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MORSE THEORY AND EXISTENCE OF PERIODIC
SOLUTIONS OF CONVEX HAMILTONIAN SYSTEMS

PAR

ANDRZEJ SZULKIN (*)

RESUME. — On s'interesse au probleme d'existence des solutions periodiques non
constantes des sytemes hamiltoniens convexes. Les solutions correspondent aux points
critiques de la fonctionnelle d'action duale ip. On montre que si C est 1'orbite (sous
1'action naturelle de S1) d'un point critique u 7^ 0 de ^ et si U est un voisinage de C
convenable, alors la paire ({^ < ^(u)} D (7, {ip < ip(u)} n U — C) a la structure d'un
fibre relatif de base C. Utilisant cela et des formules d'iteration pour 1'indice de Morse
on montre qu'il y a au moins deux trajectoires hamiltoniennes fermees sur une surface
d'energie convexe. Pour la demonstration on suppose qu'il n'existe qu'une trajectoire.
On calcule alors certains nombres de Morse et on voit que les relations de Morse ne
sont pas satisfaites.

ABSTRACT. — The paper is concerned with the problem of existence of nonconstant
periodic solutions of convex Hamiltonian systems. The solutions correspond to critical
points of the dual action functional ^. It is shown that if C is the orbit (under the
natural ^-action) of a critical point u ̂  0 of ^ and if U is a suitable neighbourhood
of C, then the pair ({^ < ^(u)} H U, [^ < ip(u)} n U - C) has the structure of a fibre
bundle pair with base space C. Using this and iteration formulas for the Morse index
it is shown that there are at least two closed Hamiltonian trajectories on a convex
energy surface. The proof is carried out by assuming that there is only one trajectory,
computing certain Morse type numbers and showing that the Morse relations are not
satisfied.

1. Introduction
In this paper we are concerned with the problem of existence of

nonconstant periodic solutions of Hamiltonian systems of differential
equations

x = JH\x).

(*) Texte recu Ie 19 septembre 1986, revise Ie 11 juin 1987.
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172 A. SZULKIN

Here H eC2^271^) and

J - ° r"l-^ 0 ,=( ° ^^-J 0;

is the usual symplectic matrix. We shall denote by ( , ) the inner product
and by | | the norm in R271. Suppose that H satisfies the following
hypothesis :

r H C C^R2", R) H C2^ - {0}, R) is strictly convex,
(HI) ^ J^) > H(0) = 0 V.r e R^ , x / 0,

^(rc)!^]"1 —^oo as |.r| —> oo.

Let
G(y) = SMp[(x,y) - H(x) : x C R271}

be the Fenchel conjugate of H [1]. By (HI), G is strictly convex and of
class C1. According to the Legendre reciprocity formula,

y=H\x) if and only if x = G\y).

Furthermore, if x / 0 and H"{x) is invertible, G is C2 near y = H ' ( x ) and
G"(y) = H"{x)~1. In addition to (HI), suppose that there exist constants
a, f3 € (1, oo), a-1 + l3~1 = 1, and c, such that

(H2) f?|<^rl+^ V^/CR2 7 1 ,
UJr(>r)|<c3M/?- l+C4 V^CR2 7 1 .

Set

L^^eL^O.r; R271): f udt=0\

and let ^ be a functional given by

^

/o

^(^^ / ^(J^Mu)+G(-Ju)}J o L -i
•2A,M?A)+C?(-J^)J^,

where M^ is the primitive ofz6 having mean value zero. Denote the duality
pairing between L0 and 2^ by ( , ). It follows from the hypotheses (HI),
(H2) that ^ is well defined, of class C1 on Z^, and

(^(u),v) = ( (Mu - G\-Ju),Jv\ dt.
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HAMILTONIAN SYSTEMS 173

It is well known [1, 6, 8] that if x is a solution of

W x = JH\x), x(0) = x(T),

then u = x is a critical point of ^, and conversely, if u is a critical point
of -^, then x = Mu + ^ is a solution of (1) for some ^ e R271. So under
our hypotheses finding solutions of (1) is equivalent to finding critical
points of ^. Following [9] we shall call a solution x of (1) admissible if it
is nonconstant and if H"(x(t)) is invertible for all t.

The functional ^ is invariant under the S^-action given by Seu(t) =
u(0 +1) (we identify T-periodic functions on IR with their restrictions to
[0,r]). Thus, if u ^ 0 is a critical point of ^, then so is SQU for all (9. It
follows that the orbit of zZ,

C(u) = {Sou : 0 < 6 < T}

consists of critical points. The set C{u) will be called a critical circle.
Note thaUf u = d x / d t , where x is an admissible solution of (1), then the
function u is of class C1 and so is the mapping 6 ̂  Sou. Hence C(u) is a
(^-submanifold of 2^.

In [8, 9] EKELAND and HOFER use Morse theory in order to find
solutions of (1). Since ^ may not be of class C2 on L^ and since L^
is not a Hilbert space (unless a = 2), Morse theory cannot be applied
directly. To get around this difficulty, they reduce the problem to a finite-
dimensional one which, however, no longer has the ^-symmetry (still, it
does have Zp-symmetry for an appropriate p).

In this paper we propose a different approach to (1). Let

^b={ueL^ :^(u) <b}.

In Section 2 we show that if u is a critical point of ^ corresponding
to an admissible solution x of (1), if ^(u) = b and C(u) is the orbit
of u, then for a suitable neighbourhood U of C(u) the pair (^ D U,
^b H U - C(u)) has the structure of a fibre bundle pair with base space
C(u). In Section 3 we demonstrate that the corresponding fibre pair has
the homotopy type of (^,Xb - {0}), where x is a function of class C2

defined in a neighbourhood of the origin in a finite dimensional space. The
remaining sections are devoted to the proof of the fact that there exist
at^east two closed Hamiltonian trajectories on a convex hypersurface in
H n, n > 3. Arguing by contradiction, we assume that there is only one
such trajectory, and then, using the results of Sections 2-3 and iteration
formulas for the index [8, 17], we compute certain critical groups and
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174 A. SZULKIN

corresponding Morse type numbers Mq [5, 22, 23]. The conclusion follows
by observing that the Mq do not satisfy the Morse relations. Existence
of two closed Hamiltonian trajectories has also been proved by EKELAND
and LASSOUED [12], cf. also [II], by means of different methods.

I would like to thank C. VITERBO for helpful discussions.

2. A fibre bundle structure

Throughout this section we assume that (HI), (H2) are satisfied, x is
an admissible solution of (1), u = dx/dt and C = C(u) is a corresponding
critical circle of ^ in L^. Recall that C is a 1-dimensional (^-submanifold
of L^ (diffeomorphic to S1).

According to [16, Proposition III.5.8], the restriction of the tangent
bundle of L^ to C, T(L^)\c, splits and

TW^=T(C)ON(C).

The normal bundle N(C) may be chosen in such a way that the fibre at
u C C consists of all v C L^ which satisfy {Ju, v) = 0 (note that u C Ty,(C)
and (Ju,u) / 0 because for each fixed t,

(Ju(t),u(t)) = (Ju(t),x(t)) = (Ju(t),JH"{x(t))u(t)\

=(u(t)^Hff(x(t))u(t))

and H"(x{t)) is positive definite). On T(L^) we may define an exponential
mapping by expjv) = u + v. Using the argument of [16, Sec. IV.5] it is
easy to show that the mapping (u, v) ̂  u-^-v, where u e (7, v C A^(C), is
a homeomorphism in a neighbourhood of the zero section of C in N ( C ) .
Summarizing, we obtain the following

LEMMA 2.1. — There exists a neighbourhood U of C in L^ such that
each w C U can be uniquely represented as w = u + v, where u C C and
(Ju,v) =0.

