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MICROLOCAL BOUNDARY VALUE PROBLEM

IN HIGHER CODIMENSIONS

BY

KIYOSHI TAKEUCHI (*)

ABSTRACT. — The aim of this paper is to set up the microlocal study of higher
codimensional boundary value problems by solving a part of Schapira's conjecture
on the concentration of the complex C^\^ of sheaves. We prove the microlocal
injectivity of the higher codimensional boundary value morphism as an application of
the new correspondence between the complex C<^\^ and the second microfunction CML
of Kataoka-Tose-Okada and Schapira-Takeuchi. The Kashiwara-KawaFs extension
theorem will be generalized to non elliptic equations.

RESUME. — Le but de cet article est de commencer 1'etude microlocale des
problemes aux limites en codimension superieure en resolvant une partie de conjecture
de Schapira sur la concentration du complexe CQ]^ des faisceaux. On demontre
Pinjectivite microlocale du morphisme de valeur au bord en codimension superieure
comme une application de la nouvelle correspondence entre le complexe C^^ et
la deuxieme microfonction CML de Kataoka-Tose-Okada et Schapira-Takeuchi. Le
theoreme d'extension due a Kashiwara-Kawa'i sera generalise aux equations non
elliptiques.

1. Introduction
The aim of the present paper is to set up the microlocal study

of higher codimensional boundary value problems by establishing basic
theorems. After the definition of the boundary value in the framework of
the hyperfunction theory due to Komatsu-Kawa'i [6] and Schapira [19],
many studies have been done in the case when the codimension of the
boundary is equal to one. Around 1986, P. Schapira [21] introduced
the complex C^\x of sheaves for an open subsets ^ of M := W1 and
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244 K. TAKEUCHI

constructed the microlocal boundary value morphism for a submanifold
N C M of codimension d such that N c f^:

(1.1) RHom^{M^\x} — ̂ ^Px(^C^|^]),

where X := C72 is a complexification of M and C^x is a sheaf introduced
by Sato-Kawai'-Kashiwara [18].

This construction enables us to study the boundary value problems
microlocally and algebraically. The reader is suggested to refer to the
important works before Schapira's definitions in [2], [6], [II], [16] and [20],
etc. Many classical results on the estimation of the singularities of the
boundary value or on the propagation of regularities up to the boundary
and so on were recovered and extended to the systems of differential
equations systematically when the codimension of the boundary equals
to one. However it seems that the higher codimensional boundary value
problems are not yet studied successfully except in the papers [6], [26]
and [30] for elliptic equations and in [17] in non microlocal situations. The
difficulty lies essentially in the fact that the structure of the complex C^\x
for general open subsets ^ was not completely determined yet. For this
purpose, we will clarify the structure of the complex C^\x when ^ is an
open convex cone of M = R71 with vertex at the origin. In the sequel,
we assume ^ := ^i x R71""^ be an open convex cone with the edge
N := {0} x W^~d' for an open convex proper cone f^i C R^. First of all,
we show in THEOREM 3.1 (i):

The complex C^\^ is concentrated in degree 0 on N XM T^X,

where X := C71 is a complexification of M. It gives an affirmative answer
to Schapira's conjecture in 1986 [22] in particular cases. (As for the studies
of the complex C^\x for open subsets fl. whose complements K = M\^l are
closed convex subsets of M, refer to [22], [23], and [29].) This concentra-
tion is also important to investigate the propagation of regularities up to
the boundary, so-called «f^-regularity)) of [22]. In Section 4, we will com-
pletely determine the structure of the complex C^\x for open quadrants f^,
and it will be effectively used to get several theorems on the extension of
hyperfunction solutions in Section 8. In 1988, Oaku [17] proved the local
unicity of the boundary value problems in higher codimensional cases,
that is, the injectivity of the boundary value morphism:

(1.2) ]mr^nom^{M,BM)\N-^/Hom^(MY^N)
^

for coherent Pjc-modules M for which N is non-characteristic. Here the
inductive limit is taken by shrinking the open convex proper cone f2i
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including a fixed vector of W1. His proof of it relies upon the analytic
methods which uses F-mild hyperfunctions. Our main theorem, which is
proved purely algebraically, microlocalizes this result as follows.

THEOREM 6.1. — Let M be a coherent T>x -module on X for which N is
non-characteristic. Then the canonical morphism of the boundary value:

}lmHOR/Hom^(M^x)
—— H°Rnom^(M^x)[d} ̂  ̂ xt^(M^x)

is injective on Tr^-^N) = N Xx T*X, where TTX : T*X —> X.

This theorem can also be considered as an extension of Schapira's result
in [23] to arbitrary codimensions and explicitly shows how the singularities
of the hyperfunction solutions defined in the interior domain propagate
to the boundary as in COLLORARY 8.8. Several theorems on the extension
of hyperfunction solutions in Section 8 are essentially deduced from this
theorem. In THEOREM 8.6, we give a natural generalization of a theorem of
Kashiwara-Kawa'i [6] to non elliptic equations. In the course of the proof
of these theorems, we find in THEOREM 7.2 a new correspondence between
«the sheaf)) C^X\NXMT^X ana tne sheaf CML of second microfunction via
the Legendre transformation. Here the sheaf CML was introduced first by
Kataoka-Tose [12] and recently reformulated by Schapira-Takeuchi [24].

As an application of this correspondence, we give an interesting
example of the vanishing of the CML solution complex to the H. Lewy
equation. Section 5 is devoted to the proof of the results announced in
Schapira-Takeuchi [24]. Finally Example 8.9 explains how very basic facts
in the hyperfunction theory can be considered as a particular case of our
results, because the hyperfunction theory as a boundary value of the ho-
lomorphic functions is itself an example of the boundary value problems
treated in this paper.

The author would like to express his sincere gratitude to Prof. P. Scha-
pira for his kind guidance to this area and for the several discussions he had
with him. In fact this research was realized during his stay in 1993-1994
as an invited researcher at University Paris VI. He is also very grateful to
Prof. H. Komatsu, Prof. K. Kataoka and Prof. M. Uchida who had explai-
ned him much about microlocal analysis in Japan. The author found a key
to solve the final part of the main theorem during the discussions with
Prof. Kataoka. Prof. Uchida kindly read the proof and gave him many
valuable comments on this paper. Finally, he thanks again Prof. Komatsu
for his sincere guidance and continual encouragement.
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246 K. TAKEUCHI

2. Simple sheaves and canonical transformations
Let X be a C°° manifold and /, g be C°° functions on X such that

df/\dg never vanishes on X. The notion of simple sheaves was introduced
by Kashiwara-Schapira [8]. In this article, we will frequently use the
terminologies in [8] and [9].

LEMMA 2.1. — Set H_ := [x G X | f(x) = 0, g(x) < 0}. Then CH_
is a simple sheaf with shift 1 on X (along A := {{x'^a • df + b • dg) G
r*X;/(a:) = g(x) = 0, a G M, b < 0} C T*X).

Proof. — The problem being local, we may assume X is locally a
product of two manifolds: X = X^ x X^ and there exists C°° function
/i (resp. /2) on Xi (resp. X^) such that CH_ = C{^=o} ^ ^.^o}-
Therefore LEMMA 2.1 is a direct consequence of Proposition 7.5.10 (i) and
Example 7.5.5 (i), (iii) of [9]. D

Now, suppose X is a complex manifold and / a holomorphic function
on X such that d/ never vanishes on X. It follows immediately that
d Re/ A dim/ never vanishes on X. By virtue of LEMMA 2.1, if we set
H- •= {z <E X Ref(z) = 0, lmf(z) ^ 0}, C^_[-l] is a simple sheaf
with shift 0 on X.

Let X and Y be complex manifolds of the same dimension, and
z = x + iy (resp. w = u + iv) be a local coordinate system of X (resp. V).
Then there are canonical identifications:

r^x^X^r*^, (x^y^dx^rjdy)——(x + iy'^ - irj)dz),

[ (f)Y : T^ ^ T*y, (n, v.pdx + qdy) ̂  (u + w; (p - 29) dz),

and ^xxy:^*^ x V^) ^ T*(X x V), where ̂  and Y^ denote
the underlying real analytic manifold of X and Y respectively. Let A
be an I^-conic complex Lagrangian submanifold of T*(X x Y) and
QX (resp. ^y) be an open subset of T^X (resp. r*V), and assume:
p^[^:A c± f^ and J^IA^ ^ ^y are complex analytic diffeomorphisms,
where pi and p^ are the first and second projection from T*X x T*Y
to r*X and r*V respectively and p^ is the composition of pi and the
antipodal mapping of T*X. Set <I>A := (j^lAXpTiA)""1 ' Then it induces a
complex canonical transformation between ^lx and f^y. We denote by A^
the real submanifold of r*^^ x Y^} which corresponds to A, that is,
A1^ :== ^)^y(A). If we define an IR+ homogeneous mapping ^^R between
^ := ^(^x) and ̂  := ^y'W by ^R := (^lA^P?^)"1, we

TOME 124 — 1996 — N° 2
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have a commutative diagram:
QR ^AR . QR
^x ————^ "y

(2.2) 0y 1 ^ ^y 1(PY ~ ^y ~

^x ———— ^y.
^>A

Hence ̂ ^ ls a rea! canonical transformation, and A^ is a real Lagrangian
submanifold of the real symplectic manifold ^(X^ x V^.

3. Vanishing theorem for the complex C^\x
Let M be W1, X = C72 its complexification, and n C M an open

convex cone with a vertex at the origin. The hypotheses on fl allow us to
assume from the beginning: M =Rdx W^ and ^ = ̂  x ̂ -^ for some
d > 0, where ^i C K^ is an open convex proper cone. Define the maximal
linear subspace N of R71 passing through the origin such that N C fl by
N := {0} x IR72""^, and we say ^2 is an open convex cone with the edge N .
In this section, we will show the complex

C^\x •= ^hom(C^,Ox)[n\

of the sheaves of microfunctions at the boundary due to Schapira [22] is
concentrated in degree 0 on N XM T^X, where

p.hom(-, • ) : D^X)015 x D^X) —^ D^r*^)

is the bifunctor introduced in [9]. We can also define the complex CA\X
for any locally closed subset A of M as in [22]. Consider the morphisms
associated to the inclusion M c—^ X:

T*M ^-p— M xx T*X -^ T*X.

Since fl. is an open subset of M, we have an estimate of the micro-
support SS Cfl of the sheaf C^:

(3.1) suppC^ix C SSC^ C wp-^N^W).
As for the definition of N*(f^) C T*M, see Definition 5.3.6 of [9]. Let us
take coordinate systems z == x + iy of X and (z ; (dz), ( = ̂  + irj of T*X
associated to the decomposition M =Rd x R^^. Then we have:

(3.2) sMppC^x^(NxxT^X)

c { ( ^ + z 0 ; ^+^) ; ^e^.^i . - . -^e^?)0

^ + l = • • • = ^ = 0 , rj C^},

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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where f^ C R^ is the polar set of f2i. Finally, define the subset I
of SS C^ by:

(3.3) J : = { ( a ; + z 0 ; ^+^) ; x e N , (^....^eint^)0

^+1 = • • • = $n = 0, 77 € R71} C TV xx T*X.

Notice that J is the interior of SS CQ H T^X.

THEOREM 3.1.
(i) The complex C^x is concentrated in degree 0 on N XM T^X.
(ii) The boundary value morphism C^\x —^ CN\x[d\ is an isomorphism

on I.

Proof.—The proof essentially goes along the same line as Schapira [22].
Let Y be a copy of X and w = u + w be the coordinate system of Y. Set
z = (z^Zn), w = {w'.Wn) and f(z,w) := z ' • w' + Zn - Wn. Since / is a
holomorphic function on X x Y and d/ never vanishes, it follows from
the results in Section 2 that for the set:

H- :={(z,w)^X x V ; Re/(z,w)=0, lmf(z,w) < 0},

C^_[-l] is a simple sheaf with shift 0 on X x Y. Now define an open
subset of SS CH_ by:

A^^w; a - d R e / + & - d ! m / ) ;
f(z,w) =0, a e R, b < 0} c r*^ x y^),

and set
A:=^xy(AR)c^*(Xxy),

where (f)xxY is the canonical identification

<^xxy: T*^ x y^ ̂  r*(x x v).
The set A is a complex Lagrangian submanifold of T*(X x V), because
it is an open subset of the conormal bundle T^{X x Y) to the complex
submanifold H defined by H := {{z, w) f(z, w) = 0}. Taking coordinate
systems, (z ; ^dz), (w ; 0dw), (a;,?/; ^da;+77d^/) and (u , z> ; pdn+gdz;)
for r*X, r*y, T*^ and 7^ respectively, let us set:

r ^x := {imCn < 0} c r*x, ^y := {im0n < 0} c r*y,
3>4) 1 ̂  :- {^n > 0} c r*^, ^ := {g, > 0} c r ,̂
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and define the real (resp. complex) contact transformation <I>^R (resp. <I>A)
between ̂  (resp. ̂ ) and f^ (resp. f2y) as in Section 2. The complex
contact transformation <I>A is nothing but the Legendre transformation:

(3.5) w ' - , w , = ( ^ c ) , 0'=-^.^ ^=Cn.
Sn N Sn /

Set J<r := C^_[—l] in the derived category D^X x V) of sheaves of
C—vector space on X x Y. Then K satisfies all conditions of Theorem 7.2.1
of [9] and the functor <S>K''

(3.6)
^K: D^X) ——> D^V)

F —— Rq^K^q^F)

induces an equivalence of categories between D^X, n^) and D^V, f2^),
where q\ and ^2 denote the first and second projections on X x Y
respectively. According to Corollary 11.4.11 of [9], we have the quantized
contact transformation induced by the kernel K:

(3.7) (^)*C^|x = (^AR)*/^om(C^ Ox)[n]

^^/iom(^(C^),Oy),
and

(3.8) (^vO*C^|x ^ ̂ om(^(Cjv),0y).

LEMMA 3.2. — Assume dnm^N = n — d > 1. Then there are isomor-
phisms:

(3.9) ^(C^C^[-n] and ^(C^) ̂  C^[-(n - d)]

by setting:

(3.10)

^ G^ := {zi + iv^u e R71, (i;i,... ,̂ ) e (^)a,
^+1 = • • • = = ^n-l =0, Vn > 0},

GN := { ^ + w ; ^ e ] R n , ( ^ i , - - - , ^ ) eR^,
Vd-^-1 = • • • = ̂ n-1 == 0, 2;n > 0}.

Proof. — For every w = u + iv € V, set:

F^+^ := {(^ = a; + iy, w = 'u + iv) e X x V ;

Ref(z,w) =0, Im/(^,w) ^0, x-}-iy e n}.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



250 K. TAKEUCHI

Then:

^(CQ)|,^ = Rq^Cn. ̂ L q^^u^i. [-1]

^Rr,(F^iy^ C^J[-1],

and by setting x = (a/, Xn), u = (u' ^ Un) and v = (v1', Vn) we have:

F^iv = {X (E ^ ; Xn=Un-X' •U',Vn>X' ' V'}
(3.12) J

C± {^ / C ^l X BT-^-1 ; Vn^X' ' V ' } .

If ( ^ i , - - ' ,Vd) ^ (^p)0? ^d+i = • • • = Vn-i = 0 and ^ > 0, Fn+w is
homeomorphic to M71"1, and otherwise, it is homeomorphic to a closed
half space of R77'"1 or an empty set. It implies:

<^(C^C^[-n].

The proof of the remaining part is similar. Q

Let us continue the proof of THEOREM 3.1. By virtue of «the trick of the
dummy variables » due to Kashiwara, we may assume dim N = n—d > 1,
and it is enough to consider the problem in ^^ := {rjn > 0}. Note that
for every ( r r ,0 ; ^ d x , r ] d y ) <E ^(1) H ̂ , (u,v ; p,q) := ^p^(x, 0 ; ^rj)
satisfies ( v i , " ' , V d ) ^ ^(f^^)"? ^d+i = • • • = Vn-i = 0 and Vn = 0.
By LEMMA 3.2, there exists a canonical isomorphism:

(3.13) ^(C^)[-d] = C^[-n] -^ ^(C^) = Cc^n}

in a neighborhood of u + w € V, and we have by (3.7) and (3.8):

C^\x |(^,o; ^,y?) ^ ̂ ^'(CGn^y)!^^;^^)!77']
(3.14) c± ^om(C^,Oy)|(^;p,g)[n]

^Cjvixl^^;^^)^]-

This achieves the proof of part (ii).
Finally, we will show part (z). Without loss of generality, we only have

to show the problem for (0,0; O.rjdy) C ^(N XM T^X) U ̂ . Now
(n,z» ; p,q) := ^^(O^O; 0?7?) satisfies: ^1 = v^ = • • • = Vn = O? P = O?
gi = • • • = = q-n-i = 0 and qn = Tin > 0- It follows from (3.7) that

^|X|(0,0;0,r;) ^ ̂ om(CGn,Oy)|(^,0;g,d^)[^] (̂ n > 0),

TOME 124 — 1996 — ?2
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and applying Proposition 4.4.4 of [9] we have:

(3.15) H^hom(CG^Oy)^, ̂ [n] =^mH^ (U'^ Oy\
£7,7

for every j e Z, where U ranges over the family of open neighborhoods
of u + %0 in Y and 7 ranges the family of closed convex proper cone of
Y = R^ such that (7 \ {0}) C {vn > 0}. On account of «the abstract
edge of the wedge theorem)) of Kashiwara [7], the right hand side is
concentrated in degree 0, because the closed subset G^ + 7 contains no
complex line passing through the point zz+zO. Hence we have finished the
proof of part (i). []

REMARK 3.3. — When ^ is an open quadrant {a-i > 0 , . . . , xa > 0}
of M = BT, THEOREM 3.1 (ii) is almost trivial as we shall see it in the
next section. Prof. Uchida suggested the author that the proof for general
open convex cones with the edge N could also be simplified in the follo-
wing way. First, notice that the morphism C^ —> CN is an isomorphism
in the category D^X ; 7°). Therefore the morphism D^C^) —> D^C^)
is also an isomorphism in D^X ; I ) by Proposition 5.4.14 (ii) of [9]. Ap-
plying the functor p.hom(', Ox) to it, we obtain the desired isomorphism
C^\x ^ CN\x[d} in an open neighborhood of J. The author thanks him for
letting him announce such a sophisticated proof.

REMARK 3.4. — Let ^i and ^2 be two open convex cones in M = M71.
Then by using the distinguished triangle:

^iDf^lx —> C^x @C^x —^ C^n^ix ——^

and THEOREM 3.1 (i), we can show that C^u^ix is also concentrated in
degree 0 on {0} XMT^X and the morphism C^^x -^ C^x CC^ is
injective there, which is a generalization of Remarque 3.2 of Schapira [22]
(c/. Proposition 5.1 of Uchida [29]). By repeating this operation, C^x
is concentrated in degree 0 on {0} XM T^X for any union ^ of finite
open convex cones. Moreover if ^A and ̂  are open cones of this type
such that ^A 3 ̂ B, the «difference)) C^\^^x has the same property.
Since any open cone in M is approximated by a sequence of the unions
of finite open convex cones, it seems for us that the complex C^\x is
concentrated in degree 0 on {0} XM T^X for every locally closed cone ^
in M (cf. Schapira's conjecture, Conjecture 2.3 of [23]).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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4. Structure of the complex C^\x for open quadrants
In this section, we will completely investigate the structure of the

complex CQ\X fo1' open quadrants ^. Here we say an open convex
cone Q in M == W1 is an open quadrant if we have the expression:
fl. = [x-i > 0, • • • , Xd > 0} by a suitable real analytic change of coordi-
nates. In this case, THEOREM 3.1 implies C^X\NXMT* x is concentrated
in degree 0 by setting N := {x^ = ' ' ' = Xd = 0}, and

(4.1) supp^|xn(7vxxT*X)
C {^i < 0, • • • , ̂  < 0, ^+i = ' ' ' = ̂  = 0}

in N Xx T*X if we take a coordinate system (z^dz) (z = x + iy^
C = ^ + irj) of T*X. Now the subset I of N Xx T*X introduced in
Section 3 is expressed in N Xx T*X as follows:

(4.2) I = {^ < 0 , . . . , ^ < 0, ^+i = . . . = ̂  = 0}.

We have already shown the isomorphism

C^\x\i ——> CN\x\i[d]

in THEOREM 3.1 (ii), but here we will give a more elementary proof for
open quadrants. For the sake of simplicity, we shall restrict ourselves to
the case when d = 3. The generalization to arbitrary codimensional cases
is easy, and we will not develop it here. Therefore, set

^ := [x^ > 0, x-2 > 0, X3 > 0},

^1 '•= {Xl =0, 3:2 > 0, X3 > 0},

^2 ''= {Xl =0, X2 = 0, X3 > 0},

N = {x\ = x^ = x^ = 0}

in M. Let us define the following subsets in N Xx T*X:

^0 '= Ul = • • • = ^n = 0},

f43) < ^i^{^i<0, ^ - -—^^O} ,
^2 '= {^1 < 0, 6 < 0, $3 = • • • = ̂  = 0},

. h := {^1 < 0, ^ < 0, $3 < 0, $4 = • • • = $n = 0} = J.

Then we have:

TOME 124 — 1996 — ?2
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THEOREM 4.1.

(i) There exist canonical isomorphisms:

Cn|x|ji ——^C^j^ijjl],

(4.4) < ^|X|J2———^^IXlJaPL

C^\x\is——^^ixijst3]-

(u) C^i^i^ is concentrated in degree —k for k == 0,1,2,3.

Proof. — Since M = M72', we may forget orientation sheaves. First recall
that the boundary value morphisms

Cn\x —^ C^xW —> C^\xW —^ ^TV|x[3]
are constructed by the cut-off morphisms:

^—c^-^c^-^c^
Taking the stupid dual D ' ( ' ) == R7-tom(',Cx) of the exact sequence:

o-^^—.c^-.c^-.o,
one has a distinguished triangle:

C^[-(n+ 1)] —— C^[-n] —— C^u0i[-^] -^ .

Apply the functor ^hom(^ Ox) to this triangle. Then we have

fjihom(Cflu^,Ox)[n] —> C^x —^ C^\xW ——S

and it follows from an estimation of the micro-support of C^u^i ^

supp^om(C^u^i, Ox) H (N Xx T^X) n {$1 < 0} = 0

and

(4.5) C^jjcKTVxxT'X)^!^} ———^ C^\x\{NxxT*X)n{^<0}[1}'

Similarly, starting from the exact sequence:

o^c^-c^-c^-.o,
we also obtain the isomorphism:

(4.6) ^i|x|(NxxT*x)n{^<o}[1] ——^ ^|x|(NxxT*x)n{^<o}[2]-

Now by (4.5) and (4.6), the first and second isomorphisms of (i) are
clear. The last isomorphism of (i) can be shown by repeating the above
procedure. For part (ii), it is enough to show the following lemma. []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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LEMMA 4.2. — Set

N := { x ^ = - - ' = X d = 0 } CM,
L := [x^ = • • • = Xp = 0} D N

for an integer p such that 0 ̂  p < d, and

^L ''= {xi = • • • = Xp = 0, a^+i > 0 , . . . ,Xd > 0}.

Then, the complex CQ^\^ is concentrated in degree 0 on N XL T^X.

Proof. — The proof is almost similar to that of THEOREM 3.1, and it
requires the same contact transformation <E>^R and the same kernel K.
Therefore we adopt the notations in the proof of THEOREM 3.1. Assume
n — d > 1. Then we have:

(^A^C^jx ^^om(^(C^J,Oy),

^K(W^CG^[-(n-p)],

where

G^ := { ^ + w ; ^€IT\ 0;i,...,^) €1^,

VP-^I < 0, • • • , Vd < 0,

Vd+l = • • ' = Vn-l =0, Vn > 0 1 - .

It follows from «the abstract edge of the wedge theorem)) that the
complex C^^\x ls concentrated in degree 0 on (^^{N x^T^X) D Q^. The
general cases can be treated by «the trick of the dummy variables)). []

REMARK 4.3. — The method of reduction in THEOREM 4.1 (i) by the
estimation of micro-supports was used in the proof of Proposition 5.4
of [29].

5. Explicit formula of the stalks of CQ\X
Let f^ C M = R^ be an open convex cone with the edge

N = { x ^ = - " = X d = 0 }

as in Section 3, and set K := M \ Q.. In this section, we will calculate an
explicit formula of the stalks of the complex C^\x and compare it with the
complex v^NM(Px)[^\ introduced in [24]. First of all, assume the vector
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(1,0, • • • , 0) e M = R71 is contained in Q and ^ C {.z-i > 0}, and take an
arbitrary closed convex proper cone ^M in M such that

(7M \ {0}) C Q, and (1,0, • • • , 0) € int7M.

Let us define the closed convex subset Ai of M by:

A i : = ( - ^ G , 0 , . . . , 0 ) + ( 7 M n { ^ i < C } )

for some C > 0. Note that the origin of M is contained in the interior
of Ai, and it is easy to show:

LEMMA 5.1. — For every x e M = M^, (x + Ai) H K is a star-shaped
compact subset of M centered at x + (- j<7 ,0 , . . . ,0), and in particular it
is contractible.

Next, take an arbitrary convex compact subset As in R71,"1, y ' =
(l/i? • • • ? Vn-i) such that {0} C intAs, and define the closed convex proper
cone 7, in R^ x R^ = X for e > 0 by:

(5.1) 7^ :={(^,cQ/,£)) ; c > 0 , . reAl , 2/^2}.

The family {7e}£>o is cofinal in the family of all closed convex proper
cones 7 of R^ x R^ = X such that (7 \ {0}) C {yn > 0}, and we may use
it to calculate the stalk of C^\x •= liihom(C^, Ox)[n] at (0; dyn) C T*^.
Recall the calculation in the proof of Proposition 4.4.4 of [9]. Then we
have:

H3 ^om(CQ,Ox)|(o;d^) ^ lim H3 RHom(C^n(M+^)\(^+7.).°x)
£/3{0},e>0

^ llm ^M+7)\(J<+7)(°^)0.
7

for every j € Z by LEMMA 5.1, where 7 ranges over the closed convex
proper cones of M^ x M^ = X such that (7 \ {0}) C {yn > 0}. Hence we
have shown the proposition below:

PROPOSITION 5.2. — There exists an isomorphism:

(5.2) H^^,^)^]^n^ (O^o
7

for every j € Z, where 7 ranges through the closed convex proper cones
ofR^ x R^ = X such that (7 \ {0}) C {yn > 0}.

REMARK 5.3. — The right hand side of (5.2) vanishes if j ^ 0 by
THEOREM 3.1 (i), which can be considered as a variation of the abstract
edge of the wedge theorem.
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Now set in R^ x M^ = X:

7^i,£2 ••= [Vn > £\\y'\, \V\ > £2\X\}

for every e\ > 0 and 6:2 > 0. These cones are not convex, but the family
{7£i,£2}ei,£2>o ls cofinal in the family of the closed cones 7 ofM^ xR^ = X
which satisfy (7 \ {0}) C {y-n. > 0}. Consequently we obtain:

(5.3) JPC^K^)^ lim H^3 ^ ^},
£l,£2>0

and

(M+7^,,) \ (^+7,^) = [yn > e^\yl\}^{x e ̂  |2/| < ^dist^,^)}.

If we take an inductive limit by shrinking open cones fl. with the
edge N such that (1,0, • • • , 0) G ^2, we get an isomorphism by (5.3) and
Theorem 3.1 (ii) of [24]:

(5.4) lim^^|x|(o;d^) ̂  ̂ [^NM(Ox)|(d^,a/^i,o)[^]].
^

in which the right hand side is an object on T]^M XM T^X introduced
in [24]. For more details about the functor V^NM 5 see [24]. Hence the com-
plex y^NM(Ox)[^\ can be considered as a microlocalization of VN^M-,
i.e. the specialization of the sheaf BM of hyperfunctions along N . The
following theorem is a consequence of THEOREM 3.1 (i) and the isomor-
phism (5.4), which is already announced in [24].

THEOREM 5.4. — The complex v^NM^x)^} ^ concentrated in de-
gree 0.

6. Microlocal injectivity of the boundary value morphism
In this section, we shall prove the injectivity of the higher codimensional

boundary value morphism, which is a generalization of Proposition 3.3 of
Schapira [23] to arbitrary codimensional cases. It is also considered as a
microlocal extension of the uniqueness theorem due to Oaku [17]. Let

M=R^,

N = {0} x ST-^ = {.n = .. • = Xd = 0},

Ao := [x^ ̂  0, X2 = • • • = Xd = 0} C R^,

then the precise statement is as follows.
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THEOREM 6.1 (Microlocal injectivity of the boundary value mor-
phism). — Let M. be a coherent T>x-module on X for which N is non-
characteristic. Then the canonical morphism of the boundary value:

lim H° RHom-D^ (M ,^|x)
fl,

—> HQRHom^^M,CN\x)[d}

^£xt^{M^x)

is injective on Tr^Tv) = NxxT^X, where fl. ranges through open convex
cones with the edge N such that f2 D Ao x M^'^ \ N.

Proof. — We will make use of the contact transformation ^A m
the proof of THEOREM 3.1, and we shall mainly follow the notations
in it. By the use of «the trick of the dummy variables)), we may as-
sume dim^TV = n — d > 1 and we only have to show the injectivity on
^ == [rjn > 0}. By virtue of THEOREM 3.1 (ii), if we shrink ^ as in the
statement of the theorem, the injectivity is clear outside N XM^^X. Let
us take a point p = (O'^rjdy) from (N XM T^X) H f^. Since the Legendre
transformation of the complex C^\x ls supported by TTy^G^) in a neigh-
borhood of ^A^P) ^ ̂ 5 by setting Z^ :==- ^^(TTy^Go)), there exists a
canonical morphism:
(6.1) C^x ^ P^z^x —— RTz^CN\x[d}
in a neighborhood of p. By the same reason, we have the following
commutative diagram:

RHomv^(M,CQ\x) ———^ RTz^RHomvA^^N\x)[d}

(6.2)

R/Hom^(M,CN\x)[d}.

The complex RHomv^{M^CN\x)[d} is concentrated in degree > 0 by
Kashiwara-Kawafs division theorem in [6], and we get a commutative
diagram of morphisms between the sheaves by taking the 0-th cohomology
group of the above one (6.2):

H° RHom^{M^x) ——— Fz^Sxt^M^C^x)

(6.3)

£xt^{M,CN\x)'
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Therefore to show the injectivity of the morphism:

Urn H0 RHomv^ (M,C^\x)p — £xt^ (M, C^x)p,

it is enough to show the injectivity of the canonical morphism:

(6.4) lv^H°RHom^(M,C^x)p

-^ H° RHom^ {M, RTz^\xW\

induced by the morphism in (6.1), because we have a commutative
diagram:

R'Hom-D^(M,Cn\x) ———> KHomv^{M,RYznCN\x[d\}

(6.5) ^^ | ~
N^ "

Rrz^RHom^[M^xm

PROPOSITION 6.2. — The complex R^z^CN\x[d}\p is concentrated in
degree 0.

Proof. — Now set in Y = C^,, w = u + iv:

( L := [u + iv ; Vd-^-i = ' • • = Vn = 0},
(6.6) A^ :={n+w; (^^...^^e^)0,

^d+l = • ' • = Vn = 0} C L,

and TTL : T^Y —> L. Then in a neighborhood of ^^(p) we have by (3.8)
and (3.9):

(^?^1^]) ̂  Rr^^^hom(CG^OY)[n]

^ JR^^l(%)^o^(CL^y)[n]

^^(A^M^rM

where the second isomorphism is a consequence of the microlocal isomor-
phism CG^ ^ CL in Db(y;^^(p)) and the third isomorphism is obtained
by TTy^G^) H T^Y = TT^^A^). Hence the assertion of the proposition
is shown by using the lemma below and Kashiwara's abstract edge of
the wedge theorem because ^^(p) = (u + z0;^d^) for some u C M"
and qn > 0. []
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LEMMA 6.3 (Lemma 2.4.4 of Kashiwara-Laurent [7]). — Let L be a
submanifold of Y defined by L = {^+1 = . . . = ̂  = 0} and A a closed
subset of L. Then for every sheaf F on Y and every j e Z:

^^(^M^KO;^) =lim?4(F)o
z

holds, where Z ranges over closed subsets of Y such that

zc{vn> ̂ +1,..., ̂ -i)|}cy
for some e > 0 and Z D L C A.

Since we know by THEOREM 3.1 (i) that C^jxjp is concentrated in
degree 0,

H^RHom^M^x^p^Uom^^M^C^pY
Similarly by PROPOSITION 5.2, we have:

H° RHom^ (.M, R^z^x [̂  ̂  ̂ omp^ (A^, Hi^x \p).

Therefore to show the injectivity of the morphism (6.4), it suffices to
show the next proposition, because there exists a commutative diagram
for some No > 0:

lim7tom^(A^,C^|p) —————— lim^lxlp)^0

^ f2

(6-7) 1 1

^^orn^{M^H^CN\x\p) —— Iim^C l̂̂ 0,
^ ^

in which all horizontal arrows are injective.
PROPOSITION 6.4. — The canonical morphism:

limC^jx \p—^^'H^CNWP
^ n

induced by the morphism (6.1) is injective.

Proof. — By performing the quantized contact transformation associa-
ted to the Legendre transformation, we get the isomorphisms below:

f C^x\p ̂  p,hom(CG^, Oy)|^(p)M

[ RTz^CN\x\p[d} ̂  -Rr^i^)^(0y)|^^[n].
(6.8)

Thus in virtue of the calculations of stalks in the right hand sides of
the above isomorphisms done in the proofs of THEOREM 3.1 (i) and
PROPOSITION 6.2, the proof of this proposition reduces to the next lemma.
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LEMMA 6.5. — Let X = C^ and z = x-\-iy. Then the natural morphism
induced by the inclusion Z C. Z ' :

0: lim7^(0x)o— Hm 7^(0x)o
z^z z ' ^ z '

is injective^ where Z and Z' denote the families of closed subsets of X
which satisfy:

Z € Z ^=^ In a neighborhood of the origin^

ZcCx^l[(7^x{0})+7.],

7^=0/1>^|Q/2,...^)|}CM^

% '={yn> ^|Q/l, . ..^n-l)|} CR^

for some e > 0, anrf

'̂ ^ ̂ ' <<==>> JTT, a neighborhood of the origin,

Z ' C C X V^ {2/n > ^|(2/d+l, • • • ^n-l)|},

anrf

z' n {^+1 =. • • = yn = 0} c M^ x ̂  (7^ x {0})
/or 5ome £ > 0 respectively.

Proof. — The idea of the proof is similar to that of the injectivity of the
morphism from the sheaf CM of microfunctions to the sheaf B^ of second
hyperfunctions in the note of Kashiwara [3]. To begin with, let us recall
the definition of g-propreness.

DEFINITION 6.6 (Kashiwara [7]). — Let G be a locally closed subset of
a complex manifold X. We say G is q-propre (q € N) if for every complex
manifold Y and every j < q we have:

^^y(Xxy;Oxxy)=0.

Now we shall explain the reason why the proof of LEMMA 6.5 can be
reduced to the following lemma:

LEMMA 6.7. — For every Z C i7, Z' € Z' such that Z C Z / and every
open neighborhood V of the origin of X = C^, we can find closed subsets G
and G' of X such that G C G and an open neighborhood U of the origin
of X which satisfy:

(6.9)
' z n U c G , z'nUcG', Ucv, Gez,

G' \ G CC U and G' \ G is n-propre.
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In fact, if we take an element u of lim^^ 7^(0jc)(h u can be
represented by an element, which we will calfagain u, of the cohomology
group H^vofyo'^x) for an open neighborhood VQ of the origin and
some Z e Z. Assume ^(n) e lim^,^, 7^,(0x)o is zero. Then there exist
an open neighborhood V of the origin such that V C VQ and Z ' e 2' such
that Z C Z' and the image of u by the morphism:

H^y^Ox) —— H^y(V^Ox)
is zero. Now take U, G and G' as in LEMMA 6.7, then we have a
commutative diagram:

H^v{V'M ———— H^nv^Ox)

(6.10)

H^Wx) ———— H^u^Ox)^

and the n-propreness of G' \ G implies the injectivity of the second
horizontal arrow. Therefore the image of u in H^^(U;Ox) is also zero.
Because G is an element of Z, it follows that:

u = 0 in hm 7^(0x)o.
zez

Hence the proofs of LEMMA 6.5, PROPOSITION 6.4 and THEOREM 6.1 are
obtained at the same time. []

To complete the proof of THEOREM 6.1, it remains to prove LEMMA 6.7.
Proof. — First, we consider the case when n — d = 1. Let

Y == C^,, w = (w'.Wn) = (wi.w'^w^) =u+iv

be an another copy of

X = C^ Z= {z^Zn) = (z^Z^Zn) = X + ̂ ,

and Re : R^ -^ R^ be the rotation which fixes the linear subspace:

{0} x M^72 x {0} ̂  {0} x R^,72 x {0}

and sends the point ( 1 , 0 , - - - , 0 ) to the point (cos (9 ,0 , . . . ,0,sin(9) with
some 0 < 0 < j TT. We can naturally extend this linear transformation to
X = C^ = R^ x V^IR^ and denote it also by Re: C^ -^ C^. Here Re
sends Z and Z / to closed subsets of {vn > (tan0)-yi} c Y and we denote
them by ZQ and ZQ respectively. The next lemma is a simple observation
on the geometric situation.
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LEMMA 6.8. — Fix 6 > 1, p > 0 and t > 0, and set in R^:

{ H '•= [Vn =6pVl}

(6.11) C:={^=^|}

C' ••={Vn=P\V'\- ^tp} CR^.

Let a-.H —> E ,̂-1 be the isomorphism induced by the orthogonal projec-
tion from R^ to R^r1. Then:

(6.12) a(ffnC)={^=^L_^

(^ ^n^) - !(^+6t/W - l)h2 _ . |̂ | . ,
U t/W-1)) ) {t/(5V6^1)) = 1}

Dn—l
/ an^ they do not depend on the parameter p > 0.

Now fix a sufficiently large number 6 > 0 and set

0 < 0 = arctan(^p) < ^TT for 0 < p < 1.

It follows from the above lemma that for every t > 0 there exists p, > 0
such that:

(6.14) Ze C Do := {^ > ip|^|} n {^ ^ p|^| - j^} n {^ > ̂ ,}

and

(6.15) Z, c Go := {vn > p\v'\ - ^tp} n {^ ^ ̂ 1}

hold in { H < 4^} x {\v\ < t} for every p with 0 < p < p^. Let us take
0 < it < 1 which satisfies:

(6.16) Ue := { H < 46t} x {\v\ < t} c Re(V),

and set in Y = C^ for some p > 0 such that 0 < p < p^.

in

(6.17)

K:=U={\u ^46t}x{\v\ ̂ t},
D := Do n AT,

^ := GO n ({2^ ̂  [u| ^ 4<%} x { |u| <, jf}),
^G,:=Gon^,
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and finally

Ge ''= holomorphically convex hull of D U E.

Since DUE C G'o and G'Q is a convex subset of V, GQ C G'o holds. Notice:

({^pM-^U^^I})
(6.18) c ( {M<j^}n{K|<^p} )

C { H < ̂ t} if p < ̂

and it implies:

(6.19) Ge\GeCCUe.

Furthermore, the previous formulas (6.14) and (6.15) entail:

(6.20) ZenUeCGe and Ze^UeCG'e.

Since GQ and GQ are compact holomorphically convex subsets in Y = C^,,
we have by Martineau's theorem (Theorem 1.2.3 of [7]):

(6.21) GQ \ Ge is n-propre.

Hence by setting U := R^(Ue\ G := R^t^Ge), G' •= R^^G'o), we get:

{ ZnUcG, Z'nUcG^ UcV,
(6.22) G1 \ G CC U,

G' \ G is n-propre,

because RQ is a biholomorphic mapping between X and Y. The following
lemma implies G C Z and it completes the proof of the case n — d = 1.

LEMMA 6.9. — One has

Ge^{{\u <6t}x{vn< ^M})=0.

Proof. — Let w* = u* + w* be a point in {\u\ < 6t} x {vn < \P \^'\\-
By performing an orthogonal change of coordinates in R^/^-space, we
may assume there exists j ' G { l , . . . , n — 1 } such that,

(6.23) v^<{pv] and |n* < 6t.
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Take holomorphic functions h and g on Y = C^ as follows:

h(w) :=Wn +V^-k(w^ + • • • +W^) - ^RWj
(6.24)

^ g ( w ) := -h(w - n*)

for k = (4^ + 1)^/(2(4^2 - l)t) > 0. Then it is enough to show:

f Im^(w*) > 0 and
(6.25) {

[ lmg(w) < 0 on D U j&.

Since

(6.26) Im^(w) = -^ - A; |n - u*|2 + A; |v|2 + \pv^

(6.27) Im^(w*) = -< + k \^\2 + ^p^* > k ^ 2 > 0,

for w C £', we have:

Im^(w) ^ -^ - ̂ 2^2 + ^ H2 + j pt
(6.28) < 6p \v\ + j pt - ^ (4<52 - 1)H2

< i ( 4 ^ + l ) p t - ^ ( 4 ^ 2 - l ) H 2 < 0

by the very definition of k. Finally for w € D, the inequality Vn >. - p \v'\
entails Vn ^ ^P \v\ if P is sufficiently small. Therefore we have:

lmg(w) ^ -Vn + A: |i;|2 + \ p v j
(6.29) ^-^p|^|+^[^|2+^|^|

= --^p v\ -\-k\v 2.

Since \v\ < t, we can take 0 <: s < 1 such that |i;| = st and:

-^\v\+k\v\2=--^st+ks2t^-st[-^-kt]

1 , r 6(4<?+l)i

(630) '-^['-^rr]
( ' ,-_^h- ^•0 1

12' L (2^+1)(2^-1).

-i^1-^"
holds if ^ ^ ^. Thus we have achieved the proof of Lemma 6.9. []
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Finally we shall treat the case when n—d > 1 in the proof of LEMMA 6.7.
In this case, we may assume for some CQ > 0:

(6.31) Z = Zo H [yn > £o K^+i, . . . , ̂ -i)|},

with

rzo:=Cxv^[(r^x{o})+i \ j ,
(6.32) ^ r^ := {2/1 > ^o|0/2, . . . , ^/n-i)l} c r1-1

[ I\, := [yn ̂  eo\(y^ . . . , ̂ -i)|} C R^

and

(6.33) Z' = ZQ n {2/n > eo IQ/d+i , . . . ,2/n-i)|},

for a closed subset ZQ of X = C ,̂ such that:

ZoCMSxv^^nX)}
(6.34)

4 n {yn = 0} c MS x v^T (r^ x {o}).

Then it follows from the proof of the case n — d = 1 that we can find an
open neighborhood U of the origin and compact holomorphically convex
subsets Go and GQ of X = C^ which satisfy:

ZonUcGo, Zo^UcGo, UcV,
(6.35) Go \ Go cc u
and

(6.36) GoCK^x V^i [(r^ x {0}) +1\]

for some e > 0 in an open neighborhood of the origin. It is easy to see:

G:=Gon{yn ^£o |Q/d+l^--^n- l ) l} and

(6.37)
G' := Go n [yn > £o K^+i, • . . , yn-i)\}

are holomorphically convex subsets of X and G is an element of Z, because
the intersection of two holomorphically convex subsets is again holomor-
phically convex. Since G' \ G CC U is n-propre by Martineau's theorem,
[7, G and G' satisfy all requirements in the statement of LEMMA 6.7. []

Now we finished the proof of the main theorem.
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REMARK 6.10. — Making use of Remark 3.4, we can replace Ao in the
statement of THEOREM 6.1 by any closed convex cone A ofM< In fact, our
proof of Theorem 6.1 can be directly applied to the closed convex cone:

(6.38) A, := {x, > e-11(^ ..., Xd)\}c ̂

for any e > 0 without help of Remark 3.4. The proof for this case is a little
delicate, but it proceeds similarly. We only have to change the proportion
of the open set U in the proof of LEMMA 6.7. For example, set:

U := { x\ < Wt} x {\y\ < t}

for sufficiently large real number £ > 0 which depends on e > 0.

7. Relation with second microlocal analysis
As we have seen in the previous sections, the structure of the complex

Cfl\x\NxMT^x for an open convex cone with the edge N has nice relations
with the theory of second microlocal analysis. In this section, we will
discuss on these relations and give some applications. Originally, the
sheaf Cj| of second microfunctions was introduced as a repetition of the
Sato's microlocalization by M. Kashiwara, but this construction was far
from the direct calculus of the sheaf CM of microfunctions (cf. [3] and [7]).
Around 1988, K. Kataoka and N. Tose [12] found the sheaf C\ which enjoys
the exact sequence:

(7.1) 0 ̂  CO|A — CM\A — ^Ci -^ 0

and admits the boundary value representations by holomorphic functions.
They defined the sheaf C\ by using the second comonoidal transformation.
Refer to [12] and [13] for the details on this sheaf. Recently in [24],
P. Schapira and the author constructed the same sheaf which is called CML
in a completely different way by applying a new functor IJLML to the
sheaf Ox of holomorphic functions. This construction enables us to
establish various functorial properties of the second microfunction CML
and treat Pjc-modules. In order to explain the relation of the theory
of C^\x with that of second microlocal analysis, set:

(7.2)
' M := Wi = R^, x R!̂ ,

N •= {0} x M^ C M

and let X = C^, z = x + zy and Y = C^ be their complexifications.
Furthermore, let L = C^ x R^ D M be a partial complexification of M
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in X. In [24], P. Schapira and the author constructed the bimicrolocali-
zation functor:

(7.3) ^L : D^X) — D^T^L XL r^X),

and they defined as follows.

^DEprnmoN 7.1. — The complex CML := ^ML(Ox)[n] is a sheaf on
T^L XL T^X and is called the sheaf of second microfunctions along L.

Let us take a coordinate system

(^V^Ir/'d^v^TT/d^)

of T^L XL T^X in which (x\^\r}" dx") belongs to M XL T^X. Next
assume d and (n - d) are strictly positive, and define for e > 0 an open
convex proper cone with the edge N by:

(7.4) ^ := {x, > e-11(^2,..., Xd)\} x R^ c M.

Now take a point po := (0;vc:T^d.r) e N XM T^X such that
rjn > 0. Then by virtue of the Legendre transformation in the proof of
THEOREM 3.1, we have (see the formula (3.15)):

(7-5) l^^eixipo ^lim^(0x)(^o)
eXJ ~z,

for some u e M^, where Z ranges through the closed convex subsets of X
of the type:

(7.6) ^ -^x^T^x^+^L

' ̂ ^ {^/i <-^ |Q/2,... ,2/d)|} C M^,,
.% '•= {yn>£\(yi,...,yn-i)\} cM^

(7.7)

for some e > 0. By the stalk formula of the functor R.ML in Theorem 3.2 (i)
of [24], if we set qo := (^v^ld^-V^Td^i) e T^LXL^X, we obtain
the following theorem:

THEOREM 7.2. — There is an isomorphism:

(7-8) I^^IXipo^MLlgo-
£XJ

Roughly speaking, it means that the inductive limit sheaf

}lmc^\X\NxMT^X

is transformed to the sheaf CML of second microfunctions by the Legendre
transformation.
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REMARK 7.3. — Even if in the case when d = 1, that is, when the
codimension of N in M equals to one, this correspondence clarifies the
structure of the sheaf C^\x\ N X MT^X for ^ := [x^ > 0}. For example, the
theorem on the flabbiness ofC^\x\NxMTMX ̂ e to [25] can be interpreted
to the flabbiness of the sheaf CML shown by Kataoka-Tose-Okada [13].

REMARK 7.4. — The use of the sheaf CO of microfunctions with
holomorphic parameters in the study of the sheaf CM+|X °f Kataoka is
already implicit in Theorem 4.2.12 of [10], which supports THEOREM 7.2.

We shall apply the results on the boundary value problems to the study
of the second microlocal analysis. Let

N := {m = 0} C M = IT

be a submanifold of codimension one, and define open subsets

Ob := {d=rci > 0}.

Denote by P the H. Lewy operator D^^lz^Dn and consider a left Vx-
module M := T>x/^xP- Recall the vanishing theorem of Tose-Uchida
[28] and D'Agnolo-Zampieri [1]:

PROPOSITION 7.5 (Tose-Uchida, D'Agnolo-Zampieri). — Let

po := (0;V^ld^) € N XM W.

Then:

(7.9) RHom^M^x^ ̂  0.

Since the Legendre transformation sends the point po to itself and
preserves the symbol of the operator P, we have:

COROLLARY 7.6. — Let L :== C^ x M^,71 D M be a partial complexifi-
cation of M in X. Then'.

(7.10) Rnom^(M,CML) ̂  0

at^V^ldx^±V^ldxz)eT^LxLT^X.

Therefore, on account of the exact sequence:

(7.11) 0 -^ CO,, — CM — ^CML -^ 0
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on A := M XL T^X, there exists an isomorphism:

(7.12) RHom^{M,CO^)p, ̂  Rnom^(M,CM)pa,

where COz^ denotes the sheaf of microfunctions with holomorphic para-
meter in ^i—variable. In particular, it follows from the structure theorem
of S-K-K (Theorem 2.3.6 of [18]) that:

(7.13) £xt^{M^CO)p^CN\p^

It means that the H. Lewy operator P = D\ + ^/^Iz^Dn is not solvable
in CO^ at po := (0:^/^1 dxn).

REMARK 7.7.—The micro-symbol (see Definition 2.4.1 ofLaurent [15])
ofPat (0; y^^ dxn^y^ d.z*i) is A/^T^iCn (Cn ¥- 0) ̂ d the second cha-
racteristic variety of M. is smooth there. However all cohomology groups
of the solution complex RHomr)^(M^CML) vanish as in COROLLARY 7.6.
When we consider the microfunction solutions, at least one of the coho-
mology groups of RHom^)^ {•M-i CM) survives on the characteristic variety
of M. in general (refer to the structure theorems in S-K-K [18]). It seems
for us that such an interesting phenomenon is familiar in the second mi-
crolocal analysis.

8. Applications
Let N be a real analytic submanifold of M of codimension d, Y its

complexification in X, and M. a coherent Pjc-module on X for which Y
is non-characteristic. Recall the following lemma.

LEMMA 8.1 (Proposition 2.3 of [29]). — For any locally closed subset A
of TV, we have a canonical isomorphism:

(8.1) p^w~1 RHomT)^(M,CA\x)^^N\M[d} ̂  RHom^(MY,CA\Y)^

where
y*y ^-Y xx T*X -^ T*X

are the morphisms associated to the inclusion Y ^-> X and M.y is the
induced system of M. on Y.

In this section, whenever we consider the boundary value from an
open subset f^ C M to a submanifold N such that ^ D TV, n is always
assumed to satisfy the cohomological triviality due to Schapira [22]. For
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u C T^/Hom^^(M,BM) a hyperfunction solution of a coherent Vx-
module M on an open subset ^ of M, a closed conic subset SS^(n)
of T*X is denned by

SS^n) := suppa('u),

where a is a natural morphism:

(8.2) a-.^Y^nom^M^M) — — H 0 RHom^^M^x}.

and TTX '• T*X —^ X is the projection. This is a wave front set introduced
for the study of the boundary value problems in [22].

The next proposition is a direct consequence of LEMMA 8.1 and the
structure theorem of the complex C^\x for open quadrants ^ in Section 4.

PROPOSITION 8.2.— Let ̂  :== {.TI > 0,.. . ,Xd > 0} be an open quadrant
in M = K^ with the edge N := {x^ = ' • • = Xd = 0} C M and Y a
complexification of N in X . Then for any coherent Vx -module M for
which Y is non-characteristic^ we have for every j < 0

(8-3) H3 RHom^(M^x) = 0.

From now on, we assume that the open subset ^ C M = R^ contains
an open convex cone with the edge N := {x^ = ' • • = Xd = 0} and
the open neighborhoods of the origin 0 whose intersection with ^ are
connected form a fundamental system of neighborhood of 0. In this case,
we can take linear functionals / i , . . . , fd on M = W1 which vanish on N
such that /i A • • • A fd + 0 and ^o := {A > 0 , . . . , fd > 0} C fl. We
also assume that the submanifold N is non-characteristic with respect to
the T>x -module M..

PROPOSITION 8.3. — Assume a hyperfunction solution

u^r^Hom^(M,BM)o

of M. on f^ near 0 satisfies the condition:

(8.4) SS^(n) n ̂ (0) C T^X.

Then u e 'Komp^.A/^A^o? ^•e- u extends through N as a real analytic
solution of M, near 0.

Proof. — Since there exists a microlocal restriction morphism:

C^\x —^ C^\x^
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we can replace the problem of ^2 by that of the open quadrant f2o.
Now, by PROPOSITION 8.2, we have an exact sequence (see the proof of
Proposition 3.3 of Uchida [29] ):

(8.5) 0 -^ /Hom^(M,AM)^ —> F^ Hom^(M,BM)

—— 7rx.H°Rnom^(M,C^x) -^

and the conclusion of the proposition is clear. []

REMARK 8.4. —When f^ is an open subset of M whose complement is a
closed convex set, PROPOSITION 8.3 is proved by Uchida (Proposition 3.3
of [29]) under a much weaker non-characteristic condition.

Now denote by Car.M the characteristic variety of M. and consider a
subset S of CarA^ H T^X. By the Kashiwara-Kawai's division theorem
(Lemma 8.1 in [6]), we have for every point p of T^Y a projection Rs,p'-

(8.6) /Hom^{MY^CN)p ^ (]) Sxt^{M^N\x}q
qeCarMnp-1^)

-^ ® ext^(M^\x^
slp q^snp-^p)

where p : T^X —^ T^Y and CN denotes the sheaf of microfunctions on N.
DEFINITION 8.5. — Let v € 7fompy(.My ,B?v) be a hyperfunction

solution of the induced system M.Y of M. on N. We say that v is micro-
analytic at S if Rs,p(v) = 0 for every point p e T^Y.

The next theorem naturally generalizes the extension theorem due to
Kashiwara-Kawai (Theorem 1 of [6]) to non elliptic equations.

THEOREM 8.6 (Extension of real analytic solutions). — Assume that the
boundary value b.v.(n) € T'tomr^.My.B^o of ^ ^aZ analytic solution
u € r^'Kom-p^.A^.AM^o of M- on^t near 0 is micro-analytic at

s := CoiM n [ss c^ n t^x].

Then u extends through N as a real analytic solution of M. near 0. In
particular^ ifb.v.{u) is real analytic^ the conclusion holds.

Proof. — We may assume from the first u 6 F^o T^m'p^.M.BA^o-
First take a closed convex cone A = Ai x M^ C R^, x R^ = M such
that N C A and A \ N C f^o- We can assume Ai is C^-diffeomorphic to:

(8.7) A, := {x, > e-1 |(.r2,..., ̂ )|}c ̂ ,
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for some e > 0 as in Remark 6.10. Next choose again linear functionals
Q\i - ' • ,9d on M = W1 which vanish on N such that

(8.8)
g\ A • • • A gd ^ 0 and
^i ^{^i > 0 , . . . , ^ > 0 } C A .

Then it follows from the condition of the micro-analyticity of b.v.(n) that
the image of u by the chain of the morphisms:

(8.9) Tr^r^ Hom^ {M, BM) ̂  H0 RHom^ (M, C^x)

^Sxt^(M^N\x)

is zero on ^(O) \ T^X. Therefore the microlocal injectivity of the
boundary value morphism (Theorem 6.1 and Remark 6.10) implies:

(8.10) SS^(u^)n^\0)cTxX.

To complete the proof, it suffices to apply PROPOSITION 8.3 to the open
quadrant Hi. []

The Oaku's theorem in [17] is now a particular case of our main theorem
(THEOREM 6.1) as follows.

COROLLARY 8.7 (Local uniqueness of boundary value problems [17]).
The boundary value morphism'.

(8.11) b.v.:limr^7fom^(A^M)^ —>Hom^(MYW
^

is injective, where fl ranges through open convex cones with the edge N
such that ^ D Ao x ̂ -^ \ N.

Let us interpret our main theorem (THEOREM 6.1) in terms of micro-
functions.

COROLLARY 8.8 (Propagation of singularities up to the boundary). —
Let f2 be an open convex cone with the edge N . Assume that the boundary
value b.v.(zA) € Hom^^My ,BN) of u € F^ Hom^{M,BM) is micro-
analytic at a point q € CarM H [N XM T^X}. Then for any open cone
^o CC f^ there exists a neighborhood U of q in T^X, such that u = 0
on ^^(f^o) H U as a microfunction, where TTM'-T^X —> M denotes the
natural projection.

The next example explains that on T^X \(N XM T^X) there exist
non-trivial contributions to the singularities of the boundary value hyper-
function (cf. THEOREM 3.1 (ii)).
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EXAMPLE 8.9. — Let M = Ki and X = C^ = M^ x ^/^IM^ be its
complexification. Consider the underlying real analytic manifold X^ of
X and its complexification X x X. Take an open convex proper cone
fly C M^, and we set ^ := K^ x ^i^y C X^. Let us construct
«the boundary value)) of holomorphic functions on ^l to M. For this
purpose, notice that the induced system of the Cauchy-Riemann system
^x IEI ^x on ^5 ^ ' e ' ^e GQ^pl^fi^ion of M in X x X, coincides
with T>x- Then we have by Kashiwara [4]:

Rr^(Ox)\M ̂  RHom^ (px ̂  O^Wx^\M
(8.12) x

—— RHom^ {VX^BM) ̂  BM.

Now we take coordinates (z,w) of X x X by complexifying the coor-
dinates {x^y) of X1^ and set the morphisms associated to the inclusion
X ̂  X x X:

r*x ^- x x^x) ̂ (^ x z) -^ ̂ (^ x x^
where the morphism p is described by

(^0;Cdz+(9dw) i—> (z-^dz)

using the associated coordinates ( z ' ^ d z ) (resp. (z^w^dz+Odw)) ofT*X
(resp. r*(X x X)). Then microlocal version of the above boundary value
morphism is

(8.13) p.w-1 RHomv^Vx ̂  Ox^\xxx) — CM'

Since the characteristic variety of M. = T>x IE1 ^x ls ^ = ̂  m

T*(X x X), p induces a one to one correspondence between ^^CarA^
and T*X. One can easily obtain the following formula.

(8.14) T^Xnp^-^CarA^nsuppC^^}
={{x^dy}^T^XR^ r] € (^a}.

This means that the singular spectrum of the hyperfunction defined
by the boundary value of a holomorphic function on ^ is contained
in K^ x (^°)° C T^X^. The next corollary, which is well-known, is a
very special case of THEOREM 8.6.

COROLLARY 8.10. — If the boundary value b.v.(/) G BM off e OxW
is real analytic^ then f extends through M as a holomorphic function.
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