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MINIMAL SURFACES OF FINITE TYPE
PAR

HaroLD ROSENBERG (*)

RESUME. — Une surface minimale compléte M est de type fini si M est de type
conforme fini et si M peut étre paramétrisé par des formes méromorphes sur une
surface de Riemann compacte (ou l’intégrale de telles formes). Si M est de courbure
totale finie, M est de type fini. L’hélicoide est de type fini (et de courbure totale
infinie). Nous donnons une condition sur la croissance de la courbure totale, dans le
sens de Nevanlinna, qui entraine que M est de type fini. On donne un exemple d’une
surface minimale compléte, simplement connexe, transverse a chaque plan horizontal
de R3, et conformément le disque unité. Nous démontrons que si un tel M est plongé,
conformément C, de courbure totale de croissance finie, alors M est un hélicoide
ou un plan.

ABSTRACT. — A complete minimal surface M is said to be of finite type if M is of
finite conformal type and M can be parametrized by meromorphic data on a compact
Riemann surface (or integrals of such data). Finite total curvature M are of finite
type. The helicoid is of finite type (and infinite total curvature). We give a condition
on the growth of the total curvature, in the sense of Nevanlinna, which implies M is
of finite type. We give an example of a simply connected complete minimal surface M,
transverse to every horizontal plane of R3, and conformally the unit disk. We prove that
if such an M is embedded, conformally C, and of finite growth, then M is a helicoid or
plane.

1. Introduction

In this paper we describe conditions on the growth of the total curva-
ture of a surface that permit the surface to be parametrized by meromor-
phic data on a compact Riemann surface. Henceforth we assume M is a
complete minimal surface in R? or R3/G, G a groupe of isometries of R3.

(*) Texte regu le 2 décembre 1993, révisé le 13 juillet 1994.
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Keywords : Minimal surfaces in R3, finite growth type of the total curvature in the
sense of Nevanlinna, finite type.

AMS classification : 53 A 10, 30 C15.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE 0037-9484/1995/351/$ 5.00
© Société mathématique de France



352 H. ROSENBERG

We say M is of finite type if M is of finite conformal type and each end
of M (which is conformally a parametrized disk D*) can be parametrized
by meromorphic forms that extend meromorphically to the puncture.
More precisely, M of finite type means the topology of M is finite, each
end is conformally a punctured disk D* and after a (possible) rotation of
the end in R3, dg/g and p extend meromorphically to the puncture. In
our notation, g is the Gauss map of M (stereographic projection of the
unit normal field of M) and p is the holomorphic one form on M which is
the complex differential of the third coordinate function on M. Thus the
Weierstrass parametrization of M is

z

X(2) = Re/ (97" = g,i(g7" +9),2)p

20

For E C M, we denote by

) = [ |k,

the total curvature of E. This is the area of the spherical image of g(F)
counted with multiplicity.

It is well known that finite total curvature of M C R3 implies M is of
finite type [7]. If M is a properly embedded minimal surface in a flat non-
simply connected 3-manifold, and if M has finite topology then M has
finite type [4]. The helicoid in R? is of finite type: here M = C, g(2) = €*
so dg/g = dz and p = idz. Simply connected examples of finite type can
be constructed from any polynomial P(z) on C, by letting

9(z) = exp(P(2)), p=dz.

One can add one handle to a helicoid in R? to obtain a surface of finite
type [2], in fact the surface is constructed by starting with a meromorphic
pair (dg/g, u) on a torus.

We will prove that a properly embedded minimal surface in R3 that is
of finite growth type, simply connected, and transverse to the planes z3 =
constant, is a helicoid or plane (THEOREM 1.4). Also, a properly embedded
minimal surface in R? of finite topology and at least two ends is of finite
type when it has finite conformal growth type (CoroLLARY 1.3).

Conformal Growth Type.
Let E be an end of M, conformally parametrized by

D*={0<|z| <1}.

TOME 123 — 1995 — ~° 3



MINIMAL SURFACES OF FINITE TYPE 353

For 0 < t <1, let A(t) denote the total curvature of {¢t < |z|] < 1}. Let T
be the (Ahlfors-Shimizu) characteristic function of E:

1
T(r)=/é§—t—)dt, 0<r<1.

We say E has finite (conformal) growth type equal to |A| if A is finite
and
o InT(r)

rl—r>I(l) 11’1(7")

For example, if E has finite total curvature or if A(t) grows like |In(t)),
then E has finite growth type equal to zero. If A(t) grows like t~™, for
some positive integer m (as t — 0), then F has finite growth type m.

We say M has finite growth type if M has finite conformal type and if
each end of M has finite growth type.

Notice that if dg/g extends meromorphically to the puncture of D*,
then g has at most a finite number of poles in D* (assuming ¢ is not
constant).

THEOREM 1.1.— Assume g has a finite number of zeros and poles in D*
and 1is of finite growth type. Then dg/g extends meromorphically to the
puncture.

Proof. — By passing to a neighborhood of 0 in D*, we can assume g
has no zeros or poles in D*. Then g can be written as cz* exp(h(z)),
for some constant ¢, integer k, and holomorphic function h(z) in D*.
This representation is elementary but since I know no reference for this,
I include a proof. Let a be the period of dg/g in D*,

1
a:—./ @.
27 Jiz=1 9

/
() _2 has no period in D* so
z

Then
9(2)

o= oo (2 %))

can be defined to be single valued in D*. We have:
9y __2(9
(5) ==

Writing the Laurent expansion for §/g, the desired representation for g
follows. We can assume ¢ = 1 so g(z) = z¥ exp(h(z)).
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354 H. ROSENBERG

Now we proceed as in Ahlfors proof of Nevanlinna’s First Main theo-
rem [6]. We have

4lg'(2)?
Aln(1+|g(2)%) = ﬁ%@’

where A is the Laplacian in the z-coordinate. For €2 a domain in D*, this
yields:

’ 2
[ O —a@)= [ 2+ o) .

Thus for 0 < r < 1, we have:

27
A(r) = /l 9 In(1+ |g(2)[*)ds — rba—r/O In(1 + |g(re')[?) dd,

z|=1 377,

éﬁ:)— = C_l - 1/1/(7')7

r r
where

27
a = /|z|=1 %ln(l +19(2)?)ds, ¥(r) :/o In(1 + |g(rei®)[2) de.
Then: ' At
= / =~ dt =ciln(r) — (¥(1) — %(r)).

Since T'(r) has finite growth type as » — 0, we have T(r) = O(r—™),
as r — 0, for some integer m. Solving for 1(r) we conclude:

Y(r)=T(r)—ciln(r) +ca=0(r"") asr—0.
Now, for any real number a,

In" |a| <Iny/1+ a2 < In' |a] + 2,
where In" |a| is In |a| if |a] > 1 and 0 otherwise. Hence:
27 X 1
/ ln+|g(re‘9)| do < —,
0 T

for r sufficiently small.
Recall that g = 2* exp(h(2)) in D*, so

In*|g(re)| = {u(z) +klIn(r) if u(z) + klIn(r) > 0,

0 otherwise,
where u(z) = Re(h(z)), z = re®.
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MINIMAL SURFACES OF FINITE TYPE 355

Let u™ denote the positive part of u, and write u™ = u; + uy where

) { u(z) if u(z) + kln(r) >0,
ui(z) =
! 0 otherwise,

us(z) = {u(z) if 0 < u(z) < |kln(r)],
0 otherwise.
We have:

27 2w 2m 2m
/ ut(re?)dd = / (u1(z) + kIn(r))dd — [ klIn(r)de +/ ugdé
0 0 0 0
27

2
< / In*|g(re')|dd — 2rkIn(r) + / upd
0 0

=0(r™™) as r—0,

i.€e.
27
*) / ut(re?®)dd <O(r™™) as r— 0.
0

Now repeat the above argument with g replaced by 1/g. For any Q C D*,
the area of the spherical image of Q by g (counted with multiplicity)
equals the area of the spherical image of Q by 1/g; i.e. A4(R2) = Ay,4(9).
Thus the characteristic function of 1/g has the same growth type as that
of g and the same proof as above proves:

2
/ u=(re??)dd =0@r"™) as r— 0,
0

where v~ is the negative part of u. Now it is well known that this implies h
has at most a pole at 0. For completeness, here is the argument. Write:

+o0
h(z) = chz" in D*.

Then:
+o0o +oo
u(z) = % chz" + Cp2® = % Z(cnr" +e_pr") et
—o0 —o0
Hence:
1 2m X . 1
o ), u(re?®)e m?dg = 3 (ent™ + E-nr™™),

1 27 )
lenr™ + E—nr™"| < ;/ lu(re®®)|dd =O(r~™) as r—0.
0
Thus ¢, = 0 for m > n, and THEOREM 1.1 is proved. []
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356 H. ROSENBERG

Now the question arises of extending p meromorphically to the punc-
tures; i.e. when is M of finite type? In general it is not enough to assume
the (conformal) growth type of M is finite; one must relate the metric
to the conformal parametrization. If FE is an end of M conformally para-
metrized by D*, the Gaussian curvature of E is given by:

-4 |dg/gl*
(gl +1gI=D)*  |p?

Assuming dg/g extends meromorphically to the puncture, and |K| > 7,
for some integer j and r sufficiently small, r # 0 it follows that |u| < r™
for r small, r # 0, and some m. Hence p extends meromorphically as well.

Next suppose E is an annular end of M which intersects every plane
x3 = constant > 0, in a compact, nonempty immersed curve. Since x3 is
harmonic on M it follows easily that a subend of E can be conformally
parametrized by D* so that z3 = —Inr; hence g = —dz/z. Now
combining this with THEOREM 1.1 we have proved:

CoOROLLARY 1.2. — Suppose M C R® has finite growth type and each
end E of M has the property that some linear function on M (linear
combination of the coordinate functions) is proper on a subend of E and
tends to infinity on E. Then M has finite type.

There are many examples of surfaces with annular ends as in the above
corollary. Let M = C* = C — (0), and let F'(z) be a holomorphic function
on M. Then

9(2) = zexp(F(z) ~ F(D),  u=(dz/2)

defines a complete minimal immersion of M in R3, transverse to every
horizontal plane x3 = constant; here 3 = In(r), so M meets every
plane z3 = constant [10]. When F' is meromorphic on C, M is of finite
type. It is believed the only embedded such example is the catenoid —
F(z) = z —; this is the Nitsche conjecture(*), since any complete minimal
annulus transverse to every horizontal plane x3 = constant is of this form
for some holomorphic function F' on C*.

CoROLLARY 1.3.— Let M be a properly embedded minimal surface in R3
of finite topology and at least two ends. If M has finite (conformal) growth
type, then M has finite type.

(*) Added in proof: the Nitsche conjecture has now been proven by Pascal COLLIN.
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MINIMAL SURFACES OF FINITE TYPE 357

Proof.—1If M is a properly embedded minimal surface of finite topology
in R® with at least two ends then M has finite conformal type and for
each end of M there is a linear function which is proper on a subend [5].
Thus CorOLLARY 1.3 follows from THEOREM 1.1. (]

Simply Connected Surfaces.

We do not know if the helicoid and plane are the only embedded
complete minimal surfaces in R3. It is natural to begin the study of such
surfaces by considering those M transverse to every plane x3 = constant.
For minimal annuli with this property we know the conformal type is
finite, i.e. such annuli are C* (since x3 is a proper harmonic function
on M going from —oo to +00). However when M is simply connected this
fails; we now give an example of such a surface conformally the disk. The
idea using Runge’s theorem (as we do in this example) originates in [3].

Let M be the upper half plane z = z + iy, with y > 0. We will
construct a holomorphic g on M, with no zeros or poles, so that the
metric ds = %(Igl + |g|~1)|dz| is a complete metric on M. Then g and
p = dz are the Weierstrass data of a complete minimal surface in R3,
transverse to every plane x3 = constant (since on M, z3(z) = z), going
from —oo to +00, and conformally the disk.

Y n
K, i in J ]Z(”)
Kyt r ~ ‘]}i/("+1) i

T

It remains to construct g. Let K, be a rectangle in M centered at i/n,
of height ¢(n) and length n; the sides of K, are parallel to the z,y axes.
Choose the £(n) so the rectangles are pairwise disjoint. As n — oo, the K,
converge to the entire z axis. By Runge’s theorem, there is a holomorphic
function h(z) on M such that |h(z) — ¢,| < 1 for z € K,,, where ¢, are
real numbers we will specify shortly.

Define g(z) = exp(h(2)). Then g is a holomorphic function on M with
no zeros and for z € K, |g(2)| > e» 71 = e /e.

Now if v is any divergent path in M, either  has infinite Euclidean
length, or 7 crosses all but a finite number of the K, (going from the top
to the bottom). In the former case, f,y |dz| = oo, so

[as= [ ol +1)iaz1 = § [ 1az,
Y Y Y
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358 H. ROSENBERG

and  has infinite length for the metric ds. In the second case,

0o ecn
> s
L ds > Zé(n) S

n==k
since when v traverses K,

C.

/ ds > 6(n) .
YNKn €

So if ¢, are chosen to make the above series diverge, the metric ds is
complete.

I do not know if such a surface M can be properly immersed
in R3. Perhaps a simply connected properly immersed minimal sur-
face in R3, meeting every horizontal plane transversely must be confor-
mally C. It is reasonable that the helicoid and plane are the only properly
embedded such surfaces. It is known that the helicoid and plane are the
only simply connected properly embedded minimal surfaces that admit a
nontrivial symmetry [4].

We can obtain some information about such surfaces when the growth
type is finite.

THEOREM 1.4. — Let M be a simply connected properly embedded
minimal surface in R3 of finite growth type. If M is transverse to the
planes x3 = constant, then M is a helicoid or plane.

Proof. — Since M is simply connected and of finite growth type, M is
conformally C. Let u be the harmonic function on M given by the third
coordinate function and let v be the conjugate harmonic function of u. The
level curves of u are connected and u has no critical points so u is linear.
To see this notice that v is strictly monotone on the level curves of u and
the level curves are connected so f = u + iv takes on each value at most
once. Since f is an entire function, f is linear and z = u + iv is a global
parameter on M. Then 4 = dz on M and g is an entire nonvanishing
holomorphic function. The growth of g in the sense of Nevanlinna is
finite so by the Hadamard-Nevanlinna representation theorem, we have
g9(z) = cexp(Q(z)), for some polynomial Q(z) and ¢ € C [1]. These
surfaces have been analyzed in the thesis of Pascal RomoN; the only
embedded such surface is Q(z) = z or Q constant [9]. []
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