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PERIOD MAPPING VIA BRIESKORN MODULES
BY

MoRIHIKO SAITO (*)

RESUME. — Pour une déformation p-constante de fonctions holomorphes & singu-
larités isolées, on définit une application de période qui associe le module de Brieskorn
a chaque point, ol on utilise le systéme de Gauss-Manin pour définir la translation
paralléle. On démontre qu’elle induit un morphisme fini de la strate p-constante d’une
déformation miniverselle. Cela signfie que le module local de fonction est déterminé
par le module de Brieskorn & une ambiguité finie prés.

ABSTRACT. — For a p-constant deformation of holomorphic functions with isolated
singularities, we define a period mapping by associating the Brieskorn module to each
point, where we use the Gauss-Manin system to define the parallel translation. We show
that it induces a finite morphism of the p-constant stratum of a miniversal deformation.
This means that the local moduli of function is determined by Brieskorn module up to
finite ambiguity.

Introduction

Let f : (C™,0) x (5,0) — (C,0) be a p-constant deformation of
holomorphic function with isolated singularity at 0 € C", parametrized
by a complex analytic space (S5,0). Let fs be the restriction of f to
(C",0) x {s} for s € S. By [26] we have a canonical mixed Hodge
structure on the cohomology of the Milnor fiber of f;. Then we can define
a period mapping, assuming S contractible (by shrinking S if necessary).
The weight filtration of the mixed Hodge structure is determined by the
monodromy (so called the monodromy filtration) and remains constant
by p-constant deformation, and only the Hodge filtration varies.

Here we use Deligne’s vanishing cycle sheaf [6] along f, which enables us
to avoid a delicate problem about the topological triviality of u-constant
deformation. This is a locally constant sheaf of vanishing cohomologies (up
to a shift) on {0} x S, and induces the parallel translation of the Hodge
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142 M. SAITO

filtration which is needed to define the period mapping. We can show also
that the mapping is holomorphic (i.e., the Hodge filtration determines
holomorphic vector subbundles of the vector bundle corresponding to the
local system of vanishing cohomologies), even if S is singular. Note that
the notion of variation of (mixed) Hodge structure is not yet defined on
singular spaces.

Unfortunately this period mapping does not provide enough informa-
tion, because the fibers of the mapping have positive dimensions in general
(e.g., fo = 2° + y*), even when S is the pu-constant stratum of the base
space of a miniversal deformation of fy, cf. also (3.4). So we consider a
refinement of the period mapping using Brieskorn module. For s € S,
Brieskorn module of f; is defined by :

My = Qg o/ dfs A AQET,

[3] which has the structure of C{t}{{0; '}}-module [13], [17], i.e. C{t}-
module with (regular) singular connection V such that the inverse of
0y = Vo, is well-defined, cf. [3], where ¢ is the coordinate of C. Let G
be the localization of H” by the action of 9; '. It is a regular holonomic
Dc,o-module, called the Gauss-Manin system of f, [17], and H) is a
C{t}{{6; ' }}-submodule of G,. By VARCHENKO [27] (see also [17], [20],
[21], [24]), the mixed Hodge structure on the cohomology of Milnor fiber
can be obtained by taking Gry of H/, cf. (2.6.1), where V is the filtration
of G, by eigenvalues of the action of 9;t.

So the Brieskorn module gives finer information than the mixed Hodge
structure. Using Deligne’s vanishing cycle sheaf again, we show that
the G (s € S) form a locally constant sheaf of regular holonomic D¢ o-
modules on S, and get the parallel translation of the elements of G,
cf. (2.9). Assume S contractible so that G, for s € S is identified with
each other by parallel translation, and denote G; by G. Then the H
are C{t}{{0;'}}-submodules of G parametrized holomorphically by S,
ie., HY (s € S) determines a locally free subsheaf of the holomorphic
scalar extension of the above locally constant sheaf (cf. (2.7-8) for a precise
statement). So we get a refined period mapping :

(0.1) U:S— LG

by associating Brieskorn module H! to s € S, where L(G) is a set of
C{t}{{6; ' }}-submodules of G satisfying some conditions, cf. (2.9). Here
the locally constant sheaf of regular holonomic D¢ o-modules plays the role
of the local system of vanishing cycles in the period mapping via the Hodge
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PERIOD MAPPING 143

filtration on the vanishing cohomology. The problem is whether (0.1) is
injective when S is the y-constant stratum of the base space of a miniversal
deformation of fy, i.e. :

(0.2) Problem : Is the local moduli of p-constant deformation
' determined completely by Brieskorn modules ?

See Supplement of [20]. In [22, 2.10] we proved :

THEOREM 0.3. — (0.1) is (locally) injective on the smooth points of the
p-constant stratum, cf. (3.2).

In this paper we show in general :

THEOREM 0.4. — (0.1) is finite to one by shrinking the p-constant
stratum S if necessary, cf. (3.3).

The proof is not difficult, once the period mapping is defined. In
fact, since ¥ is analytic, (0.4) is reduced to dim ¥~!'¥(0) = 0, and
follows from (0.3), restricting to the smooth points of ¥~1¥(0) if
dim ¥=1¥(0) > 0. So the local moduli is determined up to finite ambi-
guity. For the moment, I don’t have enough evidence to conjecture the
injectivity or non injectivity of .

As a corollary of (0.4), we can get some information about the failure of
the injectivity of the period mapping via mixed Hodge structures as above,
cf. (3.4), using the structure of Brieskorn module [22], because the Hodge
filtration of the vanishing cohomology is obtained by the graduation of the
Brieskorn module by the filtration V, cf. (2.6.1), where the information
lost by the graduation is expressed by the linear mappings cs o in [loc. cit.].
But it is not easy to relate this directly with the geometry of the
discriminant as in [8].

Note that the mixed Hodge structure and the associated period map-
ping in [loc. cit.] are not well-defined because he considers deformation of
hypersurface instead of function. Although there is an embedding of the
base space of the miniversal deformation of hypersurface into the product
of an open disc with the base space of the miniversal deformation of func-
tion, it is not unique and the period mapping of the p-constant stratum
obtained by composition is not well-defined. It is not clear whether we
can get an interesting result using a not well-defined mapping. Note also
that the theory of logarithmic vector fields and primitive forms are not
so useful for the study of the Torelli problem as in [loc. cit.], because the
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144 M. SAITO

Euler vector field E is everywhere non zero (i.e. Fix(E) = §)) and the vari-
ation of mixed Hodge structure is not constant on the logarithmic strata
contained in the p-constant stratum in general, cf. (3.5).

We also give a counter example to [8, (5.3)], cf. (3.9). It is possible
to give a correct (but rather transcendental) version of [loc. cit.] using
MALGRANGE’s extension of a good basis [31], cf. (3.10).

In §1, we review some elementary facts from the theory of regular
holonomic D-module of one variable. Using this, we construct the period
mapping ¥ of a not necessary smooth base space in § 2. Then the main
theorems are proved in § 3.

Most of the work is done during my stay at the university of Leiden
in 1983-84 (supported by Z.W.0.). I would like to thank the staff of the
university for the hospitality.

1. Regular holonomic D-modules of one variable

We review some facts from the elementary theory of regular holonomic
D-module of one variable which will be needed in the next section, see
also [1], 2], [7], [22, § 1], ete.

1.1. — We denote by A an open disc {t € C: |t| < §}. Put :
O :=0a0 =C{t}, D:=Dpy=C{t}[0].