Suppose that u has minimal period T / k , k > 1 an integer. Let UQ be a
neighbourhood of u in the set

u^rNn{C)= ^u+v:veL^ {Ju,v)=0\

and let U = S^^Uo (i.e., U is obtained from UQ by taking orbits under the
^-action). If Uo is small enough, U satisfies the conclusion of LEMMA 2.1
and all u G U have minimal period greated than or equal to T / k .

TOME 116 — 1988 — ?2



HAMILTONIAN SYSTEMS 175

PROPOSITION 2.2. — Set ^(u) = b and let UQ, U be as above. Then
('05 D U, ^b ^ U — C) has the structure of a fibre bundle pair with base
space C and fibre pair (^ H UQ, ̂  D Uo — {u}).

Proof. — The definition of fibre bundle pair may be found in
[24, Sec. 5.7]. Let I C IR be an open interval of length less than T / k
and let

V = \u^C :u= Sou for some 0 e j}.

Such sets V cover C. Consider the mappings p : ̂  H U —> C given by
p(u + v) = n, where u C C and (Ju, v) = 0 (cf. LEMMA 2.1), and

a : V x (^ H Uo , ̂  H Uo - {u}) -^ (p-\V) , p-\V) - C)

given by a(u^u + v) = u + 5^, where 0 is the unique number in I
such that u == Sou. One readily verifies that a is a homeomorphism and
pa : V x (^5 D Uo) —> V is the projection on the first factor. Q

3. Structure of the fibre pair
In this section we assume again that (HI) and (H2) are satisfied, x is

an admissible solution of (1) and u = d x / d t . Recall that u is of class C1.
It has been shown in [9, Lemma 11.1] that the symmetric bilinear form

Q(u) : H x Lg -> H given by

/•r
(2) Q(u){vi,V2)= / (Jz>i,Mz;2)+ {G"(-Ju)Jv^,Jv^) \dt

Jo L J

is well defined. Formally, Q(u)(vi,v^) = {^"{u)^^^^)^ but ^ ' ( u ) may not
exist (in particular, it can never exist if 1 < a < 2). Let K^ A: Z/§ —> Z/§
be given by

Kv == —JMv^

Av = -JG\-Ju)Jv + 1 / JG^-J^Jvdt.
^ - J Q

Then G(u){v^v) = {Kv,v) + (Av^v). Recall that the index of the
quadratic form Q(u) is the maximal dimension of a subspace on which
Q(u) is negative definite and the nullity is the dimension of the kernel of
K+A.

LEMMA 3.1. — There exists a base (e,)^i of L^, a e ̂ ([O.r],^),
and a corresponding sequence of real numbers (A^) such that Ke^ = A^Ae^,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



176 A. SZULKIN

{Aei.ej) == 6 i j , \i —>• 0 and \i ^ 0. Furthermore, ij v\ = ̂ o;^ and
^2 = SA^, ^en

(3) Q(n)(^2)=]^(l+A,)a,A

(m particular, setting v\ = v^ one sees that the index and the nullity of
Q(u) are finite).

Proof. — The argument we sketch here is essentially contained in [8,
pp. 36-37]. Since the operator A is selfadjoint and positive definite, it
has a square root which is invertible in L^. Moreover, K is compact and
Kv ^ 0 if v 7^ 0. It follows that there exist sequences (e^) and (A^) such
that Kei = \iAei, (Ae^, ej) = 6^;, \i —> 0, \z / 0 and (e^) is a base of L§.
A simple computation gives (3). The equality Ke^ = \iAei is equivalent to

G r"(-J^)Je,=A,- lMe,+^

where £, C R271. Since Mei and G"{—Ju)~1 are continuous, so is e^. D

LEMMA 3.2. [9, Lemma 11.5]. — There exist 6 > 0, k > 0 and
77 C ^(R^.H) such that kl < ~H"{x) < k-1! \/x e R272, and if
Mmt\x - x(t)\ < 6, then H{x) = H(x).

Let G denote the Fenchel conjugate of H and let

(4) ^(u) = [ \^(Ju,Mu)+G(-Ju)\dt.
Jo L J

Using LEMMA 3.2 and the fact that u{t) = J H ' ( x ( t } ) one readily obtains
the following result which is implicitly contained in [9, § II].

LEMMA 3.3.
(i) kl < G " { y ) < k-1! \/y C R^.
(ii) There exists a constant 6* > 0 such that ifMmt\u — u(t)\ < 6*,

then G(^Ju) = G{-Ju). _
(iii) ^ is of class C2 in L^ for each p 6 (2, oo) and ̂  is twice Gateaux

differentiable in L^.
Next we perform a finite dimensional reduction of ^ near u. Let (e^)

be the base of L§ given in LEMMA 3.1. Set W = span{ei, . . . ,e^} and
ZQ = span{e^+i,e^+25 • • •}• Then L§ == W © ZQ. Since —JM is compact
and ^

{^"(u)v,v}= [ \(Jv,Mv)+{Gf\-Ju)Jv,Jv)}dt
Jo L J

rT
> (Jv,Mv)dt+k\\v\\i V^ .vCLg

Jo

TOME 116 — 1988 — N° 2



HAMILTONIAN SYSTEMS 177

(|[ ||p denotes the norm in 1^), one may find a number j and a constant
c > 0 such that

(5) (^(^^clHli wez / 2 , z e Z o .

Lei_u = u 4- w + ^, where w C TV, ^ € Zo- By (5), the functional
^ ̂  ^(?Z +1^ -h z) is strictly convex Vw € IV. Fix a number p C (2, oo),
p> a. The restriction of ^ to L^ (still denoted by ^) is of class C2 and is
strictly convex in the ^-variable. Let Zi = Zo H L^. Then 1̂  = IV © Z\.
Since G"Q/) < fc-^ \ly eR271, \G'(y)\ < k-^y} + |G'(0)| and ̂  maps
Lg into itself (so V^ C Lg, ^'(^) € Lg C Lg, where p~1 4- g~1 = 1).

Below we use an argument close to the one which may be found in
[15, pp. 597-598] and [3, pp. 120-121]. Let P : Lg = W C Zi -^ ^i be the
projection along W, let P* be the adjoint of P and consider the mapping
P*^'(zZ + .) : W C ^i -^ î*, where Z^ = P*(Z/g) C P*(Z/^. Note that
P^'(u) = 0. Since ^ C C2, P*^' C C1. For z € Zi,

(P*^'^^^) = {^"{u)z^z} > cll^lj

according to (5). Hence the derivative D^(P*^'(2Z)) === P*'^"(H)[^ is
injective. Furthermore, by (i) of LEMMA 3.3, the mapping A given by

Av = -JGff(-Ju)Jv+l[ JG"(-Ju)Jvdt
^-Jo

is an isomorphism of L^ onto itself (note that A\j^p = A and recall A is
invertible on L2). Since —JM is compact, ^ " ( u ) = —JM -{- A: L^ —> L^
is a Fredholm operator of index zero. The projections P and P* have
ranges of the same codimension j < oo. Accordingly, also the mapping
P*^"(n)|z^ : Zi -^ 2^ is Fredholm of index zero, and therefore an
isomorphism (recall it is injective). It follows now from the implicit
function theorem that there exist open balls, Bw in W and Bz^ in Zi,
centered at 0 € TV and 0 C Z\ respectively, and a (^-mapping w i-> z(w)
from Bw to Bz^ such that for w € B^y and z C £?zi, P*'^'(^4-w+^) = 0
if and only if z = z(w). In other words, for each w € Bw there is a unique
z == z(w) € ^Zi such that

(6) (^'(u + w + z(w)),y) =0 V^/ € Zi.

Note that ^(0) = 0 because ^'(zZ) = 0, and

(7) ^(u + w + ̂ (^)) < ^(ifc + w + z) V^ € Bzi, z ̂  z(w)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



178 A. SZULKIN

by strict convexity of ^. Let (p(w) = ~^(u + w + z(w)). Then, using (6)
and the fact that z'(w)v e Zi,

{Tp\w),v) = {^'(u-^W^r z(w)},V+ Z'(w)v)

= (^'(n+w-h^w)),^) Vi; C IV.

