMOLOGY OF NILPOTENT LIE ALGEBRAS 5

since /* commutes with the differential on Afl*. Using the well-known
formula 00 Tip.

dei(l-T(p)~1 =expyTr((^)—
^=1 ^

which holds for any endomorphism (p of a finite dimensional ^-vector
space ([9], App. C), we obtain

expf^detO-^l^^^exp^-l)^^^!^^;^))^
/A=l pl i /X=l ^

=^det(l-^r|^(s;^))(-l)^+l.
i

Let / have eigenvalues A i , . . . , A ^ v m the algebraic closure K of ^C.
For an TV-tuple K = ( /^ i , . . . , i^pj) of non-negative integers we set A^ =
\^ ... X^ ; we put 6(/) = {0, l}^/ ~ where K ~ ^' iff A^ = A< We
have

JV

det(l -/) = JJ(1 - A,) = ^ a^witha^eZ.
1=1 ^ee(/)

Replacing / by f^ we find

det(l-/^|fl)= ^ a,A^.
^ee(/)

Substituting this in (2.1), we conclude that the reduced form of the
rational function Cf{T) in K(T) is

Cy(T)= n (l-A-T)—.
^€Q(/)

In particular :

(2.2) LEMMA . — dmH^^K) > ^ |a^|.
^e(/)

This lemma is of course only useful if there are nonzero endomorphisms
of fl with all eigenvalues different from 1. For the common nilpotent Lie
algebras it is quite frequent that they admit automorphisms of this type.
However, in [7] there was constructed a seven dimensional nilpotent Lie
algebra with only nilpotent automorphisms.

We will consider finite dimensional Lie algebras Q which are multi-
graded in the following sense : fl = O^^n c^ as vector spaces with do = 0

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



6 Ch. DENINGER AND W. SINGHOF

and [di,, a^] C a^p, for v^ € Z71; anticommutativity and Jacobi identity
are supposed to hold in the usual and not in the graded sense.

Set K(Y) = ^(Yi,..., Vn) where Yi , . . . , Yn are indeterminates and
letg/j<(y) be the Lie algebra deduced from fl by extending the ground
field from K to K(Y). We obtain an automorphism fy of Q / K { Y ) by
defining fy(x) = Yvx for a- C c^. Applying (2.1.1) in this context we see
that the following identity is valid in K(Y) :

(2.3) ^(-1)- TY(/^(fl/^y); K(Y))
i

= det(l - fy\Z/K(Y)) = n(1 - ̂ )dima•/.
I/

The polynomial Pg(V) = ]"^(1 - Y^)^^ will be called the polynomial
associated to the graded Lie algebra Q.

Observe that the dimensions of cohomology groups don't change under
field extension. From (2.2), or alternatively directly from (2.3) using the
fact that the eigenvalues of fy on f^Q/K(Y) 8Lr^ Z-linearly independent, we
conclude :

(2.4) COROLLARY. — Let Q be a multigraded finite dimensional Lie
algebra as above. Write Py(Y) = ]~[^(1 - Y^)^^ = ^^a^Y^ in
Z[V] = Z[yi,.... y,]. Then dim^*(g; K) > ̂  |aJ.

Clearly if an n-grading is refined to an m-grading for n < m in (2.4)
then the lower bound obtained from the latter will be at least as good as
the one obtained from the former.

In many natural examples of multigraded Lie algebras 0 the eigen-
values of fy belonging to different cohomology groups are different. If Q
admits only a simple grading sometimes the following holds : If Y^ are
eigenvalues of jy on H1 then i < j implies Oi < Oj. In such cases by
(2.3) the individual Betti numbers of 5 can be obtained by grouping to-
gether consecutive terms of the same sign in the associated polynomial.
These remarks apply in particular to the maximal nilpotent Lie algebras
in semisimple Lie algebras, to all the Heisenberg Lie algebras and to all
nilpotent Lie algebras of dimension at most five. However they are not
true in complete generality as follows from (2.8) below. Perhaps for some
natural class of graded Lie algebras a version of the Weil conjecture holds
true asserting that the different factors det(l - Tf^\H^(Q/K{yY,K(Y)) of
the zeta function <^y (T) are pairwise prime.

(2.5) Remark. — If fl/z is a Lie algebra over Z let s/p denote the
Fp-Lie algebra obtained by reducing the structure constants mod p and
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ON THE COHOMOLOGY OF NILPOTENT LIE ALGEBRAS 7

Q/Q the associated Q-Lie algebra. Then for all p we have

dim^(fl/F,;Fp) > dim^T(fl/Q;Q)

with equality for almost all p, as follows by inspection of the Koszul
complex. For suitable Q / z this allows to extend the estimate of (2.4)
tOS/Fp.

