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AN INFINITE DIMENSIONAL

HODGE-TATE THEORY

BY

SHANKAR SEN (*)

RESUME. — Soient Q Ie groupe de Galois absolu d'un corps p-adique K et 'R,
une algebre de Banach sur K. Etant donne un homomorphisme continu p : Q —)• 7 ,̂*
(7?,* = groupe des unites de 7^-) on construit un « operateur)) canonique (p € 7 .̂ (g)j< C
qui determine la C-extension de p a isomorphisme local pres (§ = produit tensoriel
complet, C = completion d'une fermeture algebrique de K). Si 7^ est un anneau de
matrices sur un anneau de series entieres convenable, P operateur (^ permet d'etudier
la structure de Hodge-Tate de families de representations de Q de dimension finie.

ABSTRACT. — Let Q be the absolute Galois group of a p-adic field K and 7^
a Banach algebra over K. Given a continuous homomorphism p : Q —> 7?* (7?.* =
units of 7i) we construct a canonical «operator)) y? € 7 -̂ (g)j< C which determines
the C-extension of p upto local isomorphism (§ == complete tensor product, and C =
completion of an algebraic closure of K). If 7 -̂ is a matrix ring over a suitable power
series ring one obtains information about the variation of the Hodge-Tate structure in
families of finite-dimensional representations of Q.

Introduction
In this paper we are concerned with a two-step generalization of

the p-adic analogue of the Hodge decomposition for complex cohomo-
logy which TATE discovered in connection with his theory of p-divisible
groups [10].

Suppose given a continuous homomorphism '0 : Q —^ Autj< V where
G is the absolute Galois group of the p-adic field K and V is a finite-
dimensional ^-vector space. Let C be the completion of an algebraic
closure of K, X the C-vector space V(g)^C on which Q acts diagonally, and
\ the p-cyclotomic character of Q. Recall that ^ (more precisely (V, '0)) is
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14 S.SEN

said to have a Hodge-Tate decomposition if X = Q)^X(i), where X{i)
is the C-subspace of X spanned by all x <E X such that a(x) = ̂ {(T^X
for all a e Q. (TATE showed that for any ^ the sum is direct, so that
only finitely many of the X(%)'s are non-zero.) In [7] we constructed, for
arbitrary ^, a canonical operator (p on X which has the eigenvalue i and
corresponding eigenspace X(i) whenever the latter is non-zero. Then (^,
or rather its primary subspaces, may be regarded as giving a generalized
Hodge-Tate decomposition for any '0.

Following a suggestion of MAZUR it is natural to try to generalize the
construction of (p. He had in mind particularly the case of representations
over p-adic power series rings or their quotients (more on this below).
Here we deal with something in principle still more general (though as
yet we know of no new examples to exploit this generality). Given a
continuous homomorphism ̂  : Q —^ 7^* where 7^* is the group of units of a
Banach algebra 7^ over K^ we define a canonical element (p C B = 7^ § C
(where (g) denotes the complete tensor product over K) which agrees with
the « ( p )) of the previous paragraph in case U = Endj< V with V as above.
The «operator)) (p (in fact its conjugacy class in B) determines the semi-
linear C-extension of '0 upto local isomorphism («local)) means «on an
open subgroup of Q ))). Moreover it has natural functorial properties with
respect to Banach algebra homomorphisms, and, though we don't make
it explicit, tensor products. Further, the conjugacy class of (p in B is
defined over some finite extension K/ of K (i.e., (p is conjugate to an
element of K ^K K ' ) providing a comparatively down-to-earth invariant
of '0 (defined over K if U = Endj<V). This invariant may be seen as
taking one a step towards classifying the representation '0.

Let D be any quotient of a power series ring in finitely many va-
riables over Zp (for simplicity). Then a (continuous) representation
'00 : G —> GLn(D) is of the sort obtained by restricting Mazur's universal
deformations ([5]; see also [4], [6]) to the local Galois group. Note that ^o
is equivalent to a p-adic analytic family of representations in GLyi(Zp).
MAZUR proposed that (p should be defined for ^05 for this would imply
that the (generalized) Hodge-Tate structure varies analytically in such fa-
milies, giving information also about the variation of the image of the Ga-
lois group. In [8] the construction of (p was carried out to the point needed
to settle positively the question of analytic variation, though we worked,
as here, not directly with '0o but with the composed representation ^ ob-
tained by imbedding GLn(D) in 7^* for a suitable Banach algebra K. Our
present results go beyond those of [8] in several respects. First, as mentio-
ned already, (p is defined here for any 7^ (which is then specialized for the
application to ^o), while in [8] K has to be of a particular type (although
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00-DIM HODGE-TATE THEORY 15

some of the key lemmas of [8] are general, and are used here). Secondly,
in [8] the (p obtained is not shown to be canonical, whereas here we show
it is the unique element satisfying the appropriate conditions. Finally, the
C-extension of 7^ used in [8] does not have the right technical property
(the action of Q is not «sufficiently » continuous). Here the C-extension
B of 7^, which is just the complete tensor product, not only corrects the
mistake in [8] but even strengthens the result.

0. Notation
The following is a partial list of the notation used, having to do mainly

with fields and Galois groups :

K = a p-adic field, i.e., a local field of characteristic 0 with a perfect
residue field of characteristic p ^ 0.

TT = a uniformizing parameter of K.
A = the ring of integers of K (it is a complete discrete valuation ring).
K = an algebraic closure of K.
Q = the Galois group of K / K .
C = the completion of K with respect to the absolute value which

extends that of K. This absolute value extends canonically to C and is
denoted by | |.
\ : Q —> Q* = a continuous infinitely ramified character, i.e., there

exists an infinitely ramified extension of K whose Galois group is mapped
isomorphically into Q* by ^. The canonical choice of \ is the p-power
cyclotomic character.

H=Ker^
r = the Galois group of K ^ / K (superscripts denote invariants).
FQ = the maximal pro-p-subgroup of r, so that FQ —^ Zp.
r^=rf .
Q' (resp. Q") == an open subgroup of Q (satisfying further conditions

depending on the context).
U' (resp. U"^ = H H Q' (resp. U H Q"}.
r' (resp. r') = Q'/H' (resp. Q"/H11).
FQ (resp. FQ') = the maximal pro-p-subgroup of F' (resp. F").
r^ (resp. r^) = W (resp. (FoQ^).
Qr, (resp. Q'^ Q'^) = inverse image in Q (resp. G'\ Q11) ofF (resp. 1 ,̂ 1^).
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16 S.SEN

1. Complete tensor products
This section is devoted to elementary results, some of which appear in

the literature, but are still collected here in a form that suits us for later
use in this paper, or perhaps elsewhere.

1.1. Normed linear spaces.—Let V be a normed linear space over K
satisfying, as do all the normed spaces we consider, the non-archimedean
axiom \x + y\ < max{|a; , \y\}. Let Vo be the subset of V consisting of
all x such that \x\ < 1 (the unit ball in other normed linear spaces will
be denoted similarly). Then VQ is an A-module. Let {vi}i^i be a set of
elements of V such that the image set {^} is a basis of Vo/TrVo over the
residue field A/TrA (we omit the index set I when confusion is not likely to
result). We shall call {v^} a « basis)} of V. Such a « basis » has the following
properties :

(1) The subspace of V spanned by {v^} is dense in V.

(2) Every element v of V has a unique expression v = ̂ c^, where
Ci € K and ci —>• 0 with respect to the filter of complements of finite
subsets in J. (The equality of course means that the sum converges to v
in the topology of V. By abuse of notation we shall write c^ —^ 0 as i —> oo).
For a given v, only countably many of the c^s are non-zero.

(3) The completion V of V can be identified with the K- vector space,
with the obvious operations, of all expressions of the form ^c^, where
Ci G K and c^ — 0 as i —>• oo. The norm \\v\\ = sup \ci\ on V (and V),
where v = ̂  c^^, is equivalent to the norm of V induced by the original
norm of V.

(4) If W is a second normed linear space over K then £,(V^W)^he
space of continuous linear maps from V to W, can be identified with the
space of families (w^ej, Wz € W such that sup wi\ < oo. The usual norm
on C(V, W) is equivalent to the norm |(w^)| = sup \wi .

The above facts, notation apart, are the content of [2, 1.23, ex. 7]. One
has further :

(5) If | is the norm of V, and || || the modified norm defined in (3),
which we shall call basal, then :

\\x\\ = ITTF ^^ 7rr+1 < x\ < Trp.

Thus to each norm | is associated a unique basal norm || || independently
of the choice of « basis ».
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00-DIM HODGE-TATE THEORY 17

Putting y = Tr"^, and ?/ = ]>^c^, this follows from :

IMI = 1 Q sup|c,| = 1
4^ ^/ 6 Vo and ?/ ^ TrVo
^ i > M > M.

(6) Suppose V is complete and let TV be a closed subspace. Then W
has a topological complement in V.

This is [2, 1.26, ex. 11]. It follows from the fact that the natural
map Wo/TrWQ —» VO/TI-VO is an injection so that one may choose a « basis))
of W and extend it to one of V.

1.2. Lattices. — An element x of an A-module M will be called
divisible if it is divisible by TT in M, infinitely divisible if it is divisible
by all powers of TT in M.

An A-module M will be called a lattice if it is torsion-free and contains
no infinitely divisible elements. If V is any K- vector space then an
A-submodule M of V will be called a lattice in V if M is a lattice and
if KM = V. A finitely generated A-module is a lattice if and only if it is
free. If V is finite-dimensional then a lattice in V is any A-submodule
generated by a basis of V. (See [1, chap. VII, §4.1.]) In the infinite-
dimensional case these last two statements are not true. For example
an infinite product of copies of A is a lattice but it is not free, since the
product is complete in the Tr-adic topology but an infinite direct sum
is not.

All vector spaces are assumed to be vector space over K unless the
context clearly indicates otherwise. Tensor products of vector spaces will
be taken over K^ unless otherwise indicated, and the subscript K will be
omitted. Tensor products of two A-modules, unless both ^-vector spaces,
are taken over A, and again the subscript is omitted.

If V is a normed linear space it is clear that VQ is a lattice in V.
Conversely, given a lattice M in a vector space V one can define a norm
on V as follows. For x € V, define 0{x), the order of x with respect to M,
by 0{x) = the largest integer r such that 7T~rx € M. Since M is a lattice
in V it follows that for each x -^ 0 the integer 0(x) does exist. Setting
x\ = 7r\°^ gives a non-archimedean norm on V, which we shall say is

defined by the lattice M, and it is clear that Vo, the unit ball with respect
to this norm, is equal to M. The topology induced on M by this norm is
the usual Tr-adic topology. It is also evident that the basal norm in (5) is
the same as the norm on V defined by the lattice VQ.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



18 S.SEN

We shall need the following fact about the tensor product of lattices :

(7) Let M and N be lattices in the vector spaces V and W respectively.
Then M (g N (identified with its image) is a lattice in V (g) W.

To prove (7) one uses the standard properties of tensor products over
Priifer rings in general [3, chap. VII, § 4] or principal ideal domains in
particular [1, chap. I, § 2.4]. The main property needed, apart from general
consequences of flatness, is that over such rings a module is flat if and only
if it is torsion-free. Since the tensor product of flat modules is flat it follows
immediately that M (g) N is flat, hence torsion-free. This implies that the
natural map from M^N to V^W is injective, and, identifying M(g7V with
its image, that K(M (g) N) = V 0 W (using [1, chap. II, § 2.7, prop. 18]).

It remains to be shown that M (g) N has no non-zero infinitely divisible
elements. This can be done by reducing to the finite rank case as follows.
Given x € M 0 N let V and W be finite dimensional subspaces of V and
W such that x € V (g) W. Let M' = M H V, N ' = N H W'. Then M/M'
and TV/TV, being submodules of the vector spaces V/V and W/W, are
torsion-free, hence flat. Again because the product of flat modules is flat,
one sees that

(M 0 N f ) / ( M / (g) TV') -^ M/M/ 0 N\

(M 0 N ) / ( M (g) N ' ) -^ M 0 N / N '

are flat. Then because an extension of a flat module by a flat module is
flat, or more simply by replacing «flat» by «torsion-free)), one sees that
(M (g) N ) / { M ' (g) N ' ) is torsion-free. It follows that x is infinitely divisible
in M (g) N if and only if it is infinitely divisible in M' (g) N ' . Since the
latter module is free (because it is torsion-free of finite rank) x cannot be
infinitely divisible if x i=- 0. Thus M(g)7V is a lattice in V <^W, proving (7).

1.3. Tensor products ofnormed spaces.—Let V and W be normed
linear spaces. We define several norms (product norms) on V (g) W which
turn out to be equivalent and thus may be used to define the « same)) (as
topological vector space) complete tensor product. This leaves open the
question of whether there is more than one natural equivalence class of
norms on V (g) W as in the Archimedean case.

(A) Let | |i be the norm on V (g W defined by the lattice VQ (g) Wo
as in § 1.2. This is stable under equivalences in the sense that if the norms
on V and W are replaced by equivalent norms, then [ i is also replaced
by an equivalent norm. For suppose VQ* and w^ are the unit balls for
the second pair of norms. Then the equivalence of norms corresponds to
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00-DIM HODGE-TATE THEORY 19

relations of the form ^VQ C VQ C TT^VO and ^WQ C WQ C ^WQ for
some integers a, 6, c, d, which in turn imply

TT^Vb ̂  WQ C YO* ̂  ^O* C TT^VO 0 WQ

and the equivalence of the product norms.

Consider the special case in which the norms on V and W are defined
by VQ and WQ as in § 1.2. Then \v <^> w i = |^| • |w| for all v € V, w C W.
To see this let V and W be the one-dimensional subspaces of V and W
spanned by v and w respectively. Let VQ = VQ D V, WQ = Wo D W'
and suppose VQ and WQ are generated by ^v and TT^W, which means
\v\ = ITI-I"", \w\ = TT-I"6. Then re = ̂ ^(v (g) w) generates VQ (g) IVo- BY
the argument given above in proving (7) x is not divisible in VQ (S) WQ^ so
that |.r| == 1 and \v 0 w|i = |'y| • |w|.

(B) Choose «bases)) {vz} and {wj} of V and W respectively (where
as usual we have suppressed the index sets I and J). Define Y to be the
normed linear space (with the natural operations on the coordinates a^-)
of all expressions of the form ^a^-(^,Wj), where a^ G K, and dzj —> 0
as % —>• oo or j —^ oo, with the norm of such an expression being sup |a^-|.
Then {(vi^wj)} is clearly a «basis)) of V. Define a (continuous) bilinear
pairing V x W —> Y by putting (2;, w) i—^ ̂  aibj(vi, Wj), where 'y = ̂  a^i
and w = ̂ bjWj.

This pairing induces a map / : V (g) TV ^- V, taking vi (g) w -̂ to (^, w^-),
which is in fact injective. To see this injectivity it is enough to realize that
the restriction / : VQ 0 Wo —^ YQ is injective. For the latter, tensor with
the residue field, which gives a map / : VQ/^VQ^WO/^WQ —^ YQ/^YQ, and
this map is injective, actually an isomorphism, because it carries v-i 0 Wj
to (z^,Wj), or a basis of the first space onto a basis of the second in a
1-1 way (the bars denote the image (mod 7r)). Identify VQ/^VQ (^WQ/^WQ
with (Vo ^ Wo)/7r(Yo (g) Wo). Since VQ (g) WQ is a lattice by (7) above, we
may replace x by y = ̂ x where y is an indivisible element of Vo ^ Wo.
Then y -^ 0 (where y is the image of y (mod 7r)), which implies f(y) ̂  0,
hence f(y) ̂  0 and so finally f(x) -^ 0, which shows / is injective.

Let | [2 be the norm on V (§) W induced, via the injection /, by the
norm of Y. A priori it depends on the choice of ((bases)) in V and W
but in fact [2 is the same as the norm | i, defined in (A). If y is an
indivisible element of Vo ̂  WQ then from what we saw above, f(y) is an
indivisible element of YQ, which implies \y\^ = 1, while from the definition
of | 11 it is clear that \y\\ == 1. Since every x C V 0 W is a scalar times
such an y^ it follows that |a;|i = x\^ for all x.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



20 S.SEN

NOTE. — Since / is 1-1 we may without confusion write vi (x) wj
for {vi.Wj).

(C) An unsymmetric variant of (B) will be convenient for technical
reasons. For this let Z be the normed linear space of all expressions of
the form ^[z^,w^] where {vi} is a «basis)) of V (let us say the same as
in (B)) and Wi G W (where W is the completion of W) with Wi —> 0
as % —^ oo. Addition and scalar multiplication are defined by addition
and scalar multiplication of the «coefficients)) Wz while the norm of
the above expansion is taken to be sup|w^|. One defines a (continuous)
pairing V x W —^ Z by putting (z^w) i—^ ^[z^,a^w] where v = ̂ a^^
(i.e., take wi = d^w). This defines a map g : V 0 W —> Z which is
injective because g is carried to / under an obvious identification of Z
with Y : if {wj} is the « basis)) of W chosen in (B), map Z to Y by sending
Y^[vi,Wi\ to ^dij(vi,Wj) where Wi = Z^j^j- This clearly carries the
pairing of this paragraph to the one in (B), hence g to /. The norm on
Z need not agree with that of Y under this identification, but they are
equivalent because the norm of W is equivalent to the basal norm given
by {wj} (by (3) or (5) of § 1.1) and thus using Wi\ or sup- a^-| must give
equivalent norms on Y = Z.

Define | 13 on V 0 W via the imbedding g in Z. From what we have
seen | |s is equivalent to | |i = \ Is , but unlike the latter it depends on
the choice of a « basis)) of V, thus | [3 is really one of an infinite number of
possible norms from which there is in general no natural way to pick one.

NOTE. — Because g is 1-1 even after replacing TV by TV it is possible
to write Vi (g) wi for [^, Wi] without confusion.

1.4. The completion. — Define the complete tensor product of V
and W to be the completion, denoted V^W ^ of V (g) W with respect to
any of the norms defined above. Since all the norms are equivalent, this
determines V0W up to canonical isomorphism as a topological vector
space. Although the norm in (A) or (B) is also uniquely defined, it will
usually be more convenient to select instead one of those described in (C).
The resulting ambiguity in the structure of V^TV as a normed linear space
is perhaps a blemish, but it will have no serious consequences.

Since Y and Z are both complete spaces, and the image of V (g) W,
under / and g respectively, is dense in each, either may be identified with
V(S)W (via / or g which depend on choice of « bases))). In making such an
identification we shall select the corresponding norm on V^l^F. Finally,
note that V§IV = V^W. (Here V, W are of course the completions of V
and W and equality means that the natural map from the left hand space
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00-DIM HODGE-TATE THEORY 21

to the one on the right is an isomorphism. That this is the case follows
from the fact that both sides may be identified with Y.)

1.5. Normed algebras. — Let F be a non-archimedean normed
field — we shall only need the case where F is a subfield of C. By a
normed F- algebra we shall mean an F- algebra which is a normed linear
space over F satisfying as always the non-archimedean axiom (At) as well
as the multiplicative axiom (.M) : \xy\ < \x\ • \y\. If F = K we shall usually
omit the field.

Let 7^ be such an algebra. Then the basal norm on 7^ also satisfies {M).
For let {ri} be a « basis » of K, and x = ̂  a^, y = ̂  b^i be two elements
and their expansions as in (2). Because of the axiom (AT), the product xy
can be obtained by formal multiplication of the expansions of x and y .
Also, if || || is the basal norm then for all z, k (running through the same
index set) ||7^n;|| < 1 because |r^r/c| < |r^| • \rk\ < 1. Then one has :

11^11 = ^^k^rk < sup||a^r^|| < sup|a,^| = ||rr|| • \\y\\.

Consider next two normed algebras K and S and their tensor pro-
duct K (g) S equipped with one of the product norms discussed above.
It may be seen that this product norm also satisfies axiom (M). In the
symmetric case, i.e., where the product norm is defined as in (A) or (B),
this follows easily from the fact that T^Q^SQ = (K^S)o is closed under
multiplication : given x and y^ let x ' = ̂ x and y ' = ̂ y be indivisible
elements of T^o ^ <^o so that |.r'| = \y'\ = 1. But x ' y ' G T^o ^ <^o which
shows x ' y ' \ < 1. This implies \xy\ < \x\' \y\.

In the unsymmetric case the proof is formally the same as for the
norm [| |[ above. Let x = ^r^ (g) ̂ , y = ^r^ (^ s^ with ^, s[ G S. Using
the fact that [[^^/c|| < 1 o11^ sees :

11^11 = ^^k ^^4 ^ sup||r,rfe(g)5,4ll ^ sup|5,41 ̂  11^11 • \\V\\-

Passing to the completion we see that 7^(g)«S is a complete normed algebra,
or Banach algebra, with respect to either type of norm (symmetric or
unsymmetric case).

1.6. Base extension. — The case which we particularly need is the
one in which <S is a normed field extension of K (with a norm extending
that of K). Then 7^^)S and 7^0<? are normed 5-algebras, i.e., satisfy also
the axiom \sx\ = \s\ • \x\ for all s G S provided we choose the product
norm as in (C) — as we shall unless otherwise stated. (Multiplication by
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22 S. SEN

elements of S is denned in the obvious way via its copy 1 (g) <? inside the
algebra. This is the same as the action on the second component given
^y ^(S r^ (^^) = S ̂  ̂ 5^ from which the property l^a* = |5| • |;c| follows
immediately.) Notice that if K is complete and S is of finite degree over K
then 7^ (g) <? == 7^(g)<S or, in other words, 7^ (g) S is already complete.

1.7. An example. — Let V be a complete normed linear space and 7^
the algebra of bounded operators on V with the usual norm. Choose a
« basis)) {vi} of V. With respect to this « basis)) 7i can be identified with
the ring of (in general infinite) matrices over K with bounded entries
indexed by 1x1 in which, further, the entries approach 0 along the columns
(or rows if one prefers).

Similarly let B be the algebra of all C-linear bounded operators
on V(g)C. Then with respect to the C-«basis)) {^}, B is the ring of matrices
over C, of the same «size)) as before, satisfying the same conditions on
the entries as does 7^. Then 7^ 0 C is a subalgebra of B but not equal
to it unless I is finite. For b = (^) C B^ with i^k e J, we know that
b G 7^ (g) C if and only if for any «basis)) {cj} of C one has b = ̂  Tj; (g) c^,
with TJ e 7^ such that 7j; —^ 0 as j -^ oo. This condition means that
sup^ \rijk\ —^ 0 as j -> oo where &^ == ^ .̂ r^fc (g) c^ with r^ C 7^, while
for a general element b of B we only know that r^ —^ 0 for every fixed
pair i ^ k . This makes it clear that B is larger than 7^ (^) C in general.
Incidentally the condition on the ^/c's for b to be in 7^ (g) C can be stated
without reference to a « basis)) of C : for b C B^ if M is the A-submodule
of C generated by the ^/c's, then b G 7^ (E) C if and only if, for every n,
M/(M D Tr^C^c), where (9c denotes the ring of integers of C, is a finitely
generated A-module. See § 2.6 for another concrete example of complete
tensor products.

2. Galois representations and associated operators
By a (linear) Galois representation ^ we mean a continuous homo-

morphism ^ : Q —>• 7?.* where 7^* is the group of units of a Banach K-
algebra 7^, and Q and 7^* are given the Krull topology and the norm topo-
logy respectively. As a potential example consider the case where Q acts
on the Banach space V by continuous (not necessarily norm-preserving)
automorphisms. (As before K is the field of scalars unless otherwise sta-
ted.) If 7^ is the algebra of bounded linear operators on V one obtains
a homomorphism ^ : Q —>• 7^*. However the required continuity of '0,
essential in most of what follows, places a strong restriction on the Galois
action which is not satisfied in many of the infinite-dimensional examples
which occur naturally (for instance the standard action on the completion

TOME 121 — 1993 — ?1



00-DIM HODGE-TATE THEORY 23

of an infinite Galois extension of K). Two representations -0i and '̂ 2 with
values in K are considered equivalent if they differ only by conjugation
in 7^*, i.e., if there is r C 7^* such that V^M = r~l'^f;-i(a)r for all a € <?.

Extending scalars to C by tensoring, and composing '0 with the natural
map 7^ —^ B = 'R (g) C, one obtains a semi-linear C-representation
^c '' G —^ B* (where * again denotes units) which we call the semi-
linearization of '0. More generally we shall consider semi-linear C-repre-
sentations (with values in some Banach C-algebra B) which do not
necessarily arise from some linear representation ip. Our main object is to
study the category of such representations, or at least their «germs)) or
«local isomorphism classes)). Information about these yields at least
indirectly information about linear representations. For example any
invariant of ^c? notably the operator (p constructed below, is of course
automatically an invariant of '0.

2.1. Base extension and Galois action. — Let F be a subfield of C,
containing K^ stable under the action of Q. Then Q acts on 7^ (g) F (as
before tensor products are taken over K unless otherwise indicated) via
its action on F, and this action extends to Kp = K § F by continuity.
The immediately following are properties of the action to be naturally
expected, except for the last which is more technical but important for
the sequel.

(1) Q preserves the norm of T^p.

(2) The function Q x Tip —> ^F given by the action of Q is continuous
(for the Krull topology of Q and the norm topology of 7^).

(3) Let U be a subgroup of Q. Then :
(a) (TZ^C)^ =n(S)CU and
(b) (U 0 C)^ = U § C^ (where the superscript denotes

invariants).

(4) Let Q' be any open subgroup of Q. Then (using also the notation
of § 0) the action of V on 7^^ = (T^c)^ satisfies the following two
conditions :

(a) For each n, 7^ = 7^ C (^ - 1)7^ where 7^ = (T^n
and 7^ is a topological generator of F^.

(b) The inverse operators (7^ — I)"1 on (7^ — 1)7^ satisfy a
uniform (i.e., independent of n) bound d (which may however depend
on G ' ; one necessarily has d > 1).

Though (3a) is obvious we give a proof because the others can be
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patterned after it. Let {r^} be a basis, in the ordinary sense, for the K-
vector space 7^. Then 7^(g)C = @^ C{ra ^> 1) is a direct sum of copies of C.
This description is compatible with the action of <7, which immediately
implies (3a).

For the other properties we have to replace the purely algebraic
expansion just used by a topological one of the sort we have already
considered several times. Thus let {r^} be a « basis » of 7^, and taking F to
be complete without loss of generality, we may write 7^ 0 F = ®^(^(^)1)
where the notation on the right indicates a topological complete direct
sum, i.e., one in which we allow all infinite expansions ^r^ 0 /^, fi € F
such that fi —^ 0 as i —> oo. Once again the expansion is compatible with
the action of (?, i.e., Q acts on the elements fi.

Then (1) clearly holds if we choose the norm on 7^ 0 F according
to (C) of §1.3 as we have agreed to do, i.e., if |^r^ (g) fi\ = sup|/J.
For (2) it is enough to combine the continuity of the map Q x F —> F
given by (<7,/) i-̂ - o'(f) with the fact that for each x = ̂ ^ ^) fz the
coefficients fi —> 0 as i —^ oo. The uniqueness of the expansion for each x^
and its compatibility with Galois action, imply (3b). Property (4) is known
to hold for the special case 7^ = K and T^c = C when it is a consequence
of propositions 6 and 7 of [10] (see also prop. 2 of [7]). The general case
is deduced from this by once again using the expansion for T^c together
with its Galois compatibility, as well as lemma 3 of [8]. This last lemma
implies that in the special case the projections given by the decomposition
of (4a) are bounded operators, with bounds independent of n. This is the
fact needed to extend (4) to the general case.

NOTE :
(a) The innocent seeming property (2) breaks down for the ac-

tion of Q on n-^5 an mfinite product of copies of F, with the norm
| Y[fi\ = sup |/z|, if F is an infinite extension of K. This is because the
function (a, /) \—> o'(f) where a G Q^ f G F^ is continuous, but not uni-
formly continuous in the variable a. Thus (2) depends crucially on the
condition fi —> 0 as i —^ oo.

(b) If we put K^ = Un^n tnen lt ls ̂ ^ to show5 by referring back
to the special case K = K, that U1^ is dense in (T^c)^'. This is the
justification for the notation 7^ for the latter.

(5) The projection operators given by the decomposition of (4a) are
bounded, with bounds independent of n.
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This is a consequence of (4) and [8, lemma 3] just as much in the general
case as in the special case needed in the proof above. Also see the LEMMA
in § 2.4.

If B is a Banach algebra over C on which Q acts by (C-semi-linear)
ring automorphisms, we shall say that Q acts properly on B if the
conditions (1), (2) and (4) above are satisfied (with B instead of Kp
or T^c). Then (5) too can be seen to hold. Although B = K § C is the
case we are mainly interested in, some twisted versions of this (where the
Galois group acts differently, in a way to be described later), also seem to
satisfy these conditions. Since that is sufficient for the main construction
below, a general definition appeared desirable.

2.2. Semi-linear representations. — Let B be a Banach C-algebra
on which Q acts properly. By a semi-linear representation u of Q in B we
mean a continuous function u : Q —> B*, with values in the units of B,
and satisfying the condition of a 1-cocycle, namely : u(ar) = u(a)(T(u{r)),
for CT,T G G. If '0 : Q —^ 7^* is a linear representation then of course its
semi-linearization ^c trivially satisfies this condition.

If 14 and ^2 are two semi-linear representations with values in B
we shall say they are isomorphic (u\ —^ u^} if there is a b e B* such
that u-z^a) = &- l^l(a)c^(&) for all a € Q (i.e., the cocycles u\ and u^
are cohomologous) and locally isomorphic (u\ ^ u^) if the condition
is satisfied for some b G 23* and all a G Q ' where Q ' is some open
subgroup of G. The last notion obviously extends to the case where u\
and ^2 are only locally defined, i.e., on (not necessarily identical) open
subgroups of G. It is clear that the equivalence of linear representations
implies the isomorphism of their semi-linearizations.

This definition of isomorphism has the following rationale. Let X be a
23-module on which G operates semi-linearly, i.e., so that a(bx) = a(b)a(x)
for b G B, x € X. Using the cocycle (i.e., semi-linear representation) u
we may define a new action of G on X by a[x} = u(a)a{x). Two such
twisted actions, given by the cocycles u^ and ^2, are isomorphic under an
element of B* if 14 and u^ are isomorphic (i.e., cohomologous). If B acts
faithfully on X then the latter is even a necessary condition for the actions
to be isomorphic by an element of B* (note it is not a question of B-
isomorphisms). The most natural example of the situation discussed would
be to take X = V ^) C where V is a normed X-space, with G operating
via its action on C. Then if B is the ring of all bounded operators on X the
notion of «isomorphic under an element of 23*)) simply becomes that of
a topological isomorphism. Unfortunately this example is not one we can
proceed very far with because G does not act properly on B if V is infinite
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dimensional (property (2) of the definition breaks down. See note (a)
above and the discussion at the end of § 1).

One may define a twisted action of Q on B by the rule

a[b] = u(a)(T(b)u(o~ .-i

and this is compatible with the action defined on X in the sense
that a[bx] == cr[&]cr[a;]. It is this type of twisting that was referred to at
the end of §2.1.

Our object is to classify, in some sense, the local isomorphism classes
of semi-linear representations, which in turn may be seen as a step toward
the classification of equivalence classes of linear representations.

2.3. The operator (p.—Given a semi-linear representation u : Q —^ B*
we define a canonical element ^p(u) e 6, or simply (p if u is understood,
which, as we show later, carries non-trivial information about u. We refer
to ip as an «operator)) even if B is not explicitly given as an algebra of
operators.

Let Q ' be an open normal subgroup of Q such that u{Q') C B1 where B1

is the subgroup of B* consisting of principal units, i.e.,

B1 = { x e B ; \l-x\ < 1}.

It is clear that Q ' exists by the continuity of u and that B1 is in fact
a subgroup (inverses are given by geometric series which converge by
the completeness of B). We use the notation of §0 in addition to that
introduced since. By [8, prop. 1] we know that H1^, B1) = 1. (In [8] the
proposition is stated for H, but it holds equally well for J-L'.} Thus there
exists b G B1 such that if v(a) = b'^u^cr^b) for a C G then v(a) = 1 for
all a € ' H ! . The cocycle v is also continuous because by property (2) of
proper action the function a \—> a{b) is continuous.

A simple calculation shows that v may be viewed also as a cocycle
on G / H ' with values in B^' (we write v also for this induced cocycle). For
suppose a G H ' , r C G. Then v(ra) = v{r)r(v(a)) = v(r) since v(a) = 1.
This shows v is a cocycle on G / ' H ' ' One also has

v{(rr) = v{(7)a(v{r)) = a(v{r))

since v(cr) = 1. But v(ar) = v(r(r~lo'r)) = v(r) so we see that v(r) is
fixed by a, and thus v(r) 6 Bn since a was arbitrary. (This is just the

TOME 121 — 1993 — ?1



00-DIM HODGE-TATE THEORY 27

standard exactness of the inflation-restriction sequence for 1-cohomology
for the groups U' —^ Q —> Q / H ' acting on non-commutative modules.)

Let K'QQ = C^ , B^ = B^ . Then because of the assumption of proper
action (particularly property (4) above) the J^-Banach algebra B^
satisfies the conditions of [8, prop. 3] (over the field K ' = K^ instead
of K, with r' == Q' IU' instead of F, etc.). Thus one sees that for large
enough n there is a continuous homomorphism p : F^ —>• B^*, where
B^ = (^^J^, such that p is cohomologous to the restriction of v to F^.
(We also write p for the composed map Q'^ —^ F^ -p-^ B ' ^ . )

Retracing our steps we see that u restricted to Q'^ is cohomolo-
gous to p . Thus there exists m e B* such that for all a € Q'^ one
has m~^u(<j}(j(m} = p(cr). Define

m\oe, p(o')m~1

^ = llm —————1 / X — — — — — —a-^1 log^(a)

where «log» is the p-adic logarithm. Note that (/? depends on ^; but as
the latter is fixed we shall omit it in the notation. There are two points
which have to be verified : that the limit exists (existence of (p) and that (p
depends only on u and not on the choice of m and p (uniqueness of (p).

Since p and \ factor through F^ we may take a to be in r^. Because F^
is isomorphic to Zp, taking a topological generator 7 of it we may write,
for a close to 1, a = 7" where a € Zp. Clearly the exponent a can
be cancelled from the numerator and denominator of the quotient in
the definition of (^, thus showing that this quotient is constant for a
close to 1. (The normalizing factor log^(a) is introduced just for this
purpose.) Roughly speaking (p is, up to conjugation, an «infinitesimal
generator » of the one parameter subgroup of B* given by the image of p.

REMARK. —In [8] the continuity requirement of condition (2) of proper
action is not explicitly mentioned as a property of the Galois action on
the Banach algebras considered there, but it is tacitly used. This in fact is
the source of the mistake referred to in the Introduction, and which will
be discussed further towards the end of this paper.

2.4. Uniqueness of (p. — Suppose (mi, pi) and (m^, p^) are two
pairs of the same sort as (m, p) used to define ip. We shall say that
such pairs, or the homomorphisms appearing in them, are associated
with u. There are thus (for i = 1,2) open subgroups Qi of ^?, such that
Pi '• Gz —> B*G^ are continuous homomorphisms and, for all a G ^, one
has m^lu(a)a(mi) = pi{a). To simplify put Q ' = Q^ H Q^, U' = U H Q ' ,
r' = Q' 1 ' H ' ^ etc. as in § 0. We must show that substituting either pair
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for (m, p) in the definition leads to the same operator (p. A major part
of this consists in showing that a homomorphism p associated with u is
essentially unique up to conjugation, or more precisely that, restricted
to Q1', pi and p2 agree after conjugation.

Property (4) of proper action implies the following, with the same
constant d > 1 as before, and for any x e B'^ :

LEMMA.
(a) (7^ — l)x = 0 (mod e)) =^ x = c (mod de) for some c 6 B^.
(b) // (7^ - l)x = c (mod e) where c G ^, then (7^ - l)x = 0

(mod de).

(Here the notation a = b (mod e) for a real number e > 0 means
\a-b\ < e.)

NOTE. — Part (b) of the Lemma is the same as (5) of § 2.1 together
with the definite bound d. The proof given here is more direct.

Proof of lemma. — By (7^ — 1)~1 we mean the inverse of (7^ — 1)
on (7, - 1)B^. For (a) put (7^ - l)x = (7, -_l)y with y € (7, - 1) .̂
Since (7^ — l)y = 0 (mod e), applying (7^ — I)"1, which has the bound d,
shows that \y\ < de. Since (7^ — 1) kills x — y = c, it is clear that c is as
required. For (b) notice that (7^ — l)x ^ c (mod e) =^> (7^ — l)2^ = 0
(mod e). Once again, applying (7^ — 1)~1 shows (7^ — l)a; = 0 (mod de).

Returning to the situation above, we see that, for a G G' ^

u(a) = mipi^c^mi)""1 == m'zp^^a^m^)'1

or p2(^7) = a'-l/9l((7)(7(a;) where re = m^m^. Note that re 6 ^^o since pi
is trivial on 7^. Put pi (a)"1 = 1 + ai(cr), p^cr) = 1 + ^(cr) and let n
be large enough (such an n exists by the continuity of the p[s) so that
for all a C T^ one nas I^MI < 6 < l/^2 where d is the constant of
the LEMMA. Multiplying one of the m[s by an element of K if necessary
(this does not spoil any of our assumptions), we may assume \x < 1. We
then have, for a = 7^ :

YnW = P^r^^n) = (1 + ^1 (7^)^(1 + ̂ )),

(*) •-. (Yn - 1)^ = ai(7j^+^2(7n) +ai(7,).ra2(7^).

Then (7^ — l)a; = 0 (mod e) implies by the LEMMA (a) that x = c\
(mod de) with ci G ̂ . Substituting ci for .r in the right hand side of (*)
shows (7^ — l)x = C2 = ^1(7^)^1 + ci^2(7n) (mod (^e2). Since 03 e fi^,
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by the LEMMA (b) we see that (7^ - l)x EE 0 (mod (Pe2). From this
point on the argument can be repeated, with cPe2 instead of 6. Because
(Pe < 1, we see that (Pe2 < e. If we put ei == e, 63 == cPc^, 63 = ^ej,
etc., we see that 6^ —)• 0 as i —^ oo, so that by continued repetition we
obtain (7^ — l)a; = 0.

From this it follows that for a € <%,

P2(cr) = ̂ "'^(a)^ == m^m-ip-i^m^m-z

and thus m^p^(a)m^1 = mi/?i(cr)mf1. This implies that using {m^.p'z)
for (m,p) in the definition of (p gives the same result as using (mi, pi),
which concludes the proof that (p depends only on u.

Finally note that if the norm on B is replaced by an equivalent norm
(satisfying the requirements of proper action) this has no effect on the
operator (p. This is because the requirements for (m, p) to be associated
to u depend only on the structure of B as a topological ring (more precisely,
topological C-algebra). From this one also sees that (p behaves in a
natural way under continuous homomorphisms, because these carry pairs
associated with u to pairs associated with the composed representations.
Thus if B\ and 62 are two Banach C-algebras on which Q acts properly,
u : G —^ B^ is a semi-linear representation, and / : B\ —^ B^ is a
continuous C-algebra homomorphism commuting with the action of G,
then one has (p(f • u) = f((p(u)).

REMARK.—By analogy with the finite-dimensional case i f n = ^ c is the
semi-linearization of a linear representation '0 : Q —> 7^* one may expect
a connection between (p and the image of the Galois group i^{G). If the
same relation were to hold in this case it would be this : if K = Qp and I
is the inertia subgroup of Q then the Lie algebra of '0(7) is the « support»
of (p, i.e., it is the smallest Qp-subspace of K which, tensored with C,
contains (p (see [9], [7]). The proof should depend on the ramification
theory of the extension with the infinite-dimensional p-adic Lie group ̂ (Q)
as Galois group.

2.5. Local isomorphism classes. — Consider semi-linear represen-
tations which are defined on open subgroups of Q but do not necessarily
extend to G' In this subsection we use this looser definition. Given two
such representations Ui : Qi —^ B*, for i = 1,2, recall that they are said
to be locally isomorphic (^i ^ ^2) if they are isomorphic when restricted
to some open subgroup ^3 of Q\ H Q^. In other words there should be
an x G 6* such that for all a e ^3 one has u^(a) = x~~lu-i(a)a(x). Denote
the local isomorphism class of u by [u].
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Two elements &i, 62 of ^ will be called conjugates (&i ~ b^) if for
some rr C B* one has 62 = a^i.r-1. Denote the conjugacy class of any
b G B by {b}. Also call 6 admissible if there is some conjugate of b which
belongs to BQ for some open subgroup Q' of Q.

If 25 is of the form K § C and ^ is locally compact (this may not be
essential; perhaps linear compactness can be used instead of compactness)
then there is a correspondence between local isomorphism classes of semi-
linear representations in B on the one hand, and conjugacy classes of
admissible elements of B on the other, as follows :

(1) The map u i—^ <^){u) maps the set of semi-linear representations
with values in B onto the set of admissible elements of B.

(2) If z^i and u^ are semi-linear representations in B then :

HI w u^ ^==^ ip(u-i) ~ ^p(u^).

(3) The mapping u ̂  (p(u) establishes a 1-1 correspondence between
the local isomorphism classes [u] of semi-linear representations in B and
the conjugacy classes {a} of admissible elements a of B.

Clearly (3) follows from (1) and (2). To prove (1) note first that (p(u) is
admissible. Next let a be an admissible element of B and suppose a ~ a
where a € BQ for some open subgroup Q ' of Q. Define

p(a) =exp(a logger))

(where exp and log are of course the p-adic exponential and logarithm)
and let Q" be an open subgroup of Q' such that the exponential converges
for all a e Q " . It is clear that y(p) = a. Suppose a == xax~1 with x € 23*.
Put u{a) = x~lp(a)a(x) for a € Q " . Then ( x , p ) is a pair associated
with n, and we have :

/ . x\ogp{a)x~1 .(p(u) = hm —, , , — = xax\a-^i log^(cr)

This proves (1).
To prove (2), suppose HI ^ u^. Let p be associated with ^i. Then

^i % p, so that also u^ w p, i.e., p is also associated with u^. From the
definition of the operators ^p(ui) we know that, for a- close to 1, one has

logp(cr) \ogp(a)
^i) ~ . ) { and (^2) ~ , , ^

logxM logxM

which implies ^p(u\) ~ ^(^2).
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Conversely, suppose <^(u^) ~ ^p(u^). Let p\ and p^ be associated
with u\ and ^2 respectively. Then, again for a sufficiently close to 1, and
some x € 23*, a* log pi (a) re"1 = log^M or ^/^(cr)^"1 = p2(^) (since the
exponential series can be applied for a close to 1). We need the following :

LEMMA. — Let K be locally compact^ 7^ a Banach K-algebra^ and
B = 7^ (S) C. If &i, 62 ^ ̂  where Q' is an open subgroup of <?, and
xb\x~1 = &2 fof some x e 23*, then there is some a € (B*)^ , where Q 1 1

is an open subgroup of G' ^ such that ab\a~1 = 62-
Proof of Lemma. — Because 7^ 0 K is dense in 7^ 0 C = B we can

find .TO e 23^ for some open subgroup Q" of ^/ with XQ as close to .r as
one pleases. Replacing x by XXQ1, &i by a'o^i«^1 we may assume x = 1
(mod e) where 6 is arbitrarily small (but fixed), and &i, &2 ^ ̂ / •

Let {xn} be a sequence in 7^ 0 X with Xn —)- x.lf F = C^ (see § 0 for
notation used in this proof), let Fn be a finite extension of F contained
in C such that Xn G 7^(g)F^. Let 7^ be the trace for F n / F which operates
also on 7^ (S) Fn in the obvious way, with values in 7^ Cg) F C B^ . Let T
be the projection B^ —^ B^ given by the decomposition in (4a), §2.1
and known to be bounded by (5), § 2.1. (In applying (4a) we may assume
without loss of generality that Q" = Q'Q so that B0" = (2?H//)^o/.) By
[10, prop. 9] (or [7, prop. 1]) one sees easily that for any 6 > 1 one may
choose On 6 Fn such that \9n\ < S and Tn(0n) = 1-

Define an G B^' by dn = T(Tn(0nXn))- From xb^ = b^x it follows,
on replacing x by Xni multiplying by Qni and applying T ' Tn that
(an^i — b^an) —^ 0 because Xn —> x. To complete the proof of the LEMMA
we need two more steps, first to show that a suitable subsequence of
the a^'s converges to an element a, and secondly that a is invertible. (The
multipliers On are needed to guarantee the second fact.) Actually we do
this in the reverse order.

By adjusting the real constant e above, while 6 > 1 has any value, we
can ensure that an is close to 1, hence invertible. For by choosing e small
enough we can make OnX as close to On as we wish, or for large n, 0nxn close
to On' This implies that Tn(OnXn} is arbitrarily close to 1 since Tn(?n) = 1,
and by the boundedness of T in turn this implies that dn is close to 1 (one
merely needs \dn — 1| < 1) hence invertible. Any limit a of a subsequence
of the On's then has the same property.

Finally, to construct a proceed as follows. Let x = ^ TI 0 ci where,
as usual {r^} is a «basis)) of 7^, c^ G C, and Ci —>• 0 as i —> oo.
Then if Xn = ̂ ^ 0 Cin, with Cin € Fn we may assume \Cin\ < \Ci\.
Because T • Tn has a bound independent of n, and \0n\ < S where 6 too
is independent of n, we see that there is a constant k independent of
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n such that |a^| < A^| where dn = ^r^ (g) a^. (Of course a^ e ^
is given by a^ = T(Tn(0nCin))-) Since A;|c,| -^ 0 as i -^ oo, we can
choose integers m^ independent of n, such that mi —^ oo as i —^ oo, with
(^n ^ TT^A. In other words dn C n^ ^ TT^A), where the product is
direct. Since this product is compact in the product topology we can
choose a convergent subsequence of the a^'s which converges in this
topology. But because TT^A —^ 0 as i —^ oo, this subsequence converges
also in the norm topology (convergence in the product topology does not
of course imply convergence in the norm in general). Its limit a has the
required properties.

Returning to the proof of (2), let Q' be an open subgroup of Q (possibly
smaller than the Q' chosen before) such that pi, p^ are denned on Q ' ,
have values in B ^ ' , and satisfy xpi(o')x~1 = p^) for all a C Q ' . Let 7'
be a generator of some open subgroup of F7. Then applying the LEMMA
with &i = pi (7') and b^ = p^V) shows that there exists a C B0'\ for
an open subgroup Q" of Q, such that api^a""1 = p2(cr) for all a in the
subgroup of F' generated by 7'. This implies pi ^ p2 and thus 14 ^ ^2,
which proves (2).

REMARKS. — In the finite-dimensional case, if K is a full matrix
algebra, these results can be strengthened in various ways (see [7]). For
example, if representations are defined on all of Q their local isomorphism
implies their isomorphism. For another, if u is a semi-linear representation
defined on all of Q then ^p(u) is conjugate to an element of K. Since the
problem of classifying conjugacy classes in 7^ has a well-known solution,
this means one has rather good control of the isomorphism classes of
semi-linear representations. Although this probably breaks down in the
infinite-dimensional case, one may know for some specific u that ^(u) is
conjugate to something in 7^, and the conjugacy class problem in 7^ may
be accessible.

2.6. The power series case. — Motivated by the work of HIDA,
MAZUR has developed a general theory of j9-adic liftings with restricted
ramification (e.g. unramified outside p) of a given (global) Galois repre-
sentation over a finite field of characteristic p (see [5], also [4], [6]). He
constructs a complete Noetherian local ring, which we denote by D, and
a Galois representation by matrices over D (the universal deformation of
the given representation) which satisfy a universal mapping property for
such liftings. These universal deformations, and representations intima-
tely related to them, provide (on restriction to local Galois groups) the
only infinite-dimensional examples known so far of the sort of (linear)
representation we have been considering.
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The universal deformation ring D is isomorphic to a quotient of a power
series ring over OE, the ring of integers of a finite extension E of Qp. Thus
D —> OE[[TI, . . . , T ( \ } / I . We may assume our ground field K contains E.
Suppose ̂  \ Q —> GLn(D) is the local restriction of some universal
deformation. To carry out our construction of (p we must replace GLn(D)
by 7^*, the units of some Banach algebra K over K. For this define a
norm | |^ on C[[T]] = C[[Ti, . . . , 7^]] for an ^-tuple k = (A;i, ..., kf,) of
real constants, 0 < ^ < 1. Define \f(T)\k by putting \aT[1 ...T^\ =
\a\k[1 ... ky for monomials, and extending it to general f(T) by taking
the sup over all monomials occurring in f(T). The norm | \k can of
course be infinite. So we consider the subring 0(7% of C[[T]] consisting
of those /(T) for which [a^ —> 0 as r -^ oo where a^ is the
monomial in f(T) corresponding to the exponents r = ( r i , . . . , r ^ ) . Let
F(T}k = F[[T}} H C(T)k for closed subfields F of C. This is a Banach
algebra over F with the norm |/e.

NOTE. — In [8] we introduced the slightly different subring C{T}k
consisting of those f(T) for which \f(T)\k < oo. Unfortunately Q does
not operate properly on this ring — property (2) breaks down (see § 2.1,
particularly the note), and thus the construction of (p (or ^>T in [8]) cannot
be carried out using this ring. This error in [8] was pointed out to us
by Emily PETRIE.

Let 'R be defined as follows. Let J be the closure as a topological
ideal of the image of I under the natural inclusion (^[[T]] ̂  K{T)k. If
P = K ( T ) k / J , let 7^ be the n x n matrix algebra over P with the usual
sup norm. Then denoting by ^ the composed map Q —°-> GL^D —> 7^*
(here the second arrow is induced by the natural map Mn{D) —^7^), we
can carry out our construction of (^('0c) e 7^ § C.

Now K{T)k § C can be identified with C(T)fc. Since the exact sequence

0 -^ J —> K(Tk} —> P -^ 0

splits topologically (for the vector space structure — forgetting the
multiplication) by § 1.1, (6), taking complete tensor products with C also
yields an exact sequence. This means that P 0 C is a quotient of C(T)k,
and (^(^c) may be viewed as a matrix whose entries are determined by
(the images of) power series in C(T)/c. This provides all that was required
by the construction of ^>T m [8], not to mention the extra fact of the
uniqueness of ip which we have established.

Note finally that in case D is isomorphic to a power series ring,
i.e., 7=0 , the so-called smooth, or unobstructed case, we have

7Z§c-^c(r)fc,
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which is an integral domain. Since ^(^c) is a matrix over this ring it makes
sense to speak of (p as being semi-simple (or non-semi-simple) regarded
as a matrix over the field of fractions. Thus the universal deformations
are divided into two classes. If (p is semi-simple, say, it is still possible
that some specializations of '0o should have non-semi-simple Hodge-Tate
structure, but this happens rarely : on a dense open set of the parameter
space the specializations have semi-simple Hodge-Tate structure. Similarly
in the opposite case most specializations are non-semi-simple. Thus we
may label the two cases by saying i/^o is generically semi-simple (non-
semi-simple) according as y?('0c) ls semi-simple (non-semi-simple). The
special cases treated by MAZUR in the latter part of [5] are all easily seen
(given his results) to be generically semi-simple.
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