So w is a critical point of ^ if and only if u + w + /^(w) is a critical point
of '0. It is easily seen from (8) that ^p C C2 and

{(p"(Q)v,v} = (^^^{v+z'Wv)^) \/v C W.

Since z'^v € Zi, it follows from (3) that (^"('u)^(0)z;,z;} =
Q{u){z'{Q)v,v) =0. Hence

(^"(O)z;^} = ̂ f\u)v^)=Q(u)(v^)^

and ^"(0) has the same index and nullity as Q(u). Summarizing, we have
the following

PROPOSITION 3.4. — There exist open balls, Bw in W and Bz, in
2i, centered at the origin, and a unique ^-mapping w ̂  z(w) from B\y
to Bz^ such that (6) and (7) are satisfied. Furthermore, w is a critical
point of the function ^ : Bw —^ IR given by y(w) = ̂ (u + w + z(w)) if
and only if u + w + z(w) is a critical point of^, and ^"(0) has the same
index and nullity as Q(u).

LEMMA 3.5. — For each w e Bw, z(w) C ("^[O.ri.lR271). Further-
more, the mapping w ̂  z{w) is continuous from Bw to C([0,r],R271).

Proof. — It follows from (6) and (8) that

(9) ^'{u + w + z(w)) = ̂ '(w) € W\

where TV* = (I - P*)(Lg). Set u = u + w + z(w). By (4) and (9),

(10) -JMu + JG\-Ju) =^+ ̂ '(w),

where $ C IR271. Integrating (10) we obtain

^=^f JG\-Ju)dt.
- ' - J o

TOME 116 — 1988 — ?2



HAMILTONIAN SYSTEMS 179

If w —> WQ, then u —> UQ = u + WQ + z{wo) in Z^, and thus ^ is continuous
as a function of w. According to the Legendre reciprocity formula, (10) is
equivalent to

(11) u = jJl^Mu - J ^ - J^p\w)).

It is easy to see from LEMMA 3.1 that W* = span{Aei,.. . ,Ae^} =
span{JMei,..., JMej}. So all elements of W" are continuously differen-
tiable functions of t. Since Mu is continuous, it follows from (11) that u
and z(w) = u - u - w are continuous. Hence Mu e C1, and by (11) again,
z{w) eC1. Also,

\\M{u - Ho)||oo < C,\\M(u - uo)\\^ < C^u - uo\\p

for appropriate constants d and C^. So if w —> WQ , then Mu —> MUQ in
I/00, and according to (11), z(w) —^ z(wo) in L°°. []

Now we reformulate PROPOSITION 3.4 in terms of L^ and '0. Let Z be
the closure of Zi in the 1̂  -topology. Then L^ = W C Z.

PROPOSITION 3.6. — There exist open balls, Bw in W and Bz in Z,
centered at the origin, and a unique C1 -mapping w »-> z(w) from Bw to
Bz such that ifw € Bw, then

(12) {^(u+w+z),y) =0 V ^ / C Z if and only if z = z(w),
(13) ^(u + w + 2^(w)) < ^(u +w+ z) \/z C 5z, ^ / ^(w).

Furthermore, w is a critical point of the function (p : Bw —> H given by
(p(w) = ̂ (u + w + z(w)) if and only if u + w + ̂ (w) ^ a critical point of
^, and y?"(0) /^as ^e same index and nullity as Q(u).

Proof. — Our argument is similar to [9, Proof of Lemma II. 7]. Since
m - .1

Jo G(-Ju) dt is continuous and convex and -JM is compact, ^ is weak
lower_semicontinuous. So for each w C Bw, the infimum of ^(u + w + z)
over Bz is attained at some z = ZQ. For such ZQ we have

(14) {^(u) +A^Na-2,2/) =0 Vy C Z,

where z& = n + w + ^o and A > 0 is the Lagrange multiplier. We shall show
that if Bw and Bz are sufficiently small, then ZQ = z(w).

Let (B1^) be a sequence of open balls in Z, centered at the origin, with
radii converging to zero as m —> oo. Since z(w) —> z(0) = 0 in 1^ as
w —^ 0 and since p > a, we may choose a sequence (B^) of open balls in

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



180 A. SZULKIN

W, centered at the origin, with radii tending to zero, in such a way that
z(w) e B^ Vw e J9^. Let Um = u + w^n + ̂ , where w^_C B^ and ̂
is a point at which ^(u + w^ + z) attains its infimum in B^. Then (14)
with ZQ = Zm, u = Um and A = A^ is satisfied. We claim that

(15) ll^mlloo-^0 as m —> oo,

uniformly with respect to the choice of Wm e B^.
Set 2/ = ^m/|M|^ in (14). Then

W{Um^Zm} „ n a - 1 .
[I II ~r ^mll^mlla — u-
11'2'mllo;

Since ^(^) -^ ^(u) = 0, A^||^|[S~1 -^ 0. Hence XmZm^m^2 -^ 0
in L^ (because ||^||^-1 = H^^-2^). (14) with z = ̂ , u = Um and
A = \m is equivalent to

(16) -JMum + JG\-Ju^ + A^^|^|"-2 = a^ + ̂ ,

where dm C TV* and ̂  e IR271. Since the left-hand side of (16) approaches
^ = T-1 ̂  J G ' { - J u ) dt as m -. oo , a^ + ̂  ̂  .̂ Let

G^(^) = G(-J^) - Jwm(t) - J z ) +A^a-l|^|a.

Then C?^,.) is strictly convex, and denoting the derivative of Gm with
respect to the second variable by (7^,

(17) A^a-1]^ < Gm^z) < (G^z^z) +(?^M)

<|^(^^)| |^|+^(^,0).

According to (16), G^z^(t)) = JMu^t) + a^% + ̂  = ^),
or equivalently, ^(^) = H^(t,Vm(t)), where ^(^,.) is the Fenchel
conjugate of Gm{t,.). It is easy to verify that H^ is continuous in both
variables. It follows that Zm is a continuous function (because Vm, is) and
(16) is satisfied pointwise for all t. Suppose (15) is false. Then we may find
Wm e Bt^r and tm —> t such that, possibly after passing to a subsequence,
l^m^m)! is bounded away from zero. Since

\\Mu^ - Mu\\^ < Gi \\Mum - MU\\H^ < C^\Um - u\\^

Mum -^ Mu in L00. So \G'^Zm{t))\ = \Vm(t)\ < C, where C is a
constant independent of t. Hence by (17), A^l^^)^-1 is bounded.

TOME 116 — 1988 — ?2



HAMILTONIAN SYSTEMS 181

Using (16), it follows that also ym{tm) = G'(-Jum(t^)) is bounded,
and by the Legendre reciprocity formula, so is Um(tm) = JH^y^tm)).
Consequently, taking a subsequence if necessary, Zm(tm) = Um(t^) -
u(tm) -Wm(tm) —^ z -^ 0._ Since Am|^m(^m)|o;-l is bounded and z / 0, we
may assume that \m —^ A. Recall that (16) is satisfied pointwise and set
t = tm in (16). Passing to the limit we obtain

JG^-Ju^f) - J z ) + A^F-2 = JMu(f) + ̂ = JG'(-Ju(f)).

Taking the inner product (in IR271) with z gives

(G\-Ju(t) - J z ) - G^-Ju^^-Jz) + Al^ = 0.

Since G is strictly convex (and therefore G" is strictly monotone) and
A > 0, z = 0. This is the desired contradiction. According to (15), we
may find Bw and Bz such that if w C By/ and u = u + w + ZQ satisfies
(14), then \\u - n||oo < ^*, where <?* is the constant in (ii) of LEMMA 3.3.
So ^{u) = ̂ {u). Note that hitherto we have not used the minimization
property of ZQ but only the fact that (14) is satisfied. By LEMMA 3.5,
z(w) -^ z(0) = 0 in L°° as w -^ 0. We may therefore choose Bw in such
a way that \\(u + w + z(w)) - u\\^ < 6\ Hence by (7),

^(u + w + zo) = ̂ (u + w + zo) > ̂ (u + w + z(w)) = ̂ (u + w + z(w))

if ZQ ^ z(w). It follows that ZQ = z(w) and (13) is satisfied. In order
to verify (12), note first that z(w) e Bz, and therefore (14) holds with
ZQ = z(w) and A == 0. If (^(u + w + zo),y) = 0 \/y e Z, then (14)
with A = 0 is satisfied. So \\u - u\\^ < ^*, where again u = u + w + ^o.
Consequently,

0 = ^(2Z + w + zo + ̂ ^=o = dt^ + w + ^0 + ̂ )|^o
= (^ / (^+w4-^o) ,2 / )

for all y C L°° n Z , and by continuity, for all y e Zi. Hence ^o = ^(w)
according to (6).

To complete the proof, note that (p(w) = ̂ (u + w + /^(w)) = ^(^ + w +
2^(w)) = (p(w) and use the second part of PROPOSITION 3.4. Q

Let C = C{u) be the critical circle corresponding to u and recall from
§2 that du/dt e Tn(C). Since u = d x / d t = J H ' { x ) , x = G'(-Ju),
and therefore M(du/dt) = u = d x / d t = -G"(-Ju)Jduldt. So by (2),
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Q(u)(du/dt,.) == 0, and du/dt e Ker(K + A) CW. We may assume that
du/dt == fcci, where A; is a constant. Let

WQ = span{e2,. . . ,e^}

and Bwo = Bw H WQ. Define ^ = ^P\Bwo'
PROPOSITION 3.7. — 0 is a critical point of \ and Index(;<"(0)) =

lndex(Q(u)), Nullity (^'(0)) = Nullity (Q(u)) - 1. Furthermore, 0 is an
isolated critical point of \ if and only if C is an isolated critical circle.

Proof. — We need only show that if C is an isolated critical circle,
then 0 is an isolated critical point of \. Other conclusions follow from
PROPOSITION 3.6.

Recall that W* = span{Aei,. . . ,Ae^} and suppose ^'(w) = 0. Then
^(w) C span{Aei} = span{A(cte/c^)}. Since A(du/dt) = JM(du/dt) =
Ju, ̂ '(u) = ̂ (w) = sJu, where u = u+w+z(w) and s is a real number.
Using the ^-invariance of ^ and the fact that u e C1 (cf. LEMMA 3.5)
and (du/dt, Ju) = (du/dt,A(du/dt)) = k2 we obtain

0 = ̂ {Seu} = {^(u), u) = s(Ju, u) = s{du/dt, Ju)WJ 0=0
= sk2 + s^du/dt, Jw + Jz(w)).

Hence
|5|^<C7|5|||w+^(w)||^

where C is a constant independent of w. So if ||w||c, is sufficiently small,
5 = 0 and ^ ' ( u ) = 0. It follows that u = u and w = 0. Q

Next we shall show that D^ satisfies the following compactness
condition.

LEMMA 3.8. — Each sequence (um) such that Um = u + Wm + Zm,
Wra e Bwo, Zm € BZ and D^(um) —> 0, possesses a convergent
subsequence.

Proof. — We may assume that Wm —^ w and z^n -> z weakly. Then
Um -^ u weakly. Since D^(um) -> 0, ^'(um) = Qm+^m, where a^n C TV*
and €m —> 0 in L^, or equivalently,

(18) -JMUm + JG\-JUm) = ^m + am + 6^

for some ̂  e R271. Since the left-hand side of this equality is bounded
in L0 (by (H2)), a^ -^ a and ^ -^ ^, possibly after passing to a
subsequence. By the Legendre reciprocity formula, (18) is equivalent to

Um = JH^MUm - J(^m + Oim + e^)).
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Taking limits we see that Um —^ JH'(Mu - J^ - Jo) (cf. [8, Proof of
Proposition III.4]. []

Let

V = [w^- z C Bwo © Z : -0(n+w+ z) < ̂ {u+w+ z(w)) +eo},

where 60 > 0 is given, and let VQ be the connected component of V
containing the set {w + z : z = z(w)}.

LEMMA 3.9. — If CQ is sufficiently small, Vo C Bwo © Bz-
Proof. — We may assume without loss of generality that the conclu-

sions of PROPOSITION 3.6 hold in slightly larger balls, B[y D Bwo ^d
BZ ~^ B z ' Suppose that the assertion of the lemma is false. Then we may
find Wm e Bw and Zm e QBz = Bz — Bz such that ^(u + Wm + z-m) <
^(u -+- Wm + z(wm)) + (2m)-l. Using the fact that ^ is Lipschitz con-
tinuous on bounded sets we may assume after passing to a subsequence
that Wm —> w and ^(u + w + Zm} < ̂ (u + w + z(w)) + m~1. By Eke-
land's variational principle [7, Corollary II], there is a z'm C ~B'z such that
\\Zm-Zm\\a<m-1/2 and

^U+W+z)-^(u+W+Zm) > --r=\\Z-Zm\\a ^Z € B^.
'\/iTi

Since Bz C B^, z'm e B^ for almost all m. So setting z = z'm + ^/,
^ > 0, in the inequality above, dividing by t and letting t -> 0 we obtain
\\D^{u + w + 4J||^ < m-1/2. By LEMMA 3.8, ^ -> z e 9Bz and
D^(u + w + ^) == 0, a contradiction to (12). []

Choose now 60 so that Vo C Bwo ® B z '
PROPOSITION 3.10. — Let j : Bwo -^ L^ be the embedding given

by j(w) = u + w + z(w) and let UQ = u + VQ. Then the pair (j(Bwo),
j(Bwo - {0})) is a deformation retract of (UQ, UQ - (u + Bz)). Moreover,
the deformation r may be chosen so that for each u C UQ, r(0,^) = u and
^(r(t,u)) is a nonincreasing function oft.

Proof. — On Uo, Dz^(u + w + z) = 0 if and only if z = z(w) according
to (12). Using the method of [20, Lemma 1.6], it is easy to construct a
mapping F : Vo - {w + z : z = z(w)} -^ Z which is locally Lipschitz
continuous and satisfies

\\F(w+z)\\^<2\\D^(u+w+z)\\^

(^ ' ( tZ+w+20 ,F(w+^) ) > \\D^(u-}-w+z)\\2^
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for all w + z in the domain of -F (note that for each fixed w, F(w + .) is a
pseudogradient vector field for the functional z ̂  ̂ (u+w+z)). Consider
the flow rf given by

rf(t,w + z) = —(^{u -+- w + 77) — ^{u + w + z(w)))F(w + rf)

=Fo(w+rf),
7^(0, W+ Z) = Z,

where w + z € VQ^ z ^ z(w). The vector field jFo is bounded on its domain
and locally Lipschitz continuous (because z(w) is differentiable). By (19),
(12) and (13),

(20) i"'̂  + w + ̂ (^ w + z))
UL

= {^'(u + w + 77), Fo(w + 77))

< — (^{u + w + T?) — ^(n + w + ̂ (w)))

x \\D^(u-}-w+rf)\\^ < 0

whenever r)(t^w -}- z) ^ z(w). Hence w + rf cannot leave VQ for t > 0.
Moreover, by (19),

. [^(u + w + rf) - ̂ (u 4- w + ̂ (w))]

= (^'(n + w + 7^), Fo(w + ̂ ))

> —C(^}(u + w + 77) — ^(IZ 4- w + ̂ (w))),

where C > 0 is a constant independent of w, z and ^. Thus,

^(u+w-{-rf)—^(u-{-w-}-z(w)) > [^{u-{-w+z)—^(u+w-^z(w))]e~ct > 0,

and 77^, w + ^) / /^(w) whenever ^ > 0. It follows that 77 is defined for all
t > 0 (c/. [20, (1.13)]).

We shall prove that if w —> u?o, ^ —^ 2^0 and ^ —»- oo, then

(21) r)(t,w+z) -^ z(wo).

Let

Ye == ^ w + ^ € Fo •' 11^ -wo l l a < e,^(il+w+^) < '0(il+w+^(w)) +e}.
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If N is a neighbourhood of WQ + ^(u?o), then, by the argument of
LEMMA 3.9, Ve C N for all sufficiently small c. So it remains to show
that one can find 6 and T such that w + rj(t + w + 2^) C Ye whenever
Ik - ^ollct < 6, \\z - zo\\a < 6 and t > T. Given 6 < c, it follows from
LEMMA 3.8 that if ||w-wo||a < 6 and w+rf ^ Ve, then \\D^(u+w-}-rf)\\^ >
60 for some So > 0. So by (20),

d . ,
-r^(U 4- W + 77)
/7Tcte

< - (^(-u + w + r j ) - ̂ (u + w + z{w))) \\D^{u + w + r j } ||2

<-^o2

Furtheremore, by (20) again, w + 77 can enter but not leave the set Vg.
Consequently, if w 4- 7y(^ w 4- z) ^ Ve,

^ (u + w + 7y(^ w + 2;)) - '̂ ('d + w + z) < -e 6^t.

Since C\ < ^(u + w + z) < C^, where the constants Ci and (72 are
independent of the choice of w + z C Vo, t < (C^ - C^e"1^2 = T. It
follows that w + 77 e Ye for all ^ > T. This completes the proof of (21).

Now it remains to define the deformation retraction r by setting

( u+w+rf(t(l -^ ) - l ,w+^)
, , i f ^ / ^ ( w ) a n d 0 < ^ < l ,

r(t,u+w+z)= .
U + W + 2;(w)

if ^ = 1 or z == ^(w) and 0 < ^ < 1. []

By shrinking the balls B\vo and 5^ if necessary, we may assume that
Uo is so small that the conclusions of PROPOSITION 2.2 are valid. Recall
that

Wo C Z = Nn(C) ={veL^ : (Ju, v) = 0}.

Now we state the main result of this section.

THEOREM 3.11. — Let ^(u) = b and C = C(u). Then there exists a
neighbourhood UQ ofu in u+(Wo(BZ) and a corresponding neighbourhood
U -= S^Q ofC in L^ such that (^ n U, ̂  H U - C) is a fibre bundle pair
with base space C and fibre pair (^ H UQ , ̂  n UQ - {u}). The fibre pair has
the homotopy type of {xb.Xb - {0}), where the function \ C (^(B^R)
is given by ^(w) = ̂ (u + w + z{w)) and has the properties that ^'(0) = 0,
Index ̂ "(0) = Index Q{u), Nullity ̂ "(0) = Nullity Q(u) - 1, and 0 is an
isolated critical point of \ if and only if C is an isolated critical circle.
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Proof. — The first part of the theorem coincides with PROPOSITION 2.2.
The statement concerning the homotopy type follows from PROPOSI-
TION 3.10 upon observing that ^{u + z) > ^(u) = b if z 6 Bz, z -^ 0.
Finally, the properties of \ are given in PROPOSITION 3.7. \\

4. Existence of two closed Hamiltonian trajectories
Let S be the boundary of a compact convex subset A of IR271. Suppose

that the interior of A (denoted Int(A)) is nonempty, 0 C Int(A), and S is
of class C2 and has strictly positive Gaussian curvature. For x e 5, denote
the outward unit normal vector by N{x). We want to find the number of
closed trajectories of the flow

(22) x = J N ( x ) on S.

This problem may be put in Hamiltonian form

(23) x = J H \ x ) , X(O)=X(TQ)^ H(x)=l,

where H is strictly convex, of class C2 in a neighbourhood of S and
H ' { x ) ̂  0 on S [8, § 2]. Here x and To are the unknown. We may assume
that

(24) H(\x) = \^H(x) \/x e R271, A > 0,

where f3 e (1,2). Then H e C2^ - {0},R). It is easy to see by
homothesy [8, Lemma 11.4] that x(t) is a solution of (23) if and only
if x^t) = /^(/i1-2/^) is a solution of

Xh = J H ' ( x ^ ^ Xh(0) = ̂ (JoA2/^-1), H(x^) = h.

Consequently, the fixed energy problem (23) is equivalent to the fixed
period problem (1). Furthermore, if x^ is a solution of (1) with minimal
period T, then for each positive integer fc, Xk(t) = ^/^-^x^kt) is a
solution of (1) with minimal period T / k . Observe that the trajectory
of the flow (22) corresponding to Xk is obtained by covering the one
corresponding to x^ k times.

Denote the Fenchel conjugate of H by G. If a-1 + f3-1 = 1 then
according to (24), ? 5

(25) G(\y) = X^y) \/y c R271, A > 0.

Since the hypersurface 5' has positive Gaussian curvature H " ( x ) is
invertible \/x / 0 and G € C2^ - {0},R). Moreover, since a > 2,
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it follows from (25) that G has continuous second derivative at the origin.
So G e ^(R^.R). Note that the hypotheses (HI), (H2) of Section 2 are
satisfied and each nonzero solution of (1) is admissible.

Using the above results and the ones quoted in Section 1 we obtain the
following

PROPOSITION 4.1.
(i) Let^:L^R be defined by

^(u) = I b(Ju,Mu) + G(-Ju)} dt.
Jo L J

Then ̂  is of class C2, u is a critical point of ̂  if and only ifx= Mu + ̂
is a solution of (1) for some ^ e H271, and x is admissible whenever u / 0.

(ii) If u-i(t) is a critical point of^, then so is Uk(t) = ̂ f^^u^kt}
for each integer k > 2. Furthermore, if u\ has minimal period T and Xk
is a trajectory of the flow (22) corresponding to Uk, then Xk is obtained
by covering the trajectory x\ k times (so all Uk correspond to trajectories
which are geometrically the same).

It is known that there always exists one closed trajectory of the flow
(22) (see [21, § 2] and the references therein), there exist at least n such
trajectories if for some r > 0, r < \x\ < r\/2 \/x C S ([10], cf. also
[2]), and generically, they are infinitely many ([8], cf. also [25]). We shall
show that there always exist at least two closed trajectories. The same
result has been obtained by EKELAND and LASSOUED [11, 12] by means of
different methods.

THEOREM 4.2. — Let S be the boundary of a compact convex subset
A C R271, n > 3, such that 0 C Int(A). Suppose that S is of class C2

and has strictly positive Gaussian curvature. Then there exist at least two
geometrically distinct closed trajectories of the flow (22).

The proof will be given in Section 6.

5. Index of iterated solutions and Morse relations

First we summarize some results which may be found in [8, 17]. Let
u\ be a critical point of '0, with minimal period T, and let Uk be as in
PROPOSITION 4.1. Denote the index and the nullity of the quadratic form
Q(uk) = ̂ "(uk) by ik and rik respectively. Then

W ^ = ̂  j(^), nk = ̂  m(cj),
^=1 o;fc=l
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where j and m are functions from S1 = {u C C : |o;| = 1} to the set of
nonnegative integers. Let x\ be the solution of (1) corresponding to u\
and let R(t) be the solution of

f R(t)=JHff(x,(t))R(t^

[ RW = I .