Recall that a Lie algebra is called homogeneous if it is a quotient of
a free Lie algebra on finitely many generators by a graded ideal. Any
homogeneous Lie algebra is simply graded,

s=ea,
j>i

and the vector space Oy is isomorphic to the quotient g^'^/fl^ where
g == g(°) 3 g(1) 3 ... is the descending central series of fl.

(2.6) COROLLARY. — Let Q be a finite dimensional homogeneous Lie
algebra and denote by nj the dimension of fl^~1^ /s^.

Write ' JJ(1 - X3)^ = ̂  akXk in 1[X].
3 k

Then dimH*(Q',K) > ̂ M.
k

The next result may be used to improve the estimate of (2.2) in certain
cases :

(2.7) PROPOSITION. — Let g be a nilpotent Lie algebra of odd
dimension -^ 1, 3, 7 defined over Q. Then dimJf*(s; Q) = 0 (mod 4).

Proof. — Let G be the simply connected Lie group with Lie algebra Q.
By results of MALCEV [11] there exists a lattice F in G. It is classical that
bi(Q) = bi(G/F). Since G/T is parallelizable, all characteristic numbers
vanish. Hence the real and the mod 2 semicharacteristic coincide by [10].
Theorems of ADAMS and KERVAIRE (compare [2]) then imply that the
semicharacteristic of G/F vanishes. The result follows.

(2.8) Example. — There is a Lie algebra g of dimension 11 with the
following properties :

(a) fl has a basis x\^..., x\\ with brackets [a^, xj\ = aijXi^j for i < j
and aij € Q, a^ ^ 0 for i + j < 11.

(b) &i ( f l )=W=2.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



.8 Ch. DENINGER AND W. SINGHOF

Because of (a), Q is simply graded in a natural way and doesn't admit
a nontrivial bigrading. Its associated polynomial is given by P(T) =
]~[^i(l - T^. It has length 54 ^ 0 (mod 4). Hence dim^f*(s) > 56
by (2.7).

3. Estimates for the length of associated polynomials
For simplicity we will restrict attention to polynomials in one variable.

For P(T) = Y,ajT3 in C[T] we set L(P) = ^l^l- If ^ is a normed
algebra and x € A with ||.r|| = 1 we have L(P) > ||P(.r)||. We
apply this to A = My.(C), the algebra of r x r matrices with norm
||a;|| = max^(5^ |^J) for x = (xy^) in A. For x choose the permutation
matrix

/O 1 ... 0\

0 .
<1 0

1
O/

in Mr(C).

In order to calculate P(x) we diagonalise x. Set p = exp(2m/r) and
5 = (5^)o<i/,/x<r-i where 5^ == ^/A. Then 5~1 = l/r(5^) and x =
^diag^p,...,//'-1)^-1. Thus

P(.^)=5diag(P(l),P(p),...,P(pr-l))5-l.

Working out this matrix product we obtain the following estimate for the
length of a polynomial.

(3.1) LEMMA. - L(P) > ||P(.r)|| == ^ ̂  ̂ P(^)^
^=o i/=o

We remark that for r > degP we have L(P) = ||P(*r)||. Now in
particular we consider polynomials of the form

k

P(T) = JJ(1 - T3)^ with rij > 0.
j=i

(3.2) PROPOSITION. — L(P) > 2^ w/^ere A^ = max{y^ | j > A;/2}.
Proof. — Fix an integer j with A;/2 < j < k. Then we have to show

that L(P) > 2^. We proceed in three steps :

Step 1. — Assume that nj > 2. Define P(T) e Z[T] by P(T) =
P(T)(1 - T-7)"1. We choose r = 2j in the above discussion and show that

||P(^)||=2||P(r.)||.

TOME 116 — 1988 — ?1



ON THE COHOMOLOGY OF NILPOTENT LIE ALGEBRAS 9

This follows immediately from (3.1) since

P(^) = 2P(p^/) for p = exp(m/j) and all v.

(For even v this requires nj > 2).

Step 2. — We show that ||P(:r)|| > 2^-1 : Define Q(T) e Z[T] by
Q(T) = P(r)(l - r^')-^-1). Then

||P(.c)||=2^-l||0(.^)||

by Step 1. Therefore we have to show that ||0(.r)|| > 1. Now Q(x) has the
eigenvalue Q(p), and Q(p) -^ 0 because of j > k /2 . Hence Q(x) -^ 0. On
the other hand, Q(x) is an integral matrix and therefore ||0(.r)|| > 1.

Step 3. — We show that ||P(.r)|| > 2^ : Let m € N be arbitrary. Since
HP^II < ll?^)!!771 we have ||P(.r)|| > HP^)7"]!1/7^. Applying Step 2 to
the polynomial P771 we conclude that ||P(;r)|| > (2m^-l)l/m = 2n-'-l/m.
As this holds for all m, the assertion follows.

(3.3) Remark. — Let fl = (f)^ a^ be an evenly graded finite
dimensional Lie algebra with center 3. As the authors learned from
V. PUPPE, the study of the toral rank of a differentiable manifold (e.g., [8])
led to the conjecture that dim^f*(fl) > 2dim3. From (3.2) we obtain the
somewhat weaker conclusion

dimir(s) >2dima2n.

If g has order of nilpotency 2 (i.e. if [s, [fl, fl]] = 0), this implies easily that
dim^f*(g) > 2dim3.

(3.4) Remark. — By a more careful argument, PROPOSITION (3.2) can
be improved. For instance one can show

L(P) > 2^ Vk^ with m = min{ni , . . . , nk-i}.

The next theorem implies that for graded Lie algebras g = ©^i aj with
A* fixed, dmH*(g) grows exponentially with dimfl.

(3.5) THEOREM. — Consider P(T) = n^=i(1 - Tj)nj and set
q = p-^/p for any prime p > k. Then

L(P) > q^.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



10 Ch. DENINGER AND W. SINGHOF

In particular for s = (D*Li Oj as above we have

dimir(fl) >gd imf l .

Proof. — We choose r = p and hence p = exp(2m/p) in the argument
at the beginning of this section. Again x denotes the above permutation
matrix.

Step 1.— For j ^ 0 (mod p) we have \\P(x^)\\ = \\P(x)\\ : Since
p is prime, .T-7 = sxs~1 with a permutation matrix s. Obviously \\s\\ =
H^-1!! = 1 and thus from P(x^) = 5P(a')5-1 we obtain |[P(^)|| < HP^)!!.
Similarly ||P(^)|[ > \\P(x)\\.

Step 2. — Set Q(T) = ]Y^ P(T1). According to 5'̂ p ^ ||0(.r)|| <
IIP^)]^-1. Set m = ni + • • • +yife. As ̂  = 1 we have Q(.r) = Q(a;) where
QW = n^l-^)771- Hence ||P(:r)|| > ̂ Q^/P-1. Thus it suffices to
show that ||Q(.r)|| ^p771.

Step 3. — We set Q(T) = A(T) n^i^l - T1). Arguing as in 5'̂  3 of
PROPOSITION (3.2) it suffices to see that \\Q{x)\\ == p||.R(;r)|| in case m > 1.
By LEMMA (3.1) this will follow from Q(^) = pR(p1') for 1 < v < p - 1.
But this amounts to n^^(1 - P1'3) = P which in turn is a consequence of
the identity ̂  - 1 == ric^i^ - 0-

4. Some remarks on the cohomology of the Morava
stabilizer algebras

We refer to [12], [13], [14] for background on the Morava stabilizer
algebras and their relation with the I^-term of the Novikov spectral
sequence. According to [14] for p > n + 1 the cohomology of the Morava
stabilizer algebras is related to the Fp-cohomology of the following Lie
algebras M(n) : For n € N let M(n) be the Lie algebra with basis x^ for
1 < i < n, j e ~S-jn and brackets

[ x i j , Xke] = -f ̂ +j^W ~ ̂ -^z+M for z + A; < n,
I 0 for i + k > n.

Here 6f = 1 for i = j (mod n) and ^ = 0 otherwise. Clearly M(n) is
defined over Z. The center a(n) of M(n) is generated by Xnj, j C Z/n.
We set M(n) = .M(n)/a(n). The algebra M(n) should be visualized as
follows : Let S1 be the unit circle and ^n C 51 the group of n-th roots of
unity. The Xk£ are represented by intervals on S1 intersected with ̂  ^kn
has length k (i.e. contains k n-th roots of unity) and its starting point

TOME 116 — 1988 — ?1



ON THE COHOMOLOGY OF NILPOTENT LIE ALGEBRAS 11

is exp(2m£/n), going from there in the sense of the usual orientation.
(For k = n, Xnt is given as /^ together with the distinguished point
exp(27r^/n)). The bracket [xi^x^] is zero if x^ and rr^ are not disjoint
or if their union doesn't form an interval. In the remaining cases [xij, Xk(\
is given by ±Xij U x^ with the sign determined by orientation.

We set ek = (0... 1... 0) with 1 at the k-th place where 1 < Jfc < n
and k = k (mod n). An n-grading on M(n) is defined by setting M(n) =
®^zn a^ where Xij e a^+...+e^_^. The automorphism /y of (2.3) on
M(n)/K(Y) is given by fv(xij) = Yj.. .Yj^^Xij where Yk = Y-^ with
fc as above. For the associated polynomial of M(n) with respect to this
grading we obtain

PMW(Y) = det(l - /y | M(n)/K(Y))

= n (i-^-.-^-i)
l<z<n

M 1) ^ (mod n)

=( n (i-y,...^-1^-!))
l<J<fc<n v 1 "•rn / /

x^-yi...^)71.
Analogously :

^(n)^)- n (l-^-^-l)^-1———^).
Kj<A;<n '< 1 • • • ln /

The length of -P^^) may be estimated as follows.
Clearly :

length P^ > length fj (1 - y, ... y,_i)2
l<j<fc<n

= length tj (r,-r,)2

l<j<fc<n

as is seen by substituting Yj = Tj/T^ The Vandermonde determinant
shows that n^^n^k -Tj) has length equal to n!, hence the discrimi-
nant Dn = Tl^^n^k-Tj)2 has length at most (n!)2. We have length
(Dn) = (n!)2 for n = 1,2,3,4. However in general the length of Dn is less
then (n!)2. According to (2.4) and (2.5) for all primes p we have

dimp, H^M(n)^ Fp) > length ]J (1 - ̂  ... ̂ +z-i)
ij (mod n)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



12 Ch. DENINGER AND W. SINGHOF

and all evidence points to the fact that there is equality for large primes p.
In particular this is true for n = 1,2 (easy) and for n = 3 by Theorem (3.8)
of [14].

We close this section by making some remarks on the relation between
the cohomology of M.(n} and the cohomology of maximal nilpotent
subalgebras of semisimple Lie algebras. By n(n) we denote the Lie algebra
of strict upper triangular n x n-matrices over a field K. Let y^ C n(n)
have 1 in position (j, i + j) and zero elsewhere. We obtain a Lie algebra
homomorphism .M(n)-^n(n) by defining ^p(xij) = yij for 1 < j < n - i
and ^p{xij) = 0 otherwise. Then a = Ker<^ is an abelian ideal of M(n) of
dimension n(n -(-1)/2.

(4.2) PROPOSITION. — For any field K the spectral sequence

^(11(71); A^a) =^ H^^M^ K)
degenerates. Hence we have

H\M(n);K)^ (]) HP(n(n),A"a)
p-\-q=i

and H*(n(n)',K) is a subalgebra of H*(M(n);K).

Proof. — We may assume that K = Pp(T) or K = Q(T). We
define an automorphism / by setting /|a == T - id and f(xij) = Xij for
1 < J < n—1 (f is obtained from /y by specialization Y\ = • • • = Yn-i = 1
and Yn = T). On ^(11(71)^0) it is multiplication by T9. Hence all
differentials vanish.

Remark. — The ranks of IP(n(n); R) are known for R = Q by work
of BOTT [1] and for R = Z(p) with p > n - 1 by [6]. The multiplicative
structure of H*(n(n)', Q) follows from a result of KOSTANT and CARTIER
(cf. [3]), which applies to all maximal nilpotent Lie algebras in semisimple
Lie algebras :

Let K be a real compact connected semisimple Lie group with maximal
torus r, let G = Kc be the complexification of K and denote by t, t and fl
the respective Lie algebras. We denote by $ the root system of K and by W
the corresponding Weyl group. We choose a basis B of $, write S^~ for the
positive roots, $~ = S^ and set p = 1/2 ]>^$+ a. The length £(w) of an
element w 6 W is defined as the minimal number q of reflections 5 i , . . . , Sq
in hyperplanes orthogonal to elements of B such that w = s ^ . . . Sq. We
have £(w) = #$^ where $w = $^ Hw"^". The Lie algebra g decomposes
as g = tc C ®^$ Qa with Qa = {x C Q \ [u, x] = a(u)x for all u e t}. Let
n = ©Q^$+ Qa be the maximal nilpotent subalgebra of g.

TOME 116 —— 1988 —— N° 1



ON THE COHOMOLOGY OF NILPOTENT LIE ALGEBRAS 13

(4.3) Let a be the representation of T on Jf*(n,C) induced by Ad :
T -^ Aut(n). Then

a) ^*(n,C) = ©^^y- with Vw = {c e ^*(n,C) | ^)c ==
g(p-wp)(n)^ for ̂  ̂  ̂  ̂

b) ^ C ^^(n^C), dimY^ = 1.
c) There exist generators v^ in Vw such that the following holds :

If w, w' € W are such that $w Fl Sw7 = 0 and $w U $w' = $w'7 for some
w" € W then

^w U ̂ w' = ̂ ^w'7 •

In any other case
Vw U z^ = 0.

d) The sign e in the relation ̂  U v^j' = ^w7' can be determined as
follows. Choose an ordering of $^~ and generators Xa of fl^ for a € S"^.
Then t;̂  is represented by the cocycle Xw = ^ai A ... A 3*0^ e An* with
$^ == {ai, . . . ,o;^} and ai < • • • < o^. Similarly for ̂  and ^w". Then
*^*w • ^ ^w1 — €.Xw11 •

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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