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POLES OF IGUSA’S LOCAL ZETA
FUNCTION AND MONODROMY
BY

WIiILLEM VEYS

RESUME. — Soit K une extension finie de Q et R son anneau de valuation. On
associe a chaque f € K[z], avec z = (z1,...,Zn), la fonction zéta locale d’Igusa

Z(s) :/ |f(2)]°]dz],

qui est méromorphe sur C. La conjecture de monodromie associe des valeurs propres de
la monodromie (complexe) de I’hypersurface f = 0 aux péles de Z(s). On peut exprimer
une liste de candidats-poles de Z(s) ainsi que les valeurs propres de la monodromie
a laide de données numériques de variétés exceptionelles, associées & une résolution
plongée de f = 0. En utilisant des relations entre ces données numériques on montre
que certains candidats-poles ne contribuent pas aux vrais pdles, ce qui entraine une
forte évidence concernant la conjecture.

ABSTRACT. — Let K be a finite extension of Q, and R its valuation ring. To any
f € Klz], with ¢ = (z1,...,%n), is associated Igusa’s local zeta function

Z(s) =/ |£(@)]"| dal,
RTl

which is known to be meromorphic on C. The monodromy conjecture relates poles
of Z(s) to eigenvalues of the (complex) monodromy of the hypersurface f = 0. Now we
can express both a list of candidate-poles for Z(s) and the monodromy-eigenvalues in
terms of certain numerical data of exceptional varieties, associated to an embedded
resolution of f = 0. Using relations between those numerical data we study the
vanishing of bad candidate-poles for Z(s) to obtain a lot of evidence for the conjecture.

(*) Texte regu le 23 juillet 1992.
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546 W. VEYS

Introduction

Let K be a number field and R its ring of algebraic integers. For any
maximal ideal p of R, let R, and K, denote the completion of respectively
R and K with respect to the p-adic absolute value. Let |z| denote this
absolute value for x € K,, and let ¢ be the cardinality of the residue
field K = R,/pR,. (For example if K = Q we have that p is determined
by a prime number p, then K, is the field of p-adic numbers @, and K is
the finite field with p elements.)

Let f(z) € Klz], with £ = (z1,...,%Zn41). Then Igusa’s local zeta
function of f is defined by

2=z = [ 1#@]|aal.

P

where |dz| denotes the Haar measure normalized such that Rp™' has
measure one. It describes the Poincaré series

0 ¢]

P(T) = Z N; (q—(n+1)T)i,
1=0

where N;, with ¢ € N, is the number of solutions of f = 0 in the
ring R, /p*R,, through the relation

Z(s) =(1=¢°)P(q™°) + ¢

Igusa [Igl] proved that Z(s), and therefore also P(T'), is a rational
function of ¢=° =T

One can compute Z(s) using an embedded resolution with normal
crossings for f = 0 in A"*1(Q?%), where Q® is the algebraic closure
of Q. (An explicit formula of DENEF [D1] is stated in THEOREM 1.2.)
Let (X, h) be such a resolution, obtained by Hironaka’s main theorem [Hi],
and denote by E;, with ¢ € S, the (reduced) irreducible components
of h=1(f~1{0}). We associate to each E;, i € S, a pair of numerical
data (N;,v;) where N; and (v; — 1) are the multiplicities of E; in the
divisor of respectively foh and h*(dzy A+ A dz,q1) on X.

In particular all real poles of Z(s) are part of the set {—v;/N; | i € S}.
So determining the real poles consists in throwing away the bad candi-
dates. Now it is striking that «most» candidate-poles are actually bad.
This fact would be elucidated if the following monodromy conjecture
is true.
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IGUSA’S LOCAL ZETA FUNCTION AND MONODROMY 547

CONJECTURE. — For all except a finite number of p we have that, if s is
a pole of Zy(s), then 2™ Re(s) 45 an eigenvalue of the monodromy acting
on the cohomology (in some dimension) of the Milnor fiber of f associated
to some point of the hypersurface f = 0.

We explain this more in detail. (For the concept of monodromy we

refer to MiLNOR [Mi]). Fix an exceptional variety FE; and set L%j =
E; \ (U,; E:.) For any scheme V' of finite type over K let x(V') denote
the Euler-Poincaré characteristic of V(C). Suppose that v; and N; are
coprime and that there is no E;, with ¢ € S\ {j}, with N; | N;. The
monodromy conjecture implies, for all except a finite number of prime
ideals p, that s = —v;/N; is no pole of Z(s) if X(on) = 0. (We illustrate
this in paragraph 2.) Now in any concrete example we have that x(l%j) =0
for «most » exceptional varieties E;.

Icusa [Igh] tested the monodromy conjecture for relative invariants
of certain reductive groups. LOESER verified it for arbitrary polynomials
in two variables [L1], and for polynomials which are non-degenerate
with respect to their Newton polyhedron, assuming certain additional
conditions [L3]. We should also mention that the archimedean analogon
of the conjecture has been proved by MALGRANGE [Mal], [Ma2].

In this paper we are interested in the vanishing of bad candidate-poles
for Z(s) to obtain more evidence for the monodromy conjecture, using
relations between the numerical data of the resolution (X,h) for f =0.
Considering the formula for Z(s) of THEOREM 1.2, it is clear that relations
between the numerical data of E; and of the F;, i € S\ {j}, that inter-
sect E; arc very useful to make conclusions about the residue of —v;/Nj.

Relations. — In [V2] we proved for arbitrary polynomials f relations
between numerical data, which we state briefly in paragraph 0. We now
explain the essential aspects of those relations.

Fix one exceptional variety F with numerical data (N, v). The variety E
in the final resolution X is in fact obtained by a finite succession of
blowing-ups

™ T . Ty . Tom—2
EC —— E' ... Bt gitl L.

Tm—1
E"!'«——E"=E
with irreducible nonsingular center in E* and exceptional variety C;y1 C
Etl for i =0,...,m — 1. The variety E° is created at some stage of the
global resolution process as the exceptional variety of a blowing-up with
center D and is isomorphic to a projective space bundle IT : E° — D
over D.
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548 W. VEYS

There are two kinds of intersections of E with other components
of h=1(f~1{0}). We have the repeated strict transforms C\™ ... c{™
in E of the exceptional varieties C1,...,C,,; and furthermore we have

the repeated strict transforms C’i(m) in E of varieties C;, with 7 € T,
(of codimension one) in E°.

For each i € TU{1,...,m} the strict transform Ci(m) of C; in E is (an ir-
reducible component of) the intersection of E with exactly one other com-
ponent of h~1(f~1{0}). Let this component have numerical data (N;,v;)
and set a; = v; — (v/N)N;. (The numbers «o;, i € TU{1,...,m}, occur
in the expression for the residue of the candidate-pole —v/N for Z(s),
see THEOREM 1.2.)

There are basic relations (B1 and B2) between the a;, i € T, and there
is for each i € {0,...,m — 1} an additional relation (A) expressing a;41
in terms of the ay, for k € TU{1,...,i}.

For the applications on the poles of Z(s), we choose the number field K
«large enough», meaning that the resolution (X, h) over Q® is entirely
defined over K itself.

We now suppose that the fixed exceptional variety F satisfies X(E%) =0
and that there is no F;, with ¢ € S\ {j}, intersecting E with v;/N; = v/N.
Denote by R the contribution of E to the residue of the candidate-
pole —v/N for Z(s).

Surfaces. — When n = 2, the surface E° is created by blowing-up
a point or a nonsingular curve D. In the first case E® = P? and in the
latter E° is a ruled surface IT: E° — D over D.

By the formula for Z(s) of THEOREM 1.2 we can express R in this

case as follows. Set 8‘1: ™\ Ui C’ém) and o; = v; — (v/N)N; for
ieTU{l,...,m}. Then

R = card L%

cardé’i
+@-1) Y 1

ieT]-U?{L-n,m} Ca,I‘d(Ci(m) N Cj(m))
+(g-1) > (@ —1)(g> — 1)

{i.5}cTu{1,....,m}
i#]

where card E and card C; are the number of K-rational points of the

o o
reduction of respectively £ and C; modulo pR,.

ToME 121 — 1993 — ~n° 4



IGUSA’S LOCAL ZETA FUNCTION AND MONODROMY 549

Using the Relations (A) and (B) we prove for a lot of intersection

configurations of the Ci(m) on F that R =0 if X(Eo) = 0. We proceed as
follows.

By ProrosITION 2.3 we may suppose that UieTU{l,...,m} Ci(m) in £
is the canonical embedded resolution of U;c7C; in E°. Therefore the
intersection configuration of the Ci(m), i € TU{l,...,m}, on E is entirely
determined by the intersection configuration of the Cj, i € T, on E°. An
important result is then that we can reduce the calculation of R for a
given C;-configuration on E° to the calculation of R for the very easy
configuration described in ProposiTion 2.5. This reduction is possible by
a somewhat surprising blowing-down technique (THEOREM 2.4).

Of course the described techniques are only valuable if there exist
a lot of (complicated) intersection configurations of the C;, i € T, on
E° such that x(L%) = 0. Now although X(I%g) = 0 for most exceptional
varieties Fy in a concrete example, we have that X(]%) > 0 for a general
configuration of curves on a projective plane or ruled surface £9. So one
could hope that only some simple configurations of curves C;, i € T, on E°
satisfy X(Eo) = 0.

Projective planes. — Here the most simple configuration is the
following.

ExAaMpPLE. — Let E° = P? and (after some permutation of the indices)
T =1{0,...,k} for k > 2. Let C;, 1 < i < k, be projective lines all passing
through the same point P and Cy a line not passing through P. Since
x(P?) = 3 and x(P!) = 2 we have that X(Eo) =0.

In ProrosiTiON 3.1 we (easily) prove that R = 0 in this case using the
relations (B1) and (A).

Unfortunately there exists, after intensive examination, an amount of

(essentially different) exotic configurations of curves C; on E® 2 P? such
o

that x(£) = 0.

ExampLE. — Let E® = P2 and (after some permutation of the indices)
T ={0,1,2,3}. Let the C; be described in homogeneous coordinates z, y, z
by the equations

Co:y*z =2 where k>2,

Cr:y=0, Co:2=0, Cs:2=0.
Since x(C;) = 2 for 0 <4 < 3 we have that X(Eo‘)z().
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550 W. VEYS

In ProposITION 3.5 we prove that R = 0 using relation (B1) and 2k+2
times relation (A), and the blowing-down technique of THEOREM 2.4.

