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ENDS OF VARIETIES

BY

H. ALEXANDER (*)

RESUME. — Nous etudions Ie comportement au bord d'une sous-variete de dimen-
sion complexe 1 dans un domaine pseudoconvexe de C". Dans Ie cas d'une sous-variete
avec un bord de mesure lineaire localement finie, nous obtenons des resultats sur les
tangentes au bord, Punicite de la sous-variete ayant un bord donne, Paccessibilite d'un
point du bord et la mesure harmonique sur Ie bord.

ABSTRACT. — We study the boundary behavior of a one-dimensional subvariety
of a strictly pseudoconvex domain in Cn. When the boundary of the subvariety has
locally finite linear measure, we obtain results on tangents to the boundary, uniqueness
of the subvariety given the boundary, accessibility of boundary points and harmonic
measure on the boundary.

Introduction
Let V be a subvariety of a domain D in C^. The end of V, denoted bV,

is the set V\V contained in the boundary bD of D. The terminology is due
to GLOBEVNIK and STOUT, who studied the notion in a series of papers
[12], [13], [14], [15]. Here we shall consider one-dimensional subvarieties, in
strictly pseudoconvex domains, whose ends essentially have locally finite
one-dimensional Hausdorff measure (which we shall refer to as "linear
measure" and denote by H1).

Our first result concerns the general question of uniqueness. Given two
irreducible subvarieties V\ and V^ of D, we want to conclude that V\ = V^
provided that bV\ H bVz is, in some sense, sufficiently large. GLOBEVNIK
and STOUT [13] showed that if D is the unit ball in C2 and each of the
subvarieties is the image of the unit disc under a proper holomorphic
map and each end is a rectifiable Jordan curve, then the two subvarieties
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524 ALEXANDER (H.)

coincide, provided that the two ends meet in a set of positive linear
measure.

We shall not require that our varieties be parameterized by the unit
disk or that their ends be anywhere arc-like. We do however need a
topological assumption of local connectedness. Recall that a continuum is,
by definition, a compact connected set of more than one point. To
formulate our assumptions, we define the subset aV of bV as the set of
points p in bV for which there exists a continuum X of finite linear measure
contained in bV such that X is a (compact) neighborhood of p in bV.
If X is a continuum of finite linear measure in J?^, then, by a theorem
of BESICOVITCH [7], X is arcwise connected and is a disjoint union of a
countable set of rectifiable Jordan arcs and a set of linear measure zero;
moreover, X is locally connected, which can easily be proved directly or by
using a result of EILENBERG and HARROLD [6] to the effect that X is the
continuous image of the unit interval. Consequently, we can alternatively
describe aV as the set of points p of bV such that (i) bV has locally finite
linear measure at p and (ii) bV is locally connected at p. In particular,
aV is an open, sigma-compact subset of bV and is a countable union of
continua of finite linear measure. We have the following uniqueness result :

THEOREM 1. — Let V\ and V^ be one-dimensional irreducible subvari-
eties of a strictly pseudoconvex domain D in C77'. // aV\ H aV^ has positive
linear measure, then V\ = V^.

We should note that some sort of convexity condition is needed for this
result; in our case, the subvarieties are both contained in a strictly pseudo-
convex domain. GLOBEVNIK and STOUT [13, Example 14] have indicated
how the conclusion may otherwise fail, even if the ends are infinitely dif-
ferentiable Jordan curves. Globevnik and Stout's proof of uniqueness is
restricted to C2 because it is based on a result of BERNTDSSON [4] which
does not hold in higher dimensions. The different method used here is to
find "good" projections : to do this, we need to consider the tangents to bV
at points of aV ; these exist 7Y1 a.e. on aV. In the case that bV is a C2 Jor-
dan curve in the boundary of the unit ball, FORSTNERIC [10] has shown
that the tangents to bV never lie in the complex tangential subspace of
the tangent space to the unit sphere. It turns out that the existence of
good projections is closely related to the existence of tangents which are
not complex tangential to the boundary of the domain. FORSTNERIC's
result, however, may fail if bV is only C1, as was observed by ROSAY [18].
That is, in the C1 case, tangents to the curve may be complex tangential
to bD. Nevertheless, the next result provides, in a quite general case, lots
of tangents which are not complex tangential.

TOME 120 — 1992 — N° 4



ENDS OF VARIETIES 525

THEOREM 2. — Let V be a one-dimensional irreducible subvariety of a
strictly pseudoconvex domain D. Then 7-^1 almost all points p ofaV have
the property that the tangent to bV at p exists and is not in the complex
tangent space to bD at p.

From this we obtain the following variant of the C2 case obtained by
FORSTNERIC [10] :

COROLLARY 1. — Let F be a rectifiable Jordan curve in bD with
D strictly pseudoconvex and D polynomially convex. Suppose that the
tangents to F are complex tangential to bD at a set of points of F of
positive linear measure. Then F is polynomially convex.

For the proof we note that, by [1] and [2], F \ F is either empty or is
an irreducible one-dimensional subvariety of D whose end is exactly F.
THEOREM 2 rules out the latter. The corollary is false if the Jordan curve
is replaced by a continuum X of finite linear measure, even if X is a
union of two real analytic curves; the reason being that the part of the
polynomial hull of X inside D may be a non-empty subvariety whose end
is a proper subset of X.

According to a classical result of F. and M. RIESZ [17], if J is a Jordan
domain in the plane whose boundary bJ is a rectifiable Jordan curve, then
harmonic measure on bJ (for some interior point of J) and arc length
measure on bJ are mutually absolutely continuous measures. Part (a)
of our next result can be viewed as a generalization to Cn. A different
formulation of the Riesz theorem, as, for example, given by GAMELIN
[11, p. 45], involves annihilating ("orthogonal") measures. This relates to
part (b) in our setting. The proof uses the "abstract" F. and M. RIESZ
theorem [11].

THEOREM 3. — Let V be an irreducible one-dimensional subvariety of
a strictly pseudoconvex domain D in C"' such that ^(bV \ aV) = 0.

(a) Let [ip be harmonic measure^ with respect to V, on bV for some
point p ofV. Then j j ip and7^1\bv (the restriction of linear measure to bV)
are mutually absolutely continuous measures on bV.

(b) Let v be a measure on bV which is orthogonal to A(V). Then v is
absolutely continuous with respect to 7i1.

(c) If p. is a representing measure on bV for p G V for A(V), then fJi
is absolutely continuous with respect to H1.

Here A(V) denotes the algebra of functions continuous on V and
holomorphic on V. We briefly introduce harmonic measure for V below,
in the usual way.
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526 ALEXANDER (H.)

Our last results concern the accessibility of points on the boundary.
Let V be an irreducible subvariety of a domain D. We say that a point p
of bV is accessible from V it there is a real curve in V which approaches p
asymptotically. Not every point of bV need be accessible : we shall give
an example when D is the unit ball and V is a properly imbedded disk.
However, we shall show that at every point of bV at which bV locally
has finite linear measure, is accessible. The question of non-tangential
accessibility is more subtle. We say that p is non-tangentially accessible
from V if there exists a real curve in V which approaches p asymptotically
and which approaches bD non-tangentially. Results on non-tangential
accessibility for the case of holomorphic images of the unit disk were
obtained by GLOBEVNIK and STOUT [13, Thm 9].

THEOREM 4. — Let V be an irreducible one-dimensional subvariety of a
strictly pseudoconvex domain D in C"'. Every point of aV, except possibly
for a set of linear measure zero, is non-tangentially accessible from V.