(I is the unit matrix). Recall that the eigenvalues of R(T) are called the
Floquet multipliers ofx\. It is known that 1 is an eigenvalue of multiplicity
at least 2. The function m is defined by m(uj) = dime Ker(c<;J — R(T)).
Denote j(^±) = lim^_,o± J ^ 6 ^ ) ' We shall need the following properties
of .7 [12, 17]:

PROPOSITION 5.1.
(i) I f u j ^ S 1 is not a Floquet multiplier, then j is continuous at ̂ ;

(ii) 3W = h ;
(iii) j(^) = j(cj) ^ C S 1 ;
(iv) if uj C S1 — {1} is a Floquet multiplier of type (j?, q) in the sense of

Krein and of multiplicity m (so thatp+q = m), thenj(u;+)—j(u;~) = q—p
andj(u}) <j(o;+) <j(^)+q, j(^) <j(^~) <j(^)-\-p;

(v) ^(l^) > ii 4- n, and ^(l^) = i\ + n + 1 provided n\ = 1 one? a in
(25) %s sufficiently close to 2.

A proof of this proposition may be found in [12].
COROLLARY 5.2. — Suppose that a is close to 2. Then
(i) ^'(-1)>2;
(ii) if j(—l) = 2, we have ik+i — ik > 2 /or a/Z A;;

if in addition n > 3, z'^+i — ik > 2 for some k.

Proof.
(i) By the .S^-invariance of ^, ni > 1. Suppose n^ > 1. Then 1 is an

eigenvalue of R(T) of multiplicity at least 4, so there are at most n — 2
Floquet multipliers (counted with their multiplicities) on the open upper
half-circle of S1. It follows from (iv) and (v) of PROPOSITION 5.1 that
^(l'1") > ii -\- n and j(e'10) can drop by at most n — 2 as 6 goes from O"^
to TT. Hence j (—l) > ii + n — (n — 2) > 2. If n\ = 1, the same argument
shows that j'(-l) > ii + n + 1 - (n - 1) > 2.

(ii) If^(-l) = 2, one sees from (iv) of PROPOSITION 5.1 that at each
Floquet multiplier on the open upper half-circle, j(^) — j(^~) = —m.
So p = m, q = 0 and j(u;) = j(^). It follows that j'(e^) is nonincreasing
as 0 increases from O"1' to TT. In particular, j(c<;) > 2 Vc<; C S'1 — {1} and
^27rm/(fc+i)) > j^m/k^ {^ ̂  integers m € [1,A:/2]. Thus, according
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to (26), ^+i - h > 2. Finally, if n > 3, ^(l^) > 3. So z^+i - ij, > 3 for
some fc. []

The functional ^ of PROPOSITION 4.1 is of class C2, satisfies the Palais-
Smale condition [8, Proposition III.4] and is bounded below (because
ip(u) —> oo as \\u\\a —> oo, cf. [8, Proof of Proposition III.4] or (28)). One
can show (see Remark in § 6) that if u 7^ 0 is a critical point of '0, then
^{u) < 0. Suppose from now on that all critical circles of^ are isolated. It
follows that the nonzero critical levels may be ordered into an increasing
sequence (6fc)^i with bk —> 0. Denote by K^ the set of critical points of
^ at level 6. Observe that 0 is a non-isolated critical level, KQ = {0}, and
each K^ is the union of a finite number of disjoint critical circles.

LEMMA 5.3. — Let b < c and suppose that there are no critical levels
in the interval (6,c). Then ̂  is a deformation retract of ̂ c — Kc.

Proof. — Since our argument is similar to the one given in [4, pp.
385-387], we only point out the differences. If b = 0 or b is not a critical
level, the proof in [4] applies. So let b = bk. Then K^ is the union of a
finite number of critical circles (7i,..., Cp. For each i = 1,... ,p choose
Ui € Cz and an open neighbourhood Uio of Ui in

Ui-}-N^(d) = [ui+v :v € L^(JUi,v) =0\

(cf. § 2). Let Ui = S^io, U = Ui U ... U Up and ̂  = ̂ o. If all Uio are
sufficiently small, then the sets Ui are pairwise disjoint, U — K^ contains
no critical points, and according to PROPOSITIONS 3.6 and 3.7, ^(u) = 0
if and only if u = Ui. By [20, Lemma 1.6], there exists a pseudogradient
vector field Fi for ^ on UiQ - {Ui}. Setting F^Seu) = SffF^u) W €
Uio — {Ui} we obtain an equivariant field FQ on U = U — K^. Let N C U
be a closed neighbourhood of K^ and V == ^c ~ (^b U N U Kc). On V there
exists a pseudogradient vector field F for ^. Set

F(u) = p{u)F{u) 4- po(u)Fo{u) W e U U V ,

where p, po are Lipschitz continuous functions which vanish outside V and
U respectively and satisfy p(u), po(u) > 0, p(u) -}- po(u) = l>/u C U UV.
Define a flow rf by

(w^^,
<^(^).F(^))

,7?(0,u)=u, ueE/UV.
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Note that if u = ui + v e N - K^, where Ui € Cz and v C A^(Q),
then F(n) = Fo(u) C A^(^)- Furthermore, W(u),F(u)} > \W(u}\\^
\/ueV and {^(u),Fo(u)) = (^),F,(n)) > \W(u)\^ W C ^o - {^}.
Since ^ and ^ satisfy the Palais-Smale condition, it follows that if
A C U U V and A D K^ = A D ^c = 0, there is a constant d > 0
(depending on A) such that {^'{u), F(u)} >d \fu C A. Using these facts
one shows as in [4] that rj(t, u) is defined for t e [0,1), lim^i rf(t, u) exists,
lim^i ^(r](t^u)) = b and the mapping

( r](t, u) if 0 < t < 1 and u e U U V,
r(^, n) = lim^i r]{t, u) if t = 1 and n C ^ U V,

n i f 0 < ^ < ! and n C ^&,

is a deformation retraction of ^c — Kc onto ^5. []
Denote by Jf^ the (unreduced) singular homology with coefficients in

Za. Since ^ has no positive critical values, it follows from LEMMA 5.3
that Hq(^b) w Hq(^o) for all b > 0 and all q (» means isomorphic). Let
f3q = rank^(^o)- We shall show that

(27} 0 - [ 1 if q = °5
[ ) ^ " l O otherwise.

Choose u with \\u\\a = 1 and consider the function ^{su)^ s > 0. Since G
is homogeneous and G(y) > 0 \/y € R271 - {0}, there exists a constant
d > 0 such that Vz/ C IR271, €?(?/) > Cil^/l^. Consequently

(28) ^(su) = f f^V^ Mu) + 5aG(-J^)^ ̂  > C^ - G252,
Jo L ]

, /.r
—^(5n) = / \s(Ju, Mu) + ̂ ^-^(-JH)] dt > das0''1 - 20^.
as JQ L J

Note that the constants C\ and C^ are independent of the choice of u.
Thus, if b is sufficiently large, one may find a ball B, centered at the origin
and having the property that B C ̂  and the radial retraction of ^
onto B is contained in ^' This implies that Hq(^o} w Hq(^) w Hq(B).
Hence (27).

Choose e > 0 so that —e is not a critical level. Choose also 6 > 0 in
such a way that bk is the only critical level in [b^ — 6, bk+6] for all bk < —e.
Define

(29) M^= ^ rank^(^+<5,^-<?)+rank^(^o,^-e).
&fc<-c
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By an algebraic argument due to PITCHER [19, § II], see also [5, 22, 23],
it follows that whenever all M^, q < qo, are finite, we have the Morse
relations

^ - Mq-i + • • • + (-1W > A? - /?,-i + • • • + (-1)^0 Vg < q^

or taking into account (27),

(30) M^ - M^ + • • • + (-1W > (-1)^ Vg < q,.