In particular we succeeded in classifying all «low multiplicity » cases
and then obtained by case distinction (THEOREM 4.9) :

THEOREM. — If X(Eo) =0 and E° is created by blowing-up a point of
multiplicity at most 4 (on the strict transform of f = 0), then R = 0.

In this context we would like to propose the following for eventual
further investigations.

CONJECTURE. — Let C;, i € T, be irreducible curves in the complex
projective plane P?(C). If x(P? \ U;er Ci) < 0 then all curves C; are
rational.

Ruled Surfaces. — When E° is a ruled surface we especially studied
the problem in the case that E° is created by blowing-up a curve D at
the stage of the resolution process where the strict transform of f = 0
is already nonsingular. Even under this restriction a lot of different

configurations of curves C;, i € T, occur on E° such that X(L%’) =0.

ExampLE. — Let E® be a ruled surface Il : E° — D over D = P!
and (after permutation of the indices) T' = {1,...,5}. Let C1,C5,C3 be
sections and Cy, C5 be fibers of EC intersecting as in figure 1, where the
intersection multiplicities of respectively C; and C3 at P and C; and Cj
at @ are arbitrary positive numbers m and m/. Since x(E°) = 4 and
all C; = P! we have that X(EOJ) =0.

By means of our blowing-down technique we prove in PROPOSITION 5.6

simultaneously for all m and m’ that R = 0, using the relations (B1)
and (B2) and m + m/ times relation (A).

s P
@ B
\
Cy <
| C1 %
Figure 1
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We classified all cases where D is a projective curve and finally obtained
(THEOREM 5.9) :

EO

Figure 2 Figure 3

[}
TueEOREM. — Let x(E) = 0. Suppose that E° is created by blowing-up
a projective curve D and that the strict transform of f = 0 before this
blowing-up is already nonsingular. Except for the two special situations
when

(1) the genus of D is 1 and the C;, i € T, consist of three noninter-
secting sections of the ruled surface E° (Fig. 2), or

(2) D = P! and the C;, i € T, consist of three sections intersecting as
in figure 3,
we have that R = 0.

In the theorem above the second exceptional case is no obstruction
for the monodromy conjecture (remark 5.7); and it is not clear whether
the first can occur in a concrete situation (see remark 5.0). For example
if f = 0 has only absolutely isolated singularities this configuration is
impossible (PROPOSITION 5.12).

We return to the general case where EV is created at an arbitrary stage
of the resolution process. If E® is a ruled surface over any projective
curve of genus g > 2 we prove that only a few (simple) intersection
configurations of the C;, i € T, can occur on E°, and that R = 0 in
these cases. The key result is (PRoPOSITION 5.13) :

PROPOSITION. — Suppose that E° is a ruled surface over a projective
curve of genus g > 2 and that at least two curves C;, i € T, are not fibers
of I. If X(E’) = 0 then the C;, i € T, consist of a number of fibers and
exactly two sections C and C', such that each point of CNC' also belongs
to some fiber C; (see Fig. 5.5).

Higher dimensions.— We also study some intersection configurations
[a¥)

for arbitrary n. In particular if we suppose that E® =2 E™ (= E) we have
the following results (PrRoPOsITIONS 6.1 and 6.4).
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552 W. VEYS

ProposiTiON. — If E = P™ and the Cy;, i € T, consist of k + 1

hyperplanes in general position (1 < k < n), then X(L%) =0 and R =0.
ProposiTioN. — Suppose that E is a projective space bundleIl : E — D
over some nonsingular variety D with fibers isomorphic to P'. Let C;,
i € T, consist of two nonintersecting sections and of the inverse images
I-'B; of nonsingular varieties B; in D such that UZ B; has normal

crossings on D (see figure 6.4). Then X(l%) =0 and R =0.

Terminology. — All schemes will be quasi-projective, a variety is
an irreducible and reduced scheme, and (when not specified) points are
assumed to be closed. The reduced scheme associated to a scheme X is
denoted by Xyeq-

Let V be a subscheme of everywhere codimension one of a nonsingular
scheme X. For all z € X we define the multiplicity of x on V as the
maximal integer m, such that the m-th power of the maximal ideal of the
local ring Ox , of x on X contains the ideal of V' in Ox ;.

0. Relations between numerical data

Let k be an algebraically closed field of characteristic zero, let f
in k[z1,...,Zn+1] be a non-constant polynomial, and let Y denote the
(reduced) zero set of f in affine space A"*! over k. We fix an embedded
resolution (X, k) for Y in A"*! in the sense of Hironaka’s main theorem II
[Hi, p. 142].

In particular A : X — A"l is a finite succession of blowing-ups
with nonsingular center, such that all points of the center have (the
same) maximal multiplicity on the strict transform of Y. The restriction
h:X\h™'Y — A"T1\ Y is an isomorphism, and A~'Y has only normal
crossings in X.

Let E;, i € S, be the irreducible components of (h™1Y);eq. These
consist of the components E;, i € I, of the strict transform of Y, and of
the exceptional divisors E;, i € S\ I, of the blowing—ups. The numerical
data of the resolution (X, h) for Y are defined as follows. For each E;,
1 € S, let N; be the multiplicity of E; in the divisor of f o h on X, and
let (v; — 1) be the multiplicity of E; in the divisor of h*(da1 A---A dzpt1)
on X. We have that N;, v; € Ng; and if f has no multiple components
then all E;, i € I, have numerical data (N;,v;) = (1,1).

Fix now one exceptional variety E with numerical data (N, v). There
are basic relations (B1 and B2) associated to the creation of E in the
resolution process, and there are additional relations (A) associated to
each blowing-up of the resolution that «changesy» F.
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More precisely, the variety F in the final resolution X is in fact obtained
by a finite succession of blowing-ups

o USY . Ty . Tm—2 Tm—1
EO‘_EI(____”.Ez(_Ez+1‘”(___Em—l E™=E

with irreducible nonsingular center D; C E! and exceptional variety
Ciy1 C Efl fori=0,...,m— 1. The variety E° is created at some stage
of the global resolution process as the exceptional variety of a blowing-up
with center D and is isomorphic to a projective space bundle IT : E® — D
over D.

For i = 1,...,m and for any variety V C EJ, 0 < j < i, let the
repeated strict transform of V in E* (by m_1 o --- o m;) be denoted
by V®. There are two kinds of intersections of E with other components

of h~'Y. We have the repeated strict transforms C’(m) o (m) in E
of the exceptional varieties Cy,...,Cp,; and furthermore we have the

repeated strict transforms C’i(m) in E of varieties C;, 1 € T, (of codimension
one) in E°.

Those last varieties are the intersections of E° with previously crea-
ted exceptional varieties in the global resolution process or with the

strict transform of Y (at the stage where E° is created). Remark
that {1,...,m}NT =0.

THEOREM 0.1. — For each i € TU{1,...,m} the variety C™ is (an
irreducible component of ) the intersection of E with exactly one other

component of (W'Y )req. Let this component have numerical data (N;, v;)
and set o; = v; — (V/N)N;

(1) Then we have

relation (B1) Zd i—1)+k=0,
i€T

where k =n+1—dim D and d;, i € T, is the degree of the intersection
cycle C; - F on F for a general fiber F = P*~1 of 1 : E° — D over a
point of D. We also have

. 1
relation (B2) Z kdk T (a; — DL (Ck Z (a; —1)B; = Kp
ieT ieT
di#0 di=0
in Pic D, where CF is the k-th selfintersection of C; in E°, C; = II*B;
when d; = 0, and Kp is the canonical divisor on D.
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(2) Fiz onei€ {0,...,m—1}. Then we have

relation (A) Qi1 = Z (o — 1)+ d,
k€TU{1,...,i}

whereluk, keTU{l,...,i}, is the multiplicity of the generic point of D;
on C" and d = codim(D;, EY).

Those relations are proved in respectively theorems 6.2, 6.5 and 4.4
of [V2].

ExampLE 0.2. — If D is a point we have that E°(= F) = P" and d; is
just the degree of the hypersurface C; for ¢ € T. Moreover relation (B2)
does not occur since Pic D is trivial.

ExaMPLE 0.3. — When n = 1 we have necessarily that D is a point
and moreover that E° 2 E. So the relations (A) and (B2) do not occur
and we easily see that relation (B1) reduces to :

> (ei—1)+2=0.

i€T

ExaMPLE 0.4.— When n = 2 we have that D is a point or a nonsingular
curve.

(1) If D is a point then E° = P? and relation (B1) is

> di(ai —1)+3=0,

ieT
where d; is the degree of the curve C; in E°.

(2) If D is a nonsingular curve then E° is a ruled surface over D and

relation (B1) is

> diai —1)+2=0,

i€T
where d; is the number of intersection points of the curve C; with a general
fiber F =2 P! of IT: E° — D. If moreover D is a projective nonsingular
curve then relation (B2) becomes a numerical relation by taking degrees
in Pic D. More precisely if g denotes the genus of D and k; the self-
intersection number of C; in E°, then we obtain

K
(1) D gp@ =1+ (=1 =292
i€T v i€
d;7#0 d;=0
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The divisors I1,(C¥) occurring in relation (B2) are effectively compu-
table in terms of concrete intersection cycles (see [V2, prop. 7.1]).

ExAaMPLE 0.5. — When n = 2 and D is a projective nonsingular curve
we can describe the self-intersection numbers x; in (1) above as follows.
Let Cy, C1, Cy occur with d; # 0 for ¢ = 0, 1,2. Denote nj2 = deg(C - Cs)
and analogously ng; and ngs. Then we have that

do

"= Gy

(dinoz + danor — donaa).

In paragraph 1 we describe how to compute Igusa’s local zeta function
using an embedded resolution, and the impact of the monodromy conjec-
ture on its poles. In the next sections we then compute the contribution R
of a fixed exceptional variety in a number of cases when we expect it to
be zero.

For surfaces we present in paragraph 2 the blowing-down technique that
reduces the computation of a given R to an easy one. If the exceptional
surface F is created by blowing-up a point we study in paragraph 3 a series
of general situations and in paragraph 4 all «low multiplicity » (< 4) cases.
In paragraph 5 we treat the case that F is created by blowing-up a curve.
For arbitrary dimensions we give a number of applications in paragraph 6.

1. Igusa’s local zeta function and the monodromy conjecture

Let K be a number field and R its ring of algebraic integers. For any
maximal ideal p of R, let R, and K, denote the completion of respectively
R and K with respect to the p—adic absolute value. Let |z| denote this
absolute value for x € K,, and let ¢ be the cardinality of the residue
field K = R,/pR,.

DerINITION 1.1. — Let f(z) € K[z], z = (x1,...,Zn+1). Then Igusa’s
local zeta function of f is (the meromorphic continuation to C of)

25)=29) = [ | 1f@)'|as]

for s € C, Re(s) > 0, where |dz| denotes the Haar measure on Kj*',
normalized such that Ry*' has measure one.

One can compute Z(s) using an embedded resolution for f = 0 in
A™T1(Q®), where Q® is the algebraic closure of Q (and hence of K).
Let (X, h) be such a resolution, using now all notations of paragraph 0.
DenEr [D1, thm 2.4 and 3.1] proved the following formula.
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556 W. VEYS

THEOREM 1.2.— Let X and E;, i € S, denote the reduction modulo PR,
of respectively X and E;. Then for almost all p (i.e. for all except a finite
number) we have

Z = q—('"+1) Z H V1+sN, _ 1

Ics zeI

where ¢; = card{a € X | a is rational over K, and a € E; < i € I}.

So all real poles of Z(s) are part of the set {—v;/N; | ¢ € S}. These poles
are connected with certain eigenvalues of monodromy by the following
conjecture.

CONJECTURE 1.3. — For all except a finite number of p we have that,
if s is a pole of Zy(s), then €™ Re(s) 45 an eigenvalue of the monodromy
acting on the cohomology (in some dimension) of the Milnor fiber of f
associated to some point of the hypersurface f = 0.

Now by a formula of A’Campo [A, thm 3] we can connect also the
eigenvalues of monodromy with the resolution (X, h). For example if f = 0
has just one isolated singular point w, then the monodromy in dimension
n associated to w is the only non-trivial one and its characteristic
polynomial P(t) is [A, thm 4] :

Here for ¢« € S we set EO‘Z- =FE;\ U#i E;, and for any scheme V' of finite
type over K we denote by x (V') the Euler-Poincaré characteristic of V(C)
with respect to singular cohomology.

Combining the expression for P(t) above with the monodromy conjec-
ture we can generally expect that when x(E;) = 0 for an exceptional

[e] ]
variety E;, maybe even when x(E;) < 0 for even n or x(E;) > 0 for
odd n, then E; doesn’t contribute to an eventual pole of Z(s) in —v;/N;.
Now it is striking and somewhat mysterious that in any concrete example

[]
we have that x(E;) = 0 for «most» exceptional varieties E;.

In the next paragraphs we will verify this presumption for a lot of
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IGUSA’S LOCAL ZETA FUNCTION AND MONODROMY 557

different cases. For this purpose we now fix the following data. :

e From now on we suppose that the number field K is chosen
large enough, that is the resolution (X, h) over Q% is entirely
defined over K itself.

o
o Fix an exceptional variety E; with x(£;) < 0 for even n

(*) or x(ﬁ’j) > 0 for odd n. We suppose that E; is «in general
position » with respect to its numerical data, i.e. there is no E;,
i € S\ {j}, intersecting E; with v;/N; = v;/N;. Denote by
R = R, the contribution of E; to the residue of the candidate-
pole —v;/N; for Zy(s).

(Eventually there can be other contributions to this residue but those
don’t interfere with R because of the «general position» condition.)
We will give examples of this situation, mostly for surfaces, and prove
that R = 0 (for almost all p).

Note that R is an expression in the oy = v; — (v;/N;)N; (# 0!) for
intersecting F;, so we can use the relations (A) and (B) between numerical
data of paragraph 0 to prove that R = 0.

REMARK 1.4.

(i) In fact the result that R = 0 in the data (*) is in general not
implied by the monodromy conjecture. It is implied in the special case
that f = 0 has only isolated singularities when there is no E;, ¢ € S\ {j},
with N | N;, where v;/N; =v//N’" and v/ and N’ are coprime. (See also
remark 5.7 (b).)

o

(i) When x(E;) > 0 for even n or X(on) < 0 for odd n we have
usually that R # 0.

We now describe the only two possible examples for curves (n = 1),
illustrating the general idea. See also STRAUSS [S, thm 2] and (in a more
general setting) MEUSER [Mel, thm 1] and Igusa [Ig3, thm 1] for absolu-
tely analytically irreducible f(z1,z2), and LoEser [L1, lemme IV.2.3] for
arbitrary f(z1,z2).

o

PROPOSITION 1.5. — For n = 1 we have that x(E;) > 0 if and only

if E; intersects one or two times another curve E;, i € S, and then x(E;)
15 respectively 1 and 0. In both cases we have that R = 0.

o

Proof. — Since E; = P! the claims about x(E;) are evident. Say E;
intersects E; and FEj (see figure 1.1 next page ). Then the contribution

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



558 W. VEYS

Ey

Figure 1.1 Figure 1.2

of E; to Z(s) consists of

1 g—1 (¢—1)?°
q_2 l:(q - )qu]-+ij -1 +1- (qu"‘SNj _ 1)(qu1+sN1 — 1)
(¢ —1)?
(qritsNs —1)(gvatsNz — 1)

+1-

and we thus have that

1 (¢—1)(g> > - 1)
R=(g-1)(1 )= :
=D+ 1 gl (¢>r = 1)(g*2 - 1)
Now a1 + @z = 0 (by example 0.3) and so R = 0. If E; intersects only F;
(Fig. 1.2) then

-1 ai+l _q
qal_l qal_l

since a3 +1=0. []

REMARK 1.6. — The exact contribution of Ej; to the residue of —v;/N;
for Z(s) in the proof above is :

_a-1
¢?N;(log q)

We will always neglect such constant factors.
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2. Techniques and notations
From now on until paragraph 6 we suppose that n = 2.

Remember that F; in the data (*) is obtained by a finite succession of
blowing-ups

o 70 1 T i T it T2 me1 ol
rF—F — . .-.B—F""... — S F ——> E™=EFE,

j
with a point as center and an exceptional curve C; (& P!) C E! for
i = 1,...,m. The surface E° is created at some stage of the global
resolutlon h as the exceptional variety of a blowing-up with center D,
and the E% 1 <1 < m, are its strict transforms by the next blowing-ups
of the global resolution process.

The variety D can be a point or a nonsingular curve; in the first
case E° = P? and in the latter E? is a ruled surface over D. Let C;,
i € T, denote the (reduced) intersections of E® with other exceptional
surfaces or with the strict transform of Y. Then for all i = 1,...,m the
(reduced) intersections of E* with other exceptional varieties or with the
strict transform of Y are the curves Cp, £ € TU{1,...,i}.

To avoid complicated indices we wuse the same notations for the
curves Cy and their strict transform in the E*.

We also have that UieTU{L“”m} C; has normal crossings in E™. And
by THEOREM 0.1 we can associate to the C;, i € T U {1,...,m}, a pair
of numerical data (N;,v;) such that the numbers o; = v; — (v;/N;)N,
occur in R.

NoraTiON 2.1

(i) We can define E as in paragraph 1 for ¢ = 0,...,m; then
the x(E?) are all equal and we will denote this number as x(E).

(ii) For any scheme V defined over K we set :

cardV = card{a € V | a is rational over K }.

We now explain a technique to reduce a given situation with data (*)
to a situation where we can easily prove that R = 0. Therefore we
suppose that all schemes (and their intersections) in the next statements
are defined over K.

DerFINITION 2.2. — Let V' be a nonsingular surface and let C;, ¢ € T, be
irreducible curves on V such that |J;., Ci has normal crossings on V. To
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each C;, i € T', we associate a number a; € Qp. Denote V=V \ User Ci
and C; = C; '\ U#i C,. Then we define :
R(V,U;erCi) = card V + (q — 1) Z
+ (q - 1)2 Z ( card(C’i N CJ) )

{s,j}cT q* —1)(¢* —1)
i#j

Of course the R in (*) is equal to R(E™,U,eru,. . my Ci)-
ProposiTION 2.3. — Let V be a nonsingular surface and C;, i € T,
irreducible curves on V with associated number a; € Qg such that UieT C;

has mormal crossings on V. Let g : V — V be the blowing-up with
center a point P of V and exceptional curve C with associated number
@ =3 cr pec,(ai—1)+2 # 0. (Denote the strict transform of C;, i € T,
in'V also by Ci.) Then (U;er Ci) U C has normal crossings on V and

R(V, (UierCi) U C) = R(V.UicrCi)-

—_—

Figure 2.1

Proof. — The point P can belong to zero, one or two curves C;, 1 € T
Suppose that P € Cy N Cs (Fig. 2.1). (The other two cases can be proved
analogously.)

By definition the contributions to

R(V,UierCi) and R(V, (U;erCi) UC)
are the same except for the terms

(¢—1)
(g = 1)(¢>* = 1)
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for R(V,U;er Ci) and
_qya-! (¢ —1)? (¢—1)°
-1 (¢e—-1D(-1)  (¢*—1)(g>—1)

for R(V, (User Ci) U ©). But since @ = a1 + a2 also those terms are
equal. []

(¢

So by Prorosition 2.3 and relation (A) we can treat the diffe-
rent situations in the data (*) by determining the different situa-
tions with x(i%) < 0, where E® = P2 or E® is a ruled surface,
and by studying R(Em’UiETU{l,...,m} Ci), where we now may suppose
that Ueruqa,..my Ci In E™ is the canonical embedded resolution
of UiET Ci in EO.

Moreover the following theorem will simplify the computations enor-
mously.

THEOREM 2.4. — Let V be a nonsingular surface and C and C;, i € T,
irreducible curves (with associated numbers a and o; € Qq) such that
(User Ci) U C has normal crossings on V. Let also

K=(a=1)C+> (a;—1)C;
ieT
be the canonical divisor on V. Suppose that C = P! and that C intersects
one or two times a curve C;, 1 € T.
(i) If C intersects either Cy and Cy with o = ay + g, or only Cy with

a = aj + 1, then V can be considered as the blown-up of a nonsingular
surface V (with exceptional curve C').

(ii) Moreover | J;cp Ci has normal crossings on V' and

R(‘77 (UieTCi) U C) = R(V’ UieTCi)'

Proof.
(i) By Castelnuovo’s criterion [Ha, V, thm 5.7] we only have to show
that Kk = —1, where k is the self-intersection number of C. If C inter-

sects C7 and Cy (Fig. 2.1) then the adjunction formula [Ha, V, prop. 1.5]
for C on V yields :

2=C-(C+K)=C" [aC—i—Z(ai—l)Ci] = Ko+ o +ap — 2.
i€T
So we have that k = —1 & a = a3 + as. The other case is analogous.

(ii) This is immediate by ProposITION 2.3. []
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Thus starting from UiETU{l """" m} C; in E™ we can (by [V2, prop. 2.1
and lemma 4.1]) blow down every time a curve C; occurs that intersects
either just two curves C; and C with a; = a1 + g, or just one curve C)
with a; = a1 + 1. Say we finally obtain the surface Z with (J;.;. C;
occurring on Z; then :

R(Em, UieTU{l,‘..,m}Ci) = R(Z, UiET'Ci)‘

| Now except for the almost trivial case that
\ E° = E™ =~ P2 where X(l%) < 0 if and only
{ if the C;, © € T, consist of two or three lines

in general position (Fig. 2.2), we will succeed
' for all treated examples in reducing E™ by

Cs THEOREM 2.4 to a surface Z that satisfies the
L conditions of PRoPOSITION 2.5 below.
More precisely if E° = P2 or E° is a ruled

surface we will blow down E™ respectively
(m — 1) and m times.

Figure 2.2

PROPOSITION 2.5. — Let Z be a nonsingular surface and let  J;cr. C;
(with associated numbers a; € Qqu) have normal crossings on Z. Suppose
that C; & P! fori=1,...,k (where k > 0). Let either :

(i) T = {1,...,k+ 2}, where Cryr1 = Cria and Criq N Cryo = 0,
and with a1 + a2 =0, or

(ii) T ={1,...,k + 1} with ag41 = —1.

Let the curves C;, 1 € T, intersect as given by figure 2.3 and suppose

in both cases also that card Z = (¢ + 1) card Cxy1 = (¢ + 1) card Cry2.
Then R(Z,U;eqr Ci) = 0.

Figure 2.3
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Proof.
(i) Denote n, = card Cx11. Then :

R(ZUserC)

LA 1 1
=(q-1) ;qai—l(qakﬂ—l +qak+2_1)
k
+(g-1) qzi—_ll
=1
o= (R )+ - Dy - )

(qak+1+0¢k+2 _ 1)
(qok+t —1)(g*+2 — 1)

M=

=(¢—1)

=0.

{nq—k+(q—1)

qai—l}

=1

Case (ii) is analogous. []

Actually in most examples E° will be a rational surface, and then we
will use PROPOSITION 2.5 with Ciy1 (& Cri2) = P! and card Z = (¢+1)2.
Finally we mention the following technique.

PROPOSITION 2.6.— Let Ry denote the contribution (as in the data (*))
associated to a certain configuration of (U;eq Ci) U C on E° (with

o

x(E) <0), and let Ry denote the contribution associated to the confi-
guration of | J;eqv Cs on E® (with x(E) < 0) obtained by just dropping C.
If Ry is obtained from Ry by substituting a = 1 and if a is not necessarily
different from 1 in Ry, then R1 = 0 implies Ry = 0.

In concrete examples we often encounter this substitution property
if the resolution process is essentially the same for the two configura-
tions, for then the relations (B) and (A) for the second are obtained
from the same relations for the first by substituting o = 1. For exam-
ple in ProposIiTION 2.5 we have that case (ii) is implied by case (i)
using PrROPOSITION 2.6.

3. Starting with a projective plane

We suppose now that E° = P2,
)
We consider in this section a series of general situations with x(E) < 0

and where the C;, i € T, consist of either lines, or curves of degree k + 1
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with a singular point of multiplicity k. Then in the next section we classify

all cases with x(EOJ) < 0 occurring when the point D has multiplicity at
most 4 on the strict transform of Y.

REMARK 3.0.

(i) We use homogeneous coordinates (z,y,2) in E° = P2, and affine
coordinates (x,y) in the affine chart z # 0. We will also use primes (C”)
and double primes (C”') to describe the C;, i € TU{1,...,m}.

(ii) To describe configurations of the C;,i € T, we use the notion
of equivalence between (reduced) curves in a nonsingular surface of
[Ha, V, rem. 3.9.4]. Roughly two curves are equivalent if they have the
same (canonical) embedded resolution graph.

(iii) We can find concrete examples of every possible configuration of
curves C;, i € T, on E°. When C; is given by the homogeneous equation
fi(x,y,2) = 0 of degree d;, take for instance a surface Y in A® with an
isolated singularity in the origin given by

flz1,20,73) = H fi(@1,z2,3) + [terms of degree at least 1 + Zdi]
€T €T
(see also ProposITION 4.0).

ProprosITION 3.1. — Let k > 2 and let C;, 1 < i < k, be projective lines
all passing through the same point P. Let either (Fig. 3.1)

(i) cardT = k + 1, where Cy is a line not passing through P, so

(o]

x(E) =0, or
(ii) cardT =k, so X(L%) =2—k.
Then R = 0.

Figure 3.1 Figure 3.2
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Proof.

(i) If k > 3 we obtain the canonical embedded resolution of | J,, ;. Ci
by constructing one blowing-up with center P and exceptional variety
Cry1 (Fig. 3.2). The relations (B1) and (A) yield respectively

k k
Z(ai—1)+3=0 and O‘k+122(ai—1)+2

=0 =1

and imply that agi1 + @9 = 0. Using ProprosiTION 2.5 we conclude
that R = 0. If &k = 2 one can compute easily that R = 0 using
relation (B1).

(ii) We can derive this case from (i) by ProposiTioN 2.6 and the
following observation. By THEOREM 1.2 we have for case (i) that

G| 1 1 g1
— 2 _ —
R—(q_l)zqai_l(qak+1_1+ _1>+(q U;qai—l

{e7y]
= q

g+1-k gqg+1-
qok+1 — 1 qeo —

+a- 1 B b @-n@r1-n,

and for case (ii) that

(@—1° 1 g
= -1
R qak+1 _1 ; qai _1 +(q ); qai _1
(g—1)(g+1-k)
+ qak+1_]_ +q(q+1_k)a

which is clearly obtained from the previous R by substituting ap = 1. ]

ProposiTIiON 3.2. — Let cardT =1+ s+t where s > 1 and t > 0. Let
Uier Ci be equivalent to (Ug<;<, Ci) U (U, <;<; Cj) with equations

L]

Co: H(y —a;z)™ = zFH,

i=1
wherem; > 1 fori=1,...,s and k=Y ;_;m; (>2),

Ci:y=a;x for i=1,...,s

Ci:y=bjx for j=1,...,1
where the numbers a; and b; are all different (see figure 3.3 next page).

So X(]g‘) =0. Then R =0.
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Figure 3.3

Proof. — Let C’ denote the exceptional curve of the blowing-up with
center P (Fig. 3.4).

Co
, —
P
Cs CJ‘
Figure 3.4
Since for ¢ = 1,..., s the intersection multiplicity of the (nonsingular)
curves Cyp and C’ at P, is m;, we obtain an embedded resolution of
Uier Ci by constructing for all i = 1,..., s a series of m; blowing-ups with
exceptional curves C;1, Cia, . .., Cim, which intersect as given by figure 3.5.
C;
Ci1
-~ L -
1 1 Citmi—1) Cia -
Co
CI
Clm1 Cimi C’sms C]I
Figure 3.5
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Relation (B1) and relation (A) associated to C’ yield respectively

1) (k+1)(a0—1)+i(ai—1)+2(a;—1)+3:0,

i=1 Jj=1
(2) o =k(ap—1) + i(ai -1)+ Z(a;- -1)+2,
1=1 Jj=1

implying that
3) ap+a =0.
For all i = 1,...,s we have by relation (A) also

/

'ail =+ « —|—Olz'—1,
/

app=oap+ao +oy — 1,
’

;3 = 0+« +Oé¢2—1,

(4)
Qi(mi—1) = 00 + & + Ci(m,—2) — 1,
Qim; =g+’ + Qi(m;—1) — 1,
and thus
a; = + 1,
o1 = o + 1,
o = a3 + 1,
(5)

Qi(mi—2) = Ui(m;—1) T 1,

\ ai('m,‘—l) = Q4m; +1

Using (5) we can blow down >.7_, m; = k times following the idea of
THEOREM 2.4 to obtain the situation as described by figure 3.6 next page.
By (3) and ProprosiTION 2.5 we conclude that R = 0. (Since we have
blown-up k + 1 times and blown-down only & times the cardinality of the
final surface over K is indeed (¢ + 1)2.) []

REMARK. — In order to appreciate the blowing-down technique we
state the terrifying expression for the R of ProrosiTiON 3.2, given
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Co
Cl
Clml Cimi Csms CJI |
Figure 3.6
by THEOREM 1.2 :
qg+1—s—t q+1—-—s—t
e =
(g—1) s S M
t - t 1 1
o e R et )
- - 1 1 1
+ - 1 a -1 2 : ( + 7
(q ;qzm ) ;qazmi_l qao_l qa_l)
Vg (g—1)° ]
+Z[ ¢ -1 (qm ~ (@ 1)
s m;—1
: (¢—1)?°

+[q +q+1—(q+1—s)—sq—t(q—1)—1].

Trying to prove that R = 0, starting from this expression, is not funny
at all.

Using the same techniques as in the proof of ProposITION 3.2 but with
more computations, we can also prove the two following cases.

PROPOSITION 3.3. — Let cardT = s + 2 where s > 2. Let | J;c C; be
equivalent to (U;<;<, Ci) U C'UC" with equations

Ci:ymab ™ = b gt for i=1,....s

where k > 2,1 < m < k — 1, and the a; are all different and not
equal to zero,

C:z=0 and C :y=
(Fig. 3.7 next page). So x(l%) =0. Then R =0.
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C;

C; C

Figure 3.7 Figure 3.8

ProrosiTioN 3.4.

1 et car = s+ 2 where s > 2. Let |, i be equivalent
i) L dT 2 wh > 2. L ZGTC b jval
to (Uogigs C;) U C with equations

Ci ¥ =af faftt for i=1,...s
where k > 2 and the a; are all different,
Co:y=0 and C:y=az,
where a # 0 (Fig. 3.8). So X(EO) =0. Then R =0.

(i) Let cardT = s + 1 where s > 2. Let J;cp Ci be equivalent

o

to Up<ics Ci as in (i). So x(E) =1—s. Then R = 0.

Cl

L Co

Figure 3.9 Figure 3.10
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__C_k_!, : c Cllc+1
. c'

Co--

) o
| Gy : 1 l
Ck+1 o ok -

Ch

Figure 3.11 Figure 3.12

ProrosiTiON 3.5.

(i) Let cardT =4 and let | J;,. C; be equivalent to Co U C UC' U C”
with equations

Co:yfz ="t (where k>2),
C:y=0, C':2=0, C":2=0

(figure 3.9 previous page). So X(L%) =0. Then R =0.
(ii) Considering in (i) only curves equivalent to Co UC’ (card T = 2),
CoUCUC or CoUC"UC" (card T = 3) we also have x(E) =0 and R = 0.

Proof.

(i) Let C; denote the exceptional curve of the blowing-up with
center P (Fig. 3.10 previous page). Since the intersection multiplicity of Cy
and C at P; is k we obtain an embedded resolution in a neighbourhood
of P by constructing next a series of k blowing-ups (starting with
center P;) with exceptional curves Cy, ..., Cyxy1 which intersect as given
by figure 3.11.

Analogously we have to construct in a neighbourhood of @ a series
of k 4+ 1 blowing-ups with exceptional curves Ci,...,C} ., (Fig. 3.12).
The intersection configuration of the 2k + 6 curves forming a global
embedded resolution of | J;.1 C; is presented in figure 3.13. Relation (B1)
and relation (A) associated to C yield respectively

(1) (k+1)(ao -1 +a+a +a" =0,

(2) a1 =k(ag—1)+a+a”,
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Ck c’
Cr_1 C
Cy
Co
a1
o o
Ch Ci
Cri1 Crta
Figure 3.13
implying that
(3) aj+a +ap—1=0.

By relation (A) we have also :

o =ag+a; +a—1, oy =ap+a +a" -1,
as =ag+ o +ay—1, ah =ap+a +a) —1,
oy =ap+a;+az—1, ah =09+ +ah—1,
(4) 4 o+tar+as and 3 0 2
o =00+ o0q +ap_1— 1, ap=ap+ao +aj_; —1,
Qpy1 = ap + a1 +ag — 1, Q1 = o+ + g — 1.
Using (3) in the form ag + a3 — 1 = —/, respectively ag + o’ — 1 = —ay,

we can make (4) equivalent to :

"

!/ /
a=o0yt+ao, a = ap + o,
/ / /
ay =a3+a, ay; = ay + o,
/ / /
az =4 + o, Qy = a3+ Qq,
(5) and
/ / 0
Qp_1 = g + o, Qp_q —ak+ala
/ / /
Qp = Qg1+, \ Q) = Qg y T Q.
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Cl
Co
1
Cr+1 O//c+1
Figure 3.14

The 2k + 1 relations of (5) and THEOREM 2.4 imply that we can blow
down 2k + 1 times to obtain the situation described by figure 3.14. Now

Qg1 + Qpyy = (@ —ka') + (o = (k+ Don) by (5)
=a+a" —kd +(k+1)(d +ap—1) by (3)
=(k+Dag—1)+a+a +a"
=0 by (1)

and so R = 0 by ProposITION 2.5.

(ii) These cases follow immediately from (i) by an application of
ProPOSITION 2.6. []

4. Singular points of multiplicity at most 4

In this section we treat all possible intersection configurations on E°
with X(L%) < 0 when it is obtained by blowing-up a point of multiplicity
i = 2,3 or 4 on the strict transform of Y.

We first mention more generally (for arbitrary n and D) that the
intersections C;,i € T, on E® are «bounded » by the multiplicity of D on
the strict transform of Y. Remember (THEOREM 0.1) that IT : E® — D
is a projective space bundle over D and that to every C;, i € T, we can
associate a number d;, which is the degree of the intersection cycle C; - F
on F for a general fiber F = Pr—dimD of ],

ProrosiTioN 4.0.

(i) Let Y and Y respectively denote the strict transforms of Y
before and after the blowing-up (of the resolution h) with center D and
let u be the multiplicity of any point of D on Y1), Then the numbers d;,
associated to the reduced irreducible components C1,...,Cy of Y®) N E?,
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satisfy
di>1 for i=1,...,s and » d;<p.
i=1

(ii) Let Eél) and E,_SQ) respectively denote the strict transforms of a
previously created exceptional variety Ey before and after the blowing-up

with center D, and suppose that D C Eél). Then the intersection Eéz) NE°
has assoctated number d = 1.

We prove this proposition in the appendix and return now to the case
n = 2 and the data (*) with D a point and E° = P2. In this case at
most three previously created exceptional surfaces Ey, £ € S’ contain D
(since Jyeg B¢ has only normal crossings with D, see [Hi, p. 141]).
Therefore by ProposiTiON 4.0, using the same notations, the intersection
of E° with (Useg E)) U Y consists of at most three lines in general
position (Fig. 2.2) and of a (possibly reducible) curve of degree at most
1, where g is the multiplicity of D on Y1),

When o = 2 one can easily check that all possible configurations
with x(E) < 0 consist of the six cases of ProrosiTiON 3.1 for k = 2,3
or 4 and the four cases of PrRorosITION 4.1 below.

ProrosiTiON 4.1.

(i) Let cardT =4 and let |J;c C; be equivalent to C U Co U Cy1 U C}
with equations (Fig. 4.1 next page) :
C:2°=xy, Cp:2=0, Cr:x=0, Cj:y=0.

So X(l%) =0. Then R =0.
(ii) Considering in (i) only curves equivalent to C U Cy (cardT = 2),

)

CUCYUCy or CUCLUC (cardT = 3) we also have x(E) =0 and R = 0.

Proof.

(i) We obtain an embedded resolution of C'U Cy U C; U C] by
constructing a series of two blowing-ups (starting with center P) with
exceptional curves Co and C3, and an analogous series (starting with
center Q) with exceptional curves C% and C%, which intersect as given
by figure 4.2 next page. Relation (B1) and four times relation (A) yield
respectively

2a+ap+a; +a) —2=0,
ap=a+ag+a; —1, ay =a+ag+a) —1,

a+al +ah—1,

/
ags=a+a;+az —1, oy
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| C
C o N o |
P Q C
w ~C CLr
5 M o'
Figure 4.1 Figure 4.2
implying after a little calculation that :
(1) ap=as+ah, ay=aytay, o) =a+aj,

(2) az + ay = 0.
By THEOREM 2.4 and the relations of (1) we can blow down three times

to obtain the situation described by figure 4.3. Then R = 0 by (2)
and ProposITION 2.5.

C>

C
C1

Cs Cs

Figure 4.3

(i) As usually these cases follow from (i) using PrRoPOSITION 2.6. (]

o

When g = 3 the possible configurations with x(EF) < 0 consist of
those occurring for g = 2 and (other) configurations involving a curve C
of degree 3 and at most three lines in general position. One can easily
verify that for an irreducible C the only possible configurations are the
three cases (s = 2, ¢t = 0), (s = 1, ¢t = 0) and (s = ¢t = 1) of
ProrosiTioN 3.2 for k = 2, and the four cases of PRoPOSITION 3.5
for k = 2. For a reducible C the (new) configurations consist of the two
cases of PrRoposiTION 3.1 for k = 5 and the case k = 2 of PRoPOSITION 4.2
below.
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PropPoSITION 4.2. — Let card T = k + 2 where k > 2, and let J;c1 Cs
be equivalent to C' U Co U (Uy<;<y, Ci) with equations

C:22=zy, Co:y=0, C;:z=a;y

fori =1,...,k where the a; are all different (Fig. 4.4). So X(l%) = 0.
Then R = 0.

C
Co
P
C; C
Cry1
Co C; Cra2
Figure 4.4 Figure 4.5

Proof.— We obtain an embedded resolution of CUCoU (UJ; <;<j Ci) by
constructing two blowing-ups (starting with center P) with exceptional
curves Cg41 and Cyr2, which intersect as given by figure 4.5. Relation (B1)
and two times relation (A) yield

k
2(a—1)+(a0—1)—6—2(%—1)4—320,

i=1

k
appr=(a—1)+ (@ -1+ (i —1)+2

=1

Ogy2 = o+ o+ agy1 — 1,

implying that ag+; + @ = 0, ap = agy2 + 1. So blowing Cp down
(following THEOREM 2.4) we see that R = 0 by PrRoPOSITION 2.5. []

o

When p = 4 the possible configurations with x(£) < 0 consist of those
occurring for u = 2 or 3 and (other) configurations involving a curve C of
degree 4 and at most three lines in general position.

(a) If C is irreducible and contains a point of multiplicity 3, one can
easily verify that the only possible configurations are the three cases
(s =2,t=0),(s =1,¢t =0) and (s = ¢t = 1) of PrRoPOSITION 3.2
for k = 3, and the four cases of ProrosiTiON 3.5 for k = 3.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



576 W. VEYS

(b) If C is irreducible and contains no point of multiplicity 3, it can

have at most three double points. When it has exactly three double points,
[}

one can easily see that a situation with x(F) < 0 could only occur if :

(1) C has three ordinary cusps and an inflection point P such that its
tangent line (at C) intersects C' with intersection multiplicity 4
in P, or

(2) C has two ordinary cusps and one (ordinary) node P for which
the two (principal) tangent lines at C intersect C' with intersection
multiplicity 4 in P.

Case (1) cannot occur by [EH, prop. 1.1]. Suppose that case (2) occurs.
The bundle of lines through P determines a base-point-free linear system
of dimension 1 and degree 2 on P!, for which the associated mor-
phism P! — P! of degree 2 has ramification degree at least 4. This is
impossible since this ramification degree must be 2 by Hurwitz’s theorem.

When C' has exactly two or one double points one can verify that res-
pectively the PrRoPosITIONS 4.3 and 4.4 describe all possible configurations

with X(Eo]) < 0. (We can prove both propositions by the usual techniques
if we first «add» the conic yz + 2% = 0 to the configurations.)
ProrosiTION 4.3.

(i) Let cardT = 3 and let ;1 Ci be equivalent to C'U Co U Cy with
equations (Fig. 4.6) :

C:(yz+23?+2% =0, Ch:y=0, Cp:xz=0.

So x(E) = 0. Then R = 0.
(ii) Let cardT = 2 and let | J;cp C; be equivalent to C'U Cy as in (i) ;
then X(EO') =0 and R =0.

C1 Cy

Co Co

Figure 4.6 Figure 4.7
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ProposITION 4.4.

(i) Let cardT = 3 and let |J;cr Ci be equivalent to C U Co U Cy with
equations (Fig. 4.7) :

C:(yz+22)?+2y3=0, Cy:y=0, Ci:z=0.

So X(EO) =0. Then R = 0.
(ii) Let cardT = 2 and let J;cp C; be equivalent to C U Cy as in (i);

o

then x(FE) =0 and R = 0.

(c) Finally if C is reducible one can verify that the only possible (new)
configurations are the two cases of ProposiTioN 3.1 for k = 6, the two
cases (s = 2,t = 1) and (s = 1, t = 2) of ProrosiTION 3.2 for k = 2,
the case k = 3 of ProPOSITION 4.2, and the eight cases described in the
ProrosiTioNns 4.5, 4.7 and 4.8 below.

ProprosiTIiON 4.5.

(i) Let cardT =4 and let | J;cr C; be equivalent to C'UC' U Cy U Cy
with equations (Fig. 4.8) :

S0 x(E) =0. Then R = 0.
(ii) Let cardT = 3 and let | J,c C; be equivalent to C U C' U Cy as
in (i). Then X(]%) =—-1and R=0.

c Co
C c’

P C
Co 2

c’ @

Cy
C Cs Cs J
Figure 4.8 Figure 4.9
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Proof.

(i) We obtain an embedded resolution of C' U C' U Cy U Cy by
constructing a series of four blowing-ups (starting with center P) with
exceptional curves C;, 2 < ¢ < 5, which intersect as given by figure
4.9 on previous page. Relation (B1) and four times relation (A) yield
respectively :

2004+ 20’ + a9 +03 —3=0,
062=OL+OJ/+O£0+O[1—2,

azs=a+ao +ag+ay—2, implying that

ag=a3z+1,
a3 = g + Qy,
a4 =0+ Qs
ag=a+ao +az—1, ’

a1 +as =0.
as=a+a +as—1, Lres

So by THEOREM 2.4 we can blow down three times to obtain the situation
described by figure 4.10 and then R = 0 by ProposITION 2.5.

C
Cl
s
Cs Cy
Figure 4.10

(ii) As usually this case follows from (i) by ProposiTiON 2.6. []

REMARK 4.6.— In PROPOSITION 4.5 the configuration CUC" determines

o
another case where y(E) = 0, but it is not relevant because then

necessarily as = 0 (using the same notations as in the proof above).

We can analogously prove the next two propositions.

ProprosiTION 4.7.

(i) LetcardT =5 and let| ;o C; be equivalent to CUC'"UC,UC;UC,
with equations (Fig. 4.11) :

C:yz =2, C':yz = —a?,
Co:x=0, Ci:y=0, Cy:z=0.

So x(E) = 0. Then R = 0.
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(ii) Considering in (3) instead of Co U Cy U Cy only C; (card T = 3),

CoUCy or C1 UC, (cardT = 4), we also have x(F) =0 and R = 0.

Cy Cy

C/
c

Co

L .

Figure 4.11 Figure 4.12

ProrosiTiON 4.8.

(i) Let cardT =4 and let J;c C; be equivalent to C'U C'UCyuCy
with equations (Fig. 4.12) :

C:yz=a*+uay, Co:y=0,
C':yz = 2% -y, Cy:z=0.

So x(E) = 0. Then R = 0.
(ii) Let cardT = 3 and let | J;cr Ci be equivalent to C' U C" U Cy as
in (i); then x(E) =0 and R = 0.

We can summarize the previous propositions of this section in the
following theorem.

THEOREM 4.9. — If E; in the data (*) of paragraph 1 is created by
blowing-up a point of multiplicity at most 4 on the strict transform of Y,
then R = 0.

COROLLARY 4.10. — If the surface Y in A3 has only singular points of
multiplicity at most 4, then R = 0 for all E; in the data (*) created by
blowing-up a point.

Now to conclude this section we state some interesting examples of
]

configurations with x(£) < 0 involving a curve C' of degree 5 and at most
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three lines in general position. (We can prove that R = 0 in these cases
by the usual techniques.) When C is reducible with an (irreducible) conic
and cubic as components one can show by tedious calculations on the
equations of those curves in P? that the only possible configurations are
described in the ProposITIONS 4.11 and 4.12 below.

ProrosiTION 4.11.

(i) Let cardT = 4 and let ;e Cs be equivalent to J;<;<4 Ci with
equations where a # 0 (Fig. 4.13) :

Cliy2=$3, C3:y=0,

Cy : y = 3az® — 3a’zy + a®y?, Cy:z=ay.
So x(E) = 0. Then R = 0.
(i) LetcardT = 3 and let J;cr Ci be equivalent to |, ;<3 C; as in (i).

o

Then x(E) =0 and R = 0.

Cy Ch

Cs m Cy

Cy Cy Cs

Figure 4.13 Figure 4.14
ProprosiTION 4.12.

(1) Let cardT = 4 and let U;cr Ci be equivalent to |J;<;<4 C;i with
equations (Fig. 4.14) :

CI:yQ_x2=y3v C3:y=xa
Co: 8(y — ) = 2% — day + Ty?, Cy:y=—m.
So X(L%) =0. Then R =0.

(i) LetcardT = 3 and letJ;cr C; be equivalent to |, ;<3 C; asin (i).
Then X(EO) =0 and R =0.
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The most simple example of a configuration with X(E%‘) < 0 involving a

curve with two different singular points is the following. It is remarkable
that the (local) resolution data of the two singular points must interact

in order to have R = 0.
Cy &
\ C1

Figure 4.15

Cy

ProrosiTiON 4.13.

(i) Let cardT =4 and let | J;c Ci be equivalent to C'U Coy U Cy U Cy
with equations (Fig. 4.15) :

C:y*2® =25, Cy:y=0,
Co:2=0, Cy:2z=0.

So X(EO) =0. Then R =0.
(ii) Considering in (i) only CUC1,CUCs (cardT = 2), CUCy U Ch,

(o]

CUCQUCy or CUCyL UCy (cardT = 3), we also have x(E) = 0
and R = 0.

REMARK 4.14. — PROPOSITION 4.13 can be generalized to an arbitrary
number of curves C; : y22% = a;2° (with different a;).

REMARK 4.15. — In [Si, example 7.6] also SIERsMA classifies projective
plane curves C satisfying x(P? \ C) = 0. He lists the examples for which
deg C < 4, producing thus some cases of the list in this section.

His motivation is the following. Let the homogeneous polynomial
g(z,y, ) determine the germ of an analytic function g : (C3,0) — (C,0)
with 1-dimensional singular locus. A necessary condition for the Milnor
monodromy T in the origin being the identity is that x (P?\{g = 0}) = 0.
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5. Starting with a ruled surface

In this section we suppose that D is a nonsingular curve and thus
that E° is a projective space bundle IT : E° — D or ruled surface over D.
To every irreducible curve C on E°® we can associate a natural number d
which is the number of intersection points of C' with a general fiber
of II; we will talk in this context of the associated number d of C. In
particular d = 0 if and only if C itself is a fiber of II.

REMARK 5.0. — It is a fact that not every configuration of curves Cj,
i € T, can occur on E° (see [V2, example 7.3] and PropPoSITION 5.8 and
compare with remark 3.0 (iii)). For «many » cases treated in this section
however there exist concrete examples of surfaces Y in A® for which these
cases occur in the resolution process.

We first mention two basic examples, which can be considered as
generalizations of PRoPOSITION 1.5.

C1 CQ Ck Cl C? Ck

Figure 5.1 Figure 5.2

ProposiTION 5.1. — Let k > 0 and let C;, i <1 < k, be fibers of I1.
(i) LetcardT = k+2, let C and C’ have associated number d = d' =
and let CNC' =0 (Fig. 5.1). So X(]%) =0. Or
(ii) let cardT = k + 1 and let C have associated number d = 1
(Fig. 5.2). So x(E) = x(D) — k.

Then R = 0.

Proof. — Clearly |J;cp Ci has normal crossings on E° and these
cases are examples of PROPOSITION 2.5 since by example 0.4 (2) (of
relation (B1)) we have a + o/ = 0 in case (i) and a = —1 in case (ii). []

We now study the configurations occurring when the strict transform
of Y before the blowing-up with center D is already nonsingular.

We use for a while the notations of ProposiTioN 4.0. We have that
exactly zero, one or two previously created exceptional surfaces Ei(l),
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i € S, contain D (since {J;cg Efl) has normal crossings with D, see

[Hi, p. 141]). Also in the last case the two curves E° N Ei(Q) on E° are
disjoint. Moreover by PROPOSITION 4.0 the numbers d associated to those
curves E9 N E®) and to E° N Y® are equal to 1. We thus have (after
some thinking) :

ProposiTiON 5.2. — When D is a curve and the strict transform
of Y before the blowing-up with center D is already monsingular, then
for the C;i, i € T, only the intersection configurations described by the
figures 5.2 (case 1), 5.3 (case 2) and 5.4 (case 3) can eventually occur
on E°. Here k > 0, the curves C;, 1 < i < k, are fibers and the curves C,C’
and C" have associated numbers d=d' = d" = 1.

Cl

C1 Cy

Figure 5.3 (case 2)

Here the curves C and C' do not have to be tangent in
their intersection points and can eventually be disjoint.

o
YRS

Figure 5.4 (case 3)

Here the curves C and C" | resp. C' and C", do not have to
be tangent in their intersection points and can eventually
be disjoint.

Cy Ci

For case 1 of ProPOSITION 5.2 we have that R = 0 in the data (*)

)

by ProposiTION 5.1 (ii). For case 2 we easily see that x(E) < 0
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(& X(l??) = 0) if and only if each point of C' N C’ is contained in
some fiber C; for i =1,...,k. Now if C N C’ = 0 we have that R = 0
by ProposiTion 5.1 (i). If CNC’ # @ then R = 0 by ProPOSITION 5.3
below.

C/

Cl 02 Ce Cg+1 Cg+2 Ck

Figure 5.5

ProrosiTION 5.3. — Let cardT = k+2 where k > 1. Let C;, 1 < i < k,
be fibers and let C and C' have associated numbers d = d' = 1. Suppose
also that card(C N C") = £ where £ > 1, and that each point P;, 1 <i < ¢,

of C N C" belongs to the fiber C; (Fig. 5.5). So X(ﬁ’) =0. Then R =0.

Proof. — For i = 1,...,£ let n; be the intersection multiplicity of C
and C" at P;. We obtain an embedded resolution of CUC" U (U, «;<x Ci)
by constructing for i = 1,...,£ a series of n; blowing-ups (starting with
center P;). By the same argument as in the proof of ProposITION 3.2 and
using that a + o/ = 0 (by relation (B1)) we have that R = 0. []

)

We now determine when x(F) < 0 in case 3 of PrRoposiTION 5.2 if D is
projective. Let C” intersect C'UC" in ¢ different points outside (J,<;<y, Ci
(Fig. 5.4). Then B

ﬂﬁ):2@—2@-{u2—2m+42—2g—k—ey+m2—2ﬂ
=29—-24+k+¥,

where ¢ is the genus of D, and so x(EO) < 0 if and only if either

{g=@ {9=L
or
k+€<2, k=1£=0.

In the ProprosiTiONS 5.4 and 5.6 below we prove that R = 0 in case 3
of ProposiTION 5.2 for a projective D except for two special cases.
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I
C !
c’ f
1
1
Cl/ :
Co G}
Figure 5.6

PROPOSITION 5.4. — Suppose that D = P'. Let C,C’ and C" be
nonintersecting curves with associated numbers d =d' = d" = 1.

(i) Let cardT = 5 and let Cy and C§ be fibers of I1 (Fig. 5.6). So

x(E)=0. Or
(ii) let cardT = 4 and let Cy be a fiber of I (Fig. 5.6). So X(l%) =-1.
Then R = 0.

Proof.

(i) Since this is an example of PROPOSITION 2.5 we only have to prove
that ap + af, = 0. By example 0.5 the self-intersection numbers of C,C’
and C” are zero and so example 0.4 (2) (of relation (B2)) then yields
(g — 1)+ (ap — 1) = —2.

(ii) This case can be proved analogously or by an application of
PROPOSITION 2.6. []

REMARK 5.5.—In the situation above we cannot derive the case without
fibers (card T = 3) by setting ap = 1 in the R of case (ii) since ag = —1
for the configuration of case (ii). (See also PrRoPosITION 5.8.)

C C P C
cr / cr C
Cc c d
c, Cp ¢, ¢ G c, G
Figure 5.7 Figure 5.8 Figure 5.9

Here the curves C and C”, resp. C' and C”, do not have to be
tangent in their intersection points.
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PRrOPOSITION 5.6. — Suppose that D = P!. Let the curves C,C’ and
C" have associated numbers d = d' = d” = 1 and let them intersect as
given by the figures 5.7, 5.8 or 5.9 on previous page. Let cardT = 3,4
or 5 according to zero, one or two of the fibers Co or C, occur on E°.
(These conditions yield ten different configurations.) Then R = 0, except
when cardT = 3 and C U C' U C” has normal crossings in figure 5.8
(see figure 5.12).

Proof. — The situations with card7 = 3 or 4 follow easily by
ProrosITION 2.6 from the situation with card T = 5. We will only prove
that R = 0 for the situation of figure 5.9, the other two proofs being
similar.

Let n and m be the intersection multiplicities of respectively C and C”
at P, and C’ and C” at Q. Then we obtain an embedded resolution
of CUC"UC”"UCyU C| by constructing a series of n blowing-ups

with exceptional curves C1,...,C, (starting with center P) and another
series of m blowing-ups with exceptional curves Cf, ..., C/, (starting with
center @), which intersect as given by figure 5.10.
Cn—l Cl
Cn—2 Co
| C
Cl/
B L
G Crnz
| C Cra
e Cn
Figure 5.10

By example 0.5 the self-intersection numbers of C,C’ and C” are
respectively n—m, m—n and m+n. Therefore the relations (B1) and (B2)
yield respectively

1) a+ad +a"-1=0,
and 3 (n—m)(a—1)+ z(m=n)(@' —1)+ 3(m+n)(a" 1)
+(ao— 1) + (o — 1) = -2,
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which we can write more elegantly (using (1)) as
(2) ma + na’ = ag + ap.

The n + m relations (A) yield

or=a+a +ay—1, aj=a +a"+a5—1,
ay=a+a +a;—1, ay=a +a" +af — 1,
and
Opn_1=0a+ad" +an,_o—1, ap_ = +a"+al, 51,
o =a+a +a,_1—1, a,=ad+ad" +al, ; -1,
and thus, using (1), also
ap=a; +d, ay =af + a,
a; =ap + o, o) =ah +a,
(3) and
Op_o=0p_1+0a, an,_o=ah 1 +a,
Qp1 = ap + a1 =al +a.

By (3) and THEOREM 2.4 we can blow down n + m times to obtain the
situation described by figure 5.11. Using (3) and (2) we can compute that

an +al, = (ag —na’) + (ay — ma) =0

and so by PROPOSITION 2.5 we obtain that R = 0. []

Vol
Vold
C
Cn Cl,
Figure 5.11

REMARK 5.7.

(a) For the exceptional configuration (Fig. 5.12 next page) of PrRoPo-
SITION 5.6 we cannot derive that R = 0 from the fact that R = 0
for the analogous configuration (Fig. 5.13 next page) with one fiber
Cp added! The method of ProprosiTiON 2.6 fails in this case because
substituting ap = 1 in the data of the configuration with Cy yields a; = 0,
where (1 is the exceptional curve of the blowing-up with center P.
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Cl C/
Co

N o P C
_/ \ C’/ _/ k C//

Figure 5.12 (exceptional case) Figure 5.13

(b) We have in fact that R # 0 for this exceptional configuration.
Now the relations (B1) and (B2) imply that o’ = 1 and thus that
(v = 1)/N'" = v;/N; where (N',v') are the numerical data of the
exceptional surface that intersects E; in (the strict transform of) C'.
So N; | N', where v;/N; = v;/N; and v} and N; are coprime, and in view
of remark 1.4 (i) there is no obstruction for the monodromy conjecture.

(c) For f(z,y,2) = 2% — y? + 2® this exceptional situation actually
occurs.

Until now we have considered in case 3 of PROPOSITION 5.2 for a
projective D all configurations with x(F) < 0, except the configuration
with k = £ = 0 (eventually occurring when the genus of D is 0 or 1). By
the following proposition this configuration is not possible if the genus
of D is 0.

ProprosiTioN 5.8. — When D is projective the configuration with
k = ¢ = 0 cannot occur in case 3 of PROPOSITION 5.2 if g # 1, where
g is the genus of D.

Proof. — By example 0.5 the self-intersection numbers of C, C’ and C”
are zero; example 0.4 (2) then yields that 0 = 2g — 2, which is impossible

forg#1. []

Summing up, the PrRoPosITIONS 5.2 to 5.8 imply :

THEOREM 5.9. — Suppose that E; in the data (*) of paragraph 1 is
created by blowing-up a projective curve D and that the strict transform
of Y before this blowing-up is nonsingular. Except for

(1) the situation described by figure 5.12 and

(2) the situation when the genus of D is 1 and the C;, 1 € T', consist
of three nonintersecting curves with associated number d; = 1,

we have that R = 0.
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For absolutely isolated singularities we have a sharper result.

DEeFiNITION 5.10. — A singular point P of a reduced surface V
(embedded in some nonsingular threefold) is absolutely isolated if there
exists a resolution of V' in a neighbourhood of P obtained only by blowing-
ups with a point as center.

We now suppose that if all singular points of the surface Y are
absolutely isolated then, until the strict transform of Y is nonsingular,
the resolution process consists only of blowing-ups with a point as center.

COROLLARY 5.11. — Let all singular points of the surface Y in A3 be
absolutely isolated. If E; in the data (*) is created by blowing-up a curve
then, except for the situation described by figure 5.12, we have that R = 0.

Proof. — When the curve D is not projective it cannot belong to any
projective exceptional surface. One can then verify that only the intersec-
tion configurations of PROPOSITION 5.1 can occur on E°. (In fact blowing-
ups with a non-projective curve as center are superfluous here.) So we
only have to show that the second exceptional situation of THEOREM 5.9
cannot occur in this case. This is done in PrRoPosiTION 5.12 below.

PROPOSITION 5.12. — Let all singular points of the surface Y in A3
be absolutely isolated. If the exceptional surface E; is created as a ruled
surface E° over a curve D of genus 1, then the (reduced) intersections C;,
i € T, on E° cannot consist of three nonintersecting curves with associated
number d = 1.

Proof. — We use the same notations as in ProposiTiON 4.0. The
exceptional situation described in the theorem implies that the curve D
lies in Y and in two previously created surfaces Ez-(l), and that D
intersects mo other exceptional surfaces, since those would cause fibers
to appear in the intersection configuration on E°. Now such a situation
can only occur if, after a first blowing-up of the surface Y in some singular
point P, the intersection E1NY™* contains a nonsingular curve C of genus 1.
Here E; and Y* denote respectively the created exceptional surface and
the strict transform of Y by this blowing-up. (It is not difficult to verify
that all other possibilities yield fibers on E°.) So (if we take P as the
origin of A3) the equation f(z,y,2) =0 of Y in A® must be

Y: gf(x’ Y, 2)93(11»', Y, z)n + g@+3n+1(x7 Y, Z) + ng+3n+’i(x7 Y, Z) = 07
i>2
where the g; are homogeneous polynomials of degree 7. In one of the three
affine charts of the embedding space we can write the equation of Ej
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and Y* as

and

Y 90(1,9,2)93(1, 5, 2)" + 2gessni1(1,9,2) + Y 2 gepanti(l,y,2) = 0.
i>2

Since D must be part of two surfaces Ei(l) at a later stage of the resolution
process, E; UY™ cannot have normal crossings in the generic point of C/;
so we must have that n > 2. This implies that geisn41(z,v,2) Z 0
for otherwise the generic point of C' would be singular on Y*, which
contradicts that Y has only absolutely isolated singularities. Now to
encounter D as described above in some next step of the resolution process
all points of C must be regular points of Y* (otherwise we again get fibers
on EY), and so the polynomials g3(1,y, z) and g¢43n+1(1,y, 2) cannot have
common roots.

Combining this with the same result for the two other affine charts we
obtain that g3(x,y,2) = gey3n41(T,y, 2) = 0 has no solutions in P2, which
is of course impossible. []

To conclude this section we prove that if E; in the data (*) is created
as a ruled surface over a projective curve of genus g > 2, then the
only possible intersection configurations on E° consist of the (simple)
configurations of the ProposiTiONS 5.1 and 5.3.

PropositioN 5.13. — Let Il : E — Dy be a ruled surface over a
nonsingular projective curve Dg of genus g > 2. Let Cl, 1 < i < t, be
curves on E with associated number d; > 0, and let C;, 1 < j < k, be

fibers of 1 (t > 2, k > 0). Set E = E\ [(Uy<;<, Ci) U (U1<;<x Ci)]- If
xX(E) <0 thent =2, dy =dy =1, and each point of C; N Ch belongs also
to some fiber C; (Fig. 5.5), so in fact x(E) = 0.
Proof. — Let g; be the genus of C] for ¢ = 1,...,t; then
X(C)) =2-2gi— =

for some z; > 0. Let the curve C} intersect the fiber C; in d;; points,
so 1 < dj; < d;. And let finally Cj intersect (Uyz; Cp) \ (Ui<j<x Ci) in 8
points. Then

X(E) =2(2 - 29) — [i(?—Qgi—xi —f_:dﬁ —si> +2k+8],
1 j=1

1=
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where 2s < 3'_, s;. So

t
X(B)=22-29)+ (29, — 2 + ;) +Z(

i=1 j=1 1
o We first suppose that ¢ > 3. Then :

t t
dij —2) +ZS,‘ — 8.
= =1

1 =

t
X(E)=2(g1—9)+ @1 +2(g2—9)+ 2 + ) (29 + i)

i=3
koot t
15 D) LTREIRD pI
j=1 i=1 i=1
——
Since g; > g for all ¢ = 1,...,t the underbraced terms are positive, and

the remaining sum is strictly positive. So we never have that X(l%) <0.

o We now suppose that t = 2. Then :
. k
X(E)=2(g1—9)+ 1 +2(g2—9)+ x2 +
—_— N N—— =

~~  ~
J

1(d1j +d2j -2+ s,

since in this case s; = s3 = s. Again all underbraced terms are positive, so
O

they must all be zero to allow that x(E) < 0. We then have g; = g2 = g.
By considering the natural map from a desingularization of C; to Dy we
have Hurwitz’s theorem

29;—2=di(29-2)+ R;

for i = 1 and 2, where R; > 0. It implies that d; = d2 = 1. But then
necessarily C7 = C4 = Dy and thus 1 = z2 = 0 and dy; = dy; = 1 for
allj=1,...,k.

o

So to make x(E) = 0 we only have to require that s = 0. This is the
situation described in the proposition. []

REMARK 5.14. — We did not study the case t = 1 in ProrosITION 5.13
because a projective curve D can only be the center of a blowing-up in the
global resolution process of Y if it lies in at least one exceptional surface,
and then the intersection of EY with (the strict transform of) this surface
has associated number d = 1. This is an example of PrRoposITION 5.1 (ii).
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REMARK 5.15. — If we put g = 1 in the data of ProposITION 5.13 and

o

still require that x(£) < 0, then the same configurations as for g > 2 are
possible, together with a number of «problem» cases. We do not know
if those «problem» configurations can really occur on E°, but if they do
occur we have that R is not identically zero (as rational function in g).

6. Higher dimensions

In this section we treat some examples of the data (*) in higher
dimensions. Extending the notations of paragraph 2, we suppose in the
ProposITIONS 6.1 and 6.5 that E° & FE; and in the PROPOSITIONS 6.2
and 6.4 that E; is obtained from E° by one blowing-up. (If we generalize
ProposiTION 2.3 to higher dimensions these assumptions are superfluous.)

Let zo,...,z, denote homogeneous coordinates in P™ (n > 2).

PROPOSITION 6.1. — Suppose that E® = P". Let cardT = k + 1 where
1 <k < n, and let C; be the hyperplane x; =0 fori=20,...,k. Then

o

(i) x(F) =0 and
(i) R =0.
Proof.
(i) We procegd by double induction on n and k, and denote the

corresponding x(£) by x7. For n = 2 the statement is trivial. For arbitrary
n > 3 we have that x? =n+1—-2n+(n—1) =0. And for £ > 2 we can
easily see that

Xk = Xko1 = Xl
which is zero by induction.

(ii) Again proceeding by double induction on n and k we will show
that the corresponding contribution R} can be expressed as

n __ (q - l)k(q2f=o(ai—l)+n+1 _ 1)

£ Hf:o(qai -1)

which then equals zero by relation (B1). For n = 2 this can easily be
verified. For arbitrary n > 3 we have that

(¢-1)°
(g —1)(g** — 1)

n—1 q— 1 q— 1 n—1
+q (qao—l + _1)+q (g—1)
(q _ 1)(qag+a1+n—1 _ 1)
(@@ -1 —1)
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And for k > 2, since Ry = Ry_; — Ry_ %+ Rk 1» we have by
induction that :
Zz —o (@i—1)4+n+1 _ 1

RE = (qg— 1)1
O A

(q qak)(qu__g(ai—l)+n _ 1)}

(@™ = DTS (g™ — 1)
(q _ l)k(quzo(ai—1)+n+l _ 1)

- 15 (g — 1) 0

PROPOSITION 6.2. — Suppose that E° = P™ and that n is even. Let
cardT = k where k > 3, and let C; be the hyperplane x1 + A\jxg = 0
fori =1,... k where all \; are different (Fig. 6.1). So X(I%) =2-k.
Then R = 0.

Ck+1

Figure 6.1 Figure 6.2

Proof. — We obtain an embedded resolution of | J;;~, Cs in P* by
constructing one blowing-up with center zg = x; = 0 and exceptional
variety Ci41, which is isomorphic to a projective bundle over P"~2 with
fibers isomorphic to P! (Fig. 6.2). Then :

k
_ n—2 n—3 (q_l)
R=("2+¢"3+...+q+1 ; @ = (g 1)
n-2 | n-3 (g-1)
+(@+1-k)(¢"?*+q —&-...+q+1)qak+1_1
k
+q+! 1 +q¢" N (g+1-k)
=1
k
(qak+1+n—1 _ 1) [
- 1-k%& -1 J
qak+1 -1 q+ + q ; qaz -1
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Now relation (B1) and relation (A) yield respectively

. K
Z(ai—l)+n+1=0 and C¥k+1=§:(ai_1)+2’

i=1 i=1
implying that ax41 +n — 1 = 0 and thus also that R = 0. []

REMARK 6.3. — For odd n we have of course the same result; so these
are examples where R = 0 when we don’t «expect» it.

PROPOSITION 6.4. — Suppose that E° = P3. Let cardT = 2, let C; be
the hyperplane xo = 0 and Cy the quadric hypersurface xory — xoxz = 0
(Cy 2P x PY). So x(E) =0. Then R = 0.

Cy

— C1

Cs

Figure 6.3

Proof. — One can check by an easy calculation that an embedded
resolution of C; U Cy in P3 is obtained by blowing-up P3 with center
xo = w9 = 0. Let C3 denote the exceptional variety, which is a ruled
surface over P! (Fig. 6.3). Then :

W ! ij=1 (g% —1)(¢™ — 1)
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The relations (B1) and (A) yield respectively
(041 —1)+2(0[2—1)+4=0 and g = (a1—1)+(a2—1)+2,

implying that as + a3 +1 = 0, and thus that R = 0. []

For an arbitrary projective space bundle we can also associate a
number d € N to any prime divisor (see THEOREM 0.1).

— 1 C;

EO

Figure 6.4

PROPOSITION 6.5. — Let E° be a projective space bundle I1: E° — D
over a nonsingular variety D with fibers isomorphic to P* and let
cardT =k + 2 where k > 0. Let C and C' have associated numbers
d=d =1and CNC" =0, and let C;,1 < 1 < k, be the inverse
images II7'B; of nonsingular varieties B; in D such that | J, ;< Bi has

only normal crossings on D (Fig. 6.4). So x(l%) =0. Then R =0.

Proof. — Let D(K) denote the set of rational points over K of the
reduction modulo pR, of D [D1, §2]. Then we can write R as :

q—1 q—1 q—1
~1 : ) .
Z_(q +q“—lJrq”‘—l H g —1
PeD(K) 1<i<k
PeB;

Since a + o’ = 0 by relation (B1) we obtain that R = 0. []
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Appendix

Proof of proposition 4.0. — Let X(!) and X®) respectively denote the
embedding space of the resolution h before and after the blowing-up with
center D, and set r = codim(D, X ().

(i) Let P be any point of D and let 0=0 x ), p denote the completed
local ring of P on X (1), We can choose a regular system of parameters
t1,...,tn41 in O such that the ideal in O of D is generated by t1,...,%,.
Since O is a formal power series ring in t;,...,%,4+1 and the multiplicity
of the generic point of D on Y1) is y, the ideal of Y1) in O is generated
by an element

fu(xly- .. ,CBT) + qu+i(1‘1, s 7x7‘)
i>0

where the f; are homogeneous polynomials of degree ¢ in z1,...,z, with
coefficients in k[[Z;4+1,. .., Zn+1]]. Moreover, since the multiplicity of P
on Y is p, at least one coefficient of fu does not belong to the maximal
ideal (@ry1,...,Znt+1) Of k{[Trt1,. .., Tny1]]-

By definition of blowing-up we can describe in the chart «z; # 0) the
completed local ring Og = Ox) ¢ of any point Q of F' = o-{P} as

kl[1, Y2y - s Yry Trg1s- - -, Tnta)], where the ideal in @Q of E is generated
by z1 and the ideal of Y(® is generated by

fu<17y2+62a"'7y1"+c’r) +Zx§fu+i(l7’y2+02a“'?yr+Cr)
i>0
for some (cg,...,c.) € k"!. Since the ideal in @Q of the fiber F
is generated by xi,Zy41,...,Zn+1 We can describe the completed local

ring O of @ on F = P"~! as k[[ys,...,y,]]. Then the ideal in @FQ
of (Y2 0 E%) N F is generated by

flt(17y2+c27"'ay7‘+c7‘)7

where fu is obtained from f,, by substituting .41 =... = 2n4+1 =0 and
is not identically zero.

Combining this with the analogous results for the other charts we
obtain that the intersection of Y(® N E° with the fiber F© = P ! is
described (in homogeneous coordinates y1,...,y) by fu(y1,...,y-) =0,
implying that Y_7_; d; < p. Moreover we see that no fiber of II is part
of Y® N E° and consequently d; > 1 for alli =1,...,s.

(ii) Replacing Y(!) by Eél) in (i) the conclusion is evident. []
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ReMARK. — If D is a point in PROPOSITION 4.0 we have in the proof
that r = n+1, f, = f, and F = E = P". Then we can describe the
irreducible components C; of Y2 N E? as

Gi(yh e ’yn+1) = 0)

where f, = [[;_; GI* is the decomposition in irreducible components
of f, and G; has degree d; for i =1,...,s.
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