Let M,(D) be the category of regular holonomic D-modules, i.e. D-
modules M of finite type such that M[t™!] (localization by t) are
C{t}{t"!]-modules of finite type with regular singular connection in the
classical sense, cf. [7]. Let M,(Da)o be the category of regular holo-
nomic Da-Modules whose characteristic varieties are contained in TjA
(i.e. their stalks at 0 belong to M., (D) and their restrictions to the punc-
tured disc A* are locally free finite Oa~-Modules with integrable con-
nection). Then M., (Da)o is independent of A by restriction morphisms,
because the locally free finite Oa+-Module with integrable connection can
be uniquely extended to a larger punctured disc. So we have an equiva-
lence of categories :

(1.1.1) Mw(Da)o — Mu(D)

using coherent extension of D-modules. For M € M,,(D) and a € C, let :

(1.1.2) M = | JKer((0t — )’ : M — M).
>0
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PERIOD MAPPING 145

Then M is generated by M“ (a € C) over O = C{t}, and we get a natural
inclusions :

(1.1.3) Py — M — [ m°
a€eC a€eC

which induces an infinite decomposition of M. This gives the asymp-
totic expansion of an element of M, cf. [22, 1.5]. This is inspired by
VARCHENKO’s theory of asymptotic Hodge filtration [27], and gives a ver-
sion of Varchenko’s theory used in [23], cf. (2.6) below. Note that (1.1.3)
is classical if M is meromorphic type as in (1.3.2), and the general case is
reduced to this case using the localization morphism M — M[t~!]. Since
the action of (0;t — «) is nilpotent on M, we have bijections :

(1.1.4) t: M = MOt 9 MO S M for a #0.

Let A be a subset of C such that A — C/Z is bijective and 1 € A. We
define :

(1.1.5) »M = P M.

a€A

Then ;M depends only on M[t™!], i.e. the localization morphism
M — M[t™'] induces an isomorphism :

(1.1.6) Y M = o M.
In fact, we can show that ; is an exact functor, and the kernel and

cokernel of M — M]|t~'] are supported in {0} (i.e. the supports of their
coherent extensions are contained in {0}), where

(1.1.7) M*=0 for —a¢N if supp M = {0}
by (1.1.4).
1.2. — We say that M € M (D) is quasi-unipotent if M* = 0

for a € Q. In this case, we choose A in (1.1.5) so that ANQ = (0,1] N Q.
If M is quasi-unipotent, we define the filtration V by :

(1.2.1) veM =Mn [[ m°

B2e
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146 M. SAITO

using (1.1.3). (See also [10], [14].) By definition, we have a canonical
isomorphism :

(1.2.2) M® 5 G M.

We can check :

(1.2.3) VeM for a > 0 is finite free
- over C{t} and also over C{{9;'}},

where C{{0; '}} is a discrete valuation ring defined by

{Za,—@;i : Zairi/i! < oo for some r > 0}.

i>0 i>0

Let M € Mn(Da)o. We say that M is quasi-unipotent, if so is its
stalk at 0, or equivalently, so is the monodromy of its corresponding local
system on A*, cf. (1.4.5). In this case, M has the filtration V defined by
(1.2.1) at 0 and by M|a+ outside 0, cf. [10], [14]. Note that V*M are
coherent Oa-sub-Modules of M, because the localization of VM, — M,
by ¢ is an isomorphism by (1.1.7) and the restriction to A* of a coherent
extension of V*My — M, is an isomorphism.

1.3. — Let M(D,*) (resp. Mu(D,!)) be the full subcategory
of M(D) such that the action of ¢ (resp. d;) on its objects is bijective.
This condition is equivalent to :

(1.3.1) t:M° =5 MY (resp. 0;: M' = MO).
Combined with (1.1.3-4), M € M, (D,*) (resp. M, (D,!)) is uniquely

determined by ¥, M = P, M* with the action of N := —(0;t — ). We
can easily check :

M is finite free over C{t}[t™] (resp. C{d, ' }}[0:])

(132) if M € Mrll(D?*) (resp. Mrh(,D’ '))

We say that M € M, (D, *) (resp. M (D,!)) is meromorphic (resp. mi-
crolocal) type. Let My, (Da, *)o (resp. Myn(Da,!)o) be the full subcategory
of Myn(Da)o defined by the condition :

(1.3.3) M = M[t™'] (resp. ji1j ' DRa(M) <> DRa(M))
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PERIOD MAPPING 147

where DR is the de Rham functor defined by :
DRA(M)=C(8y: M — M),

and j : A* — A is the natural inclusion. Note that the condition M =
M[t~1] is equivalent to DRA(M) = Ryj,j ! DRa(M) by the Riemann-
Hilbert correspondence [11], [15]. We have equivalences of categories :

(1'3~4) Mrh(DAa *)0 — Mrll(Da *)7 Mrh(DA’ ')O - Mrh(Da ')

induced by (1.1.1). In fact, the assertion for % is clear, and the assertion
for ! follows from :

(135) DRA(M)|{0} = C(Bt : (M())l — (Mo)o)
for M € M ,(Da)o, cf. (1.1.4), where My is the stalk of M at 0.

1.4. —Let M € M,(Da)o. Then DRA(M)[—1]| o+ is a C-local system.
Let L(A*,C) be the category of C-local systems on A*. Using Riemann-
Hilbert correspondence [11], [15], M € My(Da,*)o or Mu(Da,!)o is
uniquely determined by its restriction to A*, because it holds for DR (M)
by definition (1.3.3). So we get equivalences of categories :

(1.4.1) M, (Da,*)o — L(A*,C), My (Da,!)o — L(A*,C),

which can be also checked using the local classification of regular holo-
nomic D-modules of one variable, cf. [1], [2], [22, 1.4.2]. For M;,(Da, *)o,
the inverse functor is constructed explicitly by DELIGNE [7] :

Let L € L(A*,C), and {uj,...,un} be a basis of the multivalued
sections of L. Then the corresponding M € M,;,(Da, *)o is a Oa[t~!]-sub-
Module of j,(Oa, ®c L) with a basis {v1, ..., v, } over Oa[t™!] defined by :

(1.4.2) v; = exp(—logt(log T)/2mi)u; € I'(A, j.(Oax ®c L)).

Moreover, {vy,...,v,} is a basis of V*M (resp. V>*M) over Oa, if L
has quasi-unipotent monodromy (so that My is quasi-unipotent) and the
eigenvalues of —(log T')/2mi are contained in [a—1, o[ (resp. Ja—1,¢]). In
particular, VM (resp. V>*M) coincides with DELIGNE’s extension [7].
Let L € L(A*,C). Then Deligne’s nearby cycles ;L [6] is isomorphic
to the multivalued sections of L, and is endowed with the action of
monodromy T'. Let V(C,T) be the category of C-vector spaces with
automorphism 7T'. Then we have an equivalence of categories :

(1.4.3) ¥ L(A*,C) =5 V(C,T)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



148 M. SAITO

as well-known. So we get equivalences of categories :
(1.4.4) Muw(D,*) = V(C,T), Muw(D,!) = V(C,T)

by (1.3.4), (1.4.1), (1.4.3). We can also get this using the functor v, in
(1.1.5), because we have the compatibility of 1; with the de Rham functor :

(1.4.5) VM = hy(DRA(M) | a*)[-1] for M € M,(Da)o,

where the action of T' on the right hand side corresponds to exp(—2mid;t)
on Y:M = @,cp M*, cf. (1.1.5). This compatibility is a special case
of [10], [14]. It is reduced to the meromorphic case (i.e. M € M,(Da, *)o)
by (1.1.6), and follows from [7] using the morphism exp(— log t(log T') /2m)
in (1.4.2). As a corollary, the inverse functor of the equivalence of cate-
gories (1.4.4) is given as follows :

Let L € V(C,T), and L = @, Ly the decomposition by eigenvalues
of T. Then the corresponding M is defined by :

(1.4.6) M* =1L, for \=exp(—2mia),

using (1.1.3-4), (1.3.1), where T' on L) corresponds to exp(—2midt)
on M€,

2. Gauss-Manin systems and Brieskorn modules

We construct the period mapping via Brieskorn modules for a u-
constant deformation of function. The underlying idea is to imitate the
construction of the variation of Hodge structure associated with a smooth
projective family, cf. remark after (2.8). Since the base space may be
singular, we cannot apply directly the theory of mixed Hodge Modules,
because it produces an object different from what we need to construct
the holomorphic period mapping (i.e., the holomorphic vector bundle
corresponding to a local system) in the singular case. So we take a rather
classical approach.

2.1. — Let X be an open set of C™ containing 0, S a reduced complex
analytic space, and f: X xS — C a holomorphic function. In this paper
we assume n > 1, because the case n = 1 is trivial. Put fs = f|xx{s}-
Assume f;(0) = 0, and Sing f; = {0}. Then it is well-known that
the Milnor number u(fs) of fs is constant (using the discriminant, for
example), and it is denoted by u. So f is called a p-constant deformation
(which is preferable to p-constant unfolding). We define :

(2.1.1) 7= Qsys/Af A A2 s oy s

ToME 119 — 1991 — ~° 2



PERIOD MAPPING 149

By the same argument as [3], H7 has a structure of Os{t}-Module with

action of 0; ' such that 8;' commutes with the action of O, where
Os{t} = Ocxs| {0}xs with ¢ the coordinate of C. We define a subcomplex
(K*,d) of (QfXXs/S,d) by :

(2.1.2) K= Ker(df/\ : Qg{xS/s - Q?ism)-

Since {0f/0z1,...,0f/0x,} is a regular sequence, the complex :

(Qx w557 4fA)
is acyclic except for the degree n, and :

df A dQ;‘(_fS/S =d(df A Q};ZS/S) = d(K"™h).

So we get :
(2.1.3) /f =H"(K)|{o}xs-

Let Z := {(z,s) € C" x S : |z| <€ |[f(x)] < 6} for 0 < 6 € € K 1,
and g : Z - Y := A x S the morphism induced by f x pry, where A is
the open disc of radius §, and we embed (S,0) in (C™,0) and replace S
by its intersection with a ball of radius ¢’ for §' sufficiently small. Let
A* = A\ {0}. By the same argument as [16], g induces a Milnor
fibration, i.e. :

The restriction of g over Y* = A* x § is a topological
fibration for 0 < e € 1, 0 < 6 < 8(¢), 0 < & < &' (e),
and the topological type of the fiber (denoted by Fp) is
independent of e,

(2.1.4)

where §(¢),8'(€) are constants depending on e such that g~!(t,s) is
transversal to the sphere of radius € for 0 < € < 1, [t| < é(¢), |s| < &'(€).
Using an extension of f to X x C™, this can be reduced to the S smooth
case (but g becomes a topological fibration over a Zariski open subset
of A x §). Note that dimg H"~*(Fy,Q) = p the Milnor number of fo.

Let s € S with S as in (2.1.4). Replacing 0 in (2.1.4) with s, we have a
Milnor fibration defined over a neighborhood of s. But its range of ¢ may
be smaller than the range of € of the Milnor fibration in (2.1.4), and it is
not trivial whether the inclusion of the Milnor fibers Fy; — F induces an
isomorphism of cohomologies even though they have the same dimension.
In fact, this is related with the delicate problem about the topological
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150 M. SAITO

triviality of Milnor fibration, cf. [30]. But the cohomological assertion
with rational coefficients can be easily checked analytically, cf. remark
after (2.3).

Since g is a Stein morphism, we have :
(2.1.5) R"g.K = g.0%5/d(g. K"7),

and

R™g. K is compatible with base

(2.1.6) change by a closed embedding of S.

The following is well-known to specialists in the S smooth case :

R"g.K is a free Oy-Module of rank p for ¢, 8, &
(2.1.7) as in (2.1.4), and the restriction morphisms (for
different €) induce isomorphisms.

In fact, the invariance by € is checked as in [3], and the coherence follows
from a standard argument (using for example [12]). Then the remaining
assertion of (2.1.7) is reduced to the case S = pt by (2.1.6) and follows
from well-known results of BRIESKORN [3] and SEBASTIANI [25] (which
follows also from the natural inclusion H} — V>0G; in (2.6.2), cf. also
[13], [22, 2.6].) Applying the same argument to (S, s) for s € S and taking
the limit for € — 0, we get :

(2.1.8)  (HY)s is a free Ocxs,(0,5)-module of rank p for s € S.

LEMMA 2.2. — Letw : S" — S be a morphisms of analytic spaces. Then
we have a canonical isomorphism :

(2.2.1) T H = Hipe s
compatible with the action of 8; ", where T* ’f’ is defined by :
05/{t} ®7\"1(95{t} 7T_1H}I
and 7* f is the abbreviation of (id x w)* f. Moreover, (2.2.1) is compatible
with the composition of morphisms of the base spaces S.

Proof. — We have the canonical morphism (2.2.1) compatible with the
composition of the morphisms of base spaces, by the right exactness of
tensor product (because d : sz(xS/s — Q’;is/s is Og-linear), and this
implies also the isomorphism (2.2.1) when 7 is a closed embedding. By
the compatibility with the composition of {s'} — S’ and =, the restriction
of (2.2.1) to each point is an isomorphism, and the assertion follows
from (2.1.8).

ToME 119 — 1991 — ~° 2
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PROPOSITION 2.3. — M} is locally free of rank p over Ogs{t}.

Proof. — The assertion follows from (2.1.8) if S =pt. Forg: Z —» Y
as in (2.1.4), we have a natural morphism :

(2.3.1) (R"9.K)| {05 — H}l

by (2.1.3), and the assertion is reduced to the bijectivity of (2.3.1) by
(2.1.7). But it is enough to show its surjectivity by (2.1.7-8). Tak-
ing the pull-back by {s} — S, the assertion is reduced to the case
S = pt by (2.1.6) (but € might be bigger than the range of Milnor
fibration around s, cf. the remark after (2.1.4)). Then HY is a finite
C{{0; ' }}-module [13], [17], and is generated over the discrete valua-
tion ring C{0;'}} by generators of a finite dimensional vector space

'f'/a;lH" = ’}(’O/df/\Q}jOl (cf. [3]). So the assertion is clear by (2.1.5).

Remark. — By (2.3.1), the restriction morphism H" '(F,,Q) —
H"~1(F;, Q) is an isomorphism in the notation of the remark after (2.1.4),
cf. also [30]. The above argument is a quite simple version of the argument
used in the proof of Scherk’s surjectivity of the restriction morphism of
the cohomology of a good compactification of Milnor fiber [36].

2.4. — With the notation and assumption of (2.1), let p;Cxyxs be
Deligne’s vanishing cycle sheaf [6]. Then supp ¢ Cxxs C {0} xS, because
(2.1.4) holds also for points outside {0} x S, where the Milnor number is
zero. Put :

(2.4.1) L :=¢fCxxsln —1]|{0}xs-

By the above remark, Ly is a local system on S with the action of
monodromy 7', and

(2.4.2) (L)s ~H Y (Zng7(t,s),C) for 0<|t|<é, s€S

by (2.1.4) (choosing a lifting of ¢ to the universal covering of A*), where Z
is as in (2.1.4) and Z N g~!(t,s) is the Milnor fiber. We can also check
that Ly is compatible with base change of S, i.e.

for m: ' — S as in (2.2). By equivalence of categories (1.4.4), we have a
local system of D-modules My (%) (resp. M¢(!)) on S whose stalks belong
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152 M. SAITO

to M,(D, *) (resp. M, (D,!)) and correspond to those of Ly by (1.4.4).
More explicitly, we have natural inclusions :

(2.4.4) P M) — Ms(x) — ] Ms(x)°
a€eC a€eC

(same for My(!)) inducing (1.1.3) at each stalk (in particular, My (x) is

generated by My (x)* over C{t} or C{0;'}}), where M;(x)* are local
systems on S such that :

(2.4.5) Mys(x)* = Lgy for X =exp(—27ia)

(same for My (1)) by (1.4.6). Here Ly = @, Ly, is the decomposition by
the eigenvalue of the monodromy T'. Since T is quasi-unipotent, the stalks
of My(x), Ms(!) are quasi-unipotent, and the decompositions (2.4.4) are
indexed by Q. So M(*), M(!) have the filtration V' indexed by Q such
that Ve M;(x), VeM;(!) are local systems of C{t}{{9; ' }}-modules whose

stalks are finite over C{t} and also over C{{9; '}}, cf. (1.2.1). We have a
natural morphism of local systems of D-modules :

(2.4.6) M(1) — My (%),
because My (x) = My (!)[t™!]. By (1.1.6) it induces an isomorphism :
(2.4.7) VEMs(!) = VEMs(x) for o> 0.

Let Os{t}[0;] be the ring of relative differential operators (i.e.
Daxs/s|{oyxs)- We define :

(2.4.8) Mf(*) = Os{t}[at] ®C{t}[0,] Mf(*) = Os{t} ®C{t} Mf(*)
(same for M(!)). We have a filtration V' of My (%), M;(!) by :
(2.4.9) VM (%) = Os{t} ®cqey V> My (x)

(same for VeM;(!)). Put V>M;(x) = Upsa VOM;(x) (same for
V>aM;(1)). By definition, we have :

VeM;(x) and V>*M;(x) have locally a free

24.1
( 0) basis over Og{t} induced by a basis in (1.4.2).
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2.5. — With the above notation and assumption, assume further S
smooth. Let Gy be the localization of H{ by the action of 0, !. We define
a filtration of Gy by :

(2.5.1) FGy =" 'HY] for pel.

Then Gy has a natural structure of regular holonomic D¢ 5| {0} x s-Module
(i.e. the restriction to {0} x S of a regular holonomic D¢« s-Module) such
that the characteristic variety Ch(Gy) is contained in Ty, o€ x S the
conormal bundle of {0} x S in C x S. This can be checked using the
Gauss-Manin system associated with the morphism g : Z — Y in (2.1.4)
together with the isomorphism (2.3.1) (or we can use also the microlocal
Gauss-Manin system), cf. [11], [17], [22, § 2], etc. In fact, the assertion is
local and we may shrink S so that (2.1.4) holds. The Gauss-Manin system
can be defined by :

9
where the differential of the complex 2, /s ®c C[0] is given by :
W — dw® 8 — df Aw® o)t
(cf. [22, §2]). Here Q7 ¢ ®c C[d,] is the abbreviation of :
Q%5 @c Clo]6(f — 1)
with 6(f — t) the delta function supported on f =t such that :
O, 6(f = t) = —(8c.f) B:6(f — 1).

In particular, K is a subcomplex of 3, ®c C[0:], and we get a natural
morphism :

(2.5.3) R"g.K — /:oz = HO (/g (’)z).

Since the restrictions of K,Q% ¢ ®c Clo] to Z* = g~1(Y*) are both
quasi-isomorphic to g71(Oy)[—1] | z=, we have :
0

(25.4) (R"'9.C7) |y. ®c Oy =5 (R"g.K)|y+ - (/ 0z) =
g
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So (2.5.3) is injective by (2.1.7). We define the Hodge filtration F on
ngZ by :

0
(2.5.5) Fp/ Oz =0"*"""'R"g, K for pel.
9

We can also check that (ngZ)|{O}><S is independent of € in (2.1.4).

Passing to the limit, it is generated by M’ over C[d]. So we get an
isomorphism of O,{t}[8;]-Modules :

0

(2.5.6) Gy (/ OZ)

g l{o}xs’

which gives the structure of D¢y 5| {0} x s-Module on G;. Using ngZ we

can also check the compatibility of G; with base change of S as in (2.2),
i.e., for a morphism of complex manifolds 7 : S’ — S, we have a canonical
isomorphism of D-Modules :

(2.5.7) TGt == Gre g,
where 7*Gy is the pull-back of D-Modules and is defined by :
Ogs {t} Or-105{t} W_lgf.

Since Ch(Gy) C T{y;, sC x S, Gy is locally trivial along {0} x S, i.e., Gy is
locally isomorphic to the pull-back of a regular holonomic D-module M
of one variable by the projection p: C x § — C . So Gy has a filtration V
induced by V on M in (1.2.1), which coincides with the filtration V of
KASHIWARA [10] and MALGRANGE [14] along {0} x S indexed by Q. Note
that Gr{,;G; is a smooth holonomic Dg-Module, i.e., a locally free Og-
Module with integrable connection. By definition (2.4.8), M (), Ms(!)
have a structure of D¢ x 5| {0} x s-Modules, and they are regular holonomic,
because they are locally isomorphic to the pull-back of regular holonomic
D-modules by the smooth projection p as above. By (2.5.4), (2.5.6), we
get a canonical isomorphism :

(2.5.8) Gy = My (),

because [ 20 7 is the unique extension of ([ gO z) |y~ as regular holonomic
Dy-Module such that the action of ; on (ngZ) | {0}xs is bijective (this
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is a relative version of (1.4.1), and follows, for example, from the Riemann-
Hilbert correspondence [11], [15]). By (2.5.3) together with (2.3.1), (2.5.6),
(2.5.8), we get a canonical morphism of Os{t}-Modules :

(2.5.9) Hf — My ().

compatible with base change via (2.2.1), (2.4.3). By (2.3), (2.5.9) is
uniquely determined by its restriction to the points of S.

2.6. — With the above notation and assumption, assume further
S = pt. Then the filtration F on G; in (2.1.2) induces the Hodge
filtration F' of the mixed Hodge structure [26] on the vanishing cohomology
HY(Z N f~1(t),C) (0 < |t| < 1) via the isomorphisms :

(2.6.1) GryH} = FPH* ' (Z N f7'(1),C),

for A = exp(—2mia), n — 1 —p < a < n — p (choosing a lifting of ¢
to the universal covering of A*), which is induced by (1.2.2), (1.4.5),
(2.4.2), (2.5.8) and the action of d;. Here H"~'(Z N f~'(t),C), denotes
the A-eigenspace by the action of the monodromy. This fact is essentially
due to VARCHENKO [27], see also [18], [20], [21], [24], etc. Note that the
paper [24] quoted in [18], [20], [21] is its first version, where no D-Modules
were used (except for meromorphic type).

We have :
(2.6.2) V>°G; D HY D VTG,

where the first inclusion follows from the positivity of the minimal
exponent [9], [13], and the second from the symmetry of the exponents (or
spectrum) [26] (using [27]). In fact, the maximal exponent is less than n,
and

dime Gr{yH} = dimc GryH ' HY} (= dime Gr$Gy) for a >n -1,

where H} D V*Gy for o large enough follows from J, o} t = Gs. Note
that :

dime GryyH remains constant under

(2.6.3) u-constant deformation of f,

because the exponents and the Hodge numbers are constant under
p-constant deformation [28].
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Remark. — We loose a lot of information by passing from the
Brieskorn module H/} to the Hodge filtration on vanishing cohomology
taking the graduation, cf. (2.6.1). The lost information is expressed by
the linear mapping cg in [22]. But we don’t loose information at all in
the quasihomogeneous case, where cg o = 0. This is because H'/ is stable
by the action of 9;t, and the infinite decomposition (1.1.3) is compatible
with M7, ie., H7 is generated by C{t} or C{O;*}} over Gon } so
that G* N H} = GryHY.

PROPOSITION 2.7. — With the notation and assumption of (2.1), we
have a canonical morphism of Og{t}-Modules :

(2.7.1) Hf — VZOM(1) = V>OM{ ().

compatible with base change via (2.2.1), (2.4.3). Moreover, it coincides
with (2.5.9), if S is smooth.

Proof. — By the compatibility with base change to each point of S,
(2.7.1) is unique. So the assertion is local on S. Take :

g:Z—-Y=AxS

as in (2.1.4) by restricting S. Let w € g*Q'Z‘/S. Since the restriction
of g over Y* = A* x S is smooth, w/df determines a section s{w/df)
of j.(R"1g.Cz |y~ ®c Oy+)|{o}xs, Where j : Y* — Y is the natural
inclusion. This can be checked by extending the function f to X x S”,
where S” is a smooth space containing S. Let M’ be a coherent extension
of V¥M;(%), i.e. a coherent Oy-Module whose restriction to {0} x S is
Ve M;(*), where U is an open neighborhood of {0} x S in Y. We define
Mf(00) = juj*M' | {0}xs, Which is independent of a. Then we get a
morphism :

(2.7.2) H} — My(c0)

compatible with base change of S. Using a local basis {vi,...,v,} of
V>0M;(x) in (2.4.10), the image of w € HY in M;{(o0) is expressed by
>, aiv; with a; € (.5*Oy) | {0} xs, and it is enough to show a; € O,{t}.
If S is smooth, (2.7.2) coincides with the morphism induced by (2.5.3)
via (2.3.1), (2.5.6), (2.5.8), and it induces (2.7.1) by the positivity of the
minimal exponent [9], [13], cf. (2.6.2). Since the basis in (2.4.10) (and
hence the coefficients a;) is compatible with base change of S, the assertion
is reduced to the smooth case if S is normal, using a desingularization of S.

TOME 119 — 1991 — n~° 2



PERIOD MAPPING 157

In general, let 7 : S’ — S be the normalization, and f' = n* f, cf. (2.2).
Then we have H — 7. V>9M; (%), and it is enough to show the vanishing
of the composition :

(2.7.3) 1 — m VM (%) — w VO My (%) [V O M4 ().

The image is a coherent subsheaf, and annihilated by a power of ¢, because
a; € (j+J*Oy)|{o}xs- So we get the assertion, because ¢ is a non-zero
divisor of 7,05 {t}/Os{t} and m, V>0 M (x)/V>°M; (%) is a direct sum
of m,Og: {t}/@s{t}.

COROLLARY 2.8. — The morphism (2.7.1) is injective and its coker-
nel is a free Os-Module of finite rank. Moreover the natural inclusion
V=t Me(Y) — V>OMy(!) is factorized by (2.7.1).

Proof. — This follows from (2.6.2-3) and the compatibility with base
change.

Remark. — There is some similarity between the above situation and
the usual variation of (mixed) Hodge structure. In fact, the local system
of D-modules My (!) corresponds to the underlying C-local system of the
variation, M #(!) to the underlying holomorphic vector bundle which is the
holomorphic scalar extension of the local system, and H}’ to the Hodge
bundles. Moreover, ’H}’/V”‘ll\;ff(!) is a subbundle of a free Og-Module
V>OM(1)/V"='My(!), and the analogy becomes closer if we restrict H/}
to V>OM(1)/V"=1M;(!). Note that, restricting H7 to Gry M;(!), we get
the Hodge filtration of the variation of mixed Hodge structures on the
vanishing cohomologies, cf. (2.6.1).

2.9. — With the notation and assumption of (2.1), we define G, := Gy,
by applying (2.5) to fs. Then G is a regular holonomic D-module as
in (1.1), and we have a canonical isomorphism :

(2.9.1) Gs = Mys(1)s,

because My(!) is compatible with base change of S. So we get a locally
constant sheaf on S, denoted by Gg, such that its stalk at s € S is G;
and Gs = My(!). This means that we have the parallel translation of
the elements of G;. Assume S contractible by shrinking S if necessary.
Then the locally constant sheaf is a constant sheaf, and we denote its
stalk by G so that we have a canonical isomorphism Gy, = G for any
s € S. Let Hy = H} and mq = dimc Gry’H}, for s € S. By (2.6.3),
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mq is independent of s. Let L(G)' be the set of C-vector subspaces M
of V>9G such that V>9G > M D V"~1G, and L(G) the subset of L(G)’
consisting of M such that M is a C{t}{{0; ' }}-submodules of V>°G and
dim¢ Gry M = m, for o € Q. Then L(G) has naturally a structure of
complex manifold, and L(G) is a locally closed analytic subspace of L(G)'.
By (2.6.3), (2.7) and (2.8), we get :

THEOREM 2.10. — We have a period mapping :
(2.10.1) ¥:S5—L(9)

associating H') € L(G) to s € S, and it is holomorphic.

Since the Hodge filtration on the vanishing cohomology is obtained by
taking the graduation of H by V, cf. (2.6.1), this implies the following
(which is not trivial in the case S non-normal) :

COROLLARY 2.11. — We have a period mapping ¥ associating the
Hodge filtration of mized Hodge structure on the cohomology of Milnor
fiber, and it is holomorphic.

Proof. — For the target L(G) of ¥, we take the product of flag varieties
of (L¢)o, cf. (2.4.2), (2.6.1), where Ly ) denotes the A-eigenvalue part
of Ly so that (Lyr)o = H"Y(Z n f~(t,0),C)s. Then the natural
morphism L(G) — L(G) is holomorphic.

3. Period mapping of the py-constant stratum
3.1. — Let f': (X,0) x (5’,0) — (C,0) be a miniversal deformation of

a holomorphic function fj with isolated singularity, where X is an open
neighborhood of 0 in C”, and S’ is a complex manifold such that :

! a !
(12 2
631 s=0 as,u—l s=0
is a basis of Ox o/(0f;), where (z1,...,2y,), (s1,...,8,-1) are coordinate

systems of X and S’ respectively, and (0f) = >, Ox,00fy/0x;. Here p
is the Milnor number of fj. We may assume Singf; = {0} and f,(0) =0
if s belongs to the p-constant stratum, by replacing f' if necessary. Put :

Oc¢r = Oxxs / ZOXXS’ of' | 0;.
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Let ' : Xx8" — §'. Shrinking S’ if necessary, 7’ Q¢ is a free Os:-Module
of rank p, and we have a canonical inclusion :

(3.1.1) n:0g — 7,0

whose cokernel is free of rank 1, by associating vf' € 7,O¢' to a vector
field v € Og, where vf’' € 7,O¢ is defined by lifting v to X x S’ and
is independent of the choice of lifting by definition of O¢/. We can also
define the Gauss-Manin system f 2,(’)2: with Hodge filtration F' as in
(2.5.2), (2.5.5), where ¢’ : Z' — A x S’ is defined as in (2.1.4), cf. [17],
[22, §2]. Let p' : A x S’ — S’ be the natural projection. We can check
that the Hodge filtration F on [ 2,02: is exhaustive (cf. [loc. cit.]), and :

p;Grffg,(’)Z/ is a free 7, Oc:-Module

(3.1.2) »
generated by o' '§(f —t) for p€ Z,

where 6(f' —t) is the delta function as in (2.5), and the coordinates of C*
are used to trivialize 7, ¢ . This is essentially due to BRIESKORN [30]
(cf. also [19, (1.4.3)]) admitting the injectivity of (2.5.3) in this case. Here

we can also use the theory of microlocal filtered Gauss-Manin system
[22, §2]. Then :

o' € End(p;Grgfg,(’)Zr) for v € Og is identified

3.1.3
( ) via (3.1.2) with the multiplication by —n'(v) on 7,O¢r,

because v6(f —t) = —(vf') 0;6(f' —t). (Compare [19].) Let S be a closed
analytic subspace of the p-constant stratum {s € S’ : u(f) = u(f§)}, and
Sreg the smooth points of S. Let f be the restriction of f' over S, and
define O¢ and 7 by replacing ', f’ with S, f. The Gauss-Manin system
is compatible with base change so that (3.1.2-3) holds with Z', ', f', etc.
replaced by Z, S, f, etc., and (3.1.1) induces an injective morphism :

(3.1.4) n:0s,., = TO0|5, = T00 | 5,0,

whose cokernel is also locally free (because (*©g|s,.,)/©s,., is locally
free), where 3 : § — S’ is the natural inclusion.

THEOREM 3.2. — For S as above, the restriction of ¥ in (2.10.1) to
Sreg is locally a closed embedding.

Proof. — This follows from the same argument as in [22, 2.10] using
(3.1.3-4). Let H = V>°G/Vn+iG and FP = O, "H!/V"*G Cc H
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for p = 0,1,2. Then m, := dimF? is independent of s € S. Let
Flag(H;mg,m1, my) be the flag variety of three subspaces with dimension
mo, M1, M. We have a holomorphic mapping :

(3.2.1) ® : Sieg — Flag(H;mo,mq1,m2)

by associating (FY,F!,F?) to s € Syeg. By definition, this is factorized
by ¥|s,.,, and it is enough to show the injectivity of d®. Let H be a
trivial holomorphic vector bundle on S..; with fiber H. Let F? be the
subbundle of H whose fiber at s is FP for p = 0,1,2, and F~! = H,
F3 = 0. Since vFP C FP~! for a vector field v, the image of d® is
contained in the horizontal tangent bundle whose corresponding locally
free sheaf is B ,<» Homo(Gr’},Gr’}_l). So it is enough to show that
the morphism :

(3.2.2) Os,., — Homo(Grly, Gr%)
is injective and its cokernel is locally free. But this follows from (3.1.3-4).

Remark. — This proof was inspired by a discussion with J. STEVENS
about VARCHENKO’s work [29] at Leiden in 1984.

THEOREM 3.3. — Let S be the p-constant stratum. Then ¥ in (2.10.1)
is finite to one by shrinking S if necessary.

Proof. — It is enough to show the dimension of Z = ¥~1(¥(0)) at
0 € S is 0. (Take sufficiently small relatively compact neighborhoods U,
U’ of 0in S such that U C U’, and replace S by U \ U~1(¥(U' \ U)).
Then ¥ becomes proper over the image, and has finite fibers.) Assume
dim Z > 0. Then we get the local injectivity of the restriction of ¥ to Z,,
by (3.2). This is contradiction.

3.4 Example : quasihomogeneous case. — Assume fj is a quasiho-
mogeneous polynomial of weight wy, ..., wy, i.e., fo is a linear combination
of monomials z{"* - - - 2" whose degree is one, where :

degz™ - 2" = mywy + -+ + MpWh.

Let g1,...,9,—1 be monomials such that {1,91,...,9,-1} is a basis of
Ox,0/(0fo). Then the miniversal deformation is given by :

f/::fO"‘ZgiSia
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where (s1,...,8,-1) is the coordinate system of C*~! and S’ is an
open subset of C*~1. Each s; has the degree v; := 1 — degg;. Let
S = C x C+ ! and s = t the coordinate of C with vy = degsy = 1.
Then S has a C*-action associated with the degree (Yo, .y Vy—1), e,
a(sg,...,8u—1) = (asg,...,a"~1s,_1) for @« € C*. The associated
vector field E is given by Y v;5,(8/9s;), and coincides with the Euler
vector field in [19] by definition. We have a decomposition :

S=8"x5" x5,

where S5*,5°,5~ denotes respectively the positive, zero, and negative
degree part of S by the C*-action. Then the p-constant stratum S is
({0} x §")N (S° x §7) by [29], where we may assume S = S° x S~ with :

S9=5n8° S =SnS.

So S is smooth and the period mapping ¥ is injective by (3.2) (by
shrinking S’ if necessary). But ¥ in (2.11) is not injective in general.
In fact, let 7 : § — S° denote the natural projection which is also
induced by the C*-action. By the same argument as [22, 4.2], [23], the
Hodge filtration of vanishing cohomology is invariant under a deformation
of fy obtained by adding monomials of higher degree, and ¥ is factorized
by 7. The image S° of 7 is the parameter space of deformation of fy as
quasihomogeneous polynomials. By remark after (2.6), the restriction of ¥
to S° is equivalent to the restriction of ¥, and is injective. So we get :

There is a projection 7 of the u-constant stratum S to its
(3.4.1) closed subspace, on which the local Torelli holds and
is the identity, and ¥ is constant on the fibers of =.

In particular, THEOREMS (3.2), (3.3) do not hold for ¥. Note that, if fo
is homogeneous, deformation of homogeneous polynomials is essentially
equivalent to deformation of projective hypersurfaces, and the latter was
studied by CARLSON and GRIFFITHS [4], where the local Torelli was
proved in a different way.

3.5 Remark. — In [8] KARPISHPAN tried to extend (3.4.1) to the
non-quasihomogeneous case using the theory of primitive forms and
logarithmic vector fields [19]. But his arguments contain many gaps, and
his idea seems too optimistic. The situation seems much more complicated
than is described in [8]. Although the linear mappings cs, in [22, § 3]
express the information which is lost by passing to the graduation of H”
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by V, it is not easy to relate this with the geometry of the discriminant
in the non-quasihomogeneous case. For example, the Euler vector field E
cannot be used to construct the projection m, because :

The Euler vector field E is everywhere non-zero,

3.5.1 . . . .

( ) i.e. Fix(E) = {, in the non-quasihomogeneous case,
The variation of mixed Hodge structure is not constant

(3.5.2) on the logarithmic strata contained in the p-constant

stratum, especially on the integral curves of E, if the
Milnor monodromy of fy is not semisimple,

cf. (3.6). Note also :

(3.5.3) The logarithmic vector fields are
o defined on A x S’ and not on S’.

This makes the arguments more complicated, because we have to use a
vector field on A x S coming form S (more generally, the coefficient of 0;
is divisible by t?) to get the correct action on the variation of mixed
Hodge structure which is obtained by graduation of the Gauss-Manin
system by the filtration V along {0} x S, where S is a complex manifold
parametrizing a u-constant deformation.

In fact, if we extend a vector field on {0} x S to a vector field on A x S
in a bad way (i.e., the coefficient of d; is not divisible by #2), the action on
the variation may be different from that of the Gauss-Manin connection
on the variation. (Here the coordinate ¢t on A x S’ is fixed, because we
consider deformation of function.) This kind of problem occurs, because
the inclusion {0} x S’ — A x S’ is characteristic and we have to use the
filtration V. We don’t have such a problem in a non-characteristic case,
e.g., A x D — A xS for a locally closed submanifold D of §', because
the restriction is defined simply by tensor of the structure sheaf.

3.6 Remark. — Let v = *(v1,...,v,) be a good basis of the Brieskorn
module Y in [22]. Let f’ be a miniversal deformation of f; as in (3.1),
and S’ its base space. Let (s1,...,5,—1) be a coordinate system of ',

and 9; = 9/0s;. By MALGRANGE [31], the good basis is uniquely extended
to a basis (also denoted by v = *(vy, ..., v,)) of the Brieskorn module H,
associated with f’ so that :

(361) tatV = Agﬁtv + (A1 - l)V,
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where Ay, B; are matrices with coefficients in holomorphic functions on ',
and A; is a semisimple matrix with constant coefficients such that v; is an
eigenvector of A; with eigenvalue a; (where o; are the exponents of fy),
cf. [22, (4.3.4)]. By (3.1.2), A; and B; express the action of f' and 9 f’
respectively on 7, O¢/ in the notation of (3.1). Let S € S’ denote the
p-constant stratum. We have :

The restriction of v to s € S sufficiently

(3.6.3) near 0 is also a good basis.

(This is essentially equivalent to that the restriction of v; to s € S
sufficiently near 0 belongs to V%, cf. [22, (3.6)].) It follows from the
uniqueness of MALGRANGE’s extension [31]. In fact, a good basis at the
origin is uniquely extended to a good basis at s € S by fixing an opposite
filiration in [22] and using the parallel translation of the splitting of
the Hodge filtration in [loc. cit.] at 0 € S. Here we take the extension
v; so that the projection of v; to the parallel translation of G* at 0
is constant. This extension coincides with MALGRANGE’s extension by
its uniqueness, because we can take a one-parameter family and check
Malgrange’s condition similar to (3.6.1-2) for the basis obtained above
using [22, (3.4.1)] and the constantness of the opposite filtration.

Let E be the Euler vector field. By definition [19], we have :

(3.6.4) to,=FE' +E with E' =g(s)o+ Y  gi(s)d
1<i<p

where g(s), gi(s) are holomorphic functions on S’. In particular,

(3.6.5) E'v=g(s)0v+ Y gi(s)Bidyv.

1<i<u

Since E is a logarithmic vector field, we have E(H'/,) C H, and :
f f

(366) EIV = Aoatv, Ev = (Al — 1)V,
(3.6.7) Ay =g(s)+ ) gi(s)Bi
1<i<p

by (3.6.1), because v is a basis of 1, over Os of{0; '}, cf. [22]. (This
argument is same as [22, 4.3] where we proved that the primitive form is
an eigenvector of E.) In particular, if fq is not quasihomogeneous, we have
Ap(0) # 0 (using [32]), and E' is not zero at 0 € A x S’ by (3.1.3), (3.6.6).
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So we get (3.5.1). (The assertion (3.5.1) is also proved by KARPISHPAN in
his recent manuscript.)

Let D C S’ be an integral curve of E contained in the p-constant
stratum. Replacing f’ if necessary, we may assume (9;f')|10yxp = 0.
This implies g(s) = 0 for s € D by (3.6.7) (using the identification with
the action on m,Oc¢), because f' |(o1xp = 0. So we get :

(3.6.8) Elaxo=( Y a(:)3)) laxp’

1<i<p

i.e., the coeflicient of 0; is zero, cf. the remark after (3.5.3). Here A x D —
A x S is non characteristic, cf. the last remark in (3.5). Let f” denote
the restriction of f’ over D. By (3.6.3), {0/ v;i}ici(a,p) is a free basis of

Gr]f_,,bJrl Gri,G s over Op, where I(a,p) = {i : &; — a = p}. By (3.6.6),
Gt Gry E' |axp : G} Gr§yGpn — Grhyy Gy Gen

coincides with Grf Gry ;¢ which is identified with —Grf N by the
isomorphism (2.6.1), where N = log T, /2mi with T, the unipotent part
of the Milnor monodromy 7. If the Milnor monodromy is not semisimple,
Grf' N # 0 by the strict compatibility of N with the Hodge filtration F
on the vanishing cohomology, and the Hodge filtration F' is not locally
constant along D, because it is not stable by the action of E’. (Note that
the restriction of E to D coincides with that of —FE’, and we have to
use —E' to get the correct action, cf. the remark after (3.5.3).) So we
get (3.5.2).

We can also verify directly (3.5.2) in the example fo = 2P +y9+ 2" +zy2
with 1/p+1/q+1/r < 1. In fact, we have a C*-action on C x C*~2? x C*
which contains A x S’ by taking :

f=aP +y?+ 2" +ayzs,—1 + Z 9i545
‘ 1<i<pu—2

where {1,zyz,¢1,...,9u—2} is a monomial basis of Oxo/(0fy). The
vector field corresponding to the C*-action is the Euler vector, but it
is nowhere zero. Moreover, we can check that the mixed Hodge structure
on the vanishing cohomology varies really along the p-constant stratum

{si=0 (i #pu- 1)}

3.7 Remark. — The mixed Hodge structure on the cohomology of
Milnor fiber depends on the choice of the coordinate ¢ of the open disc A,
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because the isomorphism (1.4.5) depends on ¢, where the Hodge filtration
is defined on the left hand side, and the rational structure on the right. So
the period map in [8] is not well-defined, because he considers the map of
the parameter space of a deformation of hypersurface instead of function.
To make the period map well-defined, we have to take a quotient space of
the classifying space of mixed Hodge structure. But it is not clear what
kind of quotient space we should take, because the ambiguity of defining
equation is given by a function on (C™,0) (not only by a function on A).

To solve this problem, there may be two possibilities. One is to
choose an embedding of the base space of the miniversal deformation
of hypersurface into the product of an open disc A with the base space S’
of the miniversal deformation of function, cf. also remark below. But we
cannot get a well-defined period mapping ¥ of the p-constant stratum in
the base space of the deformation of hypersurface, taking the composition
with the embedding. The second is to give up the local Torelli for
hypersurfaces, and consider only the moduli of functions. In any case,
the arguments in [8] do not seem to be useful by (3.5.1-2).

3.8 Remark. — Let S be the p-constant stratum of the base space of
the miniversal deformation of a function. We have a stratification of S by :

T(S) = T(fs) :=dim¢ OX,O/(fsaafs) for s € S,

with the notation and assumption of (2.1). Let S, = {s € S : 7(s) = 7}. It
is a union of logarithmic strata (like foliation). Note that the logarithmic
stratification in [19] is not locally finite. Let D be a logarithmic stratum,
and T, a submanifold of A x S’ transversal to D at s € D, where A x S’
is as in (3.1). According to KARPISHPAN, we have :

(3.8.1) dimD =pu—17(s) for seD,

(cf. p. 290 in [33]), and dim T = 7(s). Since the fibers are analytically
trivial along D, T, should be identified with the base space of the
miniversal deformation of the hypersurface f;1(0) by Kas-Schlessinger.
So we get an embedding of the base space into A x S’. But, of course, the
restriction of ¥ to the base space depends on the choice of T,. Note that
a miniversal deformation of fy induces that of fs for s € S sufficiently
near 0. One might expect that the local Torelli for hypersurfaces holds on
TN S,-(S), ie.,

(3.8.2) The restriction of ¥ to Ty N Sy () is
o injective on a neighborhood of s.
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If s is a smooth point of S, (), then T, N S:(s) is smooth, and (3.8.2) is
equivalent to the infinitesimal Torelli (i.e. the injectivity of the differen-
tial). But (3.8.2) is not true as is seen in the following :

Example. — With the notation of (3.4), assume S° = {0} so that ¥ is
constant. If (3.8.2) is true, we have T, N S;(;) = {s} forany s € S =5,
or equivalently :

(3.8.3) dimS, =pu—7 forany 7

using (3.8.1). But this is not true in general. For example, let fo = 2% + 5.
Then dim S = 3, and the p-constant deformation is given by :

f=2a%+45 + azx'y® + ba'y? + ca®y?,
where (a,b,c) is the coordinate system of S. By definition,

p—7=dimIm(fs: Ox,0/(8fs) = Ox,0/(0fs)),

and we can check p— 7 =0if (a,b,¢) = (0,0,0), 1if a # 0,(b,c) = (0,0),
and 2 otherwise, because z°y?, z%y* € (9f,). (In fact, in the case b # 0,
we can check z3y*, 2892 27y, 2%y%, 22y°, 259% € (8f,) inductively.)

3.9 Remark. — Another major problem in [8] is that the filtration "V
depends not only on the choice of a good basis, but also on the representa-
tive of the basis. We can find easily a counter example to (5.3) in [loc. cit.].
It gives also a counter example to Proposition and Corollary in (5.8) of
[loc. cit.]. The error comes form a misinterpretation of the determinant
theorem in [loc. cit.]; there is no relation between wy, ..., w, associated
with f and those associated with f, as long as the properties (ii) and (iii)

“are concerned. Here KARPISHPAN uses the decomposition X x S’ of the
total space to extend a form on X to the total space. But the exten-
sion depends heavily on the choice of the decomposition (associated with
the choice of the miniversal deformation). If one uses relative differential
forms, there is a problem about the ambiguity of the extension as relative
forms, and it is not easy to get something well-defined without loosing
information, see remark (3.10) below.

Example. — Let f = z* + y* € C{xz,y}. We have :
df Ad(a'y’) = 4Gz Yy —ia'y?H)da/z A dy/y,
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and H} = Q%Q7O/df A dOg: o has a basis z'y/dzdy (0 < 4,5 < 2) over
C{t} or C{{0; '}}, where 2’y dzdy = Oin } if (i—3) or (j —3) is divisible
by 4. With the notation of [8, § 5], we take xiy/dzdy (0 < 4,5 < 2;
(4,4) # (2,2)) and (z%y* + 2*)dzdy for the representative of a good basis
{wi,...,w,}. Then we can calculate the filtration "V on C{z, y} explicitly,
and z'y’ (0 < 4,5 < 2) can be taken for ¢1,...,¢,. In particular, 22y?
is a part of a basis of Grvy M7, and f, = f + A(r)z?y? is a p-constant
deformation where A(r) is a non-zero holomorphic function of r. But x2y?
does not belong to "V10O, and consequently the corresponding curve does
not belong to K. So K is smaller than the p-constant stratum D,,.

For COROLLARY in (5.8) of [loc. cit.], we replace f by f + 2% to
get a function of three variables. (This may be done also for (5.3).)
Then the exponents are added by % because dz has degree % Take
w = (2%y? + 23)dzdydz and f, = f + rz®y?. Then z*dxdydz is not
zero in Qy, for r # 0, and hence a(s,(r)) = I for r # 0 because
degz®dzdydz = 1. But a(w) = § at r = 0, because z3dzdydz = 0
in H" at r = 0. This gives also a counter example to PROPOSITION
in (5.8), because w is a part of a basis satisfying the three conditions

in the determinant theorem applied to f.

3.10 Remark. — Using MALGRANGE’s extension [31] of a good
basis in [22] (cf. also (3.6)), it is possible to get a correct version of
THEOREM in [8, (5.3)] by (3.6.3). Let ¢ : (C,0) — (5’,0) be a holomorphic
mapping of an open disc C with coordinate s. Let {¢*v1,...,¢"v,} denote
the pull-back of the good basis in (3.6) to t*H’,. Then :

(3.10.1) t(C) is contained in the u-constant stratum if and
Y only if a(@f(L*vjﬂs:o) > aj for any k > 0, j,

where a(w) = max{a : w € VG } for w € Gy, and «; is as in (3.6)
so that o; = a(t*v;|s=0). In fact, if «(C) is contained in the p-constant
stratum, we have a(0¥(1*v;)|s=0) > a; by (3.6.3).

The proof of the converse is essentially same as in [8], where the
argument holds for any basis. Assume ¢(C) is not contained in the
p-constant stratum. Let D C A x S’ denote the discriminant. Let
{M,.-.,7.} be a basis of the multivalued section of the local system on
the complement of D, whose stalk is the homology of the Milnor fiber. We
have a multivalued holomorphic function I; ; defined by the integration of
v;/df" along the stalk of v; at each point of A x §'\ D. It is well known
that h'~"/? det(I; ;) is a unit, where h is a reduced equation of D. (This
follows immediately from the calculation of the Brieskorn module in the

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



168 M. SAITO

ordinary double point case.) Here we use the fact that {v,...,v,} is a
basis of H’;, over Oaxs, and :

(3.10.2) The degree of the projection D — S’ is p.

It is also well known that :

The p-constant stratum coincides

(3.10.3) with {P € A x S : multpD = p}.

If n > 2, the assumption and (3.10.2-3) imply that ¢*h is not divisible
by t#, i.e., det(:*I; ;) is not divisible by t"~2%. So 8%(1*I; ;) | s=o is not
divisible by t®~! for some 1,7, k, and we get the assertion. If n = 2,
we can apply the same argument to {8; 'v1,...,d; 'v,} which is a basis
of 07 Y M.

It should be noted that MALGRANGE’s extension is highly transcen-
dental and it is not easy to calculate it explicitly, because it is obtained as
the solution of some connection using the Fourier transformation of the
microlocal Gauss-Manin system, cf. [31]. So it is not easy to get a more
explicit formula. It is not clear how much (3.10.1) is useful for the calcu-
lation of the u-constant stratum (for example, compare with (3.10.3)).

3.11 Remark. — We can prove the conjecture about the minimal
exponent which is proved in [8, (8.12)] in some cases, using the theory
of mixed Hodge Module and filtered microlocalization (which does not
change @), as long as the primitive form is associated with a good section
in [22]. With the notation and assumption of (2.6), let :

QO :=HY/07 " H] = Gr{_, Gy,

with V' the filtration induced by V on G;. Then the minimal exponent has
multiplicity one and the corresponding eigenvector by the morphism A,
generates 2y over Ocn o, where A, is as in (3.6.1). It is enough to show
that V is a filtration by Oc¢n g-submodules such that its graded pieces
are annihilated by the maximal ideal m¢n o, because we have a surjective
morphism of Oc» g-modules O¢n o — Q¢ by (3.1.2), and the graduation
of the induced filtration V on Oc¢n o is also annihilated by m¢a ¢. For the
proof of the assertion, it is enough to show that Gr’ Gr{(Dx xcé(f —t))
is annihilated by men o for @ < 1, using the commutativity of Grf', Gry
with the direct image of D-Modules by a compactification of f in [3]
(cf. [34, 3.3.17], [35, 2.14]) together with the filtered microlocalization
which does not change Gry; for o < 1. Then the assertion follows from
[34, 3.2.6], because supp Gr{,(Dxxcd(f —t)) C {0} for a < 1.
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3.12 Remark. — The period mappings used in this paper and [8] are
quite different from that in [19] which is defined on the complement of
the discriminant and depends on the choice of primitive form in general.
This was first introduced by BRIESKORN in the case of rational double
singularity, and was extended to simple elliptic singularity by LOOIJENGA,
K. SarTo. The formalism of K. SAITO [19] works well in these two cases
where the non-negativity of the degree of the C*-action on the base space
was essentially used. For the moment, it is not clear whether it gives good
information about the complement of the discriminant in the general case.
The next test is the fourteen exceptional singularities (e.g. x7 + 3 + 22)
where we cannot compactify the fibers simultaneously in a natural way
(using a weighted projective space) and the Milnor fibration is not defined
algebraically, i.e., a Milnor fiber of the universal family is not topologically
equivalent to the affine hypersurface containing it, because there is a
cycle vanishing toward the divisor at infinity (this can be seen in the
one-parameter family {z7 + y3 + 2?2 + sz’y = 1}).
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