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CONTROL THEOREMS OF p-NEARLY ORDINARY

COHOMOLOGY GROUPS FOR SL(n)

BY

HARUZO HIDA (*)

ABSTRACT. — In this paper, we prove control theorems for the p-adic nearly
ordinary cohomology groups for SL(n) over an aribitrary number field, generalizing the
result already obtained for SL(2). The result should have various implications in the
study ofp-adic cohomological modulat forms on GL(n). In particular, in a subsequent
paper, we will study p-adic analytic families of cuch Hecke eigenforms.

RESUME. — Dans cet article, on demontre Ie theoreme de controle pour les groupes
de cohomologie quasi-ordinaire p-adique de SL(n) sur un corps de nombre arbitraire en
generalisant Ie resultat deja connu pour SL(2). Le resultat doit avoir des implications
variees dans la theorie des formes modulaires p-adiques cohomologiques sur GL(n). En
particulier, on etudiera des families p-adiques analytiques des formes propres de Hecke
dans un prochain article.

Introduction
Let p be a prime. In [H2], we have studied the control theorem for

^-ordinary cohomology groups for the algebraic group SL(2) defined over
an arbitrary number field F. Here we generalize the result to reductive
algebraic groups G over Q whose group of Qp-points is isomorphic
to GLn(Fp) for Fp = F 0Q Qp. We fix such an isomorphism

(GL) i:GW^GLn(Fp).
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426 H. HIDA

Then for the derived group G^/q of G^ the isomorphism i induces
(7i(Qp) ^ SLn(Fp). We further assume throughout the paper that

(SA) Gi(Q) is dense in G^(A{00)) for the ring of finite adeles A^.

We consider a sufficiently large finite extension K of Qp so that all rational
absolutely irreducible representations of G are defined over K. We write 0
for the p-adic integer ring of K. For each partition n = s +1 of n into two
parts by positive integers, we have the standard maximal proper parabolic
subgroup Pa of SL(n)/^ given by

ps={((Q ^) ^SL(n); aeGL(^) , d^GL(s)).

The set {P i , . . . . Pn-i} gives a complete representative set for conjugacy
classes of maximal parabolic subgroups of SL(n). To each P;, we can
attach a Hecke operator Tg at p. It is given by the action of the double
coset of ^ e G(Q) which is sufficiently close to ( l t ° ) in G(A^)

\ U p ±g /
for a suitable m > 0, where It is the ^ x t identity matrix. More generally,
the set of intersections

p = [p = n p.; 0 ̂  s c j}
sGS

for J = { l , 2 , . . . , n } gives a complete representative set of conjugacy
classes of all proper parabolic subgroups. Thus associated to P as above,
we have a set of Hecke operators

{r^r,^); 5 6 2 }

and a projector ep (as an endomorphism of p-adic cohomology groups)
attached to the product rise^^* ^e w1^ P10^ ^ne control theorems
with finite error and the independence of weight for the p- nearly ordinary
part associated to P, where the p-nearly ordinary part is the p-adic
unit eigen-space of ep (THEOREMS 4.1, 5.1, 5.2 and 6.1). When P is the
Borel subgroup, we can also prove the exact control theorem for almost
all primes p with some additional assumption (THEOREM 7.1). Here for
simplicity, we state the result for the standard Borel subgroup B in P
(made of upper triangular matrices). Let T be the standard split torus
in P, that is, the torus made of diagonal matrices. For each dominant
weight \ e X(Resp/Q T) with respect to B° = Resp/q B, we write L(^K)
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NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 427

for the induced module Indio(^), where we regard B° as a subgroup of
Gi via (GL), and «Ind)> indicates induction in the category of polynomial
representations of algebraic groups. Let r be the integer ring of F, and
put Tp = r (g)z Zp. Since SL(n) has a natural integral structure, it induces
an (9-integral structure on L(^K) that is, an 0-lattice L(^0) in L(^K)
stable under SL^(r?) (we will explicitly specify the lattice in the text).
We put

L^)=L(^K)/L^O).
Let

IB = {x G SLn{rp) | re modp is upper triangular}.
We put Y = I B / U B , where L^ is the subgroup of (upper) unipotent

matrices in I p . We can naturally extend the left action of I a on Y to
the semi-group A = IB^IB (see Section 2) for the semi-group D of
diagonal matrices with diagonal entries dj with ̂ -integral ai and satisfying
^ I ^j'+i f01' au J- The extension of the action depends on the choice
of a prime element at each place of F over p. However the resulting
idempotent CB does not depend on such choices. There is also a natural
right action on Y (induced by the right multiplication) of

T(^)^B(^)/^(^).

Then we consider the space C(Y',K) of continuous functions on Y having
values in a topological module R. We regard C(Y;R) as a (A-^T^p))-
module by the action:

7^) = ^(7-l^) and z(f){y) = (f)(yz)
for 7 e A-1 = {6-1; 6 G A} and z G T(rp). If we take the standard
lattice L(^0), we can show that L{\) can be naturally embedded into
C = C(Y',K/0) as a A^-module. In other words, we have a natural
embedding of J^-modules from L(^) into C, whose image is stable under
the action of A~1 on C. Then we define the action of A~1 on L(\) by the
one induced from the action of A-1 on C. Let ^ be a congruence subgroup
of (7i(Q). Write S for the closure of ^ in Gi(A(00)) and suppose

(S) S = JJ Sa for a subgroup Se of d (Q^)

^ for each prime ^, and Sp = I B .
Since ^ c A-1, C is naturally a ^-module. We put

^o^) = {7 e ^ | 7 mod?0 € ^(r/^r)},

^(P0) = {7 ^ ^ I 7 mod;?0 G ^B^/P^r)}.
We write H^^ for e^^9. Then we have:
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428 H. HIDA

THEOREM 1.1 (Independence of weight). — We assume (GL) and (S).
Then we have a canonical isomorphism of Hecke modules for each domi-
nant weight \:

ix••H^^{poo),W} = limff^($i(^),L(x))
Ct

^.ord(^)(p)^

where the injective limit is taken with respect to the restriction maps,
and i^ commutes with Hecke operators supported outside p.

Here ^ preserves the action of T(rp) in the following twisted way
X(z)i^zc) = zi^(c) for z C T(rp) and c e ^.ord(^i(P°°)^(x)),

where z acts on H^^^p00), L(^)) through the projection

^)^<W)/<h(p")
and on ^.ord(^o(p),C) via the T(rp)-module structure ofC.

THEOREM 1.2 (Control with finite error). — We assume (GL) and (S).
Let \ be a dominant weight ofResp/qT. Suppose that:

^.ord(^o(pUte^)) = 0 for all 0 < q < r.
Then the morphism L^ and the inclusion L(^) c C induces a morphism
of Hecke modules

H^rd^WMx)) -^ ^.ord(^oh),C)[x]

which has finite kernel and cokernel.
Here for each r(rp)-module M, we put:

M[x] = [x € M ; wx = \(w)x for all w e T(rp)}.
Decompose T(rp) = W x fi for the maximal finite subgroup ^ and the
torsion-free part W. Then for each \, we consider:

^ = { 0 e C ; ^ = x ( C ) ^ f o r C c ^ } .
Then we have:

THEOREM 1.3 (Exact control). — We assume (GL) and (S). Fix a
regular dominant weight ^ ofResp/qT. Suppose that:

Hq{^,L^C))=0 for all 0 < q < r.
Then for each dominant weight -0 such that ̂  = ̂  ^e morphism L^
and the inclusion L(^) C C^ induces an isomorphism

^.ord(^o(p)^W) ^ ̂ .ord(^o(p),^)[^]

/or almost all primes p.
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NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 429

Here almost all p means « except finitely many ». We can give a slightly
stronger result in the text dealing with characters \ which are only
algebraic on a neighborhood of the identity element in the p-adic sense.
We write S and 5?(^) for the closure in C7i(A^) of ^ and ^(p0'),
respectively. Then, as is well known, we can consider a modular variety

^(P") = C;i(Q)\Gi(A)/5?(^)^+

and a locally constant sheaf L on Y7(pa) associated to any 5p-module L,
where Coo+ is a maximal compact subgroup of G\ (M). The above theorems
hold for sheaf cohomology groups of L(\) and C (in place of group
cohomology). We call the bottom degree for \ (with respect to B) the
maximum degree r = r(^) satisfying the condition in THEOREM 1.2. It is
easy to show that r > 0 if <I> is an infinite group. When G is associated
with a division algebra of degree n2 over F split at p and oo, assuming the
existence of the generalized Jacquet-Langlands correspondence between
automorphic representations of G and Res^/Q GL(n) (which is known to
hold under a certain local conditions on G by Arthur-Clozel and Vigneras),
we will derive in Section 8 an explicit formula for r(^) from a result of
Clozel [C]. For example, if F is totally imaginary, then r(^) is either
r{\) = oo (that is, the nearly ordinary cohomology just vanishes for
all degree) or r(\) is given by ^n(n — 1)[F:Q] depending on \. It is
an interesting problem to determine the locus of \ with a given r(\) in
Spec(0[[T(7p)]]) for the continuous group algebra 0[[T(rp)}} ofT(rp). To
stress the importance of the problem, we note here that the dimension
of the locus is well related to the Leopold! conjecture for p of F and
extensions of F with degree n (see Conjecture 4.3 in [H4] in the case
of n = 2). As an application of THEOREMS 1.1 and 1.2, we expect to have
some finiteness theorems and control theorems for p-adic nearly ordinary
Hecke algebras for G (as was given for GL(2) in [H3], [H4]). We hope to
discuss this matter in future occasion.

The author already had the result for maximal parabolic subgroups
before he wrote the previous paper [H2], since the argument given in [H2]
works well without any modification in this maximally parabolic case. The
existence of this paper owes much to L. CLOZEL who suggested the author
to write down the result, and in the process of formulating the result
for the maximally parabolic case, the author found the generalization to
arbitrary parabolic subgroups, which requires a bit more work. The author
is grateful to L. CLOZEL in this regard.

Here are some notations which we shall use throughout the paper.
First of all, we keep the notation introduced in Section 1 throughout the
paper. For two algebraic groups G D H and a polynomial representation p
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430 H. HIDA

of H (that is, a morphism of algebraic groups from H to GL(rf)),
Indj^ p indicates the induced representation in the category of polynomial
representations of algebraic groups. For topological groups G D H and
a continuous representation p of H on a topological module V, ind^ p is
the representation of G on

indg V = {0 : G -^ V continuous | ̂ (gh') = p(h)(j)(g) for h G H},

where i is a suitable involution specified in the text. For an n^ x rii
matrix Ai for i = 1 , . . . , m, we write diag(Ai, . . . , Am) for the n x n matrix
(n = HI + . . . 4- rim) whose z-th diagonal block is Ai (i = 1, . . . , m) and all
the other off-diagonal blocks are zero. For a given parabolic subgroup
P C P, we write ^jL^.ord ^or tne ^dmary part with respect to the
parabolic subgroup P. There is an exception: when P = B, the Borel
subgroup, we just write H^^ for ^j?-^.ord' r^0 eacn ^bset

{51,. ..,5^} C {l,2,...,n},

we associate a partition n = rii + . . . + rim by ni = 5i, nj = sj — s^'-i
(2 < j < m — 1) and tm = n — Sm' Then for the standard parabolic
subgroup P associated to G\, the standard Levi component Mp is given by

Mp(A) = {diag(Ai , . . . , Am) € SL,(A); A, c GL,, (A) (j = 1,. . . , m)}

for any algebra A. Then P = MpUp for the unipotent radical Up of P.
We write Mp for the derived group of Mp. Thus

M^ = SL(ni) x • • . x SL(r^).

We define a torus Tp by:

Tp(A) = ̂ diag(ail^,...,a^_il^_J cGL^_^_,(A);

a , e A X ( j= l , . . . ,m- l )} .

Then Tp is the center of Mp given by:

Mp(A) = {diag(Ai, . . . . Am-i) € GL,_^ (A);

A , eGL^ . (A)0= l , . . . ,m- l ) } .

For each algebraic group H , we write Z(H) for its center. In particular,
we write TM = Z{M). Then, the projection of Mp into M' composed
with the determinant map

diag(Ai,... ,Am-i) i—> (det(Ai)l^,... ,det(A^_i)l^_J

induces an isogeny i: TM —)> Tp.
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NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 431

Sometimes it is necessary to consider the standard parabolic subgroup
of GL(n) associated to a standard parabolic subgroup P of SL(n). In that
case, we write it as P; therefore, P D SL(n) = P. Similarly, we write T for
the standard torus of GL(n).

2. Local Hecke algebras
In this section, we shall determine the structure of abstract Hecke

algebras made of double cosets of Fo-type open compact subgroups S
(with respect to a standard parabolic subgroup) of SL(n) with coefficients
in a non-archimedean local field. The result for open compact subgroups
of GL(n) is well known. However we need to deal with double cosets S^S
for open compact subgroups S of SL(n) and ^ in GL(n). Even in this
situation, we can determine the Hecke algebra in an elementary manner.

Let P be a proper standard parabolic subgroup of GL(n) associated
with the partition n == HI + n^ + . . . + nm- Let V be a discrete valuation
ring finite flat over Zp for a rational prime p. Let w be a prime element
of V and we write m = wV and K = V/m. We write v for the valuation
with v(w) = 1.

In this section, we indicate P(V) simply by P. Let:

(2.1) D = [dmg^ln^... ̂ -InJ e GL.CT ;

V D w^V D w^V D • • • D w^V ^ Ol.

When we emphasize the dependence on P, we write Dp instead of D. We
then consider

A^=PDPcGLn(fy)

for the field 7 of fractions of V. For ^ e D, we consider the double
coset P^P. Then we decompose for a subset X of P:

P= Ipr'w^.
77<=X

Then multiplying by ^~1P£, from the left, we get:

r'w = U ̂ lp^ ̂  w = IIp^-
rjex rjex

In this way, we get a coset decomposition of P<^P. We write

$ = diag(ail^,a2ln25 • • • ^min^)-

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



432 H. HIDA

To describe the group ^~1P^ H P, we write an n x n matrix A as (A^-)
for HI x rij blocks A^. Then we see:

F1^ n P = {7 = (7,,) G P ; 7zj ^ a^a,Mn^(y) for all ^ > i}.

Then, choosing X to be a subset of P consisting unipotent matrices, such
that

X 3 rj —— (^ moda^a.V)^ G Q) Mn^(V/a^a,V)
3>i

is a bijection, we see that X gives a complete representative set for
(^-1?^ D P)\P. In other words, to identify rj from the product ^77, we
just need to look at o^"1^^)^' moda^aj-M^x^V). In particular,

(P:^-1P^P))=\^\

where
K] =^^(^-la^•)7^^•.

j>i

Then for ( and $ e 1 ,̂ it is obvious that

[^]=K]+[C]•

Thus writing deg(P^P) for #(P\P^P), we see that

deg(P^P) = deg(P^P) deg(PCP).

Since P^PC^P D P^C-P. if we can show that deg(P^PCP) = deg(P^CP),
we will see that P^P^P = P^P. Writing

C = diag^il^,^!^'- • ^min^),

we take a complete representative set Z for (^-1P^ D P)\P made of
unipotent elements. By definition, we know that:

p^p = u up^^
o;GX/3GZ

Thus deg(P^PCP) < deg(P^P) deg(PCP) = deg(P^P). This shows the
desired equality deg(P^PCP) = deg(P^CP). Thus we see:
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NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 433

PROPOSITION 2.1. — We have:
(2.2a) Aoo = PDP is a semi-group;

(2.2b) P^P<P = P^P = PCP^P and P^P-P^P = P^P = P<P-P^P
for ^,^ G D where the latter identity is the identity in the Hecke algebra
of P relative to the semi-group Aoo.

Let 7^(P;Aoo) be the space of locally constant P-bi-invariant functions
(with values in Z) compactly supported on Aoo. The space 7^(P;Aoo)
has a natural structure of algebra under the convolution product under
the Haar measure p. with /^(P) = 1. We write P^P G 7^(P;Aoo) for the
characteristic function of the open set P^P. For each s > 0, we write

_ ( l n - s 0 \

^~[ 0 Wlj 00>

For j = 1,... ,m, let:

Sj = nyn-j+l + nm-j+2 + • • • + ̂ m-

Then we write T^{w) for P^P. We have:

COROLLARY 2.1. — We have an algebra isomorphism

7Z(P;A^)^Z[Ti,...,r^]

given by Ts. (w) i—> Tj.

Let M be the standard Levi-part of P. Then:

M(A) = {diag(:r,) € P(A) | x, e GL^(A)}.

We write TT : P —> M for the natural projection, and we put:

p(i) ^ M^Up = [x G P I 7r(rr) = diag(^) with x, G SL^(A) for all i.}

Then P / P ^ ^ Tp via del : M -^ Tp given by:

det(diag(rr,)) = diag(det(a;i)ln^ . . . ,det(^)l^J.

Then we conclude from COROLLARY 2.1.

COROLLARY 2.2. — We have an algebra isomorphism'.

7Z(P^(V);Aoo) ^ Z[rp(V)] [Ti,... ,T^]

given by T^(w) ̂  Tj and P^(V)uP^(V) ̂  [det(7r(n))] for u € P(V),
where [t] is the group element t in the group algebra Z[Tp(V)].
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We consider the following subgroups:

(2 3a) [ Ia = JP5a(v) = ̂  e SLn(v); 7 modpa e WP")},
U^(V) = {^ e SL,(V); 7 modp" e P^(y/p^} ;

(2.3b) Jp^(V) = {7 e GL,(V); 7 mod?" e P(V/p")}.

We write Jp for I p ^ . Let C be an open compact subgroup of SLJV)
such that:

(p) C contains 1^ and C is contained in 1^.

Put
Ac(V) = Ip^(y)Dp(V)Ip^(y).

Then by the same argument as above, we get

C^C = ]J C^
rjex

where X is the complete representative set for (^P^ D P)\P already
specified. Note that U(V) c 1^ C 1^. This in particular shows:

PROPOSITION 2.2. — Suppose (P). Then we have
(2.4a) ^c(V) is a semi-group',

(2.4b) C^C . C(:C = C^C = C(:C • C^C for ^C e D;
(2.4c) 7Z(C,Ac(V)) ^ 7Z(P;Aoo) ^ Z[^/C][Ti,r2,... ̂ ]

by T^(w) ̂  Tj, where T^(w) = C^C.

Actually the argument which proves PROPOSITION 2.2 yields a bit more
general result. Take a normal subgroup C of 1^ such that

la 3 C D [x e SL^(r-p) ; x mod^ e ̂ (r/^r)}.

In this case, the assertions (2.4a), (2.4c) are valid without any change,
although the Hecke ring can be non-commutative.

3. Flag varieties

Let / be the set of all field embeddings of F into an algebraic closure Q
of Q. Fixing an embedding ip of Q into Qp for an algebraic closure Qp
containing K, we regard I as the set of embeddings of F into Qp. Then we
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NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 435

assume that 0 contains r^ for all a G I . For each parabolic subgroup P
of SL(n), we define a ^-adic Lie group I p and Jp by

f I p a = [x € SL^(r-p) ; ^ mod^ G P^/^r)}, Ip = Ip^
(3.1) ^

[ I^a = [x C GL,(rp) ; ^ mod^ G P^r)},

where 7p = r (g)z Zp. If we write

ÎP
for valuation rings V, then the above group Ip^a is the product of the
groups 7p^(V) introduced in the previous section. Let <E> be a congru-
ence subgroup of G'i(Q). In this section and the following sections, we
study ^-modules of continuous functions on the space Yp = I p / U p ( r p ) ^
which is naturally a left Tp-module and the right Mp(rp)-module be-
cause Mp ^ P / U p . To describe such spaces in terms of flags, we put for
any Zp-algebras A, L = L(A) = A71 viewed as the space of column vectors.
Then we put:

( y?{A) = {(^)i=i,...,m | L = Lm, Li D L^_i,
Lo={0}, Li/L^^A^ forz=l,2,. . . ,m};

(3.2)
^p(A) = {(L,,r,),=i,...^ I (L,) e yp(A),

t rr.A^ ^Li/Li^ for i = l ,2 , . . . ,m}.

Then GL^(A) acts on yp(A) and ^p(A) from the left by

g(Li,Ti) = (gLi,gon).

Writing

Sm = n, Sm-i = n - HI, ..., Sm-i = n - ̂  n j ,
Kj<i

we define the origin 0 of yp(A) by the standard filtration

St, = { t ( ; r l , . . . , : ^^0 , . . . ,0 ) ; Xi e A}

and the origin (0,id) of ^p(A) by (St^id^) for the identity

idi-.A^^Li/Li^.
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436 H. HIDA

Then it is easy to see that the stabilizer of the origin is P(A) and Up {A),
respectively. Thus we see:

^/p(A)^GL,(A)/P(A) and y?(A) ^ GL,(A)/£/p(A).

Since P normalizes Up, we have a natural right action on GL^(A)/[/p(A) of

x = (x,,... ,^) G Mp(A) = P(A)/^p(A) = ]7GL(n,).
3

This action can be written in terms of ^p as {Li, Ti)x = (Li, ri 0x1}. When

A^imA/VA
a

(we call such a ring a p-adic ring), we look at a j?-adic open set of y?(A)
given by

y^(A) = {{Li,n) € ^p(A) | (Li/P^L,) = 0 in ̂ (A/P'A)}.

Note that Va is the «a-th » formal neighborhood of the fiber over 0 of
the special fiber of P/U (over r?), and we have

yM^uup(rp).
The reduction map (2^,^) i-̂  (L^/p^L^T^modp^) induces a projection:

Yp^ = I p ^ / U p ( r p ) C y^rp) —— ya(r/^r).

For A = r / p ^ r , we write Yp^(A) for the image of Yp,o; m y^(A). Then

yp^=hmyp,,(r/A),
/0

and Yp,a is a left Tp^-set and a right Mp(rp)-set. If an A-free module M
of rank s is a direct summand of an A-module N of rank n = s-\-t, then the
exterior product /\71 N is canonically isomorphic to (/\8 M) (g)^ (A N/M).
Using this fact, we can define Yp^(A) in y^ (A) by

Yp^A)={(Li,n) (g) (A^):A=0(XA"•)
Ki<m i

—' ̂ (A^/^-i) = A^ = A is a identity I.
i
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Then this definition coincides with the previous one when A = r?
and r / p a r . We now want to extend the left Tp^-action on Yp^(A)
for A = Tp and r/poir to an action of the following semi-group Ap^. For
that, we choose a prime element w? of r? for each prime ideal p dividing p.
Let S be the set of prime ideal in r dividing p. For each S-tuple e = (e?)
of integers, we write w6' = (w^)?^. Then we define

A^ = Ap^ = Ip^DpIp^

with

.Dp^diag^1!^,...,^!^)!
7p D w61^ D w62^ D • • • D w67"^}.

Since y? is a projective scheme, we have

Vp{rp) = y p ( F p ) = GL,(^)/P(^).

This identification is given by

y p ( r p ) 3 (L^ ̂  (Li 0z Qp) e Vp(Fp).

Thus we have a natural left action of Ap^ C C^(Qp) = GL^(I7p) on Vp(rp)
given by:

(L,) ̂  (g(Li (g)z Qp) H L(rp)).

Abusing the notation, we write

(6Li) = (6(Li 0z Qp) H L(rp)) for ^ e Ap^.

Then we can write

6 = udu' for z£, u' € Jp^a and (̂  6 Dp.

We write e^(^) = e^ and a^ = w^ when d = diag(w e l l^^, . . . .w^ln^).
For (Li.Ti) € yp^,L^ is generated by L^_i and vectors whose first
n\ +.. .+r^-i entries all vanish. Thus we can canonically identify L^/T^-i
and dLi/dLi^-i, although (dLi)i may be distinct from (Li). From this it
is clear that d induces the multiplication by ai on

L,/L,_i = dLi/dLi^.
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Since u and u' induces isomorphisms

[u]i -.u'Li/u'L^ ̂  uu'Li/uu'L^,

[u^'.Li/L^^u'Li/u'L^

respectively, we know that the morphism [<^:L,/L,_i -^ 6Li/6L^ is
divisible by a^ and

w-^^'.L./L^ —— 6L,/6L^

is a surjective isomorphism. Moreover

0(A^-e^(')?):A=0(AWL,_l) -^^(n/\6L,/6L,^=A
i i i

is the identity map. Thus we can define the action of Ap^ on Yp^ by

(L^r,)^(6L^w-e^^[6},ori).

Under the expression Yp^ = Ip,a/Up{rp), 6 acts on Yp^ by conjugation.
Let t = tj = ni + ri2 + . . . + rij and Sj = n - tj. Write

^^(I)' p!j for s =^-
Let (L,, Ti) e rp,i. Since L^/J)^ = St^, if a ; i , . . . , ̂  is a base of Lj, the
first ^ x t block n of the n x t matrix (a ; i , . . . , r^) is an element in GLf(rp).
Thus ^L^ is generated by (^i,..., <^^) whose first t x t block is equal
to u and the bottom s x t block is divisible by j/^. Thus ^L. mod p0'
coincides with Stj. Since ̂  fixes (St.), we know that ̂  ^{L^) is standard
modulo P0'. Thus we have proven the following fact:

LEMMA 3.1. — Let^ = rii<,<m^- Then ̂  contracts V^r/p^r) and
Vp^^r/p^r) to trie origin 0 for (3 > 1. In other words, ^(L,) = 0 for
all (L,) e y p ( r / p o i r ) and Y p ^ ^ r / p ^ r ) .
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4. Independence of weight
We keep the notation introduced in the previous section. Let <I> be a

congruence subgroup of G^Q) and S be the closure of ^ in G^A^).
We assume that

(S) ^=IJ^ and i B C S p d p ,
a

where S^ be the closure of <1> in (^((Q^) under the ^-adic topology for
each prime L We write TT : P -^ Mp for the projection. Let H be a closed
subgroup of Mp{r?) and Ha be the image of H in Mp^r/p^r). Then
associated to this parabolic subgroup P, we define several congruence
subgroups of C7i(Q):

{ ^o,p<y) = {7 ̂  ; 7p mod?0 e P(r/p°T)},
(4.1)

^P^) = {7 ^ ^o,?^) ; 7r(7p mod^) C ̂ }.

When H = M^\rp) (resp. ^ = {!}), we simply write ^>SL p^)
(resp. ^i,?^)) for ̂ p^).

If L is a left module over a semi-group generated by ^ e G(Q) and <I>,
we can define the Hecke operator T acting on ̂ (^ L) associated to the
double coset <^ (cf. [H2, § 1.10]). Let SH,p(poi) (resp. 5') be the closure
of ̂ p^) (resp. ^) in Gi(A(°°)), which is an open compact subgroup of
G^(A(00)). We consider for a partition n = t + s

x = (^ p°lj G SLn^ = Gl^'

Then by (SA), we can find ^ e Gi(Q) such that ^ = x mod^pQ^).
Because of the finiteness of the class group of the central torus Z = Z(G)
of G, we know that

( there exist a positive integer h and a global element w C Z(Q)
such that w-1?^1 e r^ in G((Qp), w~lph = 1 mod?" and w
is in a open compact subgroup of Z(A^00^) outside p (that is,
w is a unit outside p),

where r is the integer ring of F, r? = r (g)z Zp and we view r^ as the
maximal open compact subgroup of Z(Q)p). Then we put:

c = ̂ .
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Thus ̂  satisfies for each a > 0:

^-('O z^J mod^^f^ -(^I ^p - ^ o -

[ ^S.^i = s^^A=5^ for all i+p,

where S^ is the ^-component of 6'. By modifying ̂  by a unit, we can find
^s € ^(Q) such that for a suitable positive j = ( j , j , . . . ,j) e Z53

(Tp.) J^<0 JJ-0^^
U,A=^^ for all ̂  p.

Because of the density of ^ in 5', we can embed the Hecke algebra with
respect to the group ^H.P^P^) and the semi-group generated by

[^k\sk=^rli for k= l , . . . ,m- ll
k<i<^m

isomorphically into (^)p|p^(^p5 ^Cp) f011 ^p = SH^P^P^)? m the previous
section, where p runs over prime factors o fp in r and SH,?^)? is the clo-
sure of ^H^P^P^}? m GL^(rp) for the local ring r? of r? at p. We define the
operator Ts(w3^) by the action of the double coset ^,p(J?Q')^J<I)^,p(J>o/)
on ̂ (^pfy), L) for L. Since Ts(w3^) = Ts(w3)^ as seen in the previ-
ous section, the idempotent ep attached to \\kTs^(w3) (see [H2, § 1.11]
and (2.4) in the text) is well defined independent of the choice of ^s-

Let A be a ring. For any A-module L and an ideal a in A, we write

L[a\ = {m c L | am = 0 for all a G a}.

Write C(T;r7) for the space of continuous functions on T with values
in T ' for two topological spaces T and T'. For each 0-module R, we let
g G Mp(rp) act on (f) e C(yp^(A);J?) by

^(^/) = <^(^) for A = Tp and r/p°T.

We say that R is of finite corank if its Pontryagin dual is an 0-module
of finite type. If R is of finite corank, C{Yp^{A)',R) becomes a left
0[[Mp(rp)]]-module. We consider C(Yp^(A)',R) as a left Ap^module
(resp. a right Ap-module) in the following manner:

(b(j)){x) = 0(6-l;^) (resp. 0 | b{x) = (f){bx)).

TOME 123 — 1995 — N° 3



NEARLY ORDINARY COHOMOLOGY GROUPS FOR SL(n) 441

Then C(Yp^(A);R)[a] for each ideal a in 0[[Mp{rp)}} is a left A^-module
(since the action of Mp(rp) and A commutes each other).

We can think of the dual version of C(Yp^(A);K/0). The Pontryagin
dual module of C(Yp^(A)'^K/0) is isomorphic to the space of p-adic
measures M.(Yp^(A)\0) on Yp^{A) with values in 0. Let tUp be the
opposite unipotent subgroup. For an additive subgroup X of A, we
write tUp(X) for the subgroup of tUp(A) made of matrices whose lower
triangular entries are in X. Then we know from the Iwahori decomposition
IP^ = 'Up^r^Mp^Up^p) that

M(Yp^O) ̂  O^Up^r^oO^Mp^)^

where
0[[^ph%)]] = lmi(9[^p(p%/Ap)

/3

Let Z be the symmetric space of G\; thus, Z = G\ (IR)/Coo+ for a maximal
compact subgroup Coo+- Then for any ^-module L and a subgroup F of ^,
we write L the sheaf of locally constant sections on Y = Y(T) = F\Z with
values in C = r\(^xL), where 7 6 F acts on Z^L by 7(^,772) == (7^,7772).
That is, we put the discrete topology on L (disregarding any inherent
topology on L) and for any open set U of V, L(U) is the space of
continuous sections over U with values in C. Note that

Y(S)=G,(q)\G,(A)/SC^

in the introduction is isomorphic to Y(^>). When we deal with sheaf
cohomology groups, we suppose that

(TF) <I> is torsion-free.

Then we define H ^ ( T ^ L ) by the compactly supported sheaf cohomology
group H^(Y,L) for any subgroup F of <1>. Suppose now that L is either
discrete or compact. Let L* be the Pontryagin dual of L. Write

d = dim^ Z.

Then ̂ (F, L) and ̂ ^(r, L*) are mutually Pontryagin dual by the cup
product. We have for each injective system {L^} of F-modules

(4.2) Hq(^,L)=llmHq(^,L^ and ^(F,L) = lim7^(r,LJ.
a a

To see (4.2) for compactly supported cohomology groups, we note that
the Borel-Serre compactification of r\Z, which is a manifold with corner
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by construction, is topologically equivalent to a manifold with boundary
(see Appendix of [BS] by A. DOUADY and L. HERAULT). Then we may use
the argument in [H2, § 1.8] to show (4.2). Then A = A^ acts naturally on
Yp^r/p^r) and hence C(Yp^(r/ppr)•,R) is naturally a left A^-module.
Note that

CC(Yp^K) = limC(yp^(r/A);-R)
P

is the space of locally constant functions on Yp^. In particular,

CC(Yp^R)=C(Yp^R)

if R is a discrete module. Thus, writing Hi for any one of H^ and H ' 1 , we
see

(4.3a) H^{r^C(Yp^R)) = \imH^r^C(Yp^r/p^R))^
P

(4.3b) H^r^C(Yp^p-^0/0)) =llm^(^,C(yp,,(r/A)^-70/0))
~y

for 7 = 1 ,2 , . . . , oo. We call a (A^1, C9)-module admissible if it is an
injective limit of (A^1, (9)-modules of finite corank. As seen in [H2, § 1.11],
we know that

( There is an idempotent ep acting on H^tY, L) for F = ̂ n p(pa)
(4.4) ^ such that Tl^^m-iT^ (^7J) ^ an automorphism on e p H J ( T , L)

[and topologically nilpotent on (1 - e p ) H S ( T , L ) ,

where L is an admissible (A^1, (9)-module. We now consider an exact
sequence of A^1-modules

0 ̂  K^ -^ CtYp^r/p^rVp-^O/O) -^ C^Mp^r/p^p-^O/O) -^ 0,

where the last map is given by <^((L,, T^)) ̂  ((r,) ̂  (^((St,, T,))). Thus we
have the corresponding cohomology exact sequence for each subgroup F
of^p^cA^:

H^r^K^) -. H^r^^Yp^r/p^p-^O/O))

-. ̂ (r,C(Mp(r/^r);p-^/0)) ̂  ̂ (r,^).

We now recall the definition of the operator

[r^r]:^(r;L)-^^(r,L)
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for ^ e G(Q) given in [H3] for a (F^-^-module L, where (r,^-1) is the
semi-group generated by F and <^-1 in (7(Q). We define

[F^r] = Trr/^ o[^] o resr/v,,

where ^/ = ̂ -1 for ^ = F n r1^, Trr/^ is the transfer map and
res?/-,/, is the restriction map. The morphism

K]:^(^;L)-^(^L)

for the module L is given as follows. Let u be a homogeneous z-cocycle of
'0 = F n ̂ r^ with values in L. Then we define the action of [^] on n by

KM7o,..., 7j - r^(^or\ • . • , ̂ r1).
The operator [^] gives rise to a well defined operator between the cohomo-
logy groups as above. We may consider the closed subgroup Ci of G(A)
generated by Gi(A) and G(Q). For each open compact subgroup S of
G'i(A(00)), we consider another expression Y(S) = Gf(Q)\Cl/SfCoo+ of
the modular manifold Y == ^\Z. Then the sheaf L for an admissible
6'p-module L can be realized as a sheaf of locally constant sections over Y
to G(Q)\Gi x L/SC^, where the action of 7 e (^(Q) and s G SC^ is
given by

7M^ = ^ g s , S p l £ ) .

Under this circumstance, for ^ e (7(Q), we have an expression:

[I^r] = Tr o[^] o res on H^ (Y(S), L),

where res : HS(Y(S), L) -^ H^(Y(S H ̂ S^^L) is the restriction map
and Tr is the trace map from HS(Y^S^-1 F } S ) , L ) into H^ (Y (S), L). We
say that the Hecke operator S^S is supported on a semi-group X in GfQJ
if(^^CX.

The operator n T^W^)
l<k<m-l

is given by [I^r] for $ = Yl^<m-i % in (TP.). Suppose that n has
values in K^^. Then

^(7o,...,7,:(Stz,T,)) =0
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for all (r,) c Mp^/p^r) and all (70,. . . , 7,) C r^+1. By LEMMA 3.1,
^ contracts Yp^r/j^r) to {(St,,T,); (rj C Mp(r^Qr)}. Thus we have

(4.5a) KM7o,...^;(^^)) =^7or\.•.^7^rl^(^T,))

= ^(^7or\ • • • ̂ ^"^(St, T,)) = 0.

This shows

(4.5b) JJ r^^) kills ^(r,^,^) for every a > 0.
KA;<m-l

In particular, we have for F C ^>o^p(poi)

(4.6) ep^ (r, C(Yp^ (r/p^p-^O/O))

^ ep^(r,C(Mp(r/^r);^0/0)).

Hereafter we write epHq as ^jLn.orci- The isomorphism (4.6) commutes
with Hecke operators [r^r] supported on Ap, because by choosing a suit-
able representative rj in [F^r], we may assume that the action of 77 on the
modules C(Yp^(r/par)',p-^0/0) and C(Mp(r/^r);p-^/(9) commutes
with the projection TT. We also write

^-n.o^d(^0,p(POO)^(yp,l;p-^/0))

(where {3 = 1, 2 , . . . , oo and p~°°0/0 = K / 0 ) for

^^p-n.or^AP^.^Yp^p-^O/O))
a

^ llm ̂ -n.ord {^P^WYp^r/p^p-^O/O)}.
a

Then we have:

PROPOSITION 4.1. — Assume (GL) and (S). T/^en we /lave a canonical
isomorphism of Hecke modules:

^-n.o^d(^0,p(POO)^(yp,l;p-^/^))

^^^-n.ord^O,?^)^^?^/?^);?-^/^)),
Q:

w/iere ^/ie injective limit is taken with respect to the restriction maps.
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Here the terminology «morphism of Hecke modules)) means that the
morphism is compatible with Hecke operators supported on A. Note that:

C^r/p^p-^O/O) - ind^'^:;p-^/a

Thus by Shapiro's lemma, we have:

(4.7a) ^„.o.d(^o,p(pa),C(Mp(r^ar);p-^0/0))

^^P-n^^P^.P^O/O).

This isomorphism is an isomorphism of Hecke modules.
We now take ^/ = Yi^<m-i ̂  as in (Tp,) for 7 > a > 0 and put

^ ^ ^7-0', v^e consider the following diagram for each (^o,?^0')^"1)-
module L:

H^^p^^L) ^(^p(p7)^)

(4.7b) ^2

Ts

H^^p^)^) ^0,P(P7)^)

where
^1= [^P^^O,?^)],

^2= [^(P7)^),?^)],

^^[^ph7)^,?^7)].
The commutativity of the above diagram follows from the argument in
Section 2. The key point is

^pCp7)^?^7)^),?^) ̂  ̂ P^A^O,?^)^),?^)
which follows from (SA) combined with the explicit computation of coset
decomposition given in Section 2 above PROPOSITION 2.2.

Using the diagram (4.7b), we conclude for any admissible A-^mo-
dule L: ot

(̂  ^-..ord^O,?^)^) - ̂ .n.ord^P^U) for 7 > 0.

We put:

^-n.ord(^l,P(P00)^/^) ^ lim .̂,.̂ ( l̂,p(^) /̂0).
a.

Then we have:
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THEOREM 4.1. — Assume (S) and (GL). Then we have a canonical
isomorphism of Hecke modules:

^-n.ord(^0,p(p),C(yp,i;^/0)) - H^.^^p^^K/O}.

5. Control Theorem
We start with a general lemma for our later use. Let Q be a topological

group isomorphic to a product of a finite group ^ and a Zp-free module W
of finite rank m. For any (g, A)-module X and an A-valued character e
of Q, we write X[e] for

{m G X ; 7m = £(7)771 for 7 e ^}.

Similarly for each A-module X and T, C A (z = 1,... ,m) or an ideal
a C A of a ring A, we write

X [ T ^ . . . , T m ] = { x e X ^ T,x=0 for z=l,. . . ,m},

X[a] = {re G X ; arr = 0 for a e a}.

Let A = 0[[g]], A = ^[[IV]] and ^ be a continuous character of Q
into C^. Then \ induces an algebra homomorphism ^: A -^ 0. Since A
is a regular local ring, Pr\V for P = Ker(^) in A is generated by a regular
sequence (Ti,.. . ,r^).

LEMMA 5.1. — Let C be an abelian subcategory of the category of
discrete A-modules and C be an object of G. Let L \—^ H*{L) be a
cohomology functor {transforming short exact sequences into long ones)
defined on G with values in the category of discrete A-modules. Suppose
the following four conditions:

(i) C, C[x\ and C[T^ . . . ,T^] forj=l,..^m are objects in 6;

(ii) For each j = 1 , . . . ,m, the multiplication by Tj is surjective on
C[Ti, ... ,r^-i] (this in particular implies that x \—^ T-^x is surjec-
tive on C7);

(iii) |^(C[:\:])| < oo for all 0 < q < r for an integer r;

(iv) The Pontryagin dual module of ^(C[^]) is of finite type over 0
for all 0 < q < r.

Then the natural morphism

H^C^-^H^CM
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has finite kernel and cokernel. Further if 7:r"(C[Ti,... ,7m]) = 0 for all
0 < q < r, then

^r(c[ri,... ,r^]) ^ H^C^T^ .. . ,r^].

Proof. — By the hypothesis, we have a short exact sequence:

o -> c[Ti,..., r,] -^ C[T^ . . . , r,_i] -^ qri,..., r,-i] -. o.

Thus we get another short exact sequence from the long cohomology exact
sequence:

o ̂  H^-1 (c[Ti,.... r,_i]) ̂  A/T,A -^ ffl (C[T^ ..., T,])
—^(c[ri,...,r,-i])[r,]-^o.

Take the Pontryagin dual of the above short exact sequence

(*) o ̂  Ej,,/TjEj,, — E, — N^[TJ\ -^ o,
where ̂  = H^(C[T^ . . . , T^-])* and Nj = H^^T^.... T^-])*. Here the
« * » indicates the Pontryagin dual module. As for the last assertion, what
we need to show is the dual version:

Em ̂  EQ/(T\^ . . . , Tm)Eo.

The above sequence is valid even if q = 0. In this case, A^-i = 0, and
the assertion is evident from the above short exact sequences. Now we are
going to show the assertion by induction on q. By topological Nakayama's
lemma, we see from the above short exact sequence that for j = m, Em-i
is of finite type over A/(Ti , . . . , Tm-i\ because Em is of finite type over
0 = A/(Ti , . . . , Tm)- Then by induction on (m — j ) , we find the finiteness
of Ej for all j. Now, we suppose that

H^C[T^..^Tm})=0 for 0 < q < r.

If Nj = 0 for all j, then we have Ej ^ Ej^/TjEj-^. If moreover Em = 0,
by Nakayama's lemma, we conclude Ej = 0 for all j. Thus by induction
on q, we get Nj = 0 for q = r. Therefore we obtain the exact control
for Ej. Now, we suppose that Iff^C^])! is finite for 0 < q < r. Then
localizing at P, one gets

(**) H^C^})^ =0 for 0 < q < r.
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Note that
Ap == A-pnA-

Then, in Ap, PAp is generated by Fi,...,!^, and (**) implies that
Hq(C[T-i,..., r^])p = 0. In fact, for characters LJ of ^, we have an exact
sequence:

0 ̂  L -^ Q)C[^] —— C[T,,..., T^] -^ L' - 0
Ci/

with p-torsion L and L'. Thus we have a morphism:

^^(c[^])-^^(c[ri,...,r^])
0;

with finite kernel and p-torsion cokernel. This shows that

^(c[ri,..,r^]);-^(cM);.
Then the argument as above applied to

(***) o ̂  £,_i,p/r,^_i,p -^ E^T, -^ N,_^[T,} -^ 0

shows that Em,-p = Eo,-p/PEo,-p for g = r. Thus we have

^WF ®o K = H-Wp = E^ - E^/PE^

^ (Eo/PEo)p = (H^O^Y ®o K.

Therefore the natural homomorphism

.*:(^(C)M)* -.^(c^)*

has kernel and cokernel killed by sufficiently large power of p. Since the
two sides of the above homomorphism are of finite type over A, L " is of
finite kernel and cokernel. This shows the result (see [H2, 1.16 b]).

Now we study the control theorem for the standard parabolic sub-
group P. For that, we need to look at a Ap^-module a bit different from
C(Yp^;K/0). We now fix a finite dimensional polynomial representation

p : Mp(rp) —> GLd(O) acting on V(p',0) = Od,

and suppose that p is absolutely irreducible after extending scalar to K.
Here the word «polynomial)) means that p is induced by a morphism of
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algebraic groups from Res^/z MP mto GL(d) defined over 0. Note that
the restriction of p to Mp(rp) remains absolutely irreducible. We write uj
for the central character of p on RCSR/^TM (= Resp/QZ(M)). For any
torus T/^ and a p-adic ring

A=\lmA/pocA,
OL

we call a character \ of T(A) arithmetic if it agrees with an algebraic
character in X(T) = Honiaig.gr(r, Gm) on a neighborhood of the identity.
We define a morphism of algebraic groups del : M' —> Tp by

det(^i,...,^n-i) = (det(^i),...,det(^n-i)) € Tp,
where gi C SL(77^). As before, we write i :TM —)> Tp for the composite of
the projection: Mp -P^OJ-> Mf and Mf —e-^ Tp. For a continuous character
\: Tp(rp) —^ Ox, we define the twisted representation p (g) ̂  by

P ̂  X(^)^ = x(det(^))^(^)2; for v e V(/);0).
If \ is arithmetic as a character of Tp(rp) = Res^/z Tp{'Lp\ then there

exists 0 < OQ G Z such that p(g)^ induces for every a > OQ a representation
Mpir/p^) —— End(y(p;0) ^op-0^/^),

which is again denoted by p (^ \. For any admissible 0-module R, we just
put

V(p 0 x\K) = V(P ̂  X\0} ̂ o R'
We then consider

C(Yp^p^R) = {^:Yp^ -^ V(p^R) |

^-1) = p(^{x) for 7 e Mp^^)}.

Note here that C(Yp^,p',R) == C{Yp^,p^^K). Naturally 6 e Ap1 acts
on C(Yp,p\R) via 6(/)(y) = (f){6~ly). We consider

ffkn.o^d($0,p(p),C(yp,l,p;A)).

We have an exact sequence of <&o p(p°)-niodules:

0 -^ K^ -^ C(Yp,l(r/par)•,p-aO/0) -^ ind^d, V^p^O/O) -^ 0,

<^^(7r(<^)(T,)=</>(St,,Ti))

where V = V^p-^O/O) and

ind (̂i) V = {^-.Mp^/p") -^ V ; 4>(x^~1) = ̂ (x)for-Y € Mp^r/^r)}.
Then:

|,(P°)
md .̂) y^p-0^/^)) = ind ̂  V^p^O/O).

-SL,P

From this, similarly to THEOREM 4.1, we have:
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PROPOSITION 5.1. — Suppose (GL) and (S). Then we have a canonical
isomorphism of Hecke modules:

^-n.ord(^0,ph),Cpj - H^^SL^P00)^)

=llmHqP-n.or^SL,p(Pa).V(p^-aO/0))^
a

where we write Cp^p (resp. Vp) for C(Yp^,p',K/0) (resp. V(p;K/0)) to
simplify the notation.

Since ^p^V^SL,?^0') ^ rp(Z/p°'Z) via del, the left-hand side of
the isomorphism in THEOREM 5.1 is naturally a Tp(rp)-module. That
is, choosing 7 <E ^o,p(p0') which gives the image of z C Tp{rp) in
^pfW^SL,?^), the action of z e ^p(r/pQT) on each cocycle
u'.^pW^ -> V(p^-oi0/0) is given by

zn(7o, . . . , 7g) = 7-l^(7-17o7, • • • , -r^)-

On the other hand, the action of z C T^r-p) on Cp^ given by z(f){y) =
(t)(yz~1) induces the action ofTM^) on ^p_^.ord(^o,p(p),Cp^). Since TT
commutes with the action of TM and Tp (via the isogeny 2:7^ ̂  Tp
denned in the introduction), we see

(5.1) i(zc) = i(z) i(c) for z e TM^).

Let 77 be a continuous character of TM^T?) with values in Ox. We consider

C(Yp^p^R)[rj} = [^ e C(yp,,,p;J?);

(f)(xw~1) = r](w)(f){x) for w e TM^)}.

Naturally Ap1 (where Ap = Ap,i) acts on C(Yp^, p;R)[rj] similarly
toC(Yp^,p',R). Let

II=TM(rp)M(pl\rp)

in Mp(rp), and let \ be an arithmetic character of Tp{rp) with values
in 0. We consider

y^^ind^yGo^.R)
= {0: Mp(rp) -^ V(p;^); (/)(gh-1) = p ̂  xW^g) for h e ̂ },

where the above 0 is supposed to be continuous. Then by Shapiro's lemma,
we have:

^^HAP'Yy^^X^^H^^p^^V^R)}.
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Note that the original p is an irreducible representation of Mp(rp). Then
by the Frobenius reciprocity law, we have

V(p^K)^Q)V(p^r,;K)
r]

if K is sufficiently large, where 77 runs all characters of Tp{rp) such that
rj = x on i(TM(rp)) C Tp(rp). Note that

I p / U p ( r p ) ^ Y p = Y p ^ .

We now show that we can embed Indpi V ( p ' ^ K ) into C(Yp\K}[uj\ as a Ip-
module, where P° == Res^p/Qp P which is regarded as a subgroup of G\.
Such an embedding is unique up to unit multiples. To see this, we write
simply V for the simple P°-module V[p',K). Then V is a P°-module in
the sense of algebraic geometry (cf. [J, 1.2]). Let C(V) be the sheaf on the
Grassmannian G-^/P0 associated with V, that is (G^ x V ) / P ° . Then

H°{Gi/P^C(V)) ^Ind^V.

We suppose that Ind^i V ^ {0}. In this case, we call p dominant. The
representation p is dominant if and only if the highest weight of p with
respect to the Borel subgroup BnMp as the representation of Mp is dom-
inant as a character of T with respect to B ([J, § 2.16 and Rem. p. 199]).
Let tP be the opposite parabolic subgroup and tU be its unipotent radical.
Then as shown in [J, Rem., p. 199], if ^(^.Ind^, V) ̂  0, then

H0^0, Ind^; V) ̂  V as P°-module,

where tL7"o = Resj7p/Qp tU C Gi. Moreover soc^i Ind^S V is simple, where
«soc » indicate the socle. Since G\ is reductive and K is of characteristic 0,
Ind^i V is a semi-simple C^i-module. Thus

socd Ind^ V = Ind^i V.

That is, Ind^i V is simple. Since Yp is an open subset under the p-adic
topology of G^(Q)p)/U°(Q)p). Thus Yp is Zariski dense in the algebraic
variety G-^/U0. In particular,

Indpi V = {(^GI —^ V ; <^(<77~1) = 7<^(^) for 7 G Mp, (^: polynomial}

is embedded into C(Yp^p'^K)[uj] through the restriction of functions on
G\/Up to Yp. Since L(p\K} = Ind^i V is stable under the action of A~1
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on C(Yp^p',K), we hereafter consider L(p;K) as a A^-module. This action
may be a bit different, by a character, from the action of G(Qp) via p.
Let x be an arithmetic character of Tp(rp) with values in Ox. Now we
write x = xo£ with xo e X(Res?/Q Tp) and e: Tp^r/p^r) -^ Ox of finite
order. We suppose that p (g) ^o is dominant (in this case, we say x is
dominant with respect to p). Then replacing p by p 0 ^o? we know that
we can realize

L(p(S)Xo^)=lnd^V(p(S)Xo^K) in C{Yp,p',K)[uj,^,^v^^XoJ

as a A^-module, where uj^ = uj[x o i) and \ o i is the composite of

i'.TMCMp^-^GLW-^Tp andx.

We put
L(P ̂  XQ\O) = L(p ̂  w.K) H C{Yp, p',0).

We define e-y :Jp(pa) ̂  0>< by ^(de^Tr^modp0'))), where TT : P -^ M'
is the projection. Then it is easy to see that ey factors through Ypa. We
regard L ( p ( ^ x ^ K ) as a subspace of C^(K) = C(Yp^,p',K) restricting
polynomial functions to Yp. Then

L{p^^O)=EYL{p^x^K)^C(p^O)

is stable under Ap^. We then define

L(p <g) x'.K) = L(p (g) ̂ ;0) (g)o R

and write simply L{p (g) ^) for L(p (g) x;K/0). We consider

(5.2) c(yp,^;A)M = {^ e c(rp,p;A);
(f)(zw~1) = x{w)(f){y) for w € Tp(rp)}.

Naturally Ap1 acts on C(Yp, p',A)[x]. We put ̂  == d;(^oz) for the central
character uj of p. Now we want to prove:

THEOREM 5.1. — Suppose (GL) and (S). 7.̂  ^ = rM^Mp1^).
T/ien /or eac/i arithmetic character x'-Tp(rp) -^ Ox dominant with
respect to p and for all q > 0, we have a canonical isomorphism of Hecke
modules'.

^ •' ̂ -n.ord^SL ,p(P°°)MP ̂  X)) ̂  ̂ -n.ord (^o(^)n^p^) ,
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where i^{uj^{z)i(z)c) = zi^(c) for z G TM^?). Moreover suppose that \
is an arithmetic character in X('Resp/qTp) dominant with respect to p
such that it is algebraic on {x £ Tp(rp)'^x = Imodp0'} for a > 1. Then
the above isomorphism induces an isogeny for uj^ = uj{\ o i)

H^^H^P^MP^X)] —— ̂ -n.ord^ph00),^)^].

Proof. — We consider the following exact sequence:

(*) 0 -^ Kp —— L(p 0 ̂ P~^0/0) ̂  V(p 0 x\P~^0/0) -^ 0

given by 7r(0)(T^) = 0((St,T^)). Viewing L(p (g) ^p~^0/0) as a space
of functions on Yp with values in a finite set V{p 0) \\p~^0'/O) we see
that every element in L(p(^\'^p~^0/0) factors through Y p ( r / p 0 1 r) for a
sufficiently large a' > max(a,/3). Then (*) is an exact sequence of A^/1-
modules. Since the action of ^a for ^ as in the proof of THEOREM 4.1
contracts Y p ^ / p ^ r ) to {(St,r ,) ; (r,) € A^r/p^r)} (LEMMA 3.1), by
the same argument which proves THEOREM 4.1, we get, for all f3 > a

H^.^H^P^^^p^x-^O/O))

= H^.^H^'^Lip ® x-^0/0))

= ^-n.ord ̂ piP"'), V(p ® X-^O/O)}

= ffp-».ord($0,p(^), V(p^p-^0/0)).

Thus we have used twice (4.7c). This implies:

(a) ffj,^(<^,p(P°)^(/^x))
^ ^-n.ord (< ,̂P(A V(p 0 X;K/0))

^ ^>-n.ord(^,P(P~)^(^X;^/0))-

Similarly we look at the exact sequence of Ag1-modules

0 _ ̂  -^ C{Yp{rl^r\p;KIO){^\ -^ V(p^,K/0) -. 0.

Since
7r(^)(a^-1) = uj^(zW}(x) for z € TM^),

7r(</>)(a-ff-1) = p(ff)7r(^)(a;) for g e M^\rp),

we know that

7r(<A)(.EA-1) = ̂ )® x{hW){x) for A € TM^)^^^^^).
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This shows that Tr(^) C V(p^: K / 0 ) if H contains

[x e Mp(rp} ; x = 1 modp^}.

We get

(b) ^>-n.ord(^0,ph),Cp>,J)

^-n.ord^P^Cp^]) (Cf. (4.7C))

"^-n.ord^ph00)^^;^/^)

^ ̂ -n.ord^P^00)^^^^;^/^)).

The last isomorphism in the above identity follows from Shapiro's lemma.
Thus combining these two isomorphisms (a) and (b), we get

(5.3a) H^^p{p\CpM) - H^^H^p^^L^^x)}^

Replacing in the above argument ^^(p") by ^sL,p(p°') and Cp, [o;y]
by Cp^, we get

(5.3b) ^^^.ord^SL,?^00)^^^^)^^,^^?^),^).

Since TT in (*) is a morphism of ^o,?^) -modules, we conclude that

i^(^(z)i(z)c) = zi^(c) for z € TM^).

This shows that ^ induces the last morphism in the theorem. Now we
suppose that

^-n.ord^ph^ L(p 0 ̂ K)) =0 for all 0 < q < r.

Then we conclude from LEMMA 5.1 that the natural map

^!>-n.ord(^0,p(p)^p,>^]) -^ ^p-..ord(^0,p(p)^p^[^])

is an isogeny. We need to check the four assumptions of LEMMA 5.1. We
take as G the category of discrete admissible (Ap\ T^^p)) -modules, and
Q = TM{rp). We decompose TM^) = W x ^ as in LEMMA 5.1. Then the
assumptions (i) is clear. The functor J79 is given by

H^X)=H^^p(p^X).
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Then Hq has long exact sequences attached to short ones. The assump-
tion (iv) follows from (5.3a). From the exact sequence:

0 -^ L(p 0 ̂ 0) —— L{p 0 x'.K) —— L(p 0 x) ̂  0,

we get another exact sequence for r = ̂ H.pip0')'-

^-n.ord(r^(^X;^))) -—— ^>-n.ordMp0X))

—H^^r^np^x'.o))
Thus from the assumption that

^n.ord^Ph")^^;^)) =0 for all 0 < q < r,

we conclude the finiteness of^j^.^^ph"), L(p^)) for all 0 < q < r.
Then the assumption (hi) of LEMMA 5.1 holds again by (5.3a). We now
check the assumption (ii). Note that Yp is isomorphic to a disjoint union
of k copies of ^(pr?) xW x M^p^r?) for some 0 < k <E Z just as TV-sets.
Thus the Pontryagin dual module C* ofC = C(Yp, p ; K / 0 ) is isomorphic to

A^oO^U^prp)}} 0o V*

for the Pontryagin dual V* of V{p',K/0). Since Ti, . . . ,Tm is a regular
sequence, the multiplication by Tj is injective on A/(Ti, . . . ,7j-_i) and
hence injective on

(A/(Ti, . . . , T,_i))^(?[[^(p^)]] 0o ^*.

The statement dual to this is actually the assumption (ii). Therefore we
get the last assertion from LEMMA 5.1.

Now we have the control theorem with respect to TM^T?). Since the
image of T^p) in Tp(rp) is of finite index, by the Hochschild-Serre
spectral sequence, we get the control theorem with respect to Tp(rp). We
now identify via i^

^-n.ord(^SL,p(p00), L{? 0 ̂ )) - ̂ .,.̂ (̂ SL,p(p°°), L(p)),

and we take the standard action of Tp{rp) to be the action of the right-
hand side. Then we have proven the following result:
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THEOREM 5.2. — Suppose (GL) and (S), and let \ be a continuous
character ofTp(rp) with values in Ox. Suppose that

(i) \ coincides with an algebraic character in X(Res^ /z Tp) on
{xeTp^-.x^imodp0'},

(ii) \ is dominant with respect to p, and

(m) ^p-n.or^H^P^MP ̂  X;^)) = 0 for 0 < q < r.

Then we have a canonical morphism of Hecke modules:

^P-n.ord(^0,p(P°),£(/9®x)) —— ^P-n.ord(^SL ,p(P00 MP)M

with finite kernel and cokernel.

COROLLARY 5.1. — The Pontryagin dual module of

HP.^^SL^P^MP))

is of finite type over ^[PM^J))]] if P is dominant.

Let W be the torsion-free part of TM(^). Therefore TM^?) = W x ^
for a finite group ^ and a Zp-free module W of finite rank. We can state
a stronger control theorem using W in place of TM(rp):

COROLLARY 5.2. — Let H =W • M^\rp). Suppose that

^-n.ord^Ph")^^)) -0 for all 0 < q < r.

If\ is algebraic on {x e Tp(Zp);x = 1 mod?"} (a > 0) and is dominant
with respect to p, then we have for the prime ideal P^ = Ker(^) in A

^P-n.ord^,?^)^^^^)^^^^^,?^00)^^))^].

We omit the proof, since it is basically the same as the proof of
THEOREM 5.1 and follows directly from LEMMA 5.1.

When P = B, the standard Borel subgroup, the isogeny z : TM —^ TB
is actually an isomorphism. Thus THEOREM 1.1 and 1.2 follows from the
result in Sections 4 and 5.
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6. Further generalization
We can generalize our result to the following cases in an obvious

manner:
Case J. The ordinary part associated with {Pp G P ; p G J} for a

subset J of prime ideals in F dividing p.
Since the argument is completely parallel to the case already treated,

we just state the result in Case J without proof when J is made of one
prime ideal p of r dividing p and leave the formulation in the general case
to the reader. This has been worked out by Brad Wilson [W] when n == 2
and F is totally real. Let n = ni+.. .-\-nm be the partition ofn by positive
integers ni into m parts. We write P for the standard parabolic subgroup
of SL(n) associated to (ni , . . . ^rim)' Then we associate to P subsets

m

S = ̂ m^m-1 +nm,.-.,^^.-.^2 + • • • + ̂ m }

*S = ̂ ni.ni +n2,...,]^/^...,m + • • • +7iyn-i1-
J=l

of { 1 , 2 , . . . , n- 1}. We write

V =rp =\lmr/poi.
cc

Let '7 be the field of fractions of V and w? be a prime element of V. We
suppose that 0 is a V-algebra. In the previous section, we studied the
operator IL^s^s^)-7 for some j > 0 and ep (see (Tps)). Of course the
idempotent ep does not depends on the choice of j. We can work out a
similar result for T=n^(^)

5GS

for a suitable j > 0 and the idempotent ep attached to T. The operator
Ts(w^ is the action of ^^ for 5 e G(Q) close to [11. ° V We will

specify ^ more precisely later. Let ^ be a congruence subgroup of Gi(Q)
satisfying

(Sp) Sp=Y[Sr for 5p C SL^(r^) and Jp,p D Sp D IB^
r\p

where Sp is the P-adic closure of <I>, and 7-p^p = ^p,i,p for

IP^P = [x G SL^(V); ^ modp" G P(V)}.
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We can suppose as explained in Section 4 (see (Tps)) that

(TpJ ( there exist 0 e p and S, e G'(Q) suc/i fW ^,p = f l t ° )
0 01s

= ̂ ,, .
and ^s,p £ GLn(r-p) /or all prime ideals P -^ p anrf P [ p.
modp«M^(V), ̂ St = S^e for t ̂  p, ^pS-p = S-p^-p,
and ^s,p £ GLn(r-p) for all prime ideals P -^ p and P \ p.

where S-p (resp. ^p) is the P-adic closure of $ in GLn(F-p) (resp. the
image of ^ in GLn(F-p)). Let ff be a closed subgroup of Mp(V) and Ha
be the image of H in Mp(r/p°). We put

(6.1)

' A^p = Ac(V) for G = 5o(p°)p and A = Ap,p = Ap^p,

^o,p(p") = {76^ ; 7pmodp° e P(r/p°)}

$SL,p(p(:l) = {7 € ^o,p(p°); 7r(7p)modpQ e M^^r/p0)},

. ^ff,p(p°) = {7 € $o,p(p°); Ti^modp0 e ff^},

where 7? is the image of 7 in GL^(V) wa (GL), 5'o(p°)p is the closure of
$o(p°)p in GLn(V) and TT : P -> Mp is the projection. We define

Yp,f, = Ip,p/Up(V), Yp^ = Ip,^/Up(V).

We put for each 0-module R and 7 e M^^r?)

^ ̂  I ̂ '^ = ̂  e W,p;^p;-R)); ^(^7-1) = ̂ (7)^(2-)},^o.zaj <
I ^p,pW = {^ ^ C(Y^V(p^R)) ; 0(^-1) = pp(7)^(^)},

where V(p^R) = V(p^O) ̂ o R, and

pp :Mp(V) —— Endo(V(pp;0)) (V(p^O) ̂  0^

is a polynomial representation: Resy/Zp Mp ̂  GL(d)/o. We suppose that
V(pp;0) is a absolutely irreducible after extending scalar to K. We write
Cp^p (resp. C^p^) for Cp^(K/0) (resp. ^p^(^T/0)). Let L(p(P);0)
be an (C^SL^r^^-module, where we have decomposed r? = r? x r^
as a ring product. Of course, we suppose that L(p^',0) is of finite rank
over 0. When we put:

L(p^K)=lnds^n)OV(p^K)

={cf>:S^n)o/UO-.V(p^K)^

(f): polynomial, (f)(y^~1) = ̂ (/)(y) (7 e Mp10)},
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where SL(n)° = Resy/q^ SL(n), P0 = Resy/^ P and U° = Resy/^ Up.
When L(pp;K) -^ 0, it is absolutely irreducible. For an arithmetic
X'-TM^p) -^ Ox, we take an algebraic ^o € X(Res^/^Tp) such that
£ = XXcT1 factors through V/p°' for some a > 0, an put inside C^y (K)

L(pp (g) ̂ ) = {^; 0 e L(pp (g) xo;-^},

where Ey is defined in the same manner as in Section 5. Here we have
regarded L(pp^%o;K) as a subspace ofCpp {K) considering the polyno-
mial in L(pp (g) \Q',K) as a function on Yp^. Then L(pp (g) ^;JC) is stable
under A^p. We call \ dominant with respect to pp if L(pp (g) ^;7^) 7^ 0.
We put:

^(Pp ̂  X\0} = L(py (S) x\K) n C^(0)^

L(Pp ̂  X) = L(pp ̂  X;0) ̂ o K / 0 .
Then we further put:

.. 0^ \ L(p ̂  x;(p) = L^ ̂  x'^ ^° L^(p)^)-(6.2b) <
[ L(p (g) ̂ R) = L(p (g) ̂ ;0) (^o -R, ̂ (p 0 x) = ̂ (P ̂  X\KIO\

Let ep be the ordinary projector associated to T. Then, we have, writing
^,p-n.ord for epH^

THEOREM 6.1. — Assume (GL), and (Sp) T/ien we have a canonical
isomorphism of Hecke modules for all q and for all arithmetic character \
ofTp{r^) dominant with respect to pp:

^'•H^p.^^SL^^MP^x))

^ ^,P-n.ord(^0,p(p),Cp,p,p ^o L(p ̂  ̂ ;0)) ,

where L^ satisfies

^x^^x^)0) = ZLx(.c) f071 z ^ ̂ M(rp),

cj^ = uj[\ o i) for the isogeny i: TM —> Tp.

Moreover let H = rM^Mp^rp) and uj be the central character o/pp,
and suppose that

(i) \ coincides with a character in X(Res^/^ Tp) on

{xeTp(r^',x=. 1 modp"},
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(ii) \ is a dominant with respect to pp, and

(iii) ^_^(^,P(P")^(P^X;^)) =0for0<q<r.

Then we have a canonical morphism of Hecke modules:

^:,P-n.ord(^0,p(p")^(^X)) ——> H^p^^^^p^^Hp^K/O))^}}

with finite kernel an cokernel.

7. Exact control theorem for Borel subgroups
In the previous sections, we have proven a control theorem up to finite

error. Here we like to get an exact control theorem for the standard Borel
subgroup. We can formulate our result for general parabolic subgroup P,
but it is not so much transparent because in that case, TM may not be
isomorphic to Tp by the morphism z. For example, when n = 1 + s and P
is the maximal parabolic subgroup associated to this partition, we see
that

TM^ { (a ,&) eGm x G ^ ; a=b~s}
is not isomorphic to Tp ^ Gm by the first projection. This is the reason
why we assume here that P = B. To get exact control, we need to pay
some price to bring the theorem in exact form. Namely we need to exclude
finite number of primes.

We now state a version of LEMMA 5.1. Recall that Q is a topological
group isomorphic to a product of a finite group ^ and a Zp-free module W
of finite rank m. Let A == 0[[^}}i A = (^[[W]] and \ be a continuous
character of Q into Ox. Then \ induces an algebra homomorphism
\: A —)• 0 Let R = R^ be the local ring of A through which \ factors.
Let To, Ti, . . . . Tjn be a regular sequence in the maximal ideal M. of A.

LEMMA 7.1.—Lei 6 be an abelian subcategory of the category of discrete
R^-modules and C be an object of G. Let M v—> H*(M) be a cohomology
functor (transforming short exact sequences into long ones) defined on Q
with values in the category of discrete R^-modules. Suppose the following
four conditions:

(i) C, C[x\ and Cpo,... ,7^] for j = 0,... ,m are objects in 6;

(ii) For each j = 0,... ,m, the multiplication by Tj is surjective on
C[TO, ... ,r^_i] (this in particular implies that x \—> T\x is surjec-
tive on C);

(iii) H^(C[TQ, ... ,T^]) = 0 for all 0 < q < r;

(iv) The Pontryagin dual module of Hq(C[To^... ,T^]) is of finite type
over 0 for all 0 < q < r.
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Then we have a canonical isomorphism:

^(C[To,... ,T^]) ^ JT(C)[To,... ,T^].

This lemma can be proven in exactly the same manner as in the proof
of LEMMA 5.1; so, we omit the proof.

We return to the notation in Section 5. Thus we take an open compact
subgroup S of Gi(A^°)) such that S = Sp x S^. We write ̂  = SF}G^(Q)
and assume

(F) Sp=G^)=i-l(SLn(rp))^

where r is the integer ring of F and r? = r (g)z Zp. Let B be the standard
Borel subgroup of SL(n). We put:

So^) = {x C S ' , x modp^ e B^r/p^r)},

S^) = {x G S ; x modp^ e UB^/p^r)}.

We put V = So(p)/UB(rp). We fix a dominant character ^ of Resp/qT.
Then we consider the A^-module C(Y',K/0) for the semi-group

A=5o(p)pZ^5o(p)p.

Let J? = R^ be the local ring of A = 0[[T(rp)}} through which \
factors. Write 1̂  for the idempotent of R^. We take as C in the lemma
the module C^ = \^C(Y\K/0). We write m for the maximal ideal of 0.

THEOREM 7.1. — Suppose (GL), (F) and (S). Let \ e X(Resp/qT)
be a regular dominant character. Then there exists a positive integer 6
depending on \ such that for all primes p outside 6^ the exact control
theorem holds for C^. In other words^ suppose that p is prime to 6 and
^(^.L^C)) = 0 for 0 ^ q < r, then for all arithmetic character ^ of
T(rp) such that ̂  = ̂ modm, we have

(7.1a) H^^^)^)) - H^(^(p)^)W =0 if q < r;

(7.1b) ^.ord^oh^^W) ^^.ord(<Mp)A)[^L

Proof. — We apply the above lemma to the functor

M ̂  H^M) = H^{^(p)^ M)
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on the category of admissible (A~1,7?)-modules. Here the « admissibility))
means that M is a injective limit of discrete (A'^J^-modules whose
Pontryagin dual is of finite type over 0. Write C = C^. As checked in the
proof of THEOREM 5.1, this choice of C satisfies the assumption (i), (ii)
and (iv) of LEMMA 7.1 for any algebraic \. It is easy to see that H°(M) = 0
for all objects M in the category because Ts{w3) acts on H°(M) by
its degree which is a non-trivial p-power. Let To,...,!^ be a regular
sequence. Then we have an exact sequence:

o ̂  c[To,..., r,] -^ c[7o,..., T,_i] -r^ cpo,..., r,_i] -. o.

We write Ej (resp. Nj) for the Pontryagin dual of ^(Cpo,..., Tj\) (resp.
7^9-1 ((jp^..., Tj})). Then by the cohomology sequence associated to the
above short exact sequence, we get another short exact sequence:

(*) 0 -. ̂ _i/T^_i -^ E, -. 7V,_i[T,] -. 0.

Now we assume that Nj = 0 for all j. Then by the above sequence, we
get the exact control:

(**) ^-^_i/T^_i.

Since we know that Nj = 0 for q = 0, we have the control as above
for q = 0. Since we have proven for q = 0, Em = H°{C[TQ, . . . . 7^])* = 0,
we know Ej == 0 for all j by Nakayama's lemma. Thus we can apply again
our argument to q = 1 and get (**) again for q = 1. Now we see from
THEOREM 5.1 that

H^C(Y^K/0)) - ̂ .^(^(p00),^)).

Let p. be the maximal torsion subgroup of T(rp). Then the set 5 of all
primes p such that p \ #^ is finite. Let d = Y[ ^p. Then if p is prime
to d, we know that

^(C)-l^.^(^(p°°),L(x)).

Let YQ = SLn(rp)/UB(rp), and define

Lo(x;0) = {0 C H°(X/o^ Ox) ; ^(xz-1) = xWx) for z C T(r?)}^

where X is the scheme Res^(SL^ /Ua) defined over 0 and Ox is its
structure sheaf. We view I/o(^:;0) as a space of functions on YQ with
values in 0. By definition,

L^O)=Q)Ov^
'n
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for weight vectors Vrj belonging weights rj occurring on L(\'^K) (see
[J, 1.2.11]). We put

Lo(x) = Lo(^0) 0o K / 0 , Lo(x;A) = LQ^O) ̂ o A.

Then Lo(\',A) is a <E>-module. We also have a natural action p^ of A~1

on Lo(\;K) Since P = B, we know that i: TM ̂  Tp. Since DB C T(Fp),
for ^ € DB, we can think of ^(^(O) f011 tne projection TT : T —>• Tp. Let

Ao=SL,(rp)DSL,(^).

Then Ao is a semi-group and acts on Lo(\;K).

LEMMA 7.2. — Let 0:1,. . . ^ujm be the fundamental dominant weights
of T with respect to (Gi,5). If \ = ̂  a^ with ai > 0, then for
£. C DB, ^(^(O)"1^^""1) preserves Lo(\',0). In particular, Lo(^) is
stable under Ao &?/ ^e action induced by ^ \—> ^(^(O)"1/9^^"1)- Moreover
for the idempotent eo attached to the double coset action of ̂ ^ with
^ = rii<^n-i ̂  /or ̂  ̂  (T^s), we /lave , z/a; = ̂  a,̂  w%^ a, > 0,

^.ord(^o(pU(x)) ^ eo^(^,Lo(x)).

We first prove the theorem admitting the lemma. Since \ is regular,
we know that \ = ̂  a^ with ai > 0. The lemma implies

^.ord(^o(p)^(x;^)) ^eo^(^Lo(x^)).

From the exact sequence:

0 ̂  Lo(x;0) -^ L^K) -^ Lo(x) ̂  0,

we get another sequence:

^.ord^oO^)) -^ ^.^(^^0(X))

—— ^oM^^ote^)) -^ H^(^L^K)).

Here we have written H^^ also for eo-^9 by abusing the notation.
Therefore the maximal finite quotient of ^.^(^ Lo(;\:)) is isomorphic
to the p-torsion part H^^, L^0))[p°°} of H^^.L^O)). Let
OQ be an integral domain dense in 0 which is finite over Z. We may
suppose that G is split over Oo. Note that 0 is flat over Oo. Thus:

^d^oO^)) = lim^+^(^,Lo(x^o/P^o)).
Cf

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



464 H. HIDA

We have an exact sequence:

0 - ̂ d^oO^Oo)) ®z Z/p°Z -. H^^L^Oo/p'^Oo))
^ff^(<&,Lo(x;Oo))[p°]-0.

This shows that:

H^d (^ A)(X, Oo)) ®z 2p ̂  lim ff^ (<&, £o(x, Oo/P°Oo)).
0:

Thus ^^(^'^(x.Oo)) is dense in ^^(^^(x.O)). In particular,
we have:

^d(^o(x^))b°°] ̂  H^^L^Oo))^00]-

We write ̂  for the order of the torsion part of .H'9"^1^, Lo(\;0o)). Then
we define a positive integer

6=d JJ 6q.
l^q<r

Now suppose

(Ai) p is prime to 6.

We also suppose that ^(^L^C)) = 0 for 0 < q < r. Then for
0 < q < r, we see

<ord(^o(p)^(X;^))=0.

Then the condition (Ai) implies for 0 < q < r

^.ord(<W^(x)) ^ H^^,Lo(x)) ̂  ff^(^o(x;0))[P00] = {0}

and
^•ord(^o(p), ̂ o(x)) is p-divisible.

From the exact sequence

o-> LOOM-^ £(x) ̂  .L(x) - o
for a prime element TT of 0, we get:

0 - H^ ($o(p), W) ® O/TTO
-^ ^.ord(^o(p)^(x)k]) -^ ^.^($0(P),^(X))M - 0.

This shows by LEMMA 7.1 that if

(Vi) H^(^(p),L(x))=0,
the control for H^^ works well for the maximal ideal M. of A.
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That is

^.ordCW^OOPo]))

^ H^^o(p),L(x))[To] ̂  H^{^(p),C)[M},
where we have chosen To to be a prime element of 0. Thus:

H^(^(p),C[M}~) - H^^(p),C)[M}.

In particular, since (Vi) is true for all q < r, we know

C^) ^.ord(^o(p),C)[^] = 0 for all q < r.

Now we shall show from (V2) that, for all j, for all q < r and all regular
sequence To , . . . , Tm generating M., we have

^.ord(^o(p)^[To,...,T,])=0.

From the exact sequence

0 ̂  H^-1 (C[To,. . . . T,_i]) 0 A/T,A

-^^(C[To,...,T,])^^(C[To,...,T,_i])[T,.]^0,

supposing

(Vs) H^-\C[T^ . . . . T,]) = 0 for all j,

we conclude by induction on (m — j) that

^(C[To,...,T,])=^(C)[To,...,T,]

for every regular sequence To,. . . ,T^ generating M. Since we know
the assumption (Vs) is true for q = 0 and (Vi) holds for q < r, we
conclude (Vs) for q = 2. Repeating this argument through induction on q,
we conclude the control theorem:

^(C[To,.... T,]) ^ ^(C)[To,.... T,] for 9^ r

and the vanishing

^(C[To,...,T,])=0 for^<r.

We apply this to a regular sequence (Ti , . . . , Tm) generating Ker(-0) D A,
we have:

^.ord(^o(p),C)^] - H^(<S>o(p),CW)

^^.ord^o^0),^)) forq^r,

^.ord(^o(pct),£W)=0 ifq<r.
This finishes the proof.
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COROLLARY 7.1. — Let the assumption be as in Theorem 7.1. If p is
prime to 6, then l^H^^p00),^;^))) is 0-free.

Proof. — We consider the exact sequence:

0 -^ L(^;0) —— L(^;K) —— LW -^ 0.

From this, we get:

0 - H^^(p°°),L(^0)) ®KIO -^ H^^p00),^))
-. ̂ .ord^iOn^W)^00] - 0.

We have

i^.ord^i^00)^^;^))!?00] - W^i{p°°).LW) =o.
Thus lx^p,n-ord(^i(P°°)^(^;^)) is C^-free

Let us prove LEMMA 7.2. We consider V = y?, Vo = SL^(VW(V) and
y = 5p/£/(V) for

5p = {.r e SL^(V); x modw e B(V/wV)}

for a prime element w of V. Let ^p (resp. ^(p) be the p-part (resp. prime-
to-p part) of ^. We then define Lo(xp) = ^o(Xp;<^) ̂ o K / 0 for

Lo(xp;^)=^°(X,(9x)[Xp] for X=Res^/^SLn/UB.

Let ^ be a congruence subgroup with closure 6' in G-i(A^) satisfying
S = Sp x S^ and Sp = H^Sr with SL^(rp) D 5'p D JB,P. Let e?
(resp. eo,p) be the idempotent associated to ̂  Ts(w) for ^o(p) (resp. $).
For any (9-lattice L in L(^(P);J^) stable under S^\ what we need to
prove is:

(i) LQ{^O) is stable under ^(^(O)"1?^^"1) tor ^ = ̂  in (TpJ;
(ii) ep^(^o(p), ^(Xp) ̂  ̂ ) ^ eo,p^(^, Lo(^p) 0 L).

For simplicity, we hereafter write L(^) (resp. Lo(^), resp. L(^K)) for
L(^p) (g) L (resp. A)(Xp) (^ ^, resp. Lo(^K) (g) L.

As we have already remarked, Lo(^O) = (^ Ovrj for weight vectors rj
for T. For any d G -D, we have

|x(^))|^>|r7(7r(d))|^

for any other weight r] occurring in L(^K) because \ is the highest weight.
Then the assertion (i) is obvious from this.
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Put:
H = Hp = [x e SL^(V) ; xmodw e P(V/wV)}

Note that if P is a proper (standard) maximal parabolic subgroup,

SL(n)= [J PwP forT=(^+i_^,.
we{i,r}

This shows:

(*) SL,(V)=: U HpwHp= ]J ( U ^w^).
we{l,r} wG{l , r} u^H/w-'^HwnH

Then for ^ = diag(lt, wis} with a prime element w of V, we have:

H=SL^V)^^r)-lSL^V)^r) for P = P,.

Since SL^(V)^ SL^(V) = SL^(V)^rSL^(V), this shows that for P = P,

^rr'^ms^sL^v)
= II ( II (^r'SUV^Twn)
wG{l,r} u^H/w-'^^HwHH

which implies

SL^(V)^SL«(V)= ]J ( ]J SL^V^wu).
WG{I ,T} ^te5'/(Tw)-15'Twn5

Now we prove (ii). As we have seen already, the evaluation at 0

i:L^K/0)[7r] -^L^-.O/TrO)^)

is a morphism of <I>o(p)-modules, where

L(^);0/7rC))00

is the L(^;0/7r0) on which ^o(p)/^i(p) = T(r/p) acts ma ^p. We may
assume that

^(diagf^i,. . . ,^)) = JJ ^ for % = l , . . . ,n- 1.
i<j<»
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Then if we write

X(diag(fi , . . . ,^)) = JJ t^,^
Ki<n-l

the assumption ai > 0 implies ji > J2 > ' - • > jn-i' Thus for each cocycle
c with values in LoO^O), we claim that

(**)

(ujwu) c (* , . . . , *;0) = c(*, . . . , ̂ wu0) = 0 mod^(7r($))
if w = 1,

(^wn)"1^*,..., *;0) = c(*, . . . , *;$wn0) = 0 mod^(7r(^))w
if w = T.

Since u can be chosen to be unipotent upper triangular, it fixes 0. Thus
we need to look at ^w0. The evaluation at 0 sends vector in L(\\K) to
its coefficient of the highest weight vector with respect to B. Thus for
d ^ D ,

p^d-1)/^) = f(d0) = x(7r(d))/(0).

Thus the evaluation at wO send it to the coefficient in a weight-vector
associated to the conjugate 11—^ \{t) = ̂ (^(r"1^)); that is,

(p^d-l)f)(r0)=\(d)f(r0).

It is easy to see
|A(^<|x(^))|^

because ^ is the highest, ^ = diag(lf, w\s} and ji > J2 > " • > jn-i- This
shows the claim. The claim implies that modulo TT, Ts(w) of level 1 at p
coincides with Ts(w) of level p. Thus the morphism L induces a morphism

.* ores :eo,p^(^Lo(x)[p]) -^ ep^(<t>o(p),Lo(x)[p])

—— ep^(^o(p)^(x(p);^/^)(x)).

Thus we have a commutative diagram:

eo,p^($,£o(x)[p]) ———————— epff''($o(p),£o(x)[p])

<-* I

epff''($o(p),£(x(p);0/7^0)) = epff^($o(p),£(x(p);0/7^C')(x)).
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Since Trores is a multiplication by the index (<I>: <I>o(p)) which is prime
to p, we know that the upper horizointal arrow is an inclusion. Note that ^
is a surjective isomorphism by the argument in the proof of THEOREM 5.1
applied to the exact sequence:

0 ̂  Ki —— Lo(x)[p] —— L^O/TrO)^) -^ 0

in place of (*) there.
Thus we conclude

res °eo,p == e? o res .

Then, again by the fact that Trores == (<!>: ̂ (p)), we conclude that
the upper horizontal arrow is a surjective isomorphism. In particular, the
restriction map res of ^(^LoO^MpD mto ^(^(p^A^xMpD satisfies

res oTo == T o res for T = [<^o(p)^o(p)] and To = [^^].

Anyway we have another commutative diagram:

eo^^LoOOtp]) —— 6p^(<l>o(p),Lo(x)[p])

eo,pH^Lo(x)[p]) ——— ep^(^o(p)^o(x))[p]

Since vertical arrows are all surjective, again by Trores = (<!>: <l>o(p)),
lower horizontal arrow is a surjective isomorphism. Then by Nakayama's
lemma, we see

epores : Co,^9^, ̂ (x))^] —— ep^^PUoO^rL

eo,poT^ :ep^(^o(p)^o(x))[Pa] -^^p^^Lo^))^]

are both injective. Thus (e? ores) o (eo,p oTr) is an injective endomorphism
on the finite set epfr^^c^p), Lof^))^] and therefore is an automorphism.
Similarly (eo,p Tr) o (e? ores) is an automorphism of (eo,?!:^^, Lo^))^]
for all a. This shows

eo.p^^oOc)) ^ ep^($o(p),^o(x)).
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We have another commutative diagram using (4.7c):

ep^(<i>o(p),£o(x)[P°j) —————— ep^($o(p),£(x)[P°])

<•* ? <-* I

epff^p^Lo^O/^COOO) - epff^P^^O/^OKx)).

This shows:

eo,p7^(^Lo(x)) ^ep^(^o(p)^o(x)) ^ ep^(^o(p),^(x)),

which finishes the proof.

8. The bottom degree
Now we clarify the bottom degree r = r(^) with respect to B. We

write s for the Lie algebra for (7i (R) and Coo+ for the standard maximal
compact subgroup of (^(M). First suppose that

(Cpt) G'i(Q)\Gi(A) is compact/or the adele ring A o/Q.

Let lloo be that set of irreducible admissible representations of Gi(R).
We write m(7r;r) for the multiplicity of TT occurring discretely on
^2(r\C7i(R)), where F is a congruence subgroup of Gi(Q). Then by [MM]
and [BW, V.3.2] (see also [C, § 3.5]), we know for each polynomial repre-
sentation L of GI (R) over C

(8.1) JT(r,L)- ^ H-^C^HW^L)^^^
TrClloo

where H(7r) is the space of smooth vectors of TT and L is the contragredient
of L. Now we suppose the following two conditions:

(D) G{A) = {R(S>^A)X for a maximal order R of a central
simple algebra D over F;

(GL(oo)) G(R) ̂  GLn(F^) for F^ = F ^q R.

The condition (D) and (Cpt) combined imply that D is a division
algebra. By (GL(oo)), we have the determinant map

del :G(R) —> F^.
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Then we put

Go = det-^Too) = [x G Go(M); det(a:) G Too},

where

Too = {?/ e F^ ; a^ =1 for all field embeddings a: F -^ C}.

Let 0 be the Lie subalgebra of Go in the Lie algebra of G(R) and Goo be
the maximal compact subgroup of G(M) containing Goo+. We can extend
the action of Gi(IR) on L to G(R) (which is analytic but may not be a
polynomial representation of G). Let oo be the set of archimedean places
of F. Then we decompose

L= (g)L,
vGoo

for irreducible representations Ly. Now, there is at most one oo-dimen-
sional tempered irreducible unitary representation

of G(M) such that H^^C^H^L) ̂  L) ^ 0 for some i (see [C, §3.5]).
In this case, we call TT^ cohomological. This 71-7, has the same infinitesimal
character with L (if such TI-L exists). The infinitesimal character char-
acterizes TT^ if v is complex because C>< is connected. If v is real, for
a given infinitesimal character, there can be several if there exist such
irreducible representations. One of them is 71-7̂  (see [C, Lemma 3.14] for
details). By [C, Lemma 3.14, p. 114], under (SL(oo)), we know that for
cohomological TTL

JT(5,Goo;^(7aj0Z,)

-^-(n(n-i)/2)^_i ^ is complex,
^-(n2/^ ^(n/2)-l ^ ̂  ^ ̂ ^ ̂ ^ ^ ̂

^-[n/2][(n/2)]+l ̂ /2} ^ ̂  ̂  ̂  ̂  ^ ^ ̂

Here we use the convention that /\° V = C and /\1 V = V for any
complex vector space V\ As explained in the proof of Lemma 4.9, p. 144
of [C], TI-L is the unique irreducible generic representation with non-trivial
^(S? Goo(7r^) 0 Ly) for some z. It is also known that:

(IfL=L{\) for a dominant character^ of the standard maximal

(8.3) torus T of GL(n) and ̂ IT + X\T for X"^) = X^^r-1)
i u^ T = (6n+i-ij)ij G TV, ^/iere is no cohomological -KL, where
[T = T H SL(n) and W is the Wyle group ofT.
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We now assume:

f The global Jacquet-Langlands correspondence compatible with
\ the local correspondence holds for G and Res^/Q GL(n).

The local Jacquet-Langlands correspondence is known by [DKV]
and [R]. The existence of global correspondence is known under a certain
ramification condition (see [AC, Thm B] and [Cl, Thm 3.3]). Under this
assumption, 7P(T, L) is embedded in H^V, L) for a suitable congruence
subgroup r7 of

SL,(F)cGi(]R)(GL(oo)),

where the latter cohomology group is the square integrable cohomology
group [B] and [C, § 3.5]. On the other hand, we know from [B] that

(8.4) ^(F'.L)- Q) H^^C^HW^L)^^^
Treiloo

where s is the Lie algebra of G\ (R). Note that

H1^ C^HW ^ £) ^ Homc^ (A'P. H^) 0 £),

7T(s, Coo;^(7r) 0 £) ^ Homc^ (AY, HW ^ £).

where s = c+ Q p and Q = c © p' are the Cartan decomposition for
the Lie algebras c+ and c of Coo+ and Coo. Thus we can extend any
representation TT on H{^) of G^R) to E = TooGi(]R) choosing a central
character. We write 7r° for the extension. Note that

GQ/E ^ Coo /T'ooCoo+

is an abelian group of type ( ( 2 , 2 , . . . , 2). If Hom^^^ (A1 P, H(7r) (g) L) -^ 0,
choosing the central character of 7r° suitably, we see:

Homc^ (A'P, H{7r) 0 £) ^ Hom^ (A'P7, (indg; ^f(^)) ^ £).

Thus as long as TT is tempered,

H^{s,C^^H(7^)^L) =0 if z ^ ro,

where

{ ^rin2 + ^r^n{n — 1) if n is even r,

ri[jn][(jn)+l] + jr2n(n-l) if n is odd.
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If TT with TT^Tr;!") > 0 is cuspidal, then it is generic and tempered
at oo by [C, Lemma 4.9]. If TT with m('K\T') > 0 is not cuspidal, by the
determination of the discrete spectrum of GL(n) [MTV], its extension to
GL(n) is of the form

7roS7ro(g)| ^ a — a ^ l \a~l
I -rl I I A

under the notation of [C, (1.5), p. 85], where n = am and 71-0 is an
irreducible cuspidal representation of GL(m). Here we lifted first TT C lloo
to an automorphic representation of SL^(.FA) by the strong approximation
theorem. The local component of TT at each finite place v is, by Langlands5

classification, of the form

pi a p2 s • • • s pj

with square integrable representations pi of GL^^(^), where

^1 + ̂ 2 + • • • + Uj = ̂

(see [C, Chapter 1]). Since D is a division algebra by (Cpt), writing

D (S)F Fy ^ Mb(D^)

for a division algebra Dy of degree d2 over the local field F^, we conclude
from [R, Thru 5.8] that d divides r^ for i = 1, 2 , . . . ,j. Since D is globally
a division algebra, we can find v such that m is not divisible by d. Thus
the representation of the form

7roff l7To(g)| I ^S—STro^ [ \a.li i ̂ \. i i A

cannot be in the image of the Jacquet-Langlands correspondence except
when a = n and m = 1. In the exceptional case, the Langlands quotient
is the trivial representation [C, p. 84]. Thus it is killed by the nearly
ordinary projector e. Thus under (Cpt), (JL), (D) and (GL(oo)), the
bottom degree r(^) is given by r-o or oo depending on \. By (8.3), if
^"^r ¥- X\ T? ^(x) = °°- This combined with COROLLARY 7.1 shows:

THEOREM 8.1. — Let the assumption be as in Theorem 7.1 Assume
(GL), (S), (Cpt), (D), (GL(oo)) and(JL). Thenr(\) =ro oroo depending
on \ and <1>. Ifx~r\T ¥" X^ then r(^) = oo and for almost all prime p, we
have

H^^o(p)Mx)) = ffLrd(^o(p)^(x;0)) = 0.
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If (GL(oo)) is not satisfied, the number r depends on the shape of G(R)
but can be determined similarly. In place of (D) and GL(oo), we now
assume that for a totally imaginary quadratic extension L over a totally
real field F:

/-n-\ J G = Res^yo U for a unitary group U on a
\hermitian space H over the CM field L.

In this case, F is the maximal totally real field of L, and (GL) implies
that all prime factors of p in F split in L and Gi = Res^/Q SU for the
special unitary group SU of H. Let a be the set of all archimedean places
of F, and write (py, q^) for the signature of H (g)^ R. Then it is known by
[BW, V.3.4] that under (Cpt), the bottom degree r satisfies:

(8-6) r > ̂  min(^, ̂ ) = rankjp G^(R).
vGa

For some specific unitary group, a much stronger result is known [C2]. For
example, if L is imaginary quadratic, U is associated to a central division
algebra over L with an involution of second kind, p = 1 and q + 1 is a
prime, we conclude from [C2] that r > q. Thus in this case, the control
theorem holds for the middle cohomology. The study of the geometry of
the p-adic locus of \ in Homconti(^(^),Q^) with a given bottom degree
is an interesting problem for a given algebraic group G satisfying (GL).
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