Suppose that C is a critical circle at level b. Define the g-th critical group
o fCby

(31) c,(^, (7) = Hq{^ H £7, ̂  H U - C),

where ?7 is a neighbourhood of (7 whose closure does not contain other
critical points than those in (7. By excision, Cq does not depend on the
choice of U. Using LEMMA 5.3, excision and the fact that the homology
of the union of path components is isomorphic to the direct sum of
homologies of each path component, it follows that

Hq(^k-{-6^bk-6) « Hq(^k^bk-6)

(32) ^W^.-^J

^O^(^),
z^Ik

where 4 is the set of all indices i such that '0(Q) = bk (cf. [5, 22, 23]).
So according to (29), if I is the set of all indices i with ^(Q) < -e, then

(33) M^ = ̂  rank c,(^,Q) + rank ̂ (^o^-e).
i^I

Let C be a critical cricle and u C (7, ̂ ) = 6. We want to compute
Cq(^,C). By THEOREM 3.11, a neighbourhood U of C may be chosen so
that (^5 H U, ^b H [/ - C) is a fibre bundle pair whose base space C
is homeomorphic to S1 and whose fibre pair has the homotopy type of
(Xb^Xb - {0}). Recall that \ C ^(B^.R), dimBw, < oo, ^'(0) = 0
and Index ̂ '(0) = Index ̂ "(u), Nullity ̂ '(0) = Nullity ̂ "(u) - 1. Since
C is isolated, we may assume that 0 is the only critical point of ^. Let
WQ = WQ~ ̂ W^W^~ be the decomposition of Wo into subspaces spanned
by those ei for which 1 + \z is negative, zero and positive respectively (c/.
LEMMA 3.1). Then ^"(0) is negative definite on WQ~ , positive definite
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on W^ and zero on W§. Note that dimTVo" = Index ̂ "(u). According
to the generalized Morse lemma [9, Theorem 11.4; 14, Theorem 3; 18,
Theorem I], there is an open neighbourhood N of the origin in Bwo^ an
origin-preserving homeomorphism 7 : N —> " y ( N ) C Bwo and a function
$ c C^{N n Wo°.IR)such that

(34) xW) = ̂ x"(0)w-,w-) + ̂ "WwW) +^°),

where w = w- + w° -h w+ C WQ" C TVo0 ® ̂  and ^(°) = °. ^"(0) = 0.
PROPOSITION 5.4. — Suppose thatlndex^'^u)) = i. Then

(i) c,(^,C)^0 V 9 < z ;
(ii) if 0 %s a local mimimum of ̂

^2 for q = i, i + 1 ;/ .̂ f Zs for q = z, i
Cn(^,C) « S n \L •g v ' 5 / [0 otherwise;

(iii) ^/O is not a local minimum of ̂ , Cg(^,(7) w 0 V^ < z.

PTW/.
(i) By the shifting theorem [5], c/. also [13],

(35) f n\ 1° i f ^ < z ,
^^"U-^O) if ,>.

Consequently, Hq{%b,Xb - {0}) = Cg(^,0) « 0 Vg < i (recall that 0
is the only critical point of ^). Since (^5 H (7,^& H (7 — (7) is a fibre
bundle pair whose fibre pair has the homotopy type of (\biXb ~ {0}),
c^, C) =- Hq^b H U, ̂ b H (7 - C) w 0 V^ < z [24, Lemma 5.7.16].

(ii) Since
'Z2 i f ^ = 0 ,
0 otherwise,c^,0)^2

it follows from (35) that

c (-v Q} - [ z2 if ^ = z5
c,(X,0)-^ otherwise.

Consequently, the fibre pair has the homology of the pair (D\ -S'1"1), where
D1 is the ^-dimensional closed ball with boundary S^1. So (^ H (7,^ H
U—C) is a spherical bundle and therefore orientable over Za [24, Corollary
5.7.18]. Using Thorn's isomorphism [24, Theorem 5.7.10] and the homology
of 5'1 we obtain the conclusion.

TOME 116 — 1988 — N° 2



HAMILTONIAN SYSTEMS 193

(iii) Since Co($,0) » 0, c^,0) « 0 ^q < i according to (35). The
conclusion follows by repeating the argument of (z). Q

Note that if Nullity W(u)) = 1, then Wg = {0} and (ii) of PROPOSI-
TION 5.4 applies.

PROPOSITION 5.5. — For each qo there exists an e > 0 such that
^(^o^-e)^O V g < ^ o .

Proof. — First we note that there is an e > 0 such that for each
critical point u with ^(u) > —c, Index(^"(2A)) > qo + 1. Indeed, if this
is not the case, we may find a sequence (um) of critical points such that
^(^m) —> 0 and Index('0"(^)) < qo + 1. By the Palais-Smale condition,
Um —> u (possibly after passing to a subsequence). Since ^(u) = 0, and
^'(u) == 0, u = 0. Hence Index(^"(0)) < go + 1. On the other hand,
Index^'^O)) = oo because

fT
(^'(0)v,v) = / (Jv,Mv)dt.

Jo

Next we show that

(36) I^o^-e) ̂  ̂ (^0^0°) ^ < ^o,

where ̂  = {u € L^ : ^(u) < 0}. Since ^-e C ̂  C '0o, we have the
exact sequence of the triple (^o^o^-c) [24? Section 4.5] :

J^o^-J-

16) will follow i

^o^-J^Wo^o0)-

we prove that Hq(^^-e)

) ̂  ^^q-l^^Q ? ^-c;'

:) w 0 Vo < go- Supp(So (36) will follow if we prove that Hq(^,^-e) ^ 0 Vg < qo. Suppose
Hq(^^-e) 96 0. For a relative g-cycle c we shall denote its support
(i.e., the union of the images of all singular simplexes of c) by |c| and its
homology class by [c]. If ci and 03 are homologous, we shall write c\ ~ 03.
Let c be such that [c] C Jfg(^,'^-J and c ̂  0. Then max^|c| ̂ (^) = d,
where — c < d < 0 . According to LEMMA 5.3, we may assume that
d = bj^ where bj is a critical level. Choose 6 > 0 so that the interval
[bj — S,bj) contains no critical level. By the first part of the proof, (i) of
PROPOSITION 5.4 and (32), Hg^bj^bj-s) ^ 0 V(7 < qo + 1- So in the
exact sequence

Hq^(^^b,-6) -> Hq(^-6^-e} -^ Hq(^^-e) -^ Hq(^^b,-6)

the first and the last term are zero. Hence the middle terms are isomorphic.
We may therefore find d € [c] such that max^|c/| ̂ (u) < bj. Proceeding
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in this way, we eventually find c" C [c] such that max^|c//| ̂ (u) < —e.
Therefore c ~ 0, a contradiction.

We complete the proof by using (36) and showing that

Wo^o°) ^0 V^<9o.

This is clear for q = 0. Let q > 1 and let c be a relative g-cycle with
boundary 9c. Since \Qc\ is compact and \Qc\ C ^o 5 we mav ^n(^ a ̂ m^
dimensional subspace XQ of L^ and a projection P : L^ —> XQ such
that (1 - t)u + tPu € ^ Vn e |<9c|, 0 < ^ < 1. It follows that 9c
is chain homotopic (and therefore homologous) to a (q — l)-cycle in
^ whose support lies in XQ. Thus we may assume \Qc\ C XQ. Since
Index(^"(0)) = oo, we may choose XQ so that IndexK^lxoV^O)] > Q'
Note that Nullity (^"(0)) = 0. Accordingly, 0 is a nondegenerate critical
point of ^\XQ' Let c' be the relative g-cycle obtained from 9c by taking
linear segments joining all points of \Qc\ to the origin. For u e \9c\ and all
s e (0,l]

iT

f^(su) = s2 [[^(Ju.Mu) +^-2G?(-J^)] dt < s^(u) < 0.

So [c'] € Hq(^oy^o). Consider the exact sequence

JWo) -^ ̂ (^o^o°)-^^-i(^o0)-

Since rank Hq(^o) = /3q = 0, Hq(^o) w 0. Thus 9^ is a monomorphism.
It follows that c' ~ c. The mapping u \—^ (1 — ,s)n 4- 5an, 0 < 5 < l , a > 0
small and fixed, induces a chain homotopy between c' and a relative g-cycle
c11 whose support is contained in a small neighbourhood of 0 € XQ. So
c ~ c' ~ c". Since Index[(^|^J"(0)] > q, Cg(^|xo,0) w 0. Consequently,
c-c'^O. D

6. Proof of Theorem 4.2
Let (7i be a critical circle obtained by minimizing ^. Then all u € C\

have minimal period T [6, 9]. By PROPOSITION 4.1, there exists a sequence
Ci,C^,... of critical circles which correspond to the same trajectory of
(22). Also, ^(Ck) < ^(Ck-^-i) VA; and ^(C^) -^ 0 as k -^ oo. Suppose
that ^ has no other critical circles (which means that there is only one
closed trajectory of the flow (22)). We shall consider two cases, j (—l) > 3
and 7'(-1) == 2 (c/. (i) of COROLLARY 5.2).
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Let j(—l) > 3. It is easy to see that co(^,(7i) w ci(^,(7i) w Za and
c^Ci) w 0 Vg > 2. By (26), %2 = JW +J'(-1) > 3. So according to
COROLLARY 5.2 and (i) of PROPOSITION 5.4, Cq{^, Ck) « 0 for q = 0,1,2
and A; > 2. Hence if c > 0 is small enough, M^ = M{ = 1 and M^ = 0 (cf.
(33) and PROPOSITION 5.5). This contradicts (30) with q = 2.

Suppose now j'(—l) = 2. We shall show that for all k > 1,

(37) i k = 2 k - 2 ,

(38) c^,C^{^ if ^2fc-2 ,2^-1;
10 otherwise.

This will complete the proof of the theorem because i^ > 2k — 2 for
some k according to (ii) of COROLLARY 5.2. It is clear that (37) and
(38) are satisfied if k = 1. Assume they are satisfied Vfc < ko. Using
COROLLARY 5.2, (33) and PROPOSITIONS 5.4(i) and 5.5, it follows that
^o+i > 2A;o and M^ = 1 \/q < 2ko -1. So according to (30) with q = 2A;o,
M^ > 1. Since c^^Ck) ^ 0 Vfc > ko + 2, C2feo(^C^+i) 96 0.
Consequently, z^+i = 2A;o. Also, by (ii) and (iii) of PROPOSITION 5.4,
(38) with k = ko + 1 is satisfied. []

Remark.
(i) If u ̂  0 is a critical point of -0, then ^(u) < 0. Indeed, G(y) > 0

\/y e H2n _ ^Q^ ̂  ^y homogeneity, {G\y),y) = aG(y) \fy C R271.
Hence

0=(^'(n),n}= / \{Ju,Mu)+(G'{-Ju},-Ju)\dt
Jo L -I

= / f(Jn, Mn) + aC?(-J^)1 dt.
Jo L -I

It follows that
rT

)= / (l-ja)G(-Jn)dt<0.^(u
^0

(ii) Using the above fact and (ii) of PROPOSITION 5.4, it is easy to
show by our arguments that if all critical circles are nondegenerate (i.e.,
have nullity 1), then for each even number k > 0 there exists a critical
circle of index k. This is the main result in [8, § III].

Note. — In a very recent manuscript "Hamiltonian flows with finitely
many trajectories", I. EKELAND and H. HOFER have shown that if the
critical circle (7i is degenerate (i.e., nullity n^ > 2), then j'(-l) > 3.
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Using this and (v) of PROPOSITION 5.1, it follows easily that ik-^i — ^ > 2
for some k also when n = 2 (cf. COROLLARY 5.2). So the conclusion of
THEOREM 4.2 remains valid for n = 2.

EkelancTs and Hofer's paper contains still another proof of THEO-
REM 4.2.

BIBLIOGRAPHIE

[1] AUBIN (J.P.) and EKELAND (I.). — Applied Nonlinear Analysis. — New York,
Wiley, 1984.

[2] BERESTYCKI (H.), LASRY (J.M.), MANCINI (G.) and RUF (B.). — Existence
of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure
Appl. Math., t. 38, 1985, p. 253-289.

[3] CASTRO (A.) and LAZER (A.C.). — Critical point theory and the number of
solutions of a nonlinear Dirichlet problem, Ann. Mat. Pura Appl. (4), t. 120,
1979, p. 113-137.

[4] CHANG (K.C.). — Morse theory on Banach spaces and its applications to partial
differential equations, Chinese Ann. Math. Ser. B, t. 4, 1983, p. 381-399.

[5] CHANG (K.C.). — Morse theory and its applications to PDE, [Seminaire de
Mathematiques Superieures] 1983, Universite de Montreal, to appear.

[6] CLARKE (F.H.) and EKELAND (I.). — Hamiltonian trajectories having prescribed
minimal period, Comm. Pure Appl. Math., t. 33, 1980, p. 103-116.

[7] EKELAND (I.). — Nonconvex minimization problems, Bull. Amer. Math. Soc.,
t. 1, 1979, p. 443-474.

[8] EKELAND (I.). — Une theorie de Morse pour les systemes hamiltoniens convexes,
Ann. Inst. H. Poincare Anal. Non Lineaire, t. 1, 1984, p. 19—78.

[9] EKELAND (I.) and HOFER (H.). — Periodic solutions with presbribed minimal
period for convex autonomous hamiltonian systems, Invent. Math., t. 81, 1985,
p. 155-188.

[10] EKELAND (I.) and LASRY (J.M.). — On the number of periodic trajectories
for a Hamiltonian flow on a convex energy surface, Ann. Math., t. 112, 1980,
p. 283-319.

[11] EKELAND (I.) and LASSOUED (L.). — Un flot hamiltonien a au moins deux
trajectoires fermees sur toute surface d'energie convexe et bornee, C. R. Acad.
Sci. Paris Ser. I Math., t. 301, 1985, p. 161-164.

[12] EKELAND (I.) and LASSOUED (L.). — Multiplicite des trajectoires fermees de
systemes hamiltoniens convexes, to appear.

[13] GROMOLL (D.) and MEYER (W.). — On differentiable functions with isolated
critical points, Topology, t. 8, 1969, p. 361-369.

[14] HOFER (H.). — The topological degree at a critical point of mountain pass type,
Proc. Sym. Pure Math., to appear.

[15] LANDESMAN (E.M.), LAZER (A.C.) and MEYERS (D.R.). — On saddle point
problems in the calculus of variations, the Ritz algorithm, and monotone
convergence, J. Math. Anal. Appl., t. 52, 1975, p. 594-614.

[16] LANG (S.). — Differential Manifolds. — Reading, Mass., Addison-Wesley, 1972.
[17] LASSOUED (L.) and VITERBO (C.). — La theorie de Morse pour les systemes

hamiltoniens, [Colloque du Ceremade], Hermann, to appear.
[18] MAWHIN (J.) and WILLEM (M.). — On the generalized Morse lemma, Preprint,

Universite Catholique de Louvain, 1985.

TOME 116 — 1988 — N° 2



HAMILTONIAN SYSTEMS 197

[19] PITCHER (E.). — Inequalities of critical point theory, Bull. Amer. Math. Soc
t. 64, 1958, p. 1-30.

[20] RABINOWITZ (P.H.). — Variational methods for nonlinear eigenvalue problems,
[Proc. Sym. on Eigenvalues of Nonlinear Problems], pp. 143-195. — Rome,
Edizioni Cremonese, 1974.

[21] RABINOWITZ (P.H.). — Periodic solutions of Hamiltonian systems : a survey,
SIAM, J . Math. Anal., t. 13, 1982, p. 343-352.

[22] ROTHE (E.H.). — Critical point theory in Hilbert space under regular boundary
conditions, J . Math. Anal. Appl., t. 36, 1971, p. 377-431.

[23] ROTHE (E.H.). — Morse theory in Hilbert space, Rocky Moutain, J.Math., t 3
1973, p. 251-274.

[24] SPANIER (E.). — Algebraic Topology. — New York, NcGraw-Hill, 1966.
[25] VITERBO (C.). — Une theorie de Morse pour les systemes hamiltoniens etoiles,

Thesis, Universite Paris-Dauphine, 1985.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE


