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A DISJOINTNESS THEOREM INVOLVING
TOPOLOGICAL ENTROPY
BY

FraNgois BLANCHARD (*)

RESUME. — Un recouvrement standard d’'un compact X est un recouvrement
de celui-ci par deux ouverts non-denses. Dans le carré cartésien d’un flot (X,T), un
couple (z,z’) hors de la diagonale est appelé couple d’entropie quand tout recouvrement
standard (U, V) tel que (z,z’) € Int(U¢) x Int(V¢) a une entropie positive. L’ensemble
des couples d’entropie n’est pas vide dés que l’entropie du flot est positive, il est
invariant par T' x T, et tout couple situé dans sa fermeture est couple d’entropie s’il
n’est pas dans la diagonale.

On dit qu’un flot est d’entropie uniformément positive si tout recouvrement stan-
dard est d’entropie positive, ce qui revient & dire que tout couple hors diagonale est
couple d’entropie. Nous utilisons les propriétés des couples d’entropie pour montrer
que les flots d’entropie uniformément positive, et méme une classe plus générale de
flots, sont disjoints des flots minimaux d’entropie nulle. Nous construisons ensuite un
exemple de flot d’entropie uniformément positive contenant une seule orbite périodique.

ABSTRACT. — A cover of some compact set X by two non dense open sets is called
a standard cover. In the cartesian square of a flow (X,T), pairs (z,z’) outside the
diagonal are defined as entropy pairs whenever any standard cover (U, V) such that
(z,z") € Int(U€) x Int(V®) has positive entropy. The set of such pairs is nonempty
provided h(X,T) > 0; it is T" X T-invariant, and all pairs in its closure belong either
to it or to the diagonal.

A flow is said to have uniform positive entropy if any standard cover has positive
entropy (or if all non diagonal pairs are entropy pairs). Properties of entropy pairs are
used to show that flows with uniform positive entropy (in fact a wider class) are disjoint
from minimal flows with entropy 0. A flow with uniform positive entropy containing
only one periodic orbit is constructed.

(*) Texte regu le 10 mars 1992.
F. BLANCHARD, Laboratoire de Mathématiques Discretes, case 930, 163 av. de Luminy,
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466 F. BLANCHARD

0. Introduction

A flow is a compact metric set X endowed with a homeomorphism 7T'.
Two of the most important notions for the study of flows are minima-
lity and topological entropy. A minimal flow is one such that there is
no closed T-invariant proper subset in X except the empty set. In 1967
FURSTENBERG [F] introduced disjointness of flows — any common exten-
sion factors through the cartesian product — and proved minimal flows
to be disjoint from all flows which are transitive for all powers of T', and
have a dense set of periodic points (also called F-flows); in this paper
we refer to this result as Furstenberg’s theorem. It was the first of an
impressive series of results about the interplay of minimality and other
properties like equicontinuity and mixing (see for instance [Au]). Let us
mention another disjointness theorem : flows disjoint from all distal flows
are exactly minimal weakly mixing flows [P].

On the other hand, topological entropy was introduced by ADLER,
KonuEIM and MCANDREW in 1965 [AKM] as a measure of the quantity of
information contained in flows, and also led to many fruitful investigations,
but these hardly ever met with those about minimal flows. It is true F-
flows with entropy 0 [We] and minimal flows with positive entropy [HK]
have long been known to exist. This of course means that Furstenberg’s
theorem is not in the field of the theory of entropy, but does not shut out
possible connections.

In the measure-theoretic setting K-systems play an outstanding role;
one of the many reasons is they are disjoint from systems with entropy 0.
Would the definition of some « fully positive topological entropy » property
favour the interplay between entropy and other properties of topological
dynamics ?

In [B] two distinct notions of that kind were introduced; the purpose
was to test whether they have some mixing implications. The weaker,
completely positive entropy (c.p.e.), means that all topological factors
have positive entropy. It corresponds to what is called weak disjointness
from all zero-entropy flows. Completely positive entropy does not imply
any kind of mixing, not even transitivity. The stronger, uniform positive
entropy (u.p.e.), is defined by the fact that any cover by two non dense
open sets (standard cover) has positive entropy. It implies weak but not
strong topological mixing.

The aim of the present article is, as in the previous one, to understand
better how topological entropy is woven into the general pattern of
topological dynamics. However, here we approach the subject considering
the matter of disjointness.
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DISJOINTNESS AND TOPOLOGICAL ENTROPY 467

First, a «pairwise» point of view about entropy is developped in sec-
tion 2. Let us say that (x,2') € X2, x # 2/, is an entropy pair for
the homeomorphism T if any standard cover (U, V) such that (z,z’') in
Int(U€) xInt(V°) has positive entropy with respect to T'. Entropy pairs ex-
ist in any flow with positive entropy : such a flow has a standard cover with
positive entropy (ProposITION 1), and for any open cover (U, V') with pos-
itive entropy, there is an entropy pair (z,z') € U¢ x V¢ (PROPOSITION 2).
The closure E'(X,T) of the set of entropy pairs in (X2, x T) is
invariant and contains only entropy pairs and points of the diagonal
(ProposiTiON 3). Entropy pairs still have other simple but very con-
venient properties. Let ¢ be a factor map from (X,T) onto (Y, S) : the
preimage of an entropy pair contains an entropy pair, and the image of
an entropy pair (z,z’) is one whenever ¢(z) # ¢(z’) (PROPOSITION 4);
and if X’ is a closed invariant subset of X and (z,z’) is an entropy pair
of (X',T), then it is also an entropy pair of (X,T) (PROPOSITION 5).
All this is done rather easily, with the use of compactness, metricity and
elementary properties of the entropy of covers.

In section 3 of this article PROPOSITION 4 is used to prove a disjointness
theorem of the precise kind the author was looking for, since it involves at
the same time entropy and minimality : diagonal flows, i.e. those having
the property that {(z,Tz),z € X} is contained in E’(X,T), are disjoint
from minimal zero-entropy flows (PrRopPosITION 6). Diagonality is strictly
weaker than u.p.e., since finite unions of flows with u.p.e. are diagonal,
but we do not know whether it is significantly so. PRoPosITION 6 parallels
Furstenberg’s theorem, though with completely different assumptions. It
seems more closely related to another result, also from [F] : weakly mixing
flows are disjoint from minimal distal flows (u.p.e. implies weak mixing
and entropy 0 is a consequence of distality).

Finally, some examples are given. Example 7, constructed as a kind of
skew product of a full shift and a minimal subshift, has u.p.e. without
being an F-flow, which shows that PrRoposiTION 6 is not a particular case
of Furstenberg’s theorem (and also, using results in [Wi], that flows with
u.p.e. may have an uncountable set of ergodic measures with maximal
entropy). Example 9 is obtained by hybridating a zero-entropy minimal
subshift with the full 2-shift in a different way, already described in [B];
it has c.p.e. without being disjoint from its minimal «parent»; so one
cannot arbitrarily weaken the assumptions of PrRoposITION 6. Entropy
pairs may be used for other purposes : for instance they permit to define
a maximal factor with entropy 0 in any flow; this topic will be developped
in a forthcoming paper with Y. Lacroix [BL].
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468 F. BLANCHARD

This research started after many stimulating talks with J. Kwiat-
KOWSKI on connected topics. I am deeply grateful to him, as well as
to P. LIARDET, who suggested the use of minimal joinings for the proof
of a previous version of ProrosiTioN 6, and B. HosT, who found out
the actual, much shorter proof, also obtaining a more general statement.
Y. Lacroix, A. Maass and especially M. LEMANCZYK made several use-
ful remarks.

1. Definitions and background

This section contains several claims; their proofs can be found in [F|
for those concerning minimality and disjointness, or in [DGS] for the ones
about entropy.

A transitive flow (X, T) is one such that for any two non empty open
sets U, V in X there is a positive integer n such that U U T~"V # {);
a flow is said to be weakly mizing if its cartesian square is transitive, or
equivalently if for any choice of nonempty open U, V, U’, V' in X one
can find n > 0 such that UUT U’ # @ and VUT "V’ # (). For n € Z
put

A, = {(x,T"a:), S X} ;

A, is a T x T-invariant subset of the cartesian product X x X, called the
out-diagonal of order n (the diagonal when n = 0). Transitivity of (X, T)
is equivalent to the fact that the union of all out-diagonals of positive
order is dense in X x X.

Suppose (X,T) and (Y, S) are two flows. A factor map or homomor-
phism ¢ : (Y, S) — (X, T) is a continuous, onto map changing S to T'; in
this case (X, T) is said to be a factor of (Y, S).

A joining of (X, T) and (X’,T”) is a flow (Y, S) together with two factor
maps ¢ : (Y,5) = (X,T) and ¢ : (Y,S) — (X', T') (when X = X' it is
called a self-joining). The cartesian product (X x X', T x T"), together
with the projections 7 and 7', is always a joining of (X,T) and (X', T").

There are two equivalent definitions of disjointness. The first is more
striking; two flows (X,T) and (X’,T’) are said to be disjoint if any
common joining (Y, S, ¢, 1) factors through the cartesian product : there
is a factor map x : (Y, S) — (X x X', T'xT") such that ¢ = wox, » = wox.
The second is the only one we use in this paper. A proper subjoining of the
cartesian product is a proper closed invariant subset of (X x X', T x T")
projecting to (X,T) and (X’,T"). Two flows are disjoint iff there exists
no proper subjoining, i.e. if the only subjoining of (X x X', T x T") is
the cartesian product itself. Remember that when (X,T) and (Y,S) are
disjoint, at least one of them must be minimal.
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DISJOINTNESS AND TOPOLOGICAL ENTROPY 469

Before defining topological entropy, it is necessary to introduce some
notations. Let R and 8§ be two open covers of X. The cover § is said to
be finer than R (notation R < §) if any member of § is contained in an
element of R. Denote by R V § the cover made up by all sets RN S,
with R € R, § € 8. For n € N, write R, = V., T *R. Let
H(R) = inf(log #R'), where the inf is taken over the set of all finite
subcovers of R, and #R’ denotes the number of non empty members of R’.

The entropy of the cover R is the non negative number
h(T,R) = lim lH(fRn).
n—oo N

The limit exists. Some properties of A(T,R) deduced from corresponding
properties of H prove very useful, particularly here :

e h(T,R) is increasing for the partial order of covers (R < 8 implies
h(T,R) < h(T,8));

o it is subadditive, i.e. h(T,RV 8) < h(T,R) + h(T,8);

o if ¢ : (YV,S) — (X,T) is a factor map, then the set ¢~1(R) of all
preimages of elements of R satisfies h(S, =1 (R)) = h(T,R); of course the
same is not true for images.

The topological entropy of (X,T') is the (sometimes infinite) number
h(X,T) = sup h(T, R),

where the sup is taken over all finite open covers of X.

Finally, the following definitions are constantly used in the sequel.
A standard cover of a compact metric set is a cover (U,V) by two non
dense open sets. Denote by U°¢ the complement of the set U. Given z,z’
in X, z # 2, (U, V) is said to distinguish  and 2’ if x € Int(U®) and
z' € Int(V°). A pair (z,2') € X2, z # 2/, is said to be an entropy pair
if for any standard cover R = (U, V) of X distinguishing z and z’ one
has h(T,R) > 0.

When z # z’ it is easy to construct one such standard cover; the
definition does not make sense for diagonal pairs. Existence of one entropy
pair in (X, T) implies h(X,T) > 0.

Recall a flow (X, T) is said to have uniform positive entropy (u.p.e) if
for any standard cover R one has h(T,R) > 0. It is said to have completely
positive entropy (c.p.e) if all non trivial topological factors have positive
entropy. These two properties are stable under factor maps, and u.p.e. is
stronger than c.p.e.. A flow having u.p.e. is easily characterised as one for
which any (z,z') in X2, z # z/, is an entropy pair.
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470 F. BLANCHARD

2. Localising the entropy in the cartesian square of a flow

The first two propositions are trivial in a u.p.e. flow. They permit
to understand the significance of entropy pairs in flows not having this
property.

In a metric space, denote by B(z,n) and B’(z,7) the open and closed
balls with centre z and radius 7.

PrROPOSITION 1.— Any flow (X, T) with positive entropy has a standard
cover with positive entropy.

Proof. — Positive entropy implies there is some finite open cover
§ = (Ur,...,Ux) of X with h(T,8) > 0, but we want to find first a
two-open-set cover with positive entropy. For any ¢ = 1,...,k one may

construct an open set V; such that 8§; = (U;,V;) is a cover of X, and
N; Vi =0 : as X is a metric space, to z € U; associate an open ball B;(z)
having closure contained in U; (it does not matter that  may belong to
several U;’s) ; one thus obtains an open cover of X. Extract by compactness
a finite subcover (W1, ..., W,), let F}j be the closure of W; and call V; the
intersection of all F containing Uf. Since U; contains V¢, 8; = (Ui, V)
covers X and as the Fj, j =1,...,p cover X one has (), V; = 0.

The supremum \/,_, ,8; is finer than 8 : any set in it is either
contained in some of the U;’s or equal to ﬂi V; = 0. One thus gets

0<h(T,8) Sh(T,V,_y 48i) < Y, WIS,
1=1...k

so that at least one of the §;’s must have positive entropy. Call it (U, V).

Now it is easy to shrink (U,V) into a standard cover with positive
entropy. Suppose U is dense : then V contains some closed ball F' =
B'(z,¢e) with € > 0 and z € U. Subtract F' from U : one thus obtains an
open set U’, which cannot be dense since F' has non empty interior, but
as V contains F, (U’,V) is a cover of X ; as this cover is finer than (U, V)
it has positive entropy. By doing the same with V in case it is dense, one
obtains a cover (U’, V') having all suitable properties. |[]

Suppose a standard cover R has entropy 0 : by definition no pair (z,z'),
x # z’, distinguished by R, can be an entropy pair. What about the
case h(T,R) > 07

ProPOSITION 2. — For any open cover R = (U, V) of X with
MT,R) > 0, there are two distinct points x € U®, ¥’ € V¢ such that
(x,2') is an entropy pair.
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DISJOINTNESS AND TOPOLOGICAL ENTROPY 471

Proof. — Suppose R = (U,V) with h(T,R) > 0. We show one can
find a strictly coarser cover Ry = (U, V1) with h(T,R;) > 0, having the
property that U7 has diameter at most half this of U¢, and the same
for V. By induction one gets two strictly decreasing sequences of non
empty closed sets (Uf) and (V) converging to two points z and z’ such
that (z,2’) is an entropy pair. Here is how we do this.

The closed set U° cannot be reduced to a singleton {z}, because in
this case R would have entropy 0 : supposing U¢ = {z}, for any n the
cover R,, contains the open set U N TU N --- N T™ U, which is equal
to X minus at most n points, so R,, has a subcover with cardinality at
most n 4 1, and A(T,R) = 0. So there exist at least two distinct points y
and ¥ in U¢, and d(y,y’) > 0. Fix €1 such that 0 < &7 < %d(y,y’), and
construct a cover of U¢ by open balls with radius €1 centred in U€; call it S.
Necessarily any finite subcover (U{,...,U}) of the compact set U¢ by
elements of § has cardinality at least 2. Denoting by F} the closure of U,
i.e. the corresponding closed ball with radius €1, put F; = U°N F}. By the
choice of e each closed set F; is a proper subset of U¢. Remark (U, V) is
coarser than \/,_, ,(F¥,V), so

0<h(T, (U, V) <h(T,V oy o(FEV)) < D h(T,(FEV));
i=1...k

this implies at least one of the covers (FF, V') has positive entropy. Call U;
the corresponding set F. Then, choosing some suitable g’, do the same
for V, thus obtaining V;. Iterate infinitely many times. As (Uf) and (V,),
i > 0, are two decreasing sequences of non empty closed sets they have
non empty intersections, reduced to singletons {z} and {z'} because ¢;
and ¢ decrease exponentially as i — oo; as z € U°, o’ € V¢ they are
distinct.

We claim (z, z') is an entropy pair. Given a standard cover (U, V) of X,
distinguishing x and z’, one can find € > 0 with B’(z,¢) in U¢ and B'(z’, €)
in V¢; for i such that e; and €, are less than e, Uf is in B'(z,¢) and
Ve in B'(«',€). Thus (U;, V;) is coarser than (B’*(z,¢), B'“(z’,¢)), which
is in its turn coarser than (U, V'); this implies

0 < h(T, (Ui, V7)) < h(T,(B"(z,¢), B"(a',¢))) < h(T, (U,V)),

which being true for any suitable choice of (U, V) finishes the proof. []

Denote by E(X,T) the set of all entropy pairs of X, and by E'(X, T) its
closure. An entropy pair is not ordered, therefore F(X,T) and E'(X,T)
are symmetric for the exchange of coordinates in X?2.
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472 F. BLANCHARD

ProposITION 3. — Let (X, T') be a flow with positive topological entropy.
Then E'(X,T) is a non empty closed invariant subset of X? containing
only entropy pairs and points of Ag.

Proof.

e E(X,T) is not empty. As (X,T) has positive topological entropy,
by ProposiTION 1 one can find a cover (U,V) with positive entropy;
so by PROPOSITION 2 there is at least one entropy pair in U¢ x V°.

e E(X,T) and E'(X,T) are T xT-invariant. For an entropy pair (z,z'),
fix k € Z, and find two non dense open sets U’ and V' distinguishing T*z
and T*y; this is possible because x # z’ implies T*2 # T*z'. Continuity
of T allows us to choose two open sets U, V' such that :

a) = € Int(V¢) and 2’ € Int(U*®);
b) U¢ is the closure of Int(U®), and V¢ is the closure of Int(V°);
¢) Int(V’¢) contains T* Int(V¢) and Int(U’¢) contains T* Int(U*®).

By a) sets U and V are not dense, by b) and c¢) (U,V) is coarser than
T=*(U’, V'), hence a cover of X, so :

(T, (U, V")) > h(T,(T*(U,V))) = h(T, (U,V)) > 0.

Therefore (T*z,T*z') € E(X,T). To finish the proof remark that the
closure of an invariant set is invariant.

o Any non diagonal point of E'(X,T) is an entropy pair. Suppose
(z,2'), x # ', is the limit of a sequence (zn,z),), n € Z, of entropy
pairs, and let (U, V) be a standard cover of X distinguishing x and «’.
Choose n such that z, € Int(U°), z,, € Int(V®) : (U,V) is a standard
cover also distinguishing z, and x/,, therefore having positive entropy. As
this is true for any choice of (U, V), (z,2’) is an entropy pair. |[]

PROPOSITION 4 is basic in the sequel and will be used elsewhere [BL];
invariance of E(X,T) is merely a particular case. The same is true, on a
lesser scale, for PROPOSITION 5.

ProrosiTION 4. — Let ¢ : (Y, S) — (X,T) be a factor map.

1) If (z,2') € E(X,T), there exist y and y' in'Y such that ¢(y) = z,
o(y') =2’ and (y,y') € E(Y,5).

2) Conversely if (y,y’) belongs to E(Y,S) and ¢(y) # ¢(y'), then
(0(y), $(y")) belongs to E(X,T).
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DISJOINTNESS AND TOPOLOGICAL ENTROPY 473

Proof

1) Any standard cover (U, V) of X distinguishing = and 2’ has positive
entropy. By the classical properties of covers this implies

h(¢p~(U), 67 (V)) > 0.

Therefore by PROPOSITION 2 ¢~ 1(U)¢ x ¢ 1 (V)¢ contains an entropy pair.
Now choose standard covers (Uy, V,,) all distinguishing = and z’, and such
that both Uy and V¢ are closed balls with diameter less than ¢,, where
en — 0 as n — oo. Again by ProposITION 2 associate to (U,,V,) an
entropy pair (yn,y,) of Y. From this sequence of entropy pairs extract
by compactness a subsequence converging to some (y,y’). The condition
on diameters ensures (¢(y), ¢(y')) = (z,z’), which implies y # y’, so by
ProrosITION 3 (y,¥') is an entropy pair.

2) Suppose (y,y’) is an entropy pair of Y with ¢(y) # ¢(y'), and
put ¢(y) = =z, ¢(y') = z'. Choose any standard cover (U,V) of X
distinguishing « and z’ : the pair of open sets (¢~ (U), ¢~ 1(V)) covers Y,
since its image covers X ; by continuity of ¢, (¢=*(U))¢ = ¢~ 1((U)°)
contains some open neighbourhood of y, and ¢~(V)¢ contains some open
neighbourhood of ¢’ : this implies (¢~1(U), ¢~ 1(V)) is a standard cover
distinguishing y from y’. Therefore

0 < h(T,(¢7'(U),¢o~(V))) = h(T,(U,V)),

and (z, ') is an entropy pair of X. []

PRrROPOSITION 5. — Suppose W is a closed T-invariant subset of (X, T).
Then if (z,z') is an entropy pair of (W,T\w) it is also an entropy pair
of (X,T).

Proof. — Suppose R = (U, V) is a standard cover of X distinguishing
z and z/. Then R' = (UN W,V N W) is a standard cover of W and
distinguishes z and z’, so h(T|w,R’) > 0.

Take some subcover 8§ of R,, with minimal cardinality. It must also
cover the subset W : it does so via § "W, which is a subcover of R;, since
W is T-invariant. As some elements of § N W may be empty, one has

inf{#(8') | 8’ subcover of R;, } < #(SNW) = #(8);

hence H(T,R,) > H(T,R],), and finally h(T,R) > h(T,R') > 0. []
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474 F. BLANCHARD

3. The main theorem and some examples

Before stating the main theorem, let us introduce a notation and give
two definitions. For any closed T" x S-invariant subset J of X x Y, put
J(z) ={y € Y | (z,y) € J}. As the preimage of a closed singleton J(z)
is closed. A simple calculation yields J(T'z) = S(J(x)).

A joining J C X x Y is said to be minimal if it contains no strictly
smaller closed invariant subset with projections X and Y.

A diagonal flow is one such that E'(X,T) contains Ay = {(z,Tz) |
x € X}; in view of PrRoPOSITION 3 this is equivalent to A; N A§ being
contained in E(X,T).

The statement and proof of the next proposition, in their present form,
are due to B. HosT.

ProprosITION 6. — Minimal zero-entropy flows are disjoint from diag-
onal flows.

Proof. — We show that if a minimal (Y,S) is not disjoint from a
diagonal (X,T), it has positive entropy. Suppose X and Y have these
properties : they possess a non trivial subjoining J of X x Y. Here is
the basic idea of the proof. Suppose we can find some element = of X
such that J(z) N J(Tx) = §. Then of course x # Tz, so by diagonality
(z,Tx) € E(X,T). Then we can carry over positive entropy from X to Y
by way of J : let 7 and " be the projections of J onto (X,T) and (Y, S).
By ProposITION 4.1 applied to the map 7 there must exist y,y’ in Y
such that ((z,y), (Tz,y")) € E(J,T x S); as (z,y) and (T'z,y’) belong
to J,y € J(z) and y' € J(Tx), so y # y'. But then by PROPOSITION 4.2
(7' (z,y), 7" (Tz,y")) = (y,y’) must belong to E(Y,S); hence h(Y,S) > 0.

So let us prove our provisional assumption that there is z in X with
J(z)NJ(Tz) = (. We can assume J is minimal. Indeed the intersection of
a decreasing family of subjoinings is closed invariant and, by compactness,
has projections X and Y, so it is a joining; applying Zorn’s lemma we
therefore obtain the existence of a minimal non trivial subjoining inside
any non trivial joining.

Now suppose J(z) N J(Tx) # 0 for any € X, and consider the subset
of X xY:

J = J{z} x (J(&)nJ(Tx))
z€X
= J o} x (J@)n8(T@))

zeX
=Jn{d x S)(J).
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DISJOINTNESS AND TOPOLOGICAL ENTROPY 475

It is closed invariant. For z in X one has J'(z) = J(z) N J(Txz) # 0,
so m(J') = X, and since 7'(J’) is a non empty closed invariant subset of
the minimal set Y it is Y itself. So J’ is a subjoining of J. Were it equal
to J one would have J(z) = J(Tx) = S(J(z)) for all x : as a non empty
closed invariant subset of Y, J(z) would be equal to Y, thus J = X x Y,
contradicting the assumption that J is a proper subjoining. So there must
exist some z with J(z) N J(Tx) = @, which finishes the proof. []

REMARKS

1) The same proof works when (Y, S) is totally minimal, and some
off-diagonal A,, is contained in E(X,T) instead of A; (B. HosT).

2) A flow with u.p.e. is diagonal; but so is also a finite union of u.p.e.
flows, disjoint or not : as Tx belongs to the same u.p.e. component as x,
one can apply ProposiTIiON 5.

3) Disjoint unions of u.p.e. flows have a coarse non trivial zero-
entropy factor (a union of fixed points). When the union is not disjoint
this factor may be trivial; an instance is example 8 in [B]. In fact any
zero-entropy factor of a diagonal flow must collapse z and Tx for all x
in X, x # Tx, or else by ProposiTION 4.2 it would have positive entropy.
So it can contain only fixed points. Diagonality and a very slight extra
assumption, like transitivity or even weaker, are enough to ensure c.p.e.

Now, what if all transitive diagonal flows were F-flows? This would
mean PROPOSITION 6 is essentially contained in Furstenberg’s disjointness
theorem. Actually this is not the case. We construct a family of subshifts
with u.p.e., but not possessing a dense set of periodic points.

Given a finite alphabet A, A* is the set of words on A, including the
empty word ¢; the length of the word u is denoted by |u|, the number of
occurrences of the letter a € A in u by |ul,, and the cylinder set of A
associated with u by [u] : [u] = {z € CZ | z(0,|u| — 1) = u}. A factor
of u is a word v’ such that u = vu'w, v,w € C*. A subshift S is a closed
shift-invariant subset of the compact set A%, endowed with the shift o ; it
is completely defined by the set L(S) of words occurring as sequences of
consecutive letters in the coordinates of its elements.

ExXAMPLE 7. — Let B be an alphabet such that {0,1}NB = ). Consider
the semigroup morphism ¢ : (B U {0})* — B* defined by #(0) = ¢;
P(b) = b, b € B. ¢ simply erases symbol 0 and preserves all others;
for this reason the corresponding map from (B U {0})? to B does not
commute with the shift.

Suppose Y is a subshift on B, and X = {0,1}#. By convention the
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empty word ¢ is included in L(Y). Put
L ={ue (AU{0})" [ ¢(u) € L(Y)}.

L is the set of words u on BU{0} such that when erasing all zeros in u one
gets a word in L(Y); L contains in particular any word 0", and defines
a subshift XVY C (B U {0})Z such that L = L(XVY). XVY may be
thought of as a kind of symbolic skew-product between X and Y; in
fact it is a symbolic factor of some topological skew-product stricto sensu
between them.

ProposiTION 8. — If Y is minimal, XVY has u.p.e.

Proof. — We must prove that any standard cover of X VY has positive
entropy for the shift : it is sufficient to show this is true for a family F
such that given any standard cover 8, there is 8’ € F such that 8’ < 8.
The following family meets this requirement :

F= {52 = {[ul°, [W]°} | u,u’ € LXVY), [u] = /], u# u}

So let us prove h(o,R) > 0 for R € F. For the sake of simplicity suppose
q = lulo — |ulo = 0.

Since Y is minimal, there exists an integer k¥ > |u|p such that any
word w € L(Y), |lw| > k, contains ¢ (u) and t(u’) as factors. For
given n choose v = vivg---v, € L(Y), with |v;| = k for ¢ = 1,...,n.
For each i, v; has ¥(u) and v (u’) as factors because it has length & :
vi = zp(u)a; = yip(u)y;, with j(i) = [y] — o] < k.

For i =1,...,n we construct two distinct words with the same length
vi(a), v;(B) on B U {0} such that v;(a) = s;us}, v;(8) = t;u't;, with
|s;] = |ti] = sup(|z;,|y:]) : this means v;(«) has an occurrence of v and

v;(3) an occurrence of u’, both at time |s;|. This is done by first replacing
¥(u) by uor ¥(u) by v in v;, and then adding a string of 0’s with suitable
length at the beginning and/or end of word z;uz] or y;u'y; : put

(o) {Oj%wé if j(0) > 0,
Vi) = o )
zuxi0790 if §(i) < 0;

yu'yl 07D+ if §(3) > 0,
0= Dyu/yi09  if §(i) < 0.

vi(B) = {

Words v;(a) and v;(8) have the same length k + j(i) + |ulo. Note that
P(vi(a)) = p(vi(B)) = vi.
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Now, for p = cico-- ¢, € {a,B}", put v(p) = vi(c1) - vp(en). As
only 0’s have been added to v in order to construct v(p), ¥(v(p)) = v,
and v(p) € L(XVY), which means [v(p)] is a nonempty cylinder set in
XVY, containing at least one point z(p). Since #({«, }") = 2", there
are at least 2" points z(p), p € {a, 3}". Given p # p/, o'x(p) € [u] and
o'z (p’) € [u'], or the other way round, at least once for 0 < i < |v(p)| — 1,
so that z(p) and z(p’) must belong to different open sets of Ry ;
thus H(Rjy(p)) > log(#{a, 8}") = n. Now have n tend to infinity : as
[v(p)| = n(k + j(i) + |ulo) < 3kn, one has h(o,R) > +k. []

Suppose Y is still a minimal set, but not reduced to a periodic orbit.
Then XVY cannot contain any periodic orbit, except the fixed point on
the letter 0, or else Y would have to contain one (the image of this periodic
orbit under the mapping associated to ). This implies X VY cannot be
an F-flow.

By the way this example also shows flows with u.p.e. may have an
uncountable set of distinct ergodic measures with maximal entropy. To
prove this take a Tceplitz minimal flow Y having an uncountable set of
distinct ergodic measures [Wi], and construct X VY as above.

There are two possible converses for PROPOSITION 6 :

1) Characterising flows disjoint from all diagonal flows. Since some
non minimal flows, for instance those with the specification property, have
u.p.e. [B], any flow disjoint from all of them must be minimal.

2) Characterising flows disjoint from all minimal flows with entropy 0.
By Furstenberg’s theorem, at least all F-flows belong to this class; now we
know all diagonal flows also do. The latter assumption cannot be weakened
arbitrarily, as shown by existence of c.p.e. flows which are not disjoint from
all minimal zero-entropy flows.

ExaMpPLE 9. — Let Y be a subshift of A2, 0 ¢ A, and let ¢ :
Y x{0,1}% — (AU{0})Z be defined by the alphabetic map from Ax {0,1}
to AU{0} : (a,1) — a (a € A), (a,0) — 0. Call Z the image ¢(Y x {0,1}).

It was shown in [B, prop. 10] that Z has c.p.e. whenever Y is minimal
(and also that it has not u.p.e. when Y has not). It is very easy to
show that Y x {0,1}%, by definition a common extension of Z and Y, is
conjugate to some proper closed invariant subset of Y x Z, which implies
Y and Z are not disjoint. Now to obtain the required example it is enough
to assume Y is minimal with entropy 0.

REMARK. — Example 9 is another instance of two non disjoint flows
having no common factors.
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Let us finish with two open questions. An answer to any of them would
help situate the results of this paper in the general frame of topological
dynamics.

1) Do there exist transitive diagonal flows without u.p.e.?

2) Do there exist minimal flows with u.p.e.?

Question 2 have has now been answered positively by E. GLASNER and
B. WEerss [GW] : this permits to measure more accurately the difference
between ProposiTION 6 and Furstenberg’s disjointness theorem.
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