Here is an outline of what follows : in section 1 we consider projections
to a real line of a continuum in IR71 of finite linear measure. We show that
if the continuum is regular and has a tangent line at a point, then the
projection of the continuum to a line not orthogonal to the tangent line
is close to being one-one, in an appropriate measure theoretic sense. We
apply this to a complexified projection in section 2 to prove THEOREM 2.
THEOREM 1 is proved in section 3. We discuss harmonic measure and
prove THEOREM 3 in section 4. We finish with a result on accessibility and
a proof of THEOREM 4 in section 5.

1.1. — We begin with some preliminary results on rectifiable Jordan
arcs and continua of finite linear measure in R72. As usual, 5(p, r) denotes
the open ball of radius r about p and [|p[|, (p, q) denote the Euclidian norm
and inner product. Let F be an open Jordan arc in IR^ parameterized
by arc length 7 : (a, b) -^ IT. Then \\^(t^ - 7(^)|| < \ti - k , 7
is absolutely continuous, 7' exists a.e., ||7'(t)|| < 1 wherever 7' exists
and Hy^H = 1 a.e.

LEMMA 1. — Suppose that 7'(to) exists. Then \\^'(to)\\ = 1 ^f a^d only
if to is a Lebesgue point ofY(t).

Proof. — Suppose that to is a Lebesgue point of 77. By definition this
means that

— 1 ° \\Y(t)-Y(to)\\dt-^0 as h^O.
PI Jto
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Then

i - i iy^i i -
<

1 rto+h

-J,. ^dt
^ rto-^-h

hk '
YW-y(to)\

-
hit,

dt

to-\-h

\to)\\dt

0.

Hence 1 < ||y^o)||. Hence 1 = \\Y(to)\\. Conversely, if h^o)!! = 1, then

r 1 />to+^ ^ 2

. / liyw-y^o)!!^
I n JtQ )

<

1

h j

2 x

2 x

,-to+h/ y(f)-y^o)| ^
to

/ 1 /'to+/li-(,^ ywd,y
^ ^7(to+/i)-7(<o) .

V /I
.7^0) -2(l- | |y(^o)| |2)=o.

We next show that a continuum X in R" of finite linear measure
has a tangent 7Y1 a.e. in a strong sense. Namely, in the sense that the
tangent cone reduces to a line. For x G M" and a a unit vector in W1

and 0 < e < JTT we define the cone (two-sided) at x in direction a and
opening e to be

S(x, a.e) = [y e R" : \(y - x,a}\ > cose- \\y - x\\^.

We shall say that a is a weak tangent to X at a; if

Inn lHl(Xn{B(x,r)\S(x,a,e))) =0

for all £ > 0. According to [7], a continuum X of finite linear measure has
a weak tangent at H1 a.e. points of X. In fact, in [7], the word "weak"
is omitted. We shall reserve the word tangent for a stronger notion. We
shall say that a is a tangent of X at x if there exists a 60 such that
X U B(x, r) C S(x, a, e) if r < 60 =- 6o(e).

PROPOSITION 1.—Let X be a continuum of finite linear measure in W1.
Then X has a tangent 'H1 a.e. on X .

Proof. — By a theorem of BESICOVITCH (see [7]), X is the disjoint
union of a countable set of open rectifiable Jordan arcs {J/J and a set Z

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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with ^(Z) = 0. It suffices to show that X has a tangent at 7Y1 almost
every point of Jk for each k. Fix k. Let 7 : (a, &) -^ R^ parameterize J^
by arc length. It suffices to show that X has a tangent at each point
Po = 7(^0) of Jk such that (i) X has a weak tangent at po and (ii) to is a
Lebesgue point of 7'.

Put a = 7 /(^o)• Then [|a|[ = 1 and clearly a is the weak tangent
to X at po, by uniqueness. Let 0 < e < JTT. We must show that
X D B{po,r) C S^po^o^) if ^ is sufficiently small. Suppose not! Then
there exists a sequence {xn} c X, Xn —^ po and a;^ ^ 5'(po^^) tor
n = 1, 2 , . . . . Let Tn = 2||;r^|| > 0. Then, since a is a weak tangent,

(1) -^nl{XnB^rn)\S{po^^E))—.0.
^n

Let Yn be the connected component of X D B(po,rn) \ S^po.a, -e)
which contains Xn- Since X is connected, Yn has a non-empty inter-
section with b[B(po,rn)\S(po,a, j^)]. Because \\Xn\\ = \r^ and because
^n ^ S(po^^£) we conclude that distance of Xn to this boundary is at
least \\Xn\\ • sin(J£) = rjn. Hence diam (Yn) ^ rjn- Therefore ̂ (Yn) > r]n'
Then (1) implies rjn/rn -^ 0. But rjn/rn = j sin(j^) > 0. Contradiction!
This proves the proposition.

1.2. — Now suppose that 7 is a closed rectifiable Jordan arc in W1

and that 7 : [a, b] —^ K^ parameterizes 7 by arc length. Let po G 7,
Po = 7(^0) and let e be a unit vector in W1. We shall consider the
projection TT : M72 -^ M given by 7r(p) = (p — po^e) and the associated
function u : [a,b] -^ M, u(t) = 7r^(t)) = (7^) -pQ,e). Then ^(^o) = 0,
u ' ( t ) = (7 /(^),e) whenever ^ ' ( t } exists and |n(^i) — u(t-^)\ < \t]_ — t^\.
Therefore u is absolutely continuous and TY^i^A)) < 7^1(A) for all Borel
sets A C [a,b\.

PROPOSITION 2. — 2^ to G (a, &) &e such that
(a) ^o ^ a Lebesgue point of Y ;
(b) (7^o),e)^0;
(c) ^- l(0)n7={po}.

Let n(x) = #{t C [a,b] : u(t} = .r} and E = [x e M : n(.r) == l}. 7^ T
6e a ^ore/ subset of [a,b] such that to is a point of density ofT. Then 0
is a point of density of the two subsets of M :

(i) E, and
(ii) u(T).

TOME 120 — 1992 — N° 4
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Remarks :
(a) By LEMMA 1, from (a), 7'(^o) exists and is a unit vector. From (b),

u'(to) -^- 0. Without loss of generality, we assume that u'(to} := T] > 0.
(/3) Hypothesis (a) implies that to is a Lebesgue point for u'(t}

Indeed, for h > 0,
1 rto~^~h -i pto-^-h

. / | \u'(t)\ - \u'{to)\ dt<— u'(t) - u\to}\dt
2h Jtn-h 2/1 j . h2/z Jt»-h

1 /*^o+^

2h
<Lf
~ 2/z Jt,

< JL r
~ 2/i ̂ -

(Y(t}-y(to),e)\dt

\Y(t)-Y(to)\\dt^O.

to-h
to+h

1 1 /*t0+^
In particular, — J(^) := — / l^^^) d^ -^ In^to)2/z 2/z 7^_^ ' =77.

(7) Ifn-^^i,^)) C (^,^2) C [a,&] then
rX2 pt'2

\ n(x)dx < / \u\t)\
Jxi Jt-i

dt.

This is the usual Banach indicatrix; see [8, Thm 2.10.13].

Proof. — We may assume that to = 0 and that po = 0 G M^. Let £ > 0.
We claim

(2) (3^o >0) (V^O) (We [a,&])

<* ( r r | < (5o and n(^) = a;) =^ \t\ < \x\ (1 + £ ) / r ] \ .

Suppose not! Then for each positive integer n there exists Xn 7^ 0 and
in € [ft,^] such that \Xn\ < l/^, u(tn) = .Tn and |^| > (1 + e)\Xn\/r].
If a subsequence {^n,} converges to t* G [<2,6], u(^*) = \imu(tn) =
\imxnj = 0. By (c), 7(^*) = po and so t* = 0 ; i.e., we have tn -^ 0.
Hence u(tn)/tn -^ u'(Q) = T). But \u(tn)/tn\ = Xn/tn < r ] / ( l + £). This
is a contradiction; (2) follows.

Now if 0 < 6 < 60 then (2) implies

u-1 ((-6, 6)) C (-^(l+^/^(l+^).

By Remark (7) we have

/ 6 /.6/r^l+e)

n(^)da:< / \u\t)\dt=l(6(l+£)/r]).(3)
-6 J-6/7?(l+£)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



530 ALEXANDER (H.)

Let E ' be the complement of E in R. If 6 is sufficiently small, n(x) > 1 on
(-(5, 6) and so n(.r) > 1 + \a'{x) on (-^ (5), where \ is the characteristic
function. From (3) we get

2^+^(( -M)\^)< I {6(1 +5)/77).

Hence

-^((-^)\E)<-1+1±£J^1+£^).2^ ^ ' ^ \ ^ - ^ ^ 2^(1+£)/?,

By Remark (/3), I(h)/(2h) -^ r] as h -^ 0. We get

limsup—'^1^-^)^) ^ - i + ( i + g ) = g .
6—^0 -"c)

As e is arbitrary, (i) follows.

For (ii), we consider S = [a, b] \ T. If 6 > 0 is small,

(-(5, ^) C n([a, b}) C u(T} U n(5').

Hence

(4) H1 {u(T) n (-<5, (5)) > 2(5 - H1 {u(S) n (-^ ̂ ).

We have ̂ ) H (-6, 6) C ̂ H^-1 ((-^, ̂ )). Let ^ > 0. By (2) we get
a 60 such that 0 < 6 < 60 implies u^^-S^) C (-^(1 + £ ) / r ] , 6 ( \ + ^)/^).
Therefore ^(^) n (-6,6) C u(S n {-6{\ + e } / r ] , 6 ( l + e ) / r ] ) } . Hence

H1 (u(S) n (-^ ̂ ) < n1 (^s n (-(5(1 + £)/77, ̂ (i + £)/^)).

Since H1 [S H (-r, r))/(2r) ̂  0 as r -^ 0 we conclude that

^^(u^n^.^-^o

as ^ -^ 0. This, with (4), gives (ii).

We next extend the previous proposition to a continuum of finite linear
measure. Suppose that X is a continuum of finite linear measure in W1

and suppose that F is a (necessarily rectifiable) Jordan arc contained in X,
parameterized by 7 : [a, b] -^ R71 in arc length. Let po c F, po = 7(^0)
with to e (a, b) and define TT : R71 -^ R and n : [a, b] -> M as above, for a
fixed unit vector e.

TOME 120 — 1992 — ?4
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PROPOSITION 3. — Suppose that
(a) to is a Lebesgue point of 7';
(b) X has a tangent at po ;
(c) X is regular at po ;
(d) (y^o),e) ^0; and
(e) 7^-lWnx={po}.

Let N(x) = #{p G X : 7r(p) = x} and let A = {x e R : N(x) = 1}.
Then 0 is a point of density of A.

Remark. — X is regular at po? means, by definition, that

lim^Hl(X^B{po,r))=l.

Since X is a continuum of finite linear measure, it is regular at H1 almost
all of its points [7]. Also it follows easily from (a) and Lemma 1 that r is
regular at po.

Proof. — We define E, as in PROPOSITION 2, as the set where 7T|r has
multiplicity one. By PROPOSITION 2, E has 0 as a point of density and
therefore its complement E ' has density 0 at 0. Let C = 7r(X \ F). If 6 is
sufficiently small, 7r(X) 3 (-^, <5), and then A'C\{-6, 6) C (^UC)^-^),
for if x G A' U 7r(X) \ C then x E 7r(T) \ E C E ' . We need to show that A'
has density 0 at 0. It suffices to show that C has density 0 at 0.

Let rj = (7'(to),e) ; rj ^ 0 by (d). We may assume T] > 0. Let e > 0.
Then we claim that there exists 60 > 0 such that if 0 < 6 < 60, then

(5) C H (-(?, 6) C ^((X \ P) n B[p^ (1 + e)6/rj)).

Suppose not! Then there exist 6n [ 0 and Xn e 7r{X \ F) D (—^n, 6n) but

xn i 7r((x \ r) n B(po, (i + ̂ nA?))-

Hence Xn = 7r(pn),pn ^ X\T, \\pn-Po\\ > {l+£)6n/r]. Thenpn -^ po- For
if a subsequence pn, -^ p* € X, then 7r(p*) = lim7r(p^.) = lima^. = 0.
By (e), p* = po. Now, by (a) and (b), 7'(to) is the tangent'to X
at po- Since pn -^ po, some subsequence of (pn - po)/\\Pn - P o l l —>

±7'(to)- We may assume this is the case for the original sequence. Hence
O^n '•= {(Pn -Po)/\\Pn - PO \ \, <°) -^ ±T]. But

|. = __^___ < 6————— = __^__.
IIPn-Poll - (l+£)6n/T) (!+£)

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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This is a contradiction and we conclude that (5) holds. From (5) we get

n1 (c n (-^ 6)} ^ n1 [x n B{p^ (i + e)6/rj)]
-Hl[rnB(po^l+e)6/ri)]

and therefore

^•(^'-^^^{r'^^;^']
_ ^(rnB^O+e)^))^

[ 2(1+^/77 j j -

Since X and F are both regular at po, each of the two quotients in square
brackets converges to 1 as 6 —^ 0. Hence C has density 0 at 0.

2.1. — For the proof of THEOREM 2 we shall need two lemmas. Let D
be a strictly pseudoconvex domain in C72. Recall that A(D) denotes
the algebra of complex-valued functions which are continuous on D and
holomorphic on D.

LEMMA 2. —Let r be a rectifiable Jordan arc in bD. Let E be a compact
subset of r such that at each point of E the tangent to F exists and is
complex tangential to bD. Then E is a peak interpolation set for A{D).

LEMMA 3. — Let ^ be a bounded^ open^ simply connected subset of the
complex plane with ̂ (b^l) < oo. Suppose that uj C Wt is a Borel set with
'H1^) > 0, that F G H°°(^t} and that for all z £ uj there is a path <7z
in f2 which approaches z asymptotically such that the limit of F^C,) as (^
approaches z along <7z exists and equals 0. Then F = 0.

We shall prove these lemmas after proving THEOREM 2.

2.2. — We prove THEOREM 2 by contradiction and suppose that the
tangent to aV, which exists 7~i1 a.e. on aV, is complex tangential to bD
on a set of positive 1-i1 measure. We claim then that there exists po G aV,
a continuum X C aV which is a neighborhood of po in aV and with
^(X) < oo, a Jordan arc I\ po C F C X such that 7 : (a, b) -^ C71

parametrizes r by arclength, 7(^0) = Po^ and a compact set E C r
such that the tangent to a aV exists at each point of E and is complex
tangential to bD, H^^E) > 0, and that (a)-(e) of PROPOSITION 3 hold
with e = 7/(^o) and such that to is a point of density of T = 7-l(£').

To see this, we use the fact that aV has a tangent and is regular 7-^1 a.e.
and the fact that aV is a countable union of Jordan arcs and a null set to

TOME 120 — 1992 — ?4



ENDS OF VARIETIES 533

get a po and a F satisfying (a), (b) and (c) with aV in place of X, (d) and
the statement on T. Then choose X as a sufficiently small neighborhood
of po m ^^? using (b) to achieve (e). Here we view C^ as being M27'1,
the real inner product ( • , •) being the real part of the Hermitian inner
product ( • , • } . In particular, we have the complex projection g : C^ -^ C
given by g(p) = (p — po,e) and satisfying 7r(p) = Re(^(p)). Finally we can
replace F by a subarc to have r C X. As before we have u : (a, b) —^ R
given by u(t} = 7r^(t)) = Re{g(^{t))).

Since e = 7' (to) is the tangent to X at po by (a) and (b), if 60 > 0 is
sufficiently small,

Since

aV U B(poA) - X H B(po^o) C ^(po, e, g^).

9(s(p^e^ g7r)) C {A C C : |ImA| ^ — |ReA|}

we get

(6) ^(X n B(poA)) C {A e C : |ImA| < - |ReA|}.

For 0 < 6 < 60, consider W = VC}B{pQ, 6), a subvariety oiB(po, 6)F}D.
Then

bW C (XHB(po^)) U {bB(po,6)nV), and

^(W) c g(x n ̂ (po^o)) u g{bB(p^6) n V).
Since {p e V : ^(p) = 0} is discrete and countable (otherwise g = 0 on V
and so g = 0 on F C &y and so u = 0, contradicting

^ /( to)=(7 /(^),e)^0

by (d)) we may choose 6 so that 0 ^ g(bB(po^ 6) D V). From (6) and (e) we
conclude that ^(O) n W = {po} and that 0 ^ g[bB(pQ,6) H F). Hence
for p > 0 sufficiently small

0^n^(^(po,<5)ny)=0

where
Qp = ̂ \ e C : [ReA| < p and |ImA| < p\.

Again from (6) we have

^(xnB(po,^) )n{AeC: |ReA|<p} CQ,.
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By PROPOSITION 2, u(T) has 0 as a point of density and by PROPOSI-
TION 3, the set A defined there has 0 as a point of density. Set

Ai =Anu(r)n(-p,^).

Then 0 is a point of density of Ai. For x e R we denote the vertical line
{A G C : Re A = x} by 4. Then by the definition of A, for each x G Ai,
4nOpH^(X) contains exactly one point : Aa; = ;r+m^ with -p < v^ < p.
Moreover g-\X^ H X consists of a single point ̂  e F. In particular
the segment [-p,p] x {p} is disjoint from g{bW) and so is contained in
a component ̂  of C \ g(bW). Likewise [-p,p] x {-p} is contained in
a component ^. Then for j = 1 and 2, ^ : g-1^) H W -^ ^ is a
proper holomorphic map and hence a branched cover of multiplicity m •
withm^X). J ?

Since the set of singular values of g\y is countable, by removing a set
of linear measure zero from Ai we can assume that for every x e Ai (i) 4
contains no singular values of g V and (ii) every point of Ai is a poin^
of density of Ai.

Now fix x e Ai. Let m = m(x) = #[g-\\^ n W). Each neighbor-
hood of each point in g-^X^) H W is mapped by g to a neighborhood
of A^. G 6^1 D 6^2. We conclude that m < m\ and m <, m^.

We claim that it is not true that mi = m = m^. Suppose it were
true! Then g-\\^ n W = [p^p^... ,j^}. Choose m + 1 disjoint
neighborhoods N ; TVi, N ^ , . . . , A^ of ̂  ; pi ̂  . . . , Pn respectively in C71.
Then g{W H A^-) is a neighborhood of A., for j = 1 , 2 , . . . , m. Since
^l^-^^Qniy has multiplicity m = rrij over 0^ we conclude that g{W H A^)
is disjoint from f2i U ^2. Since ^i U ^2 contains, for each x ' e Ai,
(^/ \ {Aa;/}) n Q^, it follows that the open set g(W H A^) is disjoint
from 4/ n Qp for x ' e Ai. We can take 7v of the form B{p^,e) C B(po,6).
Arguing, as above, that {p G V : ̂ (p) = A^} is discrete, we get that e can
be chosen so that

(7) ^^g{bB(p^e)nv).

(We use the fact that g-\\^ n X = {p^}, since x e Ai_) By (7)
we can choose a small open rectangle R about A,, with J? disjoint
from g(bB{p^, e) n V). We can take R C Q, of the form (x^x^ x (y^ y^)
where

-a < x^ < x < x-2 < a, ^1,3:2 e Ai,
-a < ^/i < ̂  < ̂  < a.
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Since bR C f2i U ^2 U {A^. : j = 1, 2} if (^ - ̂ i) is sufficiently small, it
follows that every component oig(Wr}N) which meets R is contained in R.
Since ̂  G bV, there exists q G VnN = Wr\N such that g(q) G .R. Let W^
be the connected component of W Ft TV which contains g. Then ^(Wi)
meets R and so is contained in R. Now we claim that bW^ C X. Indeed,
bW^ C 6(IV n_7V) C X U 5' where S = bB(p^,e) H V. But by choice
of R, g ( S ) D R is empty. The claim thus follows. It implies that W\
is a subvariety of D which is contained in V, which is irreducible. A
contradiction!

Thus for all x C Ai, either m(x) < mi or m(x) < m^. Thus we may
assume that the first condition holds on a Borel subset B of Ai of positive
measure. In particular, we can now say that m\ > 0. Set

uj = {X^ : x G B} = {B x [-a, a]) H g{X\

a Borel subset of b^ with H1^) > ̂ (B) > 0.

For x € B, set 7^ = {x + it : v^ < t < a} C ̂  n Qa. Then 7^ C f^i.
Since 7 ;̂ contains no critical values of g\y, g~l(^x) Ft W is a disjoint
union of m\ Jordan arcs 7 f , . . . ,7^^ . Fix j, 1 < j < mi. The cluster
set of {p G 7^} in C72 as ^(p) -^ Aa; is connected and is contained in
^'"K^) n ̂  which consists of m + 1 points, m of them in (^(A^) H W
and one point in bW\ namely, p x . Therefore the cluster set reduces to a
single point and so 7^ approaches one of the m + 1 points asymptotically.
Since g maps neighborhoods in W of each of the m points of g~1 (\x) H W
homeomorphically to a neighborhood of \x, it follows, since m < mi that
one of the 7^ approaches p x . Recall that px G E C F, since Ai C n(r).

Now we apply LEMMA 2 to J^ C r and obtain a peak function
A € A(D). Set f = 1 - /i. Then / ^ 0 on D \ E; in particular, / ^ 0
on V and / = 0 on £;. For A G ^i, ^(A) H TV = { w \ w 2 , . . . , w1711},
counting multiplicity. Define a bounded function F on f^i by

^(A) = n /(WJ)'
^"^A)^/^^

{w1^2,...^7"'1 }

It is standard that F is a well-defined bounded holomorphic function
on f^i. Let n equal to the component of f^i D Q^. which contains
[-a, a} x {a} in its closure. Then bfl C bQa U g(X) and so T^^) < oo.
Also cj C &n and 7a; C ^ for a; G Ai. Fix \x e cc;. We have seen that some
7J —> px ^ E. Hence /(w) ^ 0 as w G 7^ ^ p x , since /(^) = 0. It

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



536 ALEXANDER (H.)

follows that F(A) -^ 0 as A e ̂  -^ V By LEMMA 3, F = 0. But / ^ 0
on V implies F ^ 0 on ^2. This is a contradiction. THEOREM 2 follows.

2.3. — We shall deduce LEMMA 2 from a theorem of DAVIE and
0KSENDAL [5]; the case when F is smooth and E a subarc was already
noted in [5]. Following the notation of [5], we write T(^) for the complex
tangent space to bD at ( € bD and L(() for its orthogonal complement
in the (real) tangent space to bD at C. Also if S is a real linear subspace
of C7'1, and V is a subset, ds(Y) denotes the diameter of the orthogonal
projection of Y to S. Clearly ds(Y) <^ diam(Y).

Let ^ G E. Then, for all T] > 0, there exists a subarc J of F containing C
such that ^(J) < rf and d^^\(J) ^ rj diam(J). This follows easily from
the fact that the tangent to F at C, exists and is complex tangential
to bD at ^. Let W be an open subset of F containing E and such
that n^W) <ml{E).

Let e > 0 and set T] = mm^e, e / ' (W1 (E))). For each ^ G E, choose an
interval J as above such that d ^ ^ s ) ( J ) < rj • diam(J) and also such that
diam(J) < rj and J C W. Let J I ^ J ^ ^ ' - ' ^ J N be a finite subcover of E
with Ci? €25 • • • ? CA^ the corresponding points. Write d^^k) for d^^\{Jk)
and similarly dr^k). By discarding some J^'s, without changing their
union, we may assume that no point belongs to more than two J^s; hence

^n\Jk) < m\w) < m\E).

Therefore ^diam(Jk) < 47^(E).

Finally we get
(i) ]>^dr(A;)2 < rj^drW < T^diam^) < ^H^E) < e, and

(ii) ^dL(k) ̂  T^diamJ/, < 4.r]H\E) ^ e.

The lemma now follows from Theorem 1 of [5].

2.4 Proof of lemma 3. — Let '0 : U —> ^t be a Riemann map.
Recall [3] that ^ extends to be a continuous map of bU onto ^. Set
G^i = ^-1^) C ̂  and Fi = F o ^ in H°°(U). Let F̂ * denote the a.e.
defined radial limit of F\ on bU'. Set

N = [e10 : Fi*(e^) exists and equals ol.

We claim that ^(N H 0:1) = cj. Let 2; G ^ and set a^ = '0~1 o o-^.
Then ?^ is a path in £/. Its cluster set on bU is connected, hence is a
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subarc. But '0 maps this subarc to z. We conclude that the subarc reduces
to a single point A with '0(A) = z e uj. Hence A € uj\. Also ^i(C) —)> 0
as C, —> \ along a^. By a classical result of Lindelof, F^{\) = 0; i.e. A € N .
Thus A € TV H f^i and this gives the claim.

Next, we claim that ^(N) > 0. This implies that Fi = 0 by Fatou's
lemma and hence that F ^ 0, as desired.

To verify the claim, we use the fact that ^ ' G H1 (Hardy space)
and so Re'0 and Im ip are absolutely continuous on &[/; cf. [3]. We
have ^(^(TV)) > ^{^(N H c^i)) = 7-^(0;) > 0. By the projec-
tion lemma of [3] since ^(N) C &n, a continuum with Ti1^^) < oo,
either ^(Re^AQ) > 0 or ^(im^TV)) > 0. Suppose the former,
without loss of generality. Then, as Re ̂  is absolutely continuous, it follows
that ^(AQ > 0; cf. [3, Lemma 1]. This gives the lemma.

3.1. — We can now use PROPOSITION 3 with THEOREM 2 to prove
THEOREM 1. It will be convenient to assume henceforth that D is strictly
convex. This is justified by the imbedding theorem of FORNAESS [9] and
HENKIN [16]. Let N{p) be the outward unit normal vector to bD at p G bD.
Fixpo ^ bD^ we set e = iN{po) and define g : C71 — ^ C b y g(p) = {p—po^ e)
and TT : C72^ —^ R by TT = Re o g . For p (E D^ by strict convexity, lmg(p) ^ 0
and lmg(p) > 0 for p G D \ {po}.

LEMMA 4. — Let X C &D be a continuum and suppose that the
tangent to X exists at po G X and that this tangent is not complex
tangential to bD. Then the tangent to g{X) C C at A = 0 is the real
axis {A G C : ImA = 0}.

Proof. — Let \n(^ 0) G g{X) be such that \n -^ 0. Say \n = g(pn),
pn G X. Then the fact Tr"''"1^) D X = {po} yields that pn -^ po- Passing
to a subsequence, (pn ~Po)/\\Pn ~Po\\ ~^ T? ^ne tangent to X at po. Since
X C 6D, (r, A^(po)) = 0. Hence Im(r, e) = 0. We have

An ^ / Pn-PO \

IIPn-Poll \||Pn-Po||' /

Hence Im(An/||pn — P o l l ) -^ Im(r,e} = 0. As r is not a complex tangent,
Re(r, e) := b ̂  0. Hence

Re(\n/\\pn-po\\)^Re(^e)=b.

It follows that Im An/Re \n -^ 0/b = 0. This gives the lemma.
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The next lemma describes the nice projections which will be used to
prove the remaining theorems. As above, we write

Qa = { A e C : [ReA| < a, |ImA[ < a}.

LEMMA 5. — Let V be an irreducible subvariety of D, po c aV'. Let X
be a continuum in bD with ̂ (X) < oo. Suppose that X contains a
neighborhood of po in bV and that the tangent to X at po exists and is
not complex tangential to bD. Let AC R be defined, as in Proposition 3,
as {x e M : ̂ (Tr"1^) n X) = 1}. Let E be a compact subset ofaV H X.
Suppose that 0 is a point of density of A H 7r(E). Then for all a > 0
sufficiently small,

(a) g(bV\X) C { A : I m A > 2 a } .

(b) g(X)F}Q^ C { A : I m A < ja}.

(c) L :== g{X) U bQ^ is connected and if^i is the component ofC\L
containing (-a, a) x (jor,a), and W := g~1^) H V, then g : W -^ ^ is
a homeomorphism, ̂  is simply connected and H1^) < oo.

(d) LetB=An7r(E)n(-a,a). For x e B, g(X) n4 HQ, is a single
point \^ = x + iv^ e bfl, and g~l(Xx) U V is a single point p^ e E C aV.
Lei ̂  be the segment {x + iy : ̂  < y < a}. Then g~1^) U W is a
Jordan curve in W which approahces px asymptotically. The set

^ = {>x •• x G B} = (B x (-cr, a)) n g(X)

is a Borel subset ofbfl and H1^) > 0.

Proof. —Since ̂ (O)^!) = {po}, and since X is a neighborhood ofpo
in bV, (a) holds for small a. LEMMA 4 gives (b) for small a. For (c) we
note first that L is connected if g(X) and bQ^ are not disjoint, which is
true for small a. Then by (a) and (b) L is disjoint from (-cr, a) x (1- a, a)
for small a. Clearly then ^ is a simply connected domain and b^i C \ and
so ^(b^) < H^L) < oo. Then g : W -^ ^ is a proper map and so is a
branched cover of multiplicity m > 0. We must show that m = 1.

Suppose that m = 0. Fix x^, x^ e B with -a < x^ < 0 < x^ < a. Let
W = g-^Q^nV. Since po ^ bV, there exists q G W such that g(q) e Q°,
and o-i < Reg(q) < x^. Let W" be the component of W which contains q.
Since m = 0, g ( W " ) does not meet ^ and therefore g^W") does not meet
4 n Q^ for x € B. Set R = (x^x^) x (-cr,a). Then g(W") does not
meet bR but does meet R. Hence, by connectness, g ( W " ) C R. Since
bW11 C XUg-^bQ^), it follows that bW" C X. Hence W" is a subvariety
of D and W C V. This implies W = V, a contradiction if a is small.
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Now suppose m > 1. By removing a countable set from B we can
assume that 73: contains only regular values of g\y for each x G B and
so g~l(^x) H W is a disjoint union of m Jordan arcs 7f ,7^, . . . ,7^. For
each x G B, g(V) is disjoint from the set -^ Fl {A : ImA < u^}; this
is because g{X) and ^(W \ X) and therefore p(W) are disjoint from
the set. As g\y is an open map, \x ^ g{V). Hence g'1^) H V is the
unique point px of g~l(\x)^}aV. We conclude that each 7^ approaches px
asymptotically. Suppose that Ao € f^ is such that g~l(\o) F}W contains m
(> 1) distinct points w^, w j , . . . , w°^. Choose a polynomial / in C71 which
separates these m points. Define a function F on f^ by

FW = n (/(^)-/(^))2-
ivn^-^A)^^!^,...?^}

i<j

Then F is a well-defined bounded holomorphic function on f^ and
F(Ao) ^ 0. For x G 5, /(C) -^ /(p.) as C e 7J -^ Px. for 1 ̂  j ^ m.
It follows that F(A) -> 0 as A G 7^ ^ A^ e cc;. ^1^) ^ ^{B) > 0.
By LEMMA 3, F = 0. Contradiction! We conclude that m = 1 and there-
fore 5? : W -^ f^ is a homeomorphism. Our arguments also give (d).

3.2. — We now prove THEOREM 1. By hypothesis, ^(aVi U aV^) > 0.
For j = 1 and 2, aVj is a disjoint union of a countable set of rectifi-
able Jordan arcs and an 1-i1 -null set. It follows that there exist rectifiable
Jordan arcs Fj C aVj such that ^(Fi U Fs) > 0. Let 7^ : (a^,^) ^ C"
parameterize Fj by arc length and set Tj = T^^FI D r ' z ) .

LEMMA 6. — Every point p C Fi D Fs, except for a set of7i1 measure
zero, has the following properties :

(a) 771(p) is a Lebesgue point of 7'- and zs a point of density ofTj,
for j = 1 and 2.

(b) aVi U aV'2 has a tangent at p.
(c) oV\ U aV2 is regular at p.
(d) the tangent to aV\ LJ aV^ at p is not complex tangential to bD.

Proof. — It suffices to show that each of these conditions hold 7Y1 a.e.
on FI D LS. Part (a) follows from the fact that almost every point of
(aj, bj) is a Lebesgue point of 7^ and almost every point of Tj is a point
of density of Tj.

At each point of aV\ D aV^ the set aV\ LJ aV^ is locally connected and
has a neighborhood of finite linear measure. Hence PROPOSITION 1 implies
that (b) holds a.e. on Fi H F^. Likewise for (c) because continua of finite
linear measure are regular 7^1 a.e. Finally, THEOREM 2 gives (d).
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Now fix PQ e FI nr2 such that (a)-(d) of LEMMA 6 hold at po. Let X be
a compact connected neighborhood ofpo m ^Vi U ^^2 with ̂ {X) < oo.
Set tj = 771(po), .7 = 1,2. Then aVi, al^Fi, I^ and X all have the
same tangent at po ^d this tangent is not complex tangential to bD
at PQ ; the tangent is 7^1) = 72(^2)5 with a possible change of orientation
of 72. We set e = iN^po) as usual. We can now apply PROPOSITION 3
to X and T\ and to the set A defined there to conclude that 0 is a point
of density of A. Similarly, we apply PROPOSITION 2 to Pi and T^ to obtain
that 0 is a point of density of 7r(Pi D ?2); we note that in PROPOSITION 2,
for u := 71-071, u(T\) = 7r(PinP2). Hence 0 is a point of density ofAD7r(i?)
where we have set E := Pi D P2.

We can now apply LEMMA 5 twice. First to V\ and X and then
to V-2 and X. We conclude that if a- > 0 is sufficiently small, then
g : Wj —> f^ is a homeomorphism for j = 1 and 2, with Wj = g~1^) H Vj.
We claim that TVi = W^. This implies that V\ = Vz and completes
the proof of THEOREM 1. Suppose not! Then there exists Ao G f2 such
that w^ -^ w^ where w^ = ^"^Ao) H Wj. Choose a polynomial / such
that /(w^) 7^ /(^D- Define a function F on f^ by

yw = f ° (9\w,)~1 - f ° {g\w^)~1-
F is a bounded holomorphic function on ^2 and F(Ao) 7^ 0- Let x e B
and set cr^ = (^|^.)-l(7a;)• Then crj -^ p^ and so /(C) -^ /(^) as
C e aj -^ p^. Hence F(A) -^ 0 as A e 7a; -^ \x. Hence F = 0 by
LEMMA 3. This is the desired contradiction.

4.1. — We shall briefly recall the definition of harmonic measure in
our setting. Let V be an irreducible subvariety of complex dimension one
of a strictly pseudoconvex domain D in C71. Let r : V -^ V be the usual
normalization. We shall say that a continuous real valued function (f) on V
is subharmonic if r*(0) = (J)OT is subharmonic on the Riemann surface V.
If (f) is subharmonic on V and continuous on V = V U bV, then the usual
maximum principle holds. For a real-valued continuous function u on bV
we apply the usual Perron process to get a continuous function u on V
such that T*(n) is harmonic on V. Barrier functions exist at each point
of bV ; in fact the real parts of peaking functions in A(D) can be employed.
Consequently u attains the boundary values u and so extends to be
continuous on V. For p C V, the functional u ^ u{p) is positive and
linear and therefore there is a unique positive measure /Zp on bV such that
^(p) = fbv u<^PJp 5 ^p ls harmonic measure for p on bV (relative to V). It
follows from Harnack's equality that for pi and p2 in V there exists C > 0
such that ^2 < ̂ l^pi'
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LEMMA 7. — Let F be a compact subset ofbV such that l^p(F) = 0 for
some p G V. Then there exists a real continuous function h on V such
that r*(/i) is harmonic on V and such that, for each C € F,

lim h(z) = oo.
^C,
zev

Moreover, h ̂  1 on V.

Proof. — First, since jJip{F) = 0, there exists a pointwise increasing
sequence of continuous real-valued functions {un} on bV such that Un > n
on F, 1 ̂  Un on bV', and f Und^p < 2 for all n. Let h be the limit of
the increasing sequence Un. Since Un(p) < 2, /i(p) < 2 and therefore, by
Harnack, h is continuous and finite on V and r*(/z,) is harmonic on V.
The limit statement follows from the fact that, a . s z ^ V — ^ ( ^ ^ F ,
liminf/i(^) > limhn(z) ^ u for all n.

Also 1 < Un on bV implies 1 ̂  h on V.

4.2 Proof of theorem 3a. — We first show T^^y <C /^p. Suppose
not! Then there exists a compact subset F of bV such that ^p(F) = 0
and 7^(F) > 0. Since U^(bV \ aV) = 0, there exists a rectifiable Jordan
arc r C aV such that ^(E) > 0, where E = F n F. Let 7 : (a, b) -^ C71

parametrize F by arclength and set T = 7-l(^). Choose to C T such
that all of the following conditions hold : to is a point of density of T, to
is a Lebesgue point of 7', po ^ 7(^0) is a regular point of aV, 7 /(^o) is
the tangent to aV at po and is not complex tangential to bD. In fact,
by LEMMA 1, PROPOSITION 1 and THEOREM 2, almost all points of T
will do. Set e = iN(po), g(p) = (p - po,iN(po)) and TT = Re o g , as
usual. By PROPOSITIONS 2 and 3, 0 is a point of density of ir(E) n A,
where A is defined in PROPOSITION 3. Arguing as in § 3.2, we can choose a
continuum X which is a neighborhood ofpo m aV such that ^(X) < oo.
The hypotheses of LEMMA 5 are valid and we get a a > 0 such that (a)-(d)
of LEMMA 5 hold; in particular we have Qcr, the homeomorphism g : W —^
^l and uj C 6fL

Since f^p(F) = 0, LEMMA 7 gives a function h with r* (h) harmonic on V.
Set u = ho (^g\w) on ^2. Then u is continuous and harmonic on f^, since
possible isolated singular points for u are removable. Let v be a harmonic
conjugate for u on the simply connected domain f2. Consider \^ e uj.
By LEMMA 7, /z(z) ^ oo as z G ^"^.r) -^ Px ^ F, in the notation of
LEMMA 5. Hence u(\) -^ oo as A G 7a, ̂  Aa; G uo. Set /(A) = e'^^^))
for A e ^2. Then / is a bounded holomorphic function on ̂  and / -^ 0 in f^.
By LEMMA 3, / = 0 in ^. Contradiction! We conclude that /Hl\bv ̂  l^p-
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Next we show that p.p <€ Hl\bv• Let E C bV be a Borel set with
^{E) = 0. Let K be any compact subset of E. Then U^(K} = 0 and
by the corollary to Theorem 2 of DAVIE and OKSENDAL [5], K is a peak
interpolation set for A{D). Hence there exists a function / G A{D) such
that / = 1 on K and |/[ < 1 on D \ K. We have

0 = lim/^) = lim / /n d/Xp = f Id^ip = ̂ p(K)
J J K

By the regularity of /^p, we get ^p(E) = 0; i.e., /^p <^ ^l&y-
Remark.—The last paragraph is equally valid for any representing mea-

sure for evaluation at p in place of jjip. This gives part (c) of THEOREM 3.
Combining this with part (a) we see that every representing measure for p
is absolutely continuous with respect to /j,p. In the terminology of the ab-
stract F. and M. RIESZ theorem [II], IJL? is a "dominant" representing
measure for evaluation at p.

4.3 Proof of theorem 3b. — Fix p € V. Then jjip is a representing
measure for evaluation at p for the algebra A(V). Let v = Ua + ^s b^ the
Lebesgue decomposition of v with respect to p.?; Va ^ l^p a^id Vs -^- l^p-
By the abstract F. and M. RIESZ theorem [11, p. 44], Vs is orthogonal
to A(V). By part (a), Va ̂  ̂ l\bv 8in(^ ^s -L 'Hl\bv' Thus it suffices to show
that VQ = 0. There exists a Borel set E C bV such that Vs is concentrated
on E and ̂ {E} = 0. Let JC be any compact subset oiE. Then ̂ (K) = 0
and, as noted above, DAVIE and OKSENDAL proved that K is a peak
interpolation set for A{D). This implies that i/s\{K) = 0. Indeed, let
g € A(D) be such that g = 1 on K and |^[ < 1 on D \ K and let u be
any continuous function on K ; extend u to a function on D in A(D) and
note that f^ udvs = lim^_,oo f ug71 di^s = 0, since u^ C A(D) and ^s is
orthogonal to A{D). By the regularity of Vs we conclude that Vs = 0.

5.1. — We next consider accessibility of points of bV.
PROPOSITION 4. — Let V be an irreducible one-dimensional subvariety

of a strictly pseudoconvex domain D in C^. Let PQ G bV be such that
there exists a neighborhood N of po in bV with T-^JV) < oo. Then po is
accessible from V.

Proof. — As above, we may assume that D is strictly convex. Also as
above we have the projection g : C72 -^ C, g(p) = (p — po^iN(pQ)) with
lmg(p) > 0 for p C D \ {po}. Fix QQ e V and choose c > 0 such that
g(bV\N) C {A e C : ImA > c} and c< lmg(qo).

Let kf denote the horizontal line {A G C : ImA = t} for t e M. Set
n{t) = #{p G bV : g ( p ) 6 h}. Then, since ^(AQ < oo, f^n(t)dt < oo
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and, in particular, n(t} is finite a.e. for 0 < t < c. Choose 6n [ 0, 6n < c
such that n(6n) is finite and such that kg^ contains no singular values of
g\v for all n. Set Vn = yn^'^A € C : ImA < 6n}. Then Vn is non-empty
for each n, since po e bV.

We claim that Vn, a subvariety of {p £ C^ : lmg(p) < 6n} H 1 ,̂ has a
finite number of components. Indeed the finite set Fn = g(bV)r\k§^ C kg^
divides k^^ into a finite set of line segments {7} such that g ~ l ( / J ) H V is
again a finite union of disjoint arcs {a}, each mapped homeomorphically
to 7 by g . This is because g : V H ̂ ^(f^) -^ ^ is a branced cover for each
component ^ of C \ g(bV) and there is no branching over kg^. Each a is
contained in the closure of one and only one component of Vn. Also each
component of Vn is such that any of its points can be joined to qo by a
path a in V. By connectedness, the path a, which can be chosen to avoid
the finite set V F\ g~l(Fn), must meet one of the a's. Consequently the
closure of the component meets and therefore must contain one of the a's.
Thus the number of components of Vn is at most the number of a's.

Next we shall choose inductively a sequence {Wn} such that Wn
is a component of Vn, Wn-{-i C Wn and po G Wn, as follows. Since
po C V \ and V\ contains a finite number of components, choose W\ as
any component of V\ with W\ containing po. Given W\, W ' z , . . . , Wn as
above, note that Vn-^-i D Wn is non-empty since po ^ Wn. Clearly the set
of components of Vn-\-i H Wn is a subset of the finite set of components of
Vn-\-i and consequently, one of these components contains po m its closure.
Choose this component to be Wn-\-i'

Now choose any sequence {qn} such that Qn € Wn. Then clearly
Qn ~^ Po' We can join q\ to q^ by a path in W\ and then join q^ to 93
by a path in W^, etc. The sum of these paths gives a path in V which
approaches po asymptotically.

5.2. Example. — Set p{0) = 6>/(1 + 20) for 0 < 6. Let S be the
spiral {p((9)e^ : 0 <, 0 < 00} and let C be the circle { A 6 C : |A| = |>}.
Then 5' = S U C. Let f2 be the bounded component of C \ S. Then C is
(the underlying set of) a prime end of the simply connected domain ^l.
There is a Riemann map / : U —^ f2, where U is the open unit disk,
such that / extends to be a continuous map U \ {1} -^ ^l\C and |/|
extends continuously to U such that |/|(1) = ^ and |/| < j on U. Hence
there exists a continuous function g on U, holomorphic on U, such that
\g\ = ^/l- |/|2 on bU. In particular, (j)2 + \f3\2 = 1, where f3 = g(l).
Define ^ : U -^ ^2 = the open unit ball in C2 by <^>(A) = ( /(A),^(A)) .
Then <I> is a proper map and so its image is a complex submanifold V
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of B2 with bV = <^{bU \ {!}) U C x {f3}. The points of C x {f3} C bV are
not accessible from V. Indeed, if 7 were a curve in V approaching some
point of C x {/?}, then z\ o 7 would be a curve in ^2 approaching a point
of C. But no such curve in f2 exists.

The construction also shows that THEOREM 1 cannot have its hypothe-
ses greatly weakened. Namely, if V\ and V^ have connected ends of finite
linear measure, then Theorem 1 can be applied to see that V\ = V^ pro-
vided that ^(Wi H bV^) > 0.

This would not be true if we only knew that the ends had cr-finite H1

measure. Namely, take V\ = V as above and take

^{ (A.^eC^lAp+l /^ l} ,

a subvariety of the unit ball ^2. Then bV^ = C x {/3} and bV^ n bV-2 =
C x {f3} has positive measure, ^(bVz) < oo? bV\ is 7Y1 a-finite and is the
union of two real analytic curves, but V\ -^ V^. One can also show that

{ the polynomial hull of bV^} \ bV^ = Vi U V^.

5.3. — For the proof of THEOREM 4 we shall assume that D is strictly
convex. Choose a point po such that there exists an open rectifiable Jordan
arc r in aV continuing po^ such that aV is regular at po, such that the
tangent to aV exists and is not complex tangential to bD. By our previous
arguments, 7~C1 almost all points po G aV will suffice. Then, taking E
as a compact neighborhood of po in aV, the argument of THEOREM 3
shows that the conclusion of LEMMA 5 holds for a sufficiently small,
where g{p) = (p — po, e) and e = iN(po).

Thus we have the homeomorphism g : W = V D g~1^) —> ^l. We
identify ̂  in C^ with C^"1 and define a C^" ̂ valued holomorphic '0(A)
for A G ^2 as follows. For A e ^2, write (^(A) = w = po + Ae + w1 € W',
with (w', e) = 0, the orthogonal decomposition. Now define '0(A) for A G ^2
by ^(A) = w ' / X G e1- = C'1"1; more explicitly,

^W^b-^-Po-Ae].

LEMMA 8. — ̂  is a bounded Cn~l-valued holomorphic function on ^2.

Assuming the lemma, say [[^(A)]! < M for A e ^2, we shall complete
the proof of THEOREM 4. We know that it G ^ for 0 < t < a. Define the
curve 7 in V by ^(t) = 5r-l(^) G V for 0 < t < a- . Then 7 -^ po as t [ 0.
To see that 7 approaches po non-tangentially, write

7(T) ̂ -^zf) =po-}-ite+w/ =po+t{-N(po)) +it^(it),
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using ^(A) = w' /\. Since —N(po) is the inward unit normal to bD at po,
we must show, for non-tangential approach, that H w ' H / t is bounded as
t [ 0. But this quotient equals [[^(^)||, which is bounded by M. The
theorem follows.

5.4 Proof of lemma 8. — We first show that ^ is in the Hardy space
^(n.C^"1). For this, we need to show that ||'0(A)||2 has a harmonic
majorant on f2. Since D is strictly convex, there is a large ball containing D
whose boundary contains po and such that this boundary is tangent to bD
at po. As —N(po) is the inward normal to D at po this ball is of the form
B(po - RN(po),R) for some R > 0. Hence

W = g-\^) n V C D C B{po - RN(po), R).

Writing w = po + Xe + w ' , {w'', e) = 0, we get

R2>\\w-(po-RN{po))\\2

== \\(\-^R)e^w/\\2

=\\-iR\2^\\wf\\^

since N(po) = -ie. Thus H w ' H 2 < ^2(1 - \\/R - z|2). Set

^ _ 1 - I C - ^ 2
h{Q= ICI2

for C ¥- 0 in C. We have ||^(A)||2 = H w ' H ^ I A I 2 < h{\/K). A computation
shows that h(() is harmonic on the upper half plane and therefore
A \-^ h(\/R) is harmonic on f^. Thus '0 € H2.

5.5. — Next we show that '0 is bounded on bfl, \ {0}.

LEMMA 9. — There exists an M > 0 such that for all ^ e ^2 \ {0}

limsup||^(A)|| <M.
A^C
AC^

Proof.—We have [[^(A)]] 2 < n(A) = h(X/R) for all A G ^, with h(Q =
(l—\(—i 2)/ |C12• ̂  suffices thus to show that u, which satisfies u ^ 0 on f^,
is bounded above on 6^ \ {0}. Suppose not! Then there exist \n G b^l,
\n 7^ 0 such that u(\n) -^ oo and An -^ 0. Since ^(&V) contains a
neighborhood of 0 in 6f2, there exist Wn € &V such that g(wn) = An and
then Wn -^ po, Wn ^po-
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Since bD is smooth, there exists an internally tangent sphere at
po C bD; i.e., there exists a 8 > 0 such that B(pQ — 6N(po),6} C D.
Then bD is exterior to this ball and therefore \\Wn — (po —6N(po)} ||2 ^ 62.
Writing Wn = p o + A n e + w ^ , {e,w^) = 0, we get 62 < \\n -^|2+ ||̂ ||2.
Setting \n = Sn + ^n we get

(8) ^^(lAn'+KJI2).

Since the unit tangent r to bV at po 1^ not complex tangential to bD^ we
have r == ae + WQ where 0 < a < 1. Passing to a subsequence if necessary,
we can assume that {wn — Po)/\\Wn "Poll —^ ae -{- WQ. Taking the inner
product with e yields

^A^+IKH2

Taking real parts gives Sn/V|AJ2 + |[w^||2 -^ a. By (8) we get

i r iA^+iKip i ,
^n _" ~^~7 ——————?>—————— ^-n •

- 2 ^ L ^ J "'

Since the quotient in brackets converges to 1/(22, we get a C > 0 such
that tn < Cs^ for all n. Now we have

_ R^-^n-iR^ _ 2tnR
U(An) — -—————r~^————— — o , .9 — 1 S ̂ ri — 1.|\ 2 .2 i +2

\An ^n ' "n

This contradicts the fact that u(\n) —>- oo.

5.6. — To complete the proof of LEMMA 8 we consider a Riemann map
(p : U —^ f^ and the pull-back ^ = ^*('0) = ^ o (p of ^. The harmonic
majorant of ||^||2 pulls back to one for ||^||2 and so ^ 6 H2^^-1),
the usual Hardy space. By LEMMA 9, the boundary function ^* of ^
satisfies ||^*|[2 <? M a.e. on bU and therefore ^ is a bounded holomorphic
function on U. Hence ^ is bounded on f2.

BIBLIOGRAPHY

[1] ALEXANDER (H.). — Polynomial approximation and hulls in sets of
finite linear measure in C^ Amer. J. Math., t. 93, 1971, p. 65-74.

[2] ALEXANDER (H.). — The polynomial hull of a rectifiable curve in C71,
Amer. J. Math., t. 110, 1988, p. 629-640.

TOME 120 — 1992 — N° 4



ENDS OF VARIETIES 547

[3] ALEXANDER (H.). — Linear measure on plane continua of finite linear
measure, Ark. Mat., t. 27, 1989, p. 169-177.

[4] BERNDTSSON (B.). — Integral formulae for the 09-equation and zeros
of bounded holomorphic functions on the unit ball, Math. Ann.,
t. 249,1980, p.163-176.

[5] DAVIE (A.) and OKSENDAL (B.). — Peak interpolation sets for some
algebras of analytic functions, Pacific J. Math., t. 41, 1972, p. 81-87.

[6] EILENBERG (S.) and HARROLD (0.). — Continua of finite linear
measure I., Amer. J. Math., t. 65, 1943, p. 137-146.

[7] FALCONER (K.). — The Geometry of Fractal Sets, Cambridge. —
Cambridge Univ. Press, 1985.

[8] FEDERER (H.). — Geometric Measure Theory. — Springer-Verlag,
1969.

[9] FORNAESS (J.-E.). — Embedding strictly pseudoconvex domains in
convex domains, Amer. J. Math., t. 98, 1976, p. 529-569.

[10] FORSTNERIC (F.). — Regularity of varieties in strictly pseudoconvex
domains, Publ. Math., t. 32, 1988, p. 145-150.

[11] GAMELIN (T.). — Uniform Algebras. — Prentice Hall, 1969.
[12] GLOBEVNIK (J.) and STOUT (E.L.). — The ends of varieties, Amer. J.

Math., t. 108, 1986, p. 1355-1410.
[13] GLOBEVNIK (J.) and STOUT (E.L.). — The ends of discs, Bull. Soc.

Math. France, t. 114, 1986, p. 175-195.
[14] GLOBEVNIK (J.) and STOUT (E.L.). — Boundary regularity for

holomorphic maps from the disc to the ball, Math. Scand., t. 60,
1987, p. 31-38.

[15] GLOBEVNIK (J.) and STOUT (E.L.). — Analytic discs with rectifiable
simple closed curves as ends, Ann. Math., t. 127, 1988, p. 389-401.

[16] HENKIN and CIRKA (E.). — Boundary properties of holomorphic
functions of several complex variables, J. Sov. Math., t. 5, 1976,
p. 612-687.

[17] RIESZ (F.) and (M.). — Uber die Randwerte einer analytischen
Funktion, 4e Congres des Math. Scand., Stockholm, 1916, p. 27-44.

[18] ROSAY (J.-R). — A remark on a theorem of Forstneric. — Preprint,
1989.

[19] RUDIN (W.). — Function Theory in the Unit Ball in C". — Springer-
Verlag, 1980.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE


