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MULTIPLICITY ESTIMATES AND THE
PRODUCT THEOREM
PAR

MicHAEL NAKAMAYE (*)

RESUME. — Nous établissons un lemme de zéros pour certaines variétés munies
d’une action de groupe. Ceci généralise des résultats de D.W. Masser, G. Wiistholz
et P. Phillipon. La démonstration utilise de maniére systématique la théorie de
I’intersection suivant en cela une suggestion de D. Bertrand.

ABSTRACT. — We prove a zero estimate for certain varieties endowed with a group
action. The result generalizes theorems of D.W. Masser, G. Wiistholz and P. Phillipon.
It makes systematic use of intersection theory as suggested by D. Bertrand.

0. Introduction

Since NESTERENKO’s work in the 70’s [N], zero estimates have been of
central importance in transcendence theory. For an overview of some of the
main results, see BERTRAND’s Bourbaki Seminar [B] and its bibliography.
More recently, similar methods were employed by FavrTings [F| in his
paper on rational points of subvarieties of abelian varieties. It is the
purpose of this note to give a unified treatment of these results from
the algebraic geometric point of view.

We will derive a slight generalization of the zero estimates of [P1]
and [W1], [W2], extending these results from commutative algebraic
groups to certain projective varieties endowed with a group action. We
will also show how these methods naturally yield a more general version
of Faltings’ product theorem (see [F, thm 3.1]). This is not surprising since
FarTiNGgs himself remarks that, « The proof [of the product theorem] uses

(*) Texte regu le 3 mai 1993, révisé le 22 février 1994.

M. NAKAMAYE, Department of Mathematics, Yale University, New Haven, CT 06520
and Department of Mathematics, Harvard University, Cambridge, MA 02138.
Supported by an NSF Graduate Fellowship.

AMS classification : 11 J81.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1995/155/$ 5.00
© Société mathématique de France



156 M. NAKAMAYE

methods similar to the zero estimates (NESTERENKO, MASSER-W USTHOLZ)
of transcendental number theory [F, p. 549].»

Our proof of the zero estimates differs from those of PHILIPPON,
MasseEr-WUsTHOLZ, and WUsTHOLZ in that it makes systematic use of
intersection theory. In particular the main tool is a refined version of
Bézout’s theorem due to FurTon and LAzZARSFELD. Note that this was
already suggested by BERTRAND ([B, p. 26 and p. 29]), though it was from
S. Lanc that the author received the idea of replacing Proposition 3.3
of [P1] with an intersection theoretic result. Other than this, we freely
borrow from both [P1] and [W2] and, wherever possible, try to point out
the interconnections between them.

To state the main result, we need to fix some notation. For 1 < i < m,
let X; C P™ be a projectively normal variety defined over C. Let
P=P" x-.- x P with projective coordinate ring R and let

m
X = H X; —P.
=1
Let Ox,(1) be the pull-back to X; of the invertible sheaf Opn;(1). Let

7 : X — X, denote the projection to the i*® factor and for positive
integers d, . .., d,, write

Ox(da, .-, dm) = Q) m; Ox,(d;).

i=1

We will abbreviate d = (dy,...,dy). For V.C P let deg,; V be the degree
of V computed with respect to Ox(ds,...,dm,). Suppose that each X; is
furnished with a group action ¢; : G; x X; — X; and let

p:Gx X — X

be the product group action. For ¢ € G and z € X we will usually
write g(z) = ¢(g,z). The group law on G will be written multiplicatively.
Denote by 73 : G x X — X the projection to the second factor and let e
be the identity element of G.

DEeFINITION 0.1. — Let ¢ = (c1,...,¢m) be an m-tuple of positive
integers (depending only on the embedding X — P) such that

WSOX(Cl,...,Cm) ®¢*Ox(—1,.,.,—1)

is generated by global sections on U x X for some open affine subset
U C G containing the identity. If d = (dy,---,dy,) is another m-tuple
then let cd = (c1dy, . .., cmdm).
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MULTIPLICITY ESTIMATES AND THE PRODUCT THEOREM 157

Let v : C! — G denote an analytic group homomorphism with
A =1(C?). For g € G and z € X define the analytic map

(A ct— X by z+— W(z) ’ g] (z).

The order of a multihomogeneous polynomial P along A at g(z) can
be defined as in PaiLippoN [P1, p. 357] and MAsSER-WUsTHOLZ [MW2,
p- 234] :

DEeFINITION 0.2. — Given a multihomogeneous P € R, let the order
of P along A at g(z) be the order of the analytic function P[y)g ;(2)]
at z =0.

Let S C G be a finite subset with e € S. As in [P1] write

Sn={Zgi; gieS}-
i=1
Also let Gz = {g(x); g € G} and
deg,(Gz) = degy(Gx)

where Gz is the Zariski closure of Gz.
The following is a slight generalization of [P1, Thm 2.1] :

THEOREM 0.3. — Let x € X, T € N and let P € R be a multihomo-
geneous polynomial of multidegree d. Assume that G is connected and
commutative and that Gz is projectively normal of dimension n. Suppose
P vanishes to order > nT+1 along A at S,,(x). Then either P vanishes on
all of Gz or there exists a proper connected algebraic subgroup H C G and
an element g € G such that P vanishes along (¢’ - g)Hz for all ¢’ € S and

03.1) (T + codim(Az N Hz, A:c))

codim(Az N Hz, Ax)
x card((S + Hz)/Hz) degy Hr < deg,, Gz.

Under certain further hypotheses, THEOREM 0.3 can be extended to the
case when G is non-commutative. No effort has been made to estimate
the constants c¢; appearing in THEOREM 0.3. We do, however, address
the problem of obtaining a projectively normal embedding of X. Using
techniques of BERTRAM, EIN, and LAzARSFELD (see [BEL], [EL]), we give
a quick effective construction of projectively normal embeddings of certain
commutative group compactifications, obtaining results similar to those
of KNop and LanGe [KL1].
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158 M. NAKAMAYE

The outline of the paper is as follows.

In §1 we recall the prerequisites from intersection theory. The results
presented here have been well known to intersection theorists for some ten
years, but there seems to be no universally accepted method or reference
so we have tried to give a unified account. We also prove a transversality
result needed in the proof of the zero estimates. The end of this section is
devoted to some remarks on commutative group compactifications.

In § 2 we show how to estimate lengths of primary ideals in terms of
certain differential operators. This idea is originally due to WiUsTHOLZ
(cf. [W2, Lemma 3]). The main theorems of the first two sections, THEO-
rREMS 1.1 and 2.9, imply the product theorem (THEOREM 5.2) and, except
for some technical lemmas proved in § 3, THEOREM 0.3 as well.

In § 3 we make some technical remarks about differential operators and
fill in a small gap in ProrosIiTION 1 of [W2].

Finally, in § 4 and § 5 we prove THEOREM 0.3 and the product theorem;
the proofs follow PuiLipPoN [P1] and Fartings [F] respectively and
contain no new ideas.

1. Intersection Theory

The main tool used in the product theorem and zero estimates is
a refined Bézout theorem. Before presenting this, we need to fix some
notation. As in the introduction, let

P=P" x...xPm
and let R be the corresponding projective coordinate ring :
R = kﬁ[XLo, .o )Xl,nla - ,quo, e ,Xmmm].

We will assume that k is of characteristic zero. If I C R is a multi-
homogeneous ideal, then denote by V(I) the subscheme of P determi-
ned by I. Given a subscheme X C P and an irreducible component V
of X, let £y (X) denote the length of Oy x. Note that if X = V()
then ¢y (X) = £(Oyp/I). All intersections will be in the scheme theo-
retic sense (cf. [Fu, App. B 2.3]). If f : X — Y is a morphism of schemes
let f(X) CY denote the scheme theoretic image (cf. [H, p. 93, 3.11 (d)]).
If Y is a scheme, denote by [Y] the associated cycle (cf. [Fu, section 1.5]).

Both PuiLippoN [P1, Prop. 3.3] and FArTiNGs [F, Prop. 2.3] consider
the problem of controlling the degree of the zero scheme of an arbitra-
rily large number of multihomogenous polynomials. For a treatment of
this type of problem from the intersection theoretic viewpoint, one can
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MULTIPLICITY ESTIMATES AND THE PRODUCT THEOREM 159

refer to [Fu], [F-L] or [P-V], [S-V], [V]. The relationship between the ap-
proaches of FuLTron-LAZARSFELD and VOGEL et al. is made explicit in
[G, especially 3.6-3.10]. For an older treatment of the multihomogeneous
Bézout theorem, one can refer to [Wa]. We have the following general
result :

THEOREM 1.1. — Let S C HY(O(dy, . ..,dn)) be a collection of multi-
homogeneous forms of multidegree d and let J = (S) C R be the
multihomogeneous ideal generated by S. Let X be a pure dimensional
subscheme of P and let Y; be the irreducible components of X NV (J).
Then

(1.1.1) Y by, (XNV(])) - deg, Y; < deg, X,
Oyj’x CM

where the sum is over those Y; such that Oy, x is Cohen-Macaulay.

Proof. — First, following Farrings [F, Prop. 2.3], let

t = max{codim(Y;, X)}
j

and choose Qi,...,Q: € J of multidegree d so that each Y; is an
irreducible component of V(Q1,...,Q;) N X ; this can be done by taking'
generic linear combinations of generators for J. Let I = (Qq,...,Q¢).
Since I C J it follows that

(1.1.2) by, (X NV(J)) < ty,(XnV(I))

We want to apply [Fu, Example 12.3.7] (obtained also by PATIL and
VogeL [P-V]; see [V, Cor. 2.28]), but there is a minor complication
caused by the fact that the intersection takes place in a multiprojective
space.? So let P —— P be the Segre embedding determined by a basis for
H°(O(dy, ... ,dm)). Let X' = i(X) and similarly let Y] = i(Y;). Choose

Lo € H°(Opn (1)) suchthat i*Lo = Qq

1 The technique of taking general members of a linear system in order to obtain Bézout
type results dates back to van der WAERDEN (cf. [Wa, especially p. 769]) A similar
method is used in [Br] and plays a particularly central role in Vogel’s approach to
Bézout’s theorem (cf. [G, pp. 199-201] and [S-V]).

2 The refined Bézout’s theorem remains true in this more general setting but does not
give the desired inequality for degrees with respect to O(da,...,dm) unless all d; = 1.
In particular, if Tp denotes the tangent bundle of P, one needs Tp @ O(—ds, ..., —dm)
to be generated by global sections (cf. [Fu, Cor. 12.2]); alternatively, one can use
[Fu, Example 12.3.3] together with Example 12.3.7.
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160 , M. NAKAMAYE

and set I’ = (Ly,...,L:). For a subscheme W C PV we denote by deg W
the degree computed with respect to Opn(1). Since the hypersurfaces
V(L) are all Cohen-Macaulay, an application of [Fu, Example 12.3.7] to
the schemes X,V (L1),V(Lg),...,V (L) yields

(1.1.3) >t (X'nV(I) - degY]
Oyr x1 CM t
< degX'- H degV(Ly) = deg X'.

a=1

Note that Eyjf(X’, NV (I')) = Ly;(X NV (I)) which is clear since i*I' = I.
But degi(V) = deg, V for any V C P and so (1.1.1) follows immediately
from (1.1.2) and (1.1.3).

REMARK 1.2. — Using [Fu, Example 12.3.1] (cf. also [La2, Chap. 3,
Lemma 3.5]) one can avoid taking generic linear combinations of genera-
tors for the ideal J in the proof of THEOREM 1.1. The problem here is that
if Py,..., P, are an arbitrary set of generators for J then the intersection
class V(Py)---V(P,)- X (always defined as in [Fu] section 8.1) would be 0
if » > dim X. In order to remedy this situation, one reduces by a Segre
embedding to an intersection of hyperplanes Hy, ... H, with a projective
variety X C P". Next choose (cf. [Fu, Example 12.3.1]) a suitably large
positive integer N and a linear projection m : PV\L — P". Then consider
the cones 77 1(X) and 7~ !(H;) and their closures X and H; in PV. Since

dmXNH;N---NH, >dimX + (N —n—r),
when N > n +r — dim X one can apply [Fu, Example 12.3.7], giving

(1.2.1) Z by (XNV(J))-degV; <degX,
Oy, x CM ’

where J = 7*J and Y; are the irreducible components of V(J)N X. But
if {Z;} are the irreducible components of V' (J)NX then {Z;} C {Y;}. Note
that OZ, 5 is Cohen-Macaulay if and only if Oz, x is Cohen-Macaulay
and that

(1.2.2) £z (XNV(J))) =Lz,(XNV(J)) foralli.

Finally degZ; = degZ; and (1.1.1) follows® directly from (1.2.1)
and (1.2.2).

3 T would like to thank D. BERTRAND for suggesting this alternative method of proof
for THEOREM 1.1.
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REMARK 1.3. — We show here briefly how THEOREM 1.1 implies
ProprosITION 3.3 of [P1]. PHILIPPON states his results in terms of pri-
mary ideals and Hilbert polynomials. Using [Fu, Example 2.5.2], this can
be translated into the language of degrees of schemes. We will abuse nota-
tion slightly, however, because Philippon considers non-equidimensional
schemes X C P and the degree deg,; X only counts those components of

maximal dimension. So if
dimX

x=J x
=0

where X; is the union of irreducible components of X of dimension 4,

then let
dimX

degy X = ) deg, Xi.
i=0
Let X C P be a subscheme and let U C X be a Zariski open subset
which is Cohen-Macaulay (with the induced scheme structure from X).
Let J = (Py,...,P.) be an ideal generated by multihomogeneous forms
P; of multidegree < d. Let Y} be the irreducible components of X NV (J).
Then the two parts of Proposition 3.3 in [P1] can be expressed as follows :

(1.3.1) Zdeng} < degy Xred ,
J
(1.3.2) > by, (XNV(J)) - deg,Y; < degy X.
Y;NU#¢

In (1.3.1), X;eq denotes the reduced scheme corresponding to X. The only
new ingredients in this proposition are that X is no longer assumed to be
pure dimensional and that the multihomogeneous forms are only assumed
to be of multidegree < d and not necessarily = d. One quickly reduces,
however, to the case where all P; have multidegree d by multiplying P; by
a set of forms of multidegree (d — deg P;) which generate a projectively
irrelevant ideal. We first show how to derive (1.3.1) from THEOREM 1.1.
Note that a slightly stronger version of inequality (1.1.1) actually holds.
In particular, using the trivial lower bound (ey,(V(J) N X ))]P, > 1 for the
Samuel intersection multiplicity (cf. [Fu, Example 4.3.4] as well as [Fu,
Example 12.2.9] for this particular application) the proof of THEOREM 1.1
shows that

(1.3.3) D deg,V; + Y by, (X NV(J)) - deg, ¥, < degy X.
Oyj,x not CM Oyj,x CM

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



162 M. NAKAMAYE
Decompose Xieq = U?:&X X; into pure dimensional components. Then
(1.3.1) follows by applying (1.3.3) to X; and summing over 0 < ¢ < dimX.
Next we derive (1.3.2) from THEOREM 1.1. If X is pure dimensional
then (1.3.2) is an immediate consequence of (1.1.1). In the general case,
simply note that if X;eq = U?:'SX X as before, then all points of X; N X;
for i # j are not Cohen-Macaulay. But then THEOREM 1.1 applies to X;
(with some scheme structure restricting to the induced scheme structure
on U N X;) for each 0 <4 < dimX. Since each Y; in the sum of (1.3.2) is
contained in a unique X;, (1.3.2) follows by summing these inequalities.

Note that THEOREM 1.1 is slightly stronger than ProposiTION 3.3 of
Philippon since it gives some minimal information on those components Y
where Oy, x is not Cohen-Macaulay. BROWNAWELL [Br] gave a simplified
proof of Philippon’s result (1.3.2) several years ago using only the classical
version of Bézout’s theorem, while A. HirscHowiTz did the same for
(1.3.1) (see [B, Prop. 3]). One can also find (1.3.1) in [Fu, Example 8.4.5]
and [V, Cor. 2.26]. Finally, both (1.3.1) and (1.3.2) are proven in [G,
Example 1.7] using ideas of BRowWNAWELL, FuLTON, and VOGEL.

Proposition 2.3 of [F] is closely related both to THEOREM 1.1 and to
the corresponding result of Philippon. We state it here for convenience of
the reader.

CoroLLARY 1.4. (Favrinags). — Let J be as in Theorem 1.1 and
let Z; be the irreducible components of V(J) of codimension t in P. Let
L; = 7fO(1) where m; : P — P™ is the projection to the i*® factor. For
any m-tuple e = (e1,...,en) with Y. e; =t, let V. denote a generic cycle
representing c1(£1)* N...Nc1(Lm)™. Then

> tz,(V(J))) - deg(Z; - Ve) < degy Ve.
Z

2
This follows directly from THEOREM 1.1 taking X = V, (cf. [Fu,
Example 8.4.8] for why £z, (V(J)) = £o(Ve NV (J)) where Q € Z; N V,).
To give a proof of the Proposition in the language of [Fu] without using
the refined Bézout theorem, one first reduces via a Segre embedding to
intersecting a smooth projective variety V' C PN of dimension r with
a set of r hyperplanes Hi, ..., H, of degree d. If {Q;} are the isolated
points of the intersection H; N --- N H, NV then, using [Fu, Def. 7.1]
for the intersection multiplicity i(Q;, Hy - -+ H, -V ; PV), CoroLLARY 1.4
reduces to
> i(Qj, Hy -+ Hy - V;PV) < deg V.
Zj
This follows from Bézout’s theorem [Fu, Thm 8.4] since the points {Q,}
are proper components of the intersection. Alternatively, one can proceed
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inductively as in Faltings; at each step, throw away all components
which will have excess dimension at the following step and then use
[Fu, Example 7.1.8 and Example 7.1.10] to compute the intersection
multiplicities. Using the same type of argument, one easily deduces that
if X and J are as in THEOREM 1.1 and Z; are the irreducible components
of the intersection X N V(J) of codimension ¢ then

(1.4.1) > lz,(XNV(])) - deg, Z; < degy X.

Oz;,x CM
It should be emphasized that (1.4.1) is enough for the application to
zero estimates since this only requires information about components of
the same dimension.

We need a couple more results from intersection theory more closely
related to the specific set up of zero estimates on group varieties. Consider
the following situation : let G be an arbitrary connected algebraic group.
Suppose G acts on a projective variety X, i.e. there is a morphism
¢: G x X — X satisfying

(1) ¢(e,z) =z for all x € X where e is the identity element of G,

(2) ¢[g,¢(d,x)] =d(g-¢',x) forall g,¢' € G and all z € X.
We will normally write ¢(g,z) = g(z).

We begin with a transversality result which is behind Lemme 4.6 in [P1]
and which is essential in order to complete the proof of Proposition 1
in [W2] (see REMARK 3.9 below). It is closely related to a result of KLEI-
MAN [K] (cf. [Fu, Appendix B 9.2] and [H, III, Thm 10.8]). If XY ¢ W
are two subvarieties of an algebraic variety and {Z;} are the irreducible
components of intersection, let A = Oz, y and let J be the ideal in A
generated by the ideal of X in W. We say that X and Y intersect gene-
rically transversally if J is the maximal ideal of A.

THEOREM 1.5. — Suppose G is a connected algebraic group acting on a
quasi-projective variety X, with both defined over an algebraically closed
field of characteristic zero. Let V. C X be an irreducible subvariety. Then
there exists a non-empty Zariski open subset U C V' such that GuN'V is
generically transverse for all uw € U.

Proof. — We copy the proof from [H, III, Thm 10.8] with a few
modifications necessary for this setting. Let U C V be a non-empty Zariski
open subset which is non-singular with the induced scheme structure.
Define Y := (¢(G X U))rea and consider the dominant morphism ¢ :
G x U — Y. Shrinking U if necessary we can assume that ¢ is smooth;

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



164 M. NAKAMAYE

this follows as in Hartshorne by generic smoothness [H, III, Cor. 10.7] or
by the fact that G acts transitively on the fibres ¢~!(y). Construct the
fibred square as in [H] : &

w ——— U

| [

GXU—¢—>Y

o

U

Here 73 : G x U — U is the projection to the second factor andi: U — Y
the natural inclusion. Let ¢ : W — U denote the composition ms - j.
Since W is non-singular, applying generic smoothness to ¢ shows that,
shrinking U if necessary, ¢ is smooth and hence ¢~!(u) is smooth for
u € U. But it is easy to verify that this is possible only when GuNU, and
hence, GuNV is generically transverse.

REMARK 1.6. — We will need to apply THEOREM 1.5 in the case where
A C G(C) is an analytic subgroup of a connected group variety G, defined
by a coherent analytic ideal sheaf Z. This can be done essentially as above.
Let p : W — G denote the composition 7 - j. Then replace W in the above
commutative diagram by the complex analytic subspace C defined by the
inverse image ideal sheaf Im : p*7 — Ow (cf. [G-R, p. 19]). We know
that C is reduced because p is smooth. By [G-R, p. 117] there exists a non-
empty (analytic) open subset & C C which is a complex manifold (with
the induced structure of complex space). Instead of generic smoothness,
one applies its analytic analogue, Sard’s theorem ([G-G, Thm 1.12]),
tog:U - U.

COROLLARY 1.7. — Suppose G acts on X and V C X is an irreducible
subscheme with
[V] = m[Vied].

Let Z be an irreducible component of Gv NV for generic v € V. Then
m=~_{z (GU n V)

Proof. — Consider Y := (¢(G,V)), ., C X. We claim that for generic
v € V the intersection GvNV is proper in Y. This follows either from the
proof of THEOREM 1.5 or by considering ¢ : G x V — Y since the fibre
over g(v) has dimension

dimGvNV +dim G — dim Gv.
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MULTIPLICITY ESTIMATES AND THE PRODUCT THEOREM 165

If Yieg C Y denotes the set of regular points, then for generic choice of
v € V, the intersection Gv N Yieg is not empty. Moreover V N Y, is not
empty since for any smooth point g(v) € Y, v = g~!g(v) is also a smooth
point of Y. Also no irreducible component of the intersection Gv NV will
be contained in Yy = Y \ Yiee. Since intersection products are local
([Fu, Example 6.2.5] and see p. 137 for a discussion closely related to this
particular application) it will suffice to work on Y;e,. We will continue to
denote by V (resp. Gv) the intersection VNY;eg (resp. GuNYieg). Since Gv
meets V generically transversally by THEOREM 1.5, and since intersection
products commute with the cycle map ([Fu, Example 6.2.1]), it follows
that i(Z, Gv - V; Yieg) = m. Thus it remains to show that

i(Z,Gv - V;Yreg) = Lz(GunNV).

This follows from [Fu], Proposition 7.1 or Proposition 8.2 because V
(in fact any irreducible projective scheme) is generically Cohen-Macaulay
and Gwv is regular. The fact that a projective scheme always has an open
subset of Cohen-Macaulay points is perhaps most convincingly seen by
intersecting with generic hypersurfaces {V(f;)}; at each stage f; will form
part of a system of regular paramaters away from the closed subscheme
of embedded components.

Finally we need an easy result on deg g(V') for V C X. This is given in
[Mo, Lemme 2] and a weaker version appears as Lemma 4.5 in [P1]. We
give a proof here as another application of intersection theory.

LEmMMmA 1.8. — Suppose a connected algebraic group G acts on a
projective variety X. Then for all g € G and all V C X

degV = degg(V)

where the degree is computed with respect to any ample line bundle on X.

Proof. — In the special case when G is affine, the cycles [V] and
[g(V)] are rationally equivalent and hence numerically equivalent. This
follows from [Fu, Example 10.1.7] since G is rationally connected (and
in fact rational). In the general case when G is no longer necessarily
affine, the cycles [g(V)] and [V] are algebraically equivalent and hence
numerically equivalent. The algebraic equivalence of [g(V')] and [V] follows
from [Fu, Def. 10.3] by considering ¢ : X xG — X given by ¢(z, g) = g(z) :
consider the cycle

[0 (V)] € A(X xG), k=dimV +dimG
and observe that [¢~1(V)], = [g71(V)].
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In the proofs of zero estimates and of the product theorem we will need
to assume that a (normal) projective variety X with group action by G
is given a fixed projectively normal embedding. Knop and Lancge [KL1],
[KL2] have given an effective construction of such embeddings in certain
cases. We here sketch an alternative more abstract method which uses
results of BERTRAM, EIN, and LAzARSFELD [BEL], [EL].

The assumption of projectively normality is required for the following
reason. Given an embedding X — PV let Ox(1) be the associated very
ample line bundle on X. Both the multiplicity estimates and the product
theorem are based on taking «derivatives» of sections of Ox(n). As we
will see in the next section this means associating to each ¢ € H°(Ox (n))
a family F, ¢ H(Ox(cn)) for some positive integer c. In order to apply
THEOREM 1.1 the map H°(Opn (n)) — H°(Ox(n)) must to be surjective
so that F, is a set of hyperpsurface sections in the given projective
embedding. Now if X C PY is any subscheme (not necessarily normal)
then the ideal sheaf Tx is coherent [H, I, 5.9] and one has the standard
exact sequence

0 —> Zx(n) — Opn(n) — Ox(n) — 0,

for any integer n. But it is well known [H, III 5.2 (b)] that there exists ng
such that H'(Zx(n)) = 0 for all n > ng, and hence

H°(Opn(n)) — H°(Ox(n)) — 0

is exact for n > ng. The trouble with this argument is that ng is not easy
to compute in general; one encounters the same problem when asking
for an embedding to be projectively normal. Thus for example LANGE
[L, p. 262] assumes that his equivariant compactification is furnished
with a projectively normal embedding. Without this assumption, his
effective bound on the degree of homogeneous polynomials representing
translations is not valid. But the analysis of Knop and Lange in [KL1]
(especially Thm 6.4) makes the choice of ng effective for the projective
embeddings used in transcendence theory.

Recent work of BERTRAM, EIN, and LazARSFELD [BEL] gives, under
suitable hypotheses, effective bounds on the size of ng. More precisely,
suppose X is a smooth complex projective variety of dimension d and
let Kx denote the canonical bundle on X. If D is a very ample line
bundle and E is a numerically effective line bundle (recall that a Cartier
divisor D on a variety X is said to be numerically effective or nef if the
intersection number satisfies D - C' > 0 for all integral curves C' C X),
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then the adjoint bundle Kx ® D®* ® E defines a projectively normal
embedding for k > d + 1 provided that it is very ample ([BEL, Prop. 6];
see also [EL, Thm 1]). This result does not always apply directly in our
situation, however, because X is not necessarily smooth or even normal.
Under certain hypotheses on A and X one can lift to a desingularization X
and use Proposition 6 of [BEL] in order to obtain projective normality
of X embedded by Kx ® D®* ® E. To this end, it would be nice to have
a version of this result which only requires D to be ample but as of yet
this is only a conjecture (cf. [EL, Conjecture 4.2]).

Since the equivariant compactifications considered in transcendence
theory (cf. [KL1, section 6]) are smooth one can use the results of [BEL].
Let X be a compactification of a connected commutative algebraic group
as constructed in section 6 of [KL1] and let D be a very ample Cartier
divisor on X. We claim that —Kx is generated by global sections and
hence is nef. Taking E = —Kx in Proposition 6 of [BEL] shows that D®*
gives a projective embedding for any k£ > dim X + 1. To see that —Kx
is nef, consider the construction of X in [KL1]. Let G be a connected
commutative group variety over C. There is a canonical exact sequence

0-L—G—A—0,

where L is a linear group and A is an abelian variety. There is a (non-

canonical) splitting
L=][Gax ][] GCm,
1 1

where G, is the additive group and G,, is the multiplicative group. KNnop
and LANGE consider compactifications of G as an L-bundle over A. To
each equivariant compactification V of L they associate an equivariant
compactification of X. In transcendence theory, one is interested in
compactifications of the form [[P™ where Y .n; = r + s and where
the immersion L — [[P™ respects the given product structure on L.
Fix such an immersion and let X denote the corresponding equivariant
compactification of G. Let

T: X — A

denote the canonical projection. Each invertible sheaf Opn; (1) gives rise
to an invertible sheaf £, on X. A theorem of Knop and Lange [KL2,
Thm 2.1] says that

Pic,(X) 2 7" PicA® (P Z
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where Picp(X) denotes those invertible sheaves on X which admit an
L-action and where each copy of Z in the direct sum corresponds to
the sheaf L£;. Since Kx is admits an L-action, —Kx = 7L 4+ M
where M 2 >~ a;L;. Intersecting with curves C in the fibres of m shows
that M is generated by global sections. On the other hand, [Fu, Example
12.2.1] shows that —K x| is generated by global sections which forces £
to be generated by global sections.

Using this same argument and Theorem 1 of [EL] shows that if D is
a very ample divisor on X, then the embedding given by (dim X + 2)D
is cut out by quadrics. This is related to [KL1, Thm 6.4]. The result of
Knop and LANGE, however, is sharper applied to the specific line bundles
which they consider; in particular, they do not need to assume that D
is very ample. On the other hand, the approach sketched here gives a
potentially more general result applying to any very ample line bundle
on X, including those which may not admit an L-action.

2. Length estimates

We need to estimate lengths of primary ideals in terms of differential
operators as in [W2, Lemma 3] and [P1, Prop. 4.7]. Multiplicity estimates
occur in a similar fashion in Faltings’ product theorem. As before, X
denotes a projective variety with group action by a connected algebraic
group G given by ¢ : G x X — X. From this point on, we will assume for
simplicity that all varieties and morphisms are defined over C. Assume
also that X is normal and fix a projective embedding X —— PV in
which X is projectively normal. Let R denote the projective coordinate
ring of PV and let £ = i*O(1). Fix a very ample line bundle M on G.
We will define translation operators and differential operators and verify
that they satisfy certain basic properties (cf. [P1, section 4.1], [MW1,
sections 2-3], and [MW2, sections 2-3] for similar considerations). In the
applications, X will be a product of varieties with group actions; it is not
difficult to extend all of the definitions and lemmas of this section to the
multihomogeneous case.

Translation operators can be defined in a completely natural fashion
in the context of schemes. In particular if V' C X is a subscheme then
for g € G recall that ¢4,(V) C X denotes the scheme theoretic image.
If V.= V(I) then we will often write t4(/) C R for a homogeneous
ideal defining ¢,(V'). THEOREM 1.1 requires an explicit estimate on the
degree of polynomials generating a particular choice of ¢4(I). To obtain
this estimate, choose a positive integer a such that £®* @ t*_, £®~1 is
generated by global sections; there is no difficulty choosing a uniformly
in g (cf. the main theorem of [L]) as we will show later when defining

ToME 123 — 1995 — n° 2



MULTIPLICITY ESTIMATES AND THE PRODUCT THEOREM 169

differential operators. Choose a basis {v;} for H(X,L®* ® t3_,L®™?).
Then there are morphisms

Ox(1) 22 Ox(a)
given by o +— t;_la ® 7;- One can extend t,; to a map
H(0x (n)) —£ H°(Ox (an))

in the natural manner respecting the ring structure on

Rx = éHO(Ox(z’)).

=0

If X =V () and Py,..., P, are homogeneous generators of I of degree < n
then {t4;(P;)} are homogeneous generators of t,(I) of degree < an. Since
homogeneous ideals defining projective varieties will occur frequently in
what follows and since these are only determined up to a projectively
irrelevant ideal, we make the convention that for homogeneous ideals
I,J CR, I~Jifandonly if V(I) ~ V(J).

REMARK 2.1. — Suppose X C PV is defined by a homogeneous
ideal I C R. Then PHiLIPPON [P1, Def. 4.1 and 4.2] defines ¢4(I) to be
the ideal in Rx generated by t4;(I) for all 7. Our more geometric formu-
lation of Philippon’s definition makes it clear that ¢4(I) is independent
of the choice of a up to a projectively irrelevant ideal and it is also inde-
pendent of the choice of basis for H°(X, £®* ® t;_1£®‘1). It is also clear
that tg/[ty(I)] ~ tg.4(I). MAasSER-WUsTHOLZ take a slightly different ap-
proach using «contracted extensionsy of ideals (cf. [MW1, p. 492-498]
and [MW2, p. 237-240] for the details).

Next we define differential operators. This is done similarly to transla-
tions except that we work on G x X. All sheaves and cohomology groups
will be on G x X until specified otherwise. Choose positive integers b, ¢
such that
(2.2) Foe =T M®PP @ 13L%¢ ® ¢*LO71

)

is generated by global sections* where 7m; and 7, denote the projections
of G x X to the first and second factor respectively. Choose global

4 This shows, by restricting Fb,c]gx X, that in REMARK 2.1 above a can be chosen
uniformly for all translation operators ¢t4. However, in general there is not an explicit
effective bound on a as is given by [L] in the special case where X is an equivariant
compactification of a commutative group variety and ¢ : Gx X — X is the group action.
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sections {v;} which generate F.; note that H°(F,.) may be infinite
dimensional since G is only quasi-projective. Precisely as above, define

(2.3) i H'(Ox(n)) — H°(¢*Ox(n) ® FEr)
— HO(WTM®nb ® ﬂ;l:@"c).

Let A C G be a d-parameter analytic subgroup given by an analytic
homomorphism

Y :C— G.
Let z1,...,2q denote the standard coordinate system on C%. Let B(0, )
denote the ball of radius € centered at the origin in C? and let H(B(0,¢))
denote the ring of holomorphic functions on B(0,¢€). If a = (a1, ...,aq)
is a d-tuple of non-negative integers, then let

] e o
po oo
0z 0z 0zy*

DEFINITION 2.4. — Suppose 0 € HO(mf M®F ® 13L%7) for B, > 0.
Take a local trivialization of 7} M®? along U x X where U C G is
some small affine open subset containing e. If U = Spec B then oy €
B ®c H(m3O0x (7)) where oy is the image of o under the trivialization
[L, Lemma 1]. Since e € U, we can further restrict oy to ¥/(B(0,€)) x X C
U x X. Composing with 9 on the first factor gives oy (2) € H(B(0,€)) ®
H(730x(v)). Then

D% := A*[oy(2)]].=0 € H°(Ox(7)).

It is easy to check that (up to multiplication by a non-zero constant)
D%o does not depend on the choice of U or on the local trivialization
of 7} M®B. For future reference, write D;(0) = 8/02;[oy(2)]|,—0 so that

D* = D¢ ... Dge.

DEFINITION 2.5. — Suppose P € R is a homogeneous polynomial of
degree n considered as a global section of £L®™ 2 Ox(n). Then

D*P := ({D*[n;(P)})
where 7; run over all homomorphisms defined in (2.3).

DerINITION 2.6. — Let I C Rx be a homogeneous ideal and D% a
differential operator. Then write

D*(I)= ({D°P; PeIand0<B<a}),

where 8 = (f1,...,084) < (aq,...,04) = « if and only if §; < «; for all 1.
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REMARK 2.7. — One can verify, using the Leibnitz formula, that if
I =(Py,...,P,) for homogeneous polynomials P; then

D*(I)~ ({D°P;; i=1,...r, 0< B < a}).

We now proceed to estimate the length of primary ideals in terms of
differential operators. This requires a constant which is closely related
to the constants o, and p, of WisTHOLZ [W2, p. 473-474 and p. 479].
Suppose V C X is a subvariety. Let

(2.8) cy := codim [Av NV, Av] where v € V is a general point.

Also given a subset S C {0/0z1,...,0/0z4} let

DT={DO‘; |a[§TandaiaéO=>£ES}.

Thus DI is just the differential operators of weight < T in S. Without a
suffix
DT = {D*; |a| < T}.

If I C Rx is a homogeneous ideal then let
DE(I) = ({D*(1)}; D* € D§).

For v € V, define the analytic map %, : C* — X by z — 1(2) - v. Also
define the complex analytic space

Yy, := 4, (V) N B(0,¢).

The following result is implicitly stated by FALTINGS in the proof of
the Product Theorem (see [F, Thm 3.1]) for the special case when
G=A"x.---xA"™ X =P, and A =A™ x .-- x A" ; it generalizes
Lemma 3 of [W2].

THEOREM 2.9. — Suppose Py C R is a homogeneous prime ideal
defining a subvariety V and I C R is Py -primary. For genericv € V let
{0/0z:}ies be a basis of derivations transversal to'Y, at0 so that |S| = cy .
Let 6 be the cardinality of the set C of transversal differential operators
which map I into Py :

C={a; i #0=0/0z; € S and D*(I) CPv}

Then ey [V(I)] > 6§ + 1.
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Proof. — Choose a small affine open subset U C X so that UNV
is a smooth complete intersection in U. Suppose codim(V,X) = r and
Q1,...,Qr € Py are homogeneous polynomials which generate I(V NU).
Order the coordinates of C¢ so that S = {1,...,cy}; note that cy < r.
Let 6;; denote the Kronecker delta. By THEOREM 1.5 and REMARK 1.6,
there exists v € V N U such that Av NV is transverse at v. This means
that for e sufficiently small ¥¥(Py) generates i(Y,) where i(Y,) denotes
the ideal sheaf of Y, in Opo,) (cf. [G-R, p. 77]). Consequently, we can
assume (taking linear combinations of the Q; if necessary) that for some
fixed dehomogenization

5}
(2.9.1) &_Qi [%(Z)]lz:o =0;5, for1<4,j5<cy.
J
Given a € C let Q* = ]_V[ Q7. We claim that
i=1

(2.9.2) P = Z aaQ* ¢ I unless all a, =0.
aeC

Since I is homogeneous, it suffices to verify (2.9.2) in the case when P is
homogeneous of degree . Suppose ag # 0. Then it follows from (2.9.1)
that

AP P, (2)]],_0 # 0.
DEFINITION 2.6 then implies that DPP ¢ Py and thus (2.9.2) holds.
Denoting by «"» the completion of a local ring,
Ovx =~ k(V)[[Q1,--., Q.
But [Ma, p. 63 Remark 2 and Thm 8.11]

(2.9.3) OV,X/I ~ (OV,X/I) ~ 6V,X/I(;)\V,Xa

and by [Ma, p. 63 (3)], > cc @:aQ* ¢ I(j)\v,x unless all a,, = 0. It is then
an easy exercise to check, using (2.9.2) and (2.9.3), that €(6V,X/I(5V,X) >
6 + 1 and this concludes the proof of THEOREM 2.9.

COROLLARY 2.10. — Suppose Py C R is a homogeneous prime ideal
defining V. .C PN and suppose I is Py -primary. If DTT C Py then

v = (V0T).

This is a trivial consequence of THEOREM 2.9; it follows simply from
counting the number of differential operators in DE, where S is as in the
statement of THEOREM 2.9.
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REMARK 2.11. — It is essential in some of the applications to have
THEOREM 2.9 instead of COROLLARY 2.10. In diophantine approximation
one is interested in polynomials with large «index» at a given point. But
the index is a weighted version of the order and so it is not sufficient to
have a multiplicity estimate which only considers the order of a function
at a point. This will be clear in the application to the product theorem.

3. Lemmas about Differential Operators

In this section we gather together lemmas about the functorial behavior
of differential operators which will be needed in the next section. The end
of the section discusses how our differential operators are related to those
defined by WosTHOLZ [W2] and how THEOREM 1.5 relates to Proposition 1
in [W2].

LEMMA 3.1.— Let I C Rx be a homogeneous ideal and D* a differential
operator. Then D*(I) is independent of the choice of b and ¢ in (2.2) and
of the choice {~;} of global sections generating Fy .

This can be seen as in [P1, Prop. 4.3] by using the derivation proper-
ties of D®. We briefly sketch a proof in our set-up. First, assuming in-
dependence of the choice of {~y;}, we show that D*(I) ~ (D%)'(I) where
(D*)'(I) is defined via {7/} € H*(G x X, Fy ) with ¥ > b and ¢’ > c.
Choose v, = 7; ® 6, where {v;} is the choice of generating sections for
Foc and {6x} is a set of sections which generate

WIM@’I"’ ® 7r§£®c"C > Fyo ® ffc—l.
Let s € H*(Ox(1)) and let 0} = ¢*s®~, and 0; = ¢*s®+~;. For all § < a,
(3.1.1) Dﬂag = D’B(O'j ®6k) = DﬂO'j ® (5k|e><X) + o+ Tjlexx ®Dﬁék,

where the intermediate terms are given by the Leibnitz formula and are
of the form

[(DPro;) ® (DP26)], B1+B2=8

But as k varies, 0x|.x x generate a projectively irrelevant ideal and the rest
of the terms in (3.1.1) are in D*(I). This verifies independence of b, ¢ for
differential operators applied to generators of Ox(1). The general case
follows from this since the operators D are determined by their values
on H°(Ox(1)) by the Leibnitz formula.

Next we show that D*(I) is independent of the choice {7;} of global
sections generating F .. Let v € H°(Fy ) be an arbitrary global section.
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Then it suffices to show that adding 7 to the set {7;} does not change
the scheme defined by D*(I). This is a local condition which we verify
on an open affine cover of X. Since {7;} generate F; . the restrictions
{7ilexx} generate Fp clexx = Ox(c—1). So if U; C X is the complement
X\ Z(¥i|exx) of the zero locus of ¥;|exx then [ JU; = X. It is clear that
if € is sufficiently small then for all i, 7; does not vanish on B(0,¢€) x U;.
In particular the rational function /7; has no poles along B(0,¢€) x U;.
Now choose a global section s € H?(Ox(1)). Then for all 8 < a,

DF (¢ S®'Y)|0><Ui D (¢ 5®%i %)|0in

= % [DP(¢*s ® )] joxu,
4+t (¢*s®’yz)(DB(l))

Yi |O><U,~’

where the intermediate terms are, as above, of the form

[(p* (%)) (D%(9*s 7))o B+ B2 =B

Since DP'(7y/7;)|oxv, is computed on B(0,€) x U; and since +y/; has no
poles on B(0, €) x U; the result follows for sections of Ox (1). The argument
for sections of Ox(n) is precisely the same except that now v € H O(]—'S’C" )
and 1; is replaced by @j_, v; where v; € H Y Fo.c)-

REMARK 3.2. — LEMMA 3.1 can be rephrased in the terminology of
Masser-WustHOLZ [MW1, Lemma 1] and PHiLiPPON [P1, 4.1]. One wants
to represent the morphism ¢ : G x X — X in terms of homogeneous
polynomials in a fixed set of coordinates on X and G. A collection {P;}
of homogeneous polynomials representing ¢ is called complete if for any
g X ¢ € G x X there exists P; representing ¢ in a neighborhood of g x x.
The homogeneous polynomial ¢* P ®y only represents ¢ off of Z(~y). Thus
if P, = ¢*P ® y; then {P;} is a complete collection if and only if {v;}
generate Fp .. LEMMA 3.1 shows that our definition of derivatives does not
depend on the choice of a complete collection of homogeneous polynomials
representing ¢.

Now we must show that the differential operators and translation
operators satisfy certain compatibility conditions as in [P1, Prop. 4.3].

LeEmMA 3.3.— Let I C Rx be a homogeneous ideal and let D** and D*?
be two differential operators. Then

D [D(I)] ~ Do (T).
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Proof. — We will verify the lemma when I = (P) is the ideal generated
by a single homogeneous polynomial P € Ox(n); the general case then
follows easily. Consider the following commutative diagram :

GxGxX

0 idx ¢
xX/“ \GXX
NX 7

Here § = m x id where m : G x G — G is the group law. Denote by z the
coordinates on C? for the first factor G and by 2’ the coordinates for C% on
the second G. As in LEMMmA 3.1 it suffices to prove the result locally. So let
& = {&} denote local coordinates on some small affine open subset U C X.
The commutative diagram gives two power series representations for
(2,2',€) — p(z,7,€) and we equate coefficients of z*z'*2. Using the
fact that

G

0(z,7',€) = (¥(2) + ¥(¢'),€) = (v(2 +2),¢),
it follows that the coefficient of 2*12’*2 in the power series coming from
u = ¢ -0 gives a local generator for D*172(P). On the other hand, one
verifies that the coefficient of z*1 2’ *2 in the expansion for u = ¢ - (id x ¢)
gives a local generator for D*[D2(I)].

REMARK 3.4.—Note that in the proof of LEMMA 3.3 it is essential that
is an analytic group homomorphism. Most of the set-up for zero estimates
applies at least abstractly to an arbitrary analytic map ¢ : C¢ — G.

In the following Lemma we see why commutativity is important in zero
estimates which makes it natural for MASSER-WUSTHOLZ and PHILIPPON
to work on commutative algebraic groups.

LemMA 3.5. — Suppose ¢ € G commutes with A = %(C?). Then
ty[D*(I)] >~ D*[ty4(I)] where D* is an arbitrary differential operator.

Proof. — We will use the commutative diagram from LEmMMA 3.3 and
once more will prove the result when I = (P) with P homogeneous of
degree n, the general case following easily. Let

Fape=TiM®* @ 13 M®® @ w5 L£LE°.

Fix a,b,c so that Fgp. is generated by global sections and choose
generating sections
{v} CH°(GxGxX,F&.).

a,b,c
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Let
o;=p"PRy € H(GxGx X, L @ F&} ).

One verifies using the definitions that

ty[D*(P)] ~ ({Dﬂ(aiIAngX)}gga)»
D*[ty(P)] ~ ({Dﬂ(ailngxX)}ﬁga)'

But by the commutativity assumption, p|sxgxx = H|gxAxx- Thus an
application of REMARK 3.2 (which, to be rigorous, only applies to Ax Ax X
where A is the Zariski closure of A in G since the methods are only valid
in the algebraic category) concludes the proof of the lemma.

REMARK 3.6. — As is clear from the proof of LEMMA 3.5, we can
apply a translation operator and a differential operator simultaneously
by working on G x G x X. Moreover one can choose a, b, c such that F4 5 .
is generated by global sections with ¢ the constant appearing in (2.2). The
importance of this is that if one applies first a differential operator and
then a translation operator to a homogeneous polynomial of degree n then
one obtains an ideal generated by forms of degree c>n whereas applying the
operators simultaneously gives an ideal generated by forms of degree cn.

Finally we will show how, in certain special cases, our definition
of differential operators following Philippon corresponds with the more
intrinsic definition of WisTHOLZ in [W2]. Let H = A denote the Zariski
closure of A in G. Then H is a commutative group variety [Lal, p. 173].
Assume that for some z € X the orbit map H — X by h +— h(z) is an
immersion. Composing with X < PV and taking the Zariski closure gives
an equivariant compactification of H denoted by H,. Assume that H,
is projectively normal. WusTHOLZ [W2, p. 477-478] defines differential
operators on an affine coordinate ring k[H] associated to an equivariant
compactification. We sketch this here for the convenience of the reader.
Let T. H denote the tangent space to H at the origin and exp: T.H — H
the exponential map. Also let f : T.H — H, — PV denote the
composition of exp with the natural inclusion H < PV . Identify C? with a
linear subspace of T,H. Let U C PV denote the open affine subset of PV
given by the complement of the hyperplane Xo = 0 and let &,...,&N
denote the affine coordinates on U. Assume that H, N U is not empty.
WustHOLZ [W2, p. 478] defines

Fj(z)zﬁj-f:TeH—NC.
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By [Wal, Prop. 1.2.3] 0/02(F;) = Hij(F,...,Fn) where H;; is a
polynomial. WiisTHOLZ defines

1o}
a_z,-sj = H;j(é1,...,&)

and extends 0/0z; to a derivation on k[&, ..., €n], factoring through the
ideal I(U N H,) defining U N H,,. If Rx is the projective coordinate ring
of X and Ry, is the projective coordinate ring of H, for our fixed embed-
ding in PV then there is a natural surjection Rx N Ry, . fICRxisa
homogeneous ideal, then denote by Iy, the image p(I) and by Iy ~u
the corresponding dehomogenization. Note that V(Iy,) =V (I)N H,.
If I C Rx is a homogeneous ideal, and D* a differential operator then
define the Wuiistholz differential operator D as follows :

Dy(I) = (IHxnU,{%;(P)} ; Pe€lg,nu, B< CI),

where the derivative B‘If | / 0w 2P is taken using WissTHOLZ’ definition. We
will now show that WiUsTHOLZ’ definition of differential operators and
DEFINITION 2.6 are compatible.

LeEmMMA 3.7. — Suppose I C Rx is a homogeneous ideal. Let U C X
be the open subset given by the complement of the hyperplane sec-
tion Xo = 0. Let D* be a differential operator. If H, N U 1is not empty
then D*(I)wwnu,) = Da(lwna,))-

Proof. — First note that derivatives as defined in DEFINITIONS 2.5
and 2.6 commute with restriction to subvarieties so that

D*(Iu,nv = D*(Ia,nv)-

This reduces the question to H,. Consider the following commutative
diagram :

d add
C*xT.H —— T,H

¢X9XPJ \ jf
HxH, ——— H,

Let 2z’ denote analytic coordinates on T,H. Note that if Gy =& p:
C% x T,H — C then

0
9z [Gj(zv Zl)]lz:O =H(Fy,..., FN),
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On the other hand, DEFINTTION 2.5 and REMARK 2.7 give
Di(X;) = ({Di(¢*X; ®me)}) -

Composing with exp on the second factor and using the commutative
diagram shows that on U N H,

(¢*Xj ® nk) (zv Z,) = Gj(z’ Z/) ' le(z, z/)
and 7x(z, 2') have no common zeroes. It follows that
(DilXj)UnHz = (Hij(€17 .. ygn))('])

where J C k[&1, ..., &y] is an ideal with no common zeroes. An application
of Hilbert’s Nullstellensatz concludes the proof in the special case when
I = (X;) is generated by a coordinate function and D* = D}. The general
case follows by LEMMA 3.3 and the Leibnitz formula.

REMARK 3.8. — One can prove COROLLARY 2.10 by reducing to
[W2, Lemma 3] in the special case when LEMMA 3.7 applies. So assume
that for generic v € V, H, is an equivariant compactification of H. Choose
a non-empty open affine subset U C H, given by the complement of a
hyperplane section in the given projective embedding. Let Y C H, NV
be an irreducible component. By COROLLARY 1.7,

¢(Ovpw /1) = £(Oypn /11 + I(Hy))).
Since lengths are computed at the generic point,
by (VI + I(Hx)]) = £(Oyauan /(I +I(H;)) NU]).
Then LEMMA 3.7 gives that 0L [(I+I(H,))NU] C I(YNU) and Lemma 3
of [W2] applies.

REMARK 3.9. — We show here how THEOREM 1.5 is needed in the
proof of Proposition 1 in [W2]. For the convenience of the reader, we
first recall some definitions from [W2], suitably generalized to our setting.
For V.C X let I(V) = (Py,...,P,) be its homogeneous ideal and fix
some n € H°(G x X, Fy,) which does not vanish on e x V. One defines
(cf. [W2, p. 479])

Di[m(P))(mod I(V)) - Dgln(P1)](mod I(V))
p(V) = rank :
Di[n(P))(mod I(V)) - Dgln(Pr))(mod I(V))
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It is easy to verify that the definition is independent of the choice of F;
and also of n. Recall (2.8) : ¢y = codim(Av N V) for generic v € V
(cv = min{7(g(V)); g € G} in the terminology of [W2]; cf. p. 473). One
clearly has, for sufficiently general v € V and a fixed dehomogenization
of the P;,

o 1) INRRT L U
p(V) = rank 3
a%mv(zm:o SR o £ (O

From this it follows immediately that ¢y > p(V') and that equality holds
if and only if Av NV is transverse at v. Thus THEOREM 1.5 implies that
p(V) =cy for all V C X and this implies Proposition 1 of [W2]. The gap
in the proof of WisTHOLZ occurs on p. 495 where he states

I[exp_l(va)]§ = (¢la'-"¢l’Mla'"aMn—d)g-

This is only true when the intersection ANV is transverse at x.

4. Zero Estimates

In this section we prove THEOREM 0.3 and a generalization to deal with
the case of non-commutative groups. So let X = [[/~, X; be as in the
statement of THEOREM 0.3 with a product group action ¢ : G x X — X.
If Y C X is a closed subscheme and U C Y is quasi-projective, U is said
to be an irreducible component of Y if U is an irreducible component
of Y.

REMARK 4.1. — If g commutes with A then one can use LEMMA 3.5 to
show that P vanishes along A at g(z) to order > n if and only if ¢t,[D*(P)]
vanishes at z for all |a| < n. This is the content of [P1, Prop. 4.4].

Proof of Theorem 0.3. — Since the conclusion of the theorem only
involves the orbit Gz one can replace X with Gz and assume that P
is not identically zero on Gz. Define ideals I, C R as in PHILIPPON,
namely let I; = (P) and

In = ({t;-1[DT(Ia-1)]: g€ S}), for2<a<n+l.

Let Xo = V(I,). LEMMAS 3.3 and 3.5 and REMARK 4.1 show that
z € Xp+1 and hence X, is non-empty. This gives rise to a chain

X1:)X23"'DXn+1
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with dimX; = n — 1 and dim X,,y; > 0 so there exists® r such that
dim X, = dim X, ;. Let Y denote an irreducible component of X, which
is also an irreducible component of X,11. Since t,—1[DT(I;)] C L4 it
follows that Y C V(t,-1[DT(I,)]) or equivalently

(4.1.1) g(Y)cV[D"(I;)] C X,, forallgeS.

It follows that ¢g(Y') is an irreducible component of X, for all g € S since
g(Y) C X, and dimg(Y) = dim X,. Moreover both I. and DT(I,) are
Pgy(v)-primary for all g € S so that CoroLLARY 2.10 applies.

Let ¢ : G — Gz denote the morphism determined by g — g(z) and
write

H:={geG; g(Y)=Y}.

Since V(P) = X1 D X, D gY) for all ¢ € S, it is clear that P
vanishes on g(Hy) for all ¢ € S and any y € Y. To obtain (0.3.1)
we will show that Hy as well as g(Hy) can be cut out (with high
multiplicity) by multihomogeneous polynomials of multidegree < cd and
then apply THEOREM 1.1. To this end, define

J = ({tg—l(Ir); g€ ¢>—1(Y)}).
Hence
(4.12) [V(J)Nn¢(G = {g(z) € Gz; [p7 (V) - g](z) € X,}

= {g(z) € Gz; g(Y) c X}

] red

Since g(Y) C X, for all g € S, g(Hz) C V(J) for all g € S. Moreover
we claim that g(Hz) is an irreducible component of V(J). This follows
from the definition of H and the fact that g(Y) C X, is an irreducible
component. By LEMMA 3.5,

(413) VDTN, = {9(z) € Gz; g(Y) c V(DTL,)}.

Equations (4.1.1) and (4.1.3) imply that g(Hz) is an irreducible compo-
nent of V[DT(J)] for all g € S. Let H' denote the connected component
of H containing the origin. The number of distinct irreducible compo-
nents of the form g(H'z) C V(DT (J)) is at least

card((S+ H'z)/H'z).

5 Note that this part of the argument is formally equivalent with Faltings’ use of the
product theorem [F, Remark 3.4].
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By LEmMA 1.8, deg, g(H'z) = deg,; H'z for all g € S. REMARK 3.6 shows
that, up to a projectively irrelevant ideal, J is generated by multihomo-
geneous polynomials of multidegree cd. Then THEOREM 1.1 (or 1.4.1) and
COROLLARY 2.10 combine to give

T + codim(Az N H'z, Az)
codim(Az N H'z, Ax)

) card((S + H'z)/H'z) degyH'z < deg,,Gz.

TueoreM 0.3 can be extended under certain hypotheses to non-
commutative groups. The only points in the proof of THEOREM 0.3
where commutativity of G is used are LEMMA 3.5 and equation (4.1.2).
Suppose now that X is a compactification of an arbitrary connected
algebraic group G such that the group action extends on both the
right and the left (such compactifications always exist by a construction
in [CH]); we call such a compactification bi-equivariant. In order to
simplify notation, identify G with its natural inclusion in X. We let
¢r : Gx X — X and ¢ : G x X — X denote action on the right
and action on the left respectively. Use ¢; for the definition of derivatives
and let c¢; denote the corresponding constant so that, in the notation
of (2.2), Fp, c; ® ¢; L2~ is generated by global sections. Similarly, let ¢z
be a bound for the multidegree of a complete system of multihomogeneous
polynomials representing ¢y, i.e. suppose Fp, ., ® ¢ LE1 is generated by
global sections. Denote by ¢7 translation on the right and tlg translation on
the left. In order to use LEMMA 3.5 we need to assume that each element
g € S commutes with A though it is not necessary for the elements of S
to commute amongst themselves. For V' C G we will denote by deg, V the
corresponding degree of the Zariski closure of V' in the given projective
embedding.

THEOREM 4.2.— Let X be a bi-equivariant compactification of a connec-
ted algebraic group of dimension n as above. Let P € H*(O(dy, . ..,dy))
be a multihomogeneous polynomial of multidegree d. Suppose P vanishes
to order > nT + 1 along A at S,,. Then either P is identically zero or
there exists a proper connected algebraic subgroup H C G and an element
g € G such that P vanishes along (¢’ - g)H for all ¢’ € S and

T + codim(AN H, A)
( codim(A N H, A) ) card((S + H)/H) - degyH < dege,,4C-

Proof. — The only difference in proof is in the definition of J since,
as noted above, we used commutativity of G in order to guarantee that
g9(Y) C V(J) for all g € S. Here we make use of translation on the right.
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So with notation as in the proof of THEOREM 0.3, let Y be such that g(Y")
is an irreducible component of both X; and X for all g € S. Let

J= {t;_1(.[t) °g (S YﬂG}

Then as before, (V(J)NG)rea = {g € G : g(YNG) C X;}. The multiplicity
estimates (CoroLLARY 2.10) apply as before and we only need to bound
the degree of homogeneous polynomials generating J. But one sees as in
LEMMA 3.5 that derivatives, which were defined via translation on the
left, commute with translation on the right. REMARK 3.6 shows that the
derivatives increase the degree of generators of a homogeneous ideal by
a factor of ¢; while translation on the right further increases the degrees
by cq. This gives the required estimate.

REMARK 4.3. — PHILIPPON states [P2, p. 398] that one can choose
g = e € G in TueoreM 0.3. In other words, the variety ¥ C X, cons-
tructed in the proof of THEOREM 0.3 can be assumed to pass through
e(z) = z. Since z € Xp4+1 one can let Y, be an irreducible component
of X, containing x and then there must exist r such that Y, is an
irreducible component of both X, and X,,; and z € Y,.. Thus, taking H
to be the stabilizer of Y,., there is an algebraic subgroup H such that P
vanishes on all translates g(H) for g € S. Unfortunately, inequality (0.3.1)
may not hold with this choice of Y because the translates g(Y') may not
be irreducible components of X, and consequently g(H) may not be an
irreducible component of V(J).

One can, however, obtain some small amount of information about the
point g € G relating to the set S where P vanishes to high order. Recall
the chain

X1D2XoD-- D Xpqa.

Let r be the smallest positive integer with dim X, = dim X,4;. Let {Y}}
be the set of irreducible components of X, of dimension dim X, which are
also irreducible components of X, ;. If there exists some Y; with z € Y;
then choose Y = Y;. Otherwise let U = Gz \ ; Y; be the complement of

the Y;’s in Gz. Then consider the chain
XanDXQQU:)"'DXn.HﬂU.

Since x € X,,+1 N U the same argument applies. Repeating this process,
there must exist an open subset U’ C Gz and an irreducible component
Z' ¢ X; nU’ of dimension dim (X; N U’) which is also an irreducible
component of X;11 N U’ and with z € Z’. Let Z denote the Zariski
closure of Z’ in Gz. If g(Z) is not an irreducible component of X; for
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all ¢ € X then there exists g € S such that g(Z) € X\U’; this means
that g(Z) C V, for some V, which is an irreducible component of X,
and X, 41 for some r’. Clearly V,, contains g(z) for some g € S and
dim V,, > dim Z > 0. Repeat the same argument with V,,. This cannot go
on forever since the dimension increases at each step. In fact this shows
that there exists Y such that g(Y’) is an irreducible component of both X,
and X,4; for some r and for all g € S and such that Y N .S,,_1(X) is not
empty. In the special case when S C G is a finite subgroup, it follows that
one can always choose g = e.

5. The Product Theorem

We will extend the Product Theorem of Faltings to arbitrary com-
mutative algebraic groups. Let G = []'~, G; be a product of connected
commutative algebraic groups and let X — P be an equivariant, pro-
jectively normal compactification respecting the product structure on G.
Let ¢; = deg X; and let §; = dim X;. Let

m
P H T.G; — G

=1
be the exponential map. Since G is commutative, 1 is an analytic homo-
morphism. Let {z; }?;1 denote coordinates on T.G;. DEFINITIONS 2.4-2.6
apply in this setting giving differential operators D;; on the projective
coordinate ring Rx. Note that it is clear that these differential operators
preserve the product structure on X in the sense that D;;(P) = (0) if
Pe Ox(dl,. .. adm) with dz =0.

We need to introduce the notion of the indez of a polynomial at a point.
Let
Si={Da; ajk%0=>j=i}.

Thus S; is the set of differential operator on the ith factor G;. Thus
any differential operator can be written uniquely as D = H:’;l D; with
D; € S;.

DerFINITION 5.1. — Let P € H°(O(dy,...,d,)) be a multiform of
multidegree d and let £ € X be a closed point. Then define the index
ind(z, P) of P at z as follows :

| D
d;

: = ¢ V[D(P)] where D = ﬁDi}.

i=1

ind(z, P) = min{i
=1

Thus ind(z, P) = 0 if and only if P(z) 75’0 and similarly ind(z, P) = oo
if and only if P vanishes identically on X. Faltings considers the case
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where G; = A™ with X; = P™. In this instance, ind(z, P) < m (provided
of course that P does not vanish identically on X). This is not true in
the more general setting, but it is still the case that ind(z, P) < Y ;v ¢;.
We define sets of operators D7 for ¢ € R by analogy with DT from the
previous section :

'?l Sa}.

(1

m m
D":{D:HDi; 3
=1

i=1

We will need a rough estimate on the cardinality |D?|. Assuming d; > 1/0,

let m D .
S={D=£11Di; |d:| < %}

From the definitions it is clear that S C D?. Hence

|D°| > c(o) - H d® + lower order terms,

i=1

where c¢(c) is a constant depending only on . Finally, for positive
real numbers a, b, write @ > b if a/b > r for some «large» positive real
number r. The following generalizes Proposition 3.1 of [F] :

THEOREM 5.2. — Given € > 0 there exist constants r(e, X) and c(e, X)
depending only on € and the fized projective embedding of X satisfying the
following property. Let J C R be a multihomogeneous ideal generated by
forms of multidegree d. Suppose Z is an irreducible component of V(J)NX
which is also an irreducible component of V[D*(J)|NX and suppose Oz x
is Cohen-Macaulay (e.9. ZNG # @). Ifd;/d;y1 > 1(€, X) for1 <i<m—1
then Z = Zy X -+ X Zp, is a product subvariety of X with deg Z; < c(e, X)
for alli.

Proof. — The proof resembles that of THEOREM 0.3. Choose
I=(P,...,P)CJ

where (Py,...,P;) is a set of multihomogeneous polynomials of multi-
degree d which cut out all components of V(J) N X of codimension
<t = codim (Z, X). Then THEOREM 2.9 gives an estimate for £z [ XNV ()]
and THEOREM 1.1 (or COROLLARY 1.4) bounds the degree of V(I)- X.If Z
were not a product subvariety then the requirement d;/d;+1 > 0 forces
the length estimate to be larger than the bound on the degree of the
intersection.
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For the proof, recall the notation of CoroLLARY 1.4. Let £; = 7} O(1)
where m; : P — P™ is the projection to the i*® factor. For any m-
tuple e = (e1,...,en,) with > e; = dim Z, let V. denote a generic cycle
representing ¢1(£1)* N ... N ¢y (Ly)em™. Write

§ 1 P— P x ... x P
t; P — PPmoitl L x PP

Set a; = dim s;(Z) — dim s;_1(Z) for 2 < i < m and a; = dims;(Z) and
similarly let b, = dimt;(Z) and b; = dimt,,_;11(Z) — dimt,,_;(Z) for
1 < j < m — 1. With these definitions Z is a product subvariety if and
only if a; = b; for all 7.

Suppose {Qi}?ing'Ve are the points of intersection of Z and V. Since V,
is generic Og, xnv, is Cohen-Macaulay and applying THEOREM 1.1 to
Ve N X gives

deg Z-V, m
(5.2.1) Z eQi((VeﬂX) ﬂV(I)) <degy (VeNX) < Hcidfi_ei.
i=1 =1

By [Fu, Example 8.4.8], it follows that
(5.2.2) lo,(VenX)NV(D)) =Lz(XNV(I)).

Combining (5.2.1) and (5.2.2) gives

(623 L(XAVD)-[eg(Z Vi) <[] et

i=1

We want to minimize the right hand side (5.2.3) without making
deg(Z -V,) =0. Since di; > dg > --- > d,, this means that we want
to choose e; = 6; — b;. On the other hand, as to the left hand side of
(5.2.3), by THEOREM 2.9 £z(X N V(I)) > |Dg| where D§ denotes the
differential operators transverse to Z of weight < e. One can estimate
|Dg| by making a specific choice of basis for differentials transversal to Z.
Since dy > dy > - > d,, and since we want to maximize |D%| the best
choice is to take a; derivations in S;. Arguing as above (assume without
loss of generality that d,, > 1/e¢ by taking a power of P since the index
is invariant under this operation)

m
|D%| > c(e) Hdi‘“ + lower order terms.

=1
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Putting everything together, inequality (5.2.3) now becomes

(5.2.4) c(e)ﬁdi‘“ < ﬁciﬁd;’i.
i=1 i=1 =1

But by the choice of a; and b;

m
d.
5.2.5 4%t > min { % }
(5:2:5) £I1 ’ - {di+1
unless a; = b; for all i. Thus as soon as
. Cm

Cl . .
X)> L Tm
r(e, X) > o
inequalities (5.2.4) and (5.2.5) show that a; = b; for all ¢ and hence Z is a
product subvariety. Since Z is a product subvariety, (5.2.3) together with
the estimate on £(X NV (I)) shows that one can take c(e, X) = r(e, X).

REMARK 5.3. — The proof of the Product Theorem works in a slightly
more general setting. In particular, it suffices to assume that X; is an
equivariant compactification of a homogeneous space V; with group action
by a connected commutative algebraic group G;. The point is simply
that in (5.2.3) the length along Z must be proportional to the degree
which requires the maximal possible dimension of differential operators
transverse to Z.
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