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L-FUNCTIONS FOR SYMPLECTIC GROUPS
BY Davip GINZBURG, STEPHEN RALLIS AND
Davip SOUDRY (*)

ABSTRACT. — We construct global integrals of Shimura type, which represent the
standard (partial) L-function L°(7 ® o,s), for m ® o, an irreducible, automorphic,
cuspidal and generic representation of Spy,(A) X GLg(A). We present two different
constructions : one for the case n > k and one for the case n < k. These construc-
tions are, in a certain sense, dual to each other. We also study the (completely ana-
logous) case where 7 is a representation of the metaplectic group Spy,, (A). Here we
have to first fix a choice of a non-trivial additive character %, in order to define the
L-function LS (mr ® 0,5). The integrals depend on a cusp form of 7, a theta series
on Spyy(A) (£ = min(n, k)) and an Eisenstein series on Spy;(A) (or Spyy(A)) induced

from o.

RESUME. — FONCTIONS L POUR GROUPES SYMPLECTIQUES. — On construit des
intégrales globales de type de Shimura, qui représentent la fonction L standard (par-
tielle) L5 (7 ® o, s) pour une représentation 7 ® o, irréductible, automorphe, cuspidale
et générique de Sp,, (A) X GLg(A). On présente deux constructions différentes : une
pour le cas n > k, et une pour le cas n < k. Ces constructions sont, dans un certain
sens, duales 'une de lautre. On étudie de méme le cas (tout & fait analogue) ou 7
est une représentation du groupe métaplectique Sp,,, (A). Ici, on doit d’abord fixer le
choix d’un caractére additif et non trivial %, pour définir la fonction L, Li(ﬂ@ 0,8).
Les intégrales dépendent d’une forme cuspidale de 7, d’une série théta sur Spg,(A)
(¢ = min(n, k)) et d’une série d’Eisenstein sur Spy;(A) (ou Spyy(A)) induite par o.

(*) Texte regu le 10 octobre 1997, accepté le 28 janvier 1998.
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182 D. GINZBURG, S. RALLIS, D. SOUDRY

Introduction

We present a global integral of Shimura type, which interpolates the
standard L-function for generic cusp forms on Sp,, x GLg (resp. on
§f)2n x GLy, where ~ denotes the metaplectic cover.) The structure of the
global integral has one of two forms, according to whether n > k or n < k.
However, these two forms of integrals are dual to each other, in the sense
that the roles of cusp forms and Eisenstein series are interchanged. This
construction for Spy,, x GL,, was already done in [GPS]. Let us give some
more details on these global integrals. Let 7 (resp. 7) be an irreducible
automorphic, cuspidal representation of Sp,,, (A) (resp. §f>2n(A) (A — the
adeles of a global field F'). We assume that 7 (resp. 7) is generic, i.e.
(resp. ) has a nontrivial Whittaker-Fourier coefficient. Let o be an irredu-
cible, automorphic, cuspidal representation of GLk(A). Let E(g, f,.s) be
the Siegel-Eisenstein series on Spyy(A) corresponding to a holomorphic
K-finite section f, s in the representation of Spy,(A) induced from the
Siegel parabolic subgroup and o. In a similar appropriate fashion, we may
consider the representation of Spy;(A) induced from o (twisted by the
Weil symbol), and construct, for a section f, s, the corresponding Eisen-
stein series E(g, fos) 0N §f>2k(A). Let 1 be a nontrivial character of F'\ A.
Denote by w$ ) the Weil representation of Hy(A) - §1/)2,3(A), where Hy is

the corresponding Heisenberg group (of dimension 2¢ + 1). Let 05: ) be the
corresponding realization by theta series. Assume that n > k and let ¢ be
a cusp form in the space of 7. Then the global integral for 7 x ¢ has the
form

L(s) = / / (vg)0® (o' gy’ (v) dv - (g, f) dg.
Spai (F)\Spai (A) (i yimb)

V(7k) is the unipotent radical in Sps,,, of the parabolic subgroup preser-
ving a an (n — k)-dimensional isotropic flag. V("*) has projection v — v’
to the Heisenberg group Hy. v is a certain character of V;"”“) \ V;{"’k).

Sp,;, is embedded in Sp,,, in the “middle” 2k x 2k block. For 7 on ész(A)a
we consider, for ¢ in the space of 7,

12(8) = / / a(vg)eibk)(v/g),(/)/(v) do - E(g,fgws)dg_
Spak (F)\Spay (A) Vlf_‘"»k)\vpfn,k)

In case n < k, we switch the roles of k and n and of ¢ (resp. ¢) and E
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 183

(resp. E) and consider

no= [ el / E(vg, f.)00 (') (v) dudg,

SP2n (F)\SP2y (A) RN A

ne= [ w0 [ B0 600 ) dud.

SPan(F)\SP2n(A)  y{rm\ykm

These integrals are of course meromorphic functions of s. We prove, for
decomposable data, that the integrals are Eulerian. The corresponding
local integrals satisfy the expected properties of the associated local theory
(meromorphic continuation, nonvanishing and local functional equation).
When all data is standard unramified at a place p the local integrals at p
give the following quotient

L(mp ® op, s(k + 1) — 3 k)
L(op, V2,25(k+ 1) — k)

Ly, (Tp ® 0, 8(k +1) — 1 k)
L(op, s(k+1) — L(k—1))L(0p, A%, 2s(k + 1) — k)

Case Sp,,, x GLj :

Case §f)2n x GLg :

Here V2 and A? are respectively the symmetric square and exterior square
representations of GLg(C). There is no canonical definition of the local
L-factor for 7, ® o, (on §f)2n(Fp) ® GLk(Fp)). We have to first make a
choice of a nontrivial character of Fj,. Here we choose 1,,. The choice of 1,
determines the unramified character n = m ® -+ ® n,, of the diagonal
subgroup of Spy, (F'), which corresponds to 7,. See Section 3.1 for our
precise definition. We then have

n

L"»bp(:frp ®0P’S) = HL(OP ®Tlia3)L(0p ®’7i_173)~

i=1

We obtain these unramified computations, in cases n > k, using
invariant theory in a direct fashion. We do not know how to do this
in case n < k. In this case, we prove, first, a certain identity relating
(up to slight modifications) the local integrals for (Ind S}{z" 0’) x o and

(Ind ;:Z'jn o) x o (resp. (Ind ip:n 0') x o and (Ind S}{?n o) x o’) and

then we use the unramified calculation of the first case (see [S1], where
similar identities are obtained for SOgy,4+1 X GLg.)
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184 D. GINZBURG, S. RALLIS, D. SOUDRY

The importance of achieving L-functions via explicit integrals of the
above type is, apart from establishing their meromorphicity, the possibility
of locating their poles and relating their existence to functorial liftings
and nonvanishing of (generalized) periods. We already studied one such
example in case Sp,, X GL; in [GRS1], where we showed that the only
possible pole of the partial L-function L3(7,s) is at s = 1, and this pole
occurs if and only if 7 has a nontrivial theta lift to a cuspidal generic
representation of SO, »(A), and in this case a certain (generalized) period
is nontrivial on w. In forthcoming works [GRS2], [GRS3| we study the
existence of a pole at s = 1, when k£ > 1, and relate it to (explicit)
functorial lifts between generic representations of §f)2n(A) and of GLa,(A)
and between generic representations of Sp,, (A) and of GLa,41(A). We
plan to study this explicit functorial lift for the nongeneric case as
well, using a similar theory of L-functions of arbitrary (not necessarily
generic) cuspidal representations of Sp,,, (A) (resp. §f)2n(A)), due to the
first two named authors. There “generic” is replaced by the existence
of a certain Fourier-Jacobi model. The advantage of having all these
different constructions is the possibility of relating generic and nongeneric
representations, having the same functorial lift to the appropriate GL,,.

1. Notations

1
1. — Let J, denote the r x r matrix ( ) We define

1

Spy, = {QGGL2r : tg(_Jr J’”>g= (—JT J’“)}.

2.—For our construction we will need the following subgroups of Sp,,..
For 0 < k < r let Py, denote the parabolic subgroup of Sp,, which
stabilizes a k-dimensional isotropic space. Thus
Py = (GLg x sz(r_k))UQT,k,

where U,k is the unipotent radical of Po, ;. When k = 0 we understand
that Pa.o = Spy,. and GLg = Uz = {1}. In terms of matrices, we
consider the embedding of Py, in Sp,, as follows :

h
(hvg) — ( g B )7 h S GLk? g € Sp2(r—k)’

where h* is such that the above matrix is in Sp,,., and given g = (év g)
, 3 A LB -
in Spy(,_y), then § = (20 2D ) The group Us, i is embedded as all
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 185

I *
( I2(r—k) I )7

where I, is the £x /¢ identity matrix. Let Q2, x C Par x denote the parabolic
subgroup of Sp,, whose Levi part is GL¥ x Spa(r—k)- We shall denote its
unipotent radical by Va, k.

matrices in Sp,, of the form

3. — Let H, denote the Heisenberg group with 2n + 1 variables. We
shall identify an element h € H,, with a triple (z,y, z), where z,y € M;x,
and z € Myx1. We define the following subgroups of H, :

X, = {(ac,0,0) € Hn}, Y, = {(O,y,O) € Hn}, Zy = {(0,0,z) € H,}.
The product in H,, is given by
(1,91, 21) (2, Y2, 22) = (21 + 2,91 + Y2, 21 + 22 + & (21Jn¥h — 11Jn7h)).

It is well-known that H,, is isomorphic to Uzn42,1. We shall denote this
isomorphism by 7. In coordinates we have

z
) =r(ep2) = =0
1

Here z* and y* are such that the above matrix is in Sp,,, 5. Thus,

y* = %Jnyt and z* = —J.zt.

4. — Let F be a global field and A its ring of adeles. Given a linear
algebraic group G, we shall denote by G(A) the A points of G, etc.
Fix n and k in N. Let m (resp. o) denote an irreducible automorphic
cuspidal representation of Sp,,,(A) (resp. GLx(A)). We shall denote by V;
(resp. V,) its realization in the space of cusp forms. We shall always
assume that 7 is generic. We recall this notation. Let 1) denote a nontrivial
additive character of F'\ A. Given 1 < ¢ < n we define a character 1,
on Vo, ¢ as follows. Let v = (v;;) € Va, ¢ be a matrix realization of V3, 4
as defined in Section 2. If 1 < ¢ < n we denote

Ye(v) = ¢(i 'Uz',i+1)
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186 D. GINZBURG, S. RALLIS, D. SOUDRY

and we shall also need

1l’n('v (sz i1+ 5 'Un n—H)

Let Ni denote the maximal unipotent subgroup of GLj consisting of upper
triangular matrices. For 7 = (71;;) € Ni we define

(YA n) (an z+1)

We say that 7 is generic with respect to v, if the space of functions

W.lo)= [ o (09)n(v) dv
V2n,n(F)\V2n,n(A)

is not identically zero. Here ¢, € V; and g € Sp,,,(A). We shall denote this

space of functions by W(m, ). A similar definition holds for W(r, ¢,).
Similarly, for o, we denote by W(o,v¥n,) the space of functions of the
form

W, (h) = / o (AR Y, (7) dR
Ni(F)\Ng(A

for p, € V, and h € GL(A). By Shalika’s well-known theorem, given o
as above W(o,9¥n,) # 0.

5. — Let %2k(A) denote the metaplectic double cover of Spy,(A).
Given a subgroup G of Sp,;, we shall denote by G its full inverse image
in §f)2k. If a subgroup G of é{)% splits under the cover, we shall view G
as a subgroup of §f)2k. Choosing the covering in a suitable way, it is well-
known that the groups Spy, (F') and Vi x(A) split.

For a € A* we let v, denote the Weil symbol. It depends on the choice
of 1. When we want to mark this dependence, we write v, . Let ép,, ,
denote the modular function of Py ;. As usual, we view it as a function

of ng r by composing it with the projection ng k — Pog . For s € C
and o as in Section 4 we denote

Spar (A _
I(o,s) =1Ind izkk((A)) (0©6p,,®77").

By definition, this is the space of all smooth functions fg,s : éﬁgk(A) -V,
satisfying

(1.1) fo.s(P9) = €Y3eb m e (M) (M) fo5(9)
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 187

for all g € Spyy(4), ¢ € {1} and p = (™ . )ue) € Spayu(A),
where m € GLg(A) and u € Usg i (A). Here and henceforth we shall

view elements of §f)2k as pairs (g,¢€), where g € Sp,;, and ¢ € {£1} with
multiplication as defined, for example, in [BFH]. Let us remark that (1.1)
is well-defined since the subgroup GLj of Sp,; splits under the cover.
We shall also denote

P,k

S A s
I(0,5) =nd 30 (0 ® 63, ,).

Here o and s are as before. Thus I(o, s) is the space of all smooth functions
fo.s : Spar(A) — V,, satisfying

fo,s(pg) = j’z,c,k (m)d(m)fg,s(g)

for all g € Spyi(A) and p = mu € Poi(A), where m € GLi(A) and
u e Uzk’k(A).

In both cases, we view the function f, s(g) (resp. fs.s(g)) as complex
valued functions on Sp,,(A) (resp. §f)2k(A’)l which are left Ugg x(A)

invariant, and for fixed g € Spy;(A) (resp. Spy;(A)) the function m —
fo,s(mg) (resp. m — f,,(mg)), with m € GLg(A), belongs to the
space of cusp forms on GLg(A) realizing the representation o ® 5}%&

(resp. 0 ® 6p,, , ®~71).

Next, we define the Eisenstein series we need. For fa’s el (0, s) define

E(g, frs) = > f,s(69),

8€ Pa, i (F)\Spa (F)

where g € §f)2k(A). The above summation converges absolutely for Re(s)
large and admits a meromorphic continuation to the whole complex plane
with at most finitely many poles in Re(s) > % A similar definition holds
for E(g, fo,s)-the Siegel Eisenstein series on Spy;(A).

Let f,, € I(0,s). We denote
Fu 0= [ o g, (7)
Ni (F)\Ng(A)

for g € §f32k(A). Thus, for ¢ € GLg(A), the function fwa,s(g) is in
W(o,%¥n, ). Similarly we define the function fw,  (g).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



188 D. GINZBURG, S. RALLIS, D. SOUDRY

6. — Let w, denote the Weil representation. It is a representation of

the group Hy(A)Sp,(A) and it is realized on the space S(A¥) — the
Schwartz space of A*. The following formulas are well-known (see [P])

(12)  wy({(0,5,2)(x,0,0),))9(€) = etb(z + ETy)plx + ),
13)  wy(((™,+)€))@(O) = Vaerm| detm| ¥ p(gm),

19 w({(™ 7 )e))8© = v (SeTaet)p(e).

Here ¢ € S(A*), (0,y,2)(x,0,0) € Hi(A), ¢ € {£1}, m € GLi(A) and
(Ik T
I
vector.
We now define the theta function,

) € Usk x(A). In the above formulas, we view § € AF as a row

Os(hg) = D wy(hg)$(€)

LeFk

for ¢ € S(A*), h € Hy(A) and g € §f)2k(A). This function is an
automorphic function of Hy(A)Spy (A) i.e. it is slowly increasing and
invariant under the rational points Hy(F') Spoy (F).

2. The Global Integrals (n > k)

We keep the notations of Section 1. Assume that n > k. In this
section we shall describe the global integral which will represent the tensor
product L-function. Let

0 I
— In_x O
Wo = 0 Ik
I, O

and define j(g) = wogwy* for all g € Sp,,(A). The global integral we
consider is

Il(‘P,¢a fa,s) =

Spok (F)\Spax(A) Hi(F)\Hr(A) Van n—k—1(F)\Van,n_k—1(A)
¢(i(v7(h)g))0s(hg)E(g, f7,5)¥n—k—1(v) dvdhdg.
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 189

Here ¢ € Vg, ¢ € S(A¥) and fa,s € I(o,s), and 1h,_g_1 is as defined
in Chapter 1, Section 4. Also g embeds in Sp,,, as described in Section 1,
part 2.

A similar construction is valid for irreducible cuspidal representations 7
of Sp,,,(A). Indeed, given & € V=, ¢ € S(A*) and f, ; € I, we define

I2(¢7 ¢) fo,s) =

Spak (F)\Spay (A) Hi(F)\Hk(A) Van,nk—1(F)\Van,n—k-1(A)
&(j(vr(R)g))84(hg)E(g, fs,s)¥n—k—1(v)dvdhdg.
Let us remark that in both cases the integrals are well defined in the
sense that the functions 0~¢(hg)Ev(g,f6,s) and (E(j(v*r(h)g))%(hg) are

non-genuine functions of §f)2k(A).
Let R C Vap,,, be the unipotent subgroup consisting of all matrices of
the form

I T
R= I . T € M(_g)xn Where the
bottom row is zero

Ik
We are now ready to prove :

THEOREM 2.1. — The integral I(p, ¢, fg,s) converges absolutely for
all s, except for those s for which the Eisenstein series has a pole.
For Re(s) large :

Ii(p, 9, fa,s) = / / / Wv(j(r7($> 0, 0)9))
Vak,k(A)\Spyx (A) R(A) Xk(A)

wy(9)6(x) fw, s(9) dzdrdg.
Here W, € W(m,y) and fWa,s is as defined in Chapterl, Sectionb.

Proof. — The proof of the absolute convergence follows as in [G]
using the growth conditions of . We show the unfolding. Unfolding the
Eisenstein series and the theta series, we obtain that I1(p, ¢, fo,s) equals

[ol0r0)9) 3 wubg)$(€) o (9)bni-1(v) dodhd,
Parc i (F)\Sp2 (A) Lert
where h and v are integrated as before. From (1.2) it follows that

Wy (hg)d)(&) =Wy ((5, 0, O)hg)¢(0)
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190 D. GINZBURG, S. RALLIS, D. SOUDRY

Write h € Hg(A) as h = (0,y,2)(z,0,0) (see Chapter1, Section 3).
Changing variables using the left invariant properties of ¢ and collapsing
the sum over F* with the integration over Xy (F) \ Xx(A), I1(p, ¢, fo,s)
equals

/ (G (or((0, 3, 2))((2,0,0))9)) wy (0,4, 2)(z 0,0)g) 4(0)
fo,s(g)wn_k_l (v)dvdydzdzdg.

Here y is integrated over Y (F)\Yx(A), z is integrated over Zx(F)\ Zx(A),
x over Xi(A) and v and g are integrated as before. From (1.2) we obtain

wy ((0,y, 2)(2,0,0)9) $(0) = ¥(2)wy(9)$()

Thus I (¢, ¢, fa,s) equals

/ (G (o7((0,1,2))7((2,0,0))9)) wy (9)#(x)
fo,5(9)¥n—k—1(v)1(2) dvdy dzdz dg,

where all variables are integrated as before. We have the following Lemma :

LemMA 2.2. — For data as above
[ G070, )u9) -1 (0)b(z) dody e

_ / ) W¢<<5 JA— 6*)j(rg))dr.

R(A) SENK(F)\CLk(F)

Here u is integrated over Uy (F) \ Uskk(A), v over Vappn—k—1(F) \
Vonn—k—1(A), y over Y (F) \ Yi(A) and z over Zy(F)\ Zy(A).

The proof of Lemma 2.2 is as the proof of the Lemma in [G, p.172].
We will give the details later.

Returning to the proof of the theorem, write Poy 1 = GLj Ui,k and

/ _

Pop,k (F)\Spar (A)  GLk(F)Uzk,k(A)\Spak(A) Uszk,k(F)\Uszk, i (A)

ToME 126 — 1998 — ~n° 2



L-FUNCTIONS FOR SYMPLECTIC GROUPS 191

Using this and Lemma 2.2., I; (¢, ¢, fa,s) equals

>

GLi(F)Uszk,x(A)\Spai (A) R(A) Xi(a) OENk(F)\GL&(F)
W, (j(6r7(z,0,0)g))wy (9)$(2) fo,s (9) dzdrdg,

~ 6
where j(8) = ( In—k) 6*)' Using the definition of 7 we see that

6 € Spyy.(F). Hence, conjugating & across r and 7(z,0,0), and a change of
variables in r and z, we may collapse the summation with the integration
over GLg(F)Uzg x(A) \ Spgy(A) to obtain

/ We (§(r7(2,0,0)9)) wys(9)$(x) fo,s(9) dwdr dg,

where g is integrated over Ny (F)Uszg x(A)\Spys(A) and all other variables
as before. Write

Ni(F)Uzk,k (A)\Sp2x(A)  Ni(A)Uzk,k(A)\Sp2x(A) Ni(F)\Nk(A)

We have NpUskyr = Vori. After a change of variables in r and «z,
Ii(, ¢, fo,s) equals

/ W, (j(rr(z,0, o)g))ww(g)¢(w)( / fo,s(g) N, (ﬁ)dﬁ) dzdrdg,

Ni(F)\Nk(A)

where g is integrated over Vag x(A) \ Spyx(A) and 7 and z as before. From
this the Theorem follows. []

Proof of Lemma 2.2. — As mentioned before the proof of this lemma
follows the same pattern as the proof of the lemma in [G, p. 173-175]. We
give some details. Let N,,_x_1 C N,, be embedded in N, in the lower right
corner. We define the following two unipotent subgroups of Sp,,, (A). First

In.k O 0 te ka(n—k)
T = Lo, i * such that the first
" column is zero
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192 D. GINZBURG, S. RALLIS, D. SOUDRY

and second

¢ In_g £ € Mn_ryxk
L= In_g ¢ such that the last
i I row is zero

Notice that L = j(R). We now prove the lemma. By definition
Wi = [ el
V2n,n(F)\V2n,n(A)
As in [G], and using the references given there we have

2wl )

5€ N (F)\GLy(F)

/ / / o(uting)n (Au) dudt dn.
Np—k—1(F)\Nn—k—1(A) T(F\T(A) Uzp,n(F)\U2n,n(A)

Here we view 7 as an Sp,,, matrix via the embedding of GL, in Sp,,.
Also Y, (7u) is defined by restriction. Let Ty C T be defined by

T, = {t € T : all columns of ¢ are zero except the second one}.
Thus T1 ~ Mgx1. Also, let Ly C L be defined by
Ly = {¢ € L: all rows of £ are zero except the first one}.

Thus Ly =~ M. Following (3.5)—(3.8) in [G] we obtain

SIS

Li(a) O€Nk(F)\GL(F)

Nn—k—1(F)\\Nn—k-1(A) L1(F)\L1(A) T(F)T1(A)\T(A) Uzn,n(F)\Uzn,n(A)
p(utbyng)n (fu) dudtdé; dn.
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L-FUNCTIONS FOR SYMPLECTIC GROUPS 193

Here 7 and u are integrated as before. Continuing this process, (as in [G]),

we obtain
)
W, Io(n—k) pe Lg
L{a) SENk(F)\GLx(F)

= / o(ubng) iy (fu) dudédn.

No—k—1(F)\Nn—x-1(A) L(F)\L(A) Uzn,n(F)\Uzs,n(A)
The lemma follows from the fact that
LNp_-1Uznn = j(Vann—k—-1U2kk7(0, Yi, Zi)).

Here N,,_k_1 is embedded in Sp,,, via the embedding of N,,_f_1 — N, —
Sp,,,, where the first embedding is as described in the beginning of the

proof. ]

A similar statement holds for I2(, ¢, fs,s)-

THEOREM 2.3. — The integral Io(P, ¢, fo,s) converges absolutely for all
s except for those s for which the Eisenstein series has a pole. For Re(s)
large :

L@ fd= [ [ [ walier(@o.0))

Vai,k (A)\Spoi (A) R(A) Xy(A)
wy(9)¢(z) fw, ,(9)dzdrdg.

Here W{[ € W(T,n) and fw, s is as defined in Chapter 1, Section 5. []

Theorems 2.1 and 2.3 show that both global integrals are Eulerian. In
the next chapter we shall study the local integral obtained from these
global integrals.

3. The Local Theory

In this chapter we shall study the local integral in question. We shall
compute the unramified integrals and prove some nonvanishing results.

Let F' be a local field. Let m, 7, o be irreducible representations of
Spay, (F), Spy, (F) and GLg(F') resp. As before we shall assume that n > k.
When convenient, we shall write Sp,,, for Sp,,, (F'), etc. Let ¢ be a non-
trivial additive character of F. We shall denote by W(m,¢,), W(T,¢n)
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and W(o, 9, ) the Whittaker space associated with m, 7 and o resp. The

local Weil representation wy, of the group Hkég% acts on S(F*) — the
Schwartz space of F*. We have the local version of Chapter 1, Section 6
of (1.2)—(1.4), for the action of wy.

Let (,) denote the local Hilbert symbol and 7, (a € F*) the local Weil
constant. Let

IW(o,9n,),8) =Ind 2> (W(0,9n,) @ 85, , ©77).

2k, ko

Thus a function fWa,sa or fs in short, in T(W(a,¢n,),s) is a smooth
function on the group Sp,, which takes values in W(o,9n,). More
precisely, given g € Sp,, there is a function W¢ ;€ W(o,¥n, ) such that

(™ 5)9) = 8 (M2 nWE (),

where m € GL; and (m ni:*) € Py k. Similarly we define

IW(o,%n,),s) =Ind P’;i’“k( (o,%N,) ® (5‘}%,’6).

The local integrals we study are

nwe )= [ //Wy(rmoom)

Vak,k\SP2x ( Vo (:[:)fs( )dzdrdg
and
EWof)= [ [ [Wiero.0)
Vak k\Spa B Xk wy(9)o(x) fs(g9) dxdrdg.

Here W € W(,vn), W € W(T,%n),¢ € S(F¥), fs € IW(0,¥n,),s)
and fs € IW(o,9¥n,), ).

If F is a finite place we let p denote a generator of the maximal ideal
in the ring of integers of F'. Also |p| = ¢~ !. For any local field, K(G) will
denote the standard maximal compact subgroup of G. It is well-known
that K (Spy;) splits in Sp,;, and we shall identify K(Spyy) with its image
in Spyy.
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3.1. The Unramified Computations.—Let F' be a nonarchimedean
field. Assume all data is unramified. More precisely, we assume that there
are W € W(rm,¢p), Wo € W(o,¢n,) and f, € I(W(o,%n,),s) which
are fixed under the corresponding maximal compact subgroup. In other
words, W (k) = W(e) = 1 for all k € K(Sp,,), and W, (k) = W,(e) = 1
for all k € K(GL) and f,(k) = fs(e) = 1 for all k € K(Spy;). In these
cases 1) is an unramified character of F. Let ¢ € S(F*) satisfy ¢(z) = 1
if z € O* and zero otherwise. Here O is a ring of integers in F. Similarly,
we assume the existence of W € W(7,¢,,) and fs € IW(o, ¥n, ), s) with
similar properties.

Next we describe the L-f}lnctions we study. From general theory
is a quotient of Ind Sl}?"(aégn), where B, is the Borel of Sp,, and «
an unramified character of B,,. Thus if t = diag(t1,...,tn, 5%, ..., t7")
denotes the maximal torus of Sp,,, then a(t) = a1(t1) - - an(t,), where
«; are unramified characters of F*. Let

Ap = dia'g (Ch(p), sy an(p)» 1, a;l(p), ces ’al—l(p))

be the semisimple conjugacy class of SOz, +1(C) attached to 7. Similarly,
we may associate with o a semisimple conjugacy class in GLg(C) deno-
ted by

B, = diag (61(p), - - -, B(p))-

The local tensor product L-function is defined
PR |
L(mr ®o,s) = det (I(2n+1)k — A, ® Bpg s) .

We also define the local symmetric square L-function of o by

1

k
L(o,V?s) = H (1= Bip)Bi(p)a™) .
ij=1

We prove

THEOREM 3.1. — For all unramified data and for Re(s) large

Lir®o,s(k+1)— %k)
L(o,V2,2s(k+ 1) — k)

II(W’¢7 fs) =

Proof. — Let T denote the maximal torus of GLy. We parametrize T'
as follows :
t = diag(ay, as,...,ax), a; € F*.
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Let ¢ denote the image of t in Sp,, under the embedding described in
Chapter 1, Section 2. Thus

f= diag(al,...,ak,a,jl, c,a] .
It is easy to check that j(£) embeds in Sp,, as
j(t) = diag(as,...,ax,1,...,1,a5",...,a7").

Given a split algebraic matrix group G, we shall denote by B(G) its
Borel subgroup consisting of upper triangular matrices. We have

B8y (B) = la1|**|az]? =1 - .- |ag|?,

)
6B(sp,,) (J(F)) = lay|*"|ag 2" - gy 2R,

Sp(arLy () = lar|*Haz[* 72 fax| =D,

)
6P2k,k (E)

l ‘ak|k+1‘

II

To compute our integral, we apply the Iwasawa decomposition to obtain
that I (W, ¢, fs) equals

/ / / 3 (r7((2,0,0)E)) wy()¢(2) fo()) 65 (sp,, ) (F) dudrat.

Using the definition of f, this equals

/W (r7((z,0,0))t)) wy () (T)Wo () Vet ¢ f;.zk’k(f)&g%sp%)(f)drdxdt.

Next we use the local version of Chapter 1, Section 6, and a change of
variables in r and x to obtain

/ W (j(trr((x,0,0))) W (t)¢(z)| det t] 1 (n—k)
; (f)ég%szk)(tA) drdzdt.

Pk

Since ¢ is supported on OF we may ignore the z integration. Also, as
in [G, p. 176] we may show that the support of the function r — W (ji(¢r))
is in R(O). Hence we may ignore the r integration as well to obtain

/W §(E))Wo(t)|dett| 2~ g5, (£)65 By, (E)dt
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Denote

—1

K(i(#) = 65, ,GOVWEE),  Kolt) = 5580, ()W (0).

Plugging this to the above integral and using the fact that

1 LAY e N 1 _(p— _1
8 5spyy (T(0) 85sp,) E)8 5 r, (D] det 8] 27" = | det ¢~ 2*

we obtain
/ K(j(8)) K, (t)| det t[**+D= 3 qt.
T

From the support properties of the Whittaker function on Sp,,, this equals

Z K(j(pnl’ c.- apnk)/\)Ko ((pnl yo o 7pnk))l‘n1+~-+nka

n1>2nz>-->ng>0

1
where z = ¢g~s(k+1)+3k and

i1

(P™,...,p"*) = diag(p™,...,p"*),

(™, ..., p™)" = diag(p™,...,p™,1,...,1,p" ™ ...,p ™).
For any k positive numbers m; > mg > --- > my > 0 let
tr(my, ma,...,mg,0,...0 | my,ma,...,mg)

denote the trace of the irreducible finite dimensional representation of
SO2,+1(C) x GLg(C) applied to a semisimple representative correspon-
ding to m and o, whose highest weight is (my,...,m,0,...,0) in the
SO2n+1 component and (my,...,m) in the GLy component. Using the
Casselman-Shalika formula [CS], I1 (W, ¢, f5) equals

E tr(ny,...,nk,0,...0 | ng, ..., ng)gmrtnetotne
n12nz > 2ng 20

Next, we use the Poincaré identity
oo
Lr®o,s(k+1) — %k) = Ztr (8%(Ap ® Bp))z*.
£=0
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Here S* denote the symmetric /-th power operation. It follows from [T1]
that the right-hand-side of the above identity equals

00
> tr(ST(SX(By)))a*"
m=0
Z tr(nb...,nk,O,...,OInl,...,nk)xn1+...+nk
ny>--2ng20

From this the theorem follows. []

Next we compute IQ(W, @, fs) at unramified places. The definition of
the local L-factor which corresponds to T ® o is not canonical. We have to
first make a choice of a nontrivial additive character 1’ of F. We use 9’ to
write the unramified character of the torus of Sp,,, (F') which corresponds
to 7. Thus, 7 is a quotient of the representation induced from B,, and the
character

(diag(ti, ... tn,tnty ... t1),€) — em(ty) - 'nn(tn)%_l.l.-tn,w'a

where 7, ...,n, are unramified characters of F*. Let

Cp = diag(m(p), - 1a(p), 12 (0), .-, " (p))-

We define
Ly/(T®0,s) = det(Ionk — ¢ °Cp @ By) ™
Note that
Lya(T®0,8) = Ly (T ® (0 ® Xa), 9),
where x,(t) = (¢, a), the quadratic character, which corresponds to a.
Note also that

Ly(T®0o,s) =L(0y(7) ®0,s),

where 0, (7) is the image of 7 under the local theta correspondence from

éI)Qn(F ) to SO2,41(F'), with respect to ¢'. This means that © = 0, (7)
is such that
Hom (wfﬂwnﬂ)) ®mm) #0,

(n(2n+1))

where Wy is the Weil representation of

SPan(znt1)(F) and  Spy,(F) x SOz41(F) < SPon(2n+1) (F)
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as a dual pair.
We also define the exterior square L function of o

L(o,A%s) = ] (1- )8 () %)~

1<i<j<k

and the standard L function of o

L(o,s) = det (It — Bpg™*) ™"

We prove :

THEOREM 3.2. — For all unramified data and for Re(s) large

Ly(t®@o,s(k+1)— %k)
(0,s(k+1) — 2 (k—1))L(0,A%,25(k + 1) — k)

IZ(Wa d)a fs) = L

Proof. — Using similar notations as in the proof of Theorem 3.1 we
obtain that Iy(W, ¢, fs) equals

/TW(ﬂf))Wa (B)]det ]2~ P 85 (D)8 p(sp,,) (D) aec e dt,
where Yqet ¢ is obtained from the formulas in Chapter 1, Section 6. Denote
~, . _1 a1 TS
K(i(t) = 63(2Sp2n)(J(t))7dettW(](t))'
As in Theorem 3.1 we obtain that IQ(W, @, fs,8) equals

Z I?(j(pnla"'apnk)/\)Ko'((pnla"'apnk))
ni2nz2:2ng 20 x(p)rt s gt

Here we used the relation Yget¢Ydet: = (det ¢, dett) and that (e,¢) = 1 if
le] = 1. We denote

X(ZL‘) = (l’, :L‘) = (_17'77)'
To prove the Theorem we will follow [BFG, Section 5], using the formula
for K as established in [BFH). In order to use [BFH] we parametrize 7

as in (1.9) of [BFH], such that apt1—; = pi(p). Thus, the unramified
character, corresponding to 7 in (1.9) of [BFH] is

(diag(ty,. . tn,tnts o t7 1) E) = pa(t1) - o) Yoyt -
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Since v = (t,1),, i = x(t), 1/1), it follows that
~ _ -1
Ly(T ®0,s) = det (I2nk - ¢ °x(p)Cp ® Bp) )

where Cp = diag(p1(p), - - - (D), 11 (P), - - 17 (D))
Let A (resp. B) denote the alternator in the group algebra

Clp(@*, .., 1 (9)]

(resp. C[B1(p),--.,Bk(p)]) corresponding to the Weyl group of Sp,, (C)
(resp. GLg(C)). As in [BFG, p. 53] we have

XSp(2n) (ela DR ek) = As_pl(zn)A(p'?—i_niu?-’_n_l e /J’fz")
and

XGL(k)(ml, co,mp) = Aéi(k)B( In1+k_1/3£n2+k_2 e Lnk)

Here
(20> 20,20, m>mg>-->my >0,
Agp(2n) = Xsp(2n)(0,-..,0) and  Agrwk) = xaLw)(0,...,0).

To express our integral in terms of the alternator, we need to use the
formula given in [BFH, Thm 1.2]. We have

(3.1) I?(j(p’“,. .. ,p”k)/\)

n

k
- — . 1 _
= Agam AWty [T e T - @ip)a 7 5h)).
i=1 j=1

We recall that the difference between the above identity and the one stated
in [BFH, Thm 1.2], is due to a different way of the parametrization of the
semisimple conjugacy class associated with 7.

Next, using the Poincaré identity,

LF®o®x,sk+1) = 5k) =) tr (S(B, ® Cp))x(p)'",
£=0
using Theorem 2.5 in [T2], the right-hand-side equals

]

> tr (S™(A%(By)))a*™C(u, B; ),

m=0
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where

C(u,B;z) = Z XGL(k)(nla'--ynk)XSp(2n)(n1y--~7nk;0»---a0)

n12-2ng20 X(p)n1+~~-+nkxn1+-~+nk

‘We have
k

(32) CuBz)=]Ja- ﬁiq—%x)_lAgpl@n)

i=1
Z XGL(k) (s - - -, )

ni2nz>--2>2nk>0

k n
— ] T
Al [T [IQ - p)a™ 25 )
i=1 Jj=1
X(p)n1+...+nkxn1+"'+nk.

Indeed, this is the analog of our case to identity (5.4) in [BFG]. The proof
of our formula is exactly the same. We omit the details. Using (3.1) we
see that (3.2) becomes

C(u,B;z) = L(o,s(k+1) — (k- 1))
Z I?(j(pnl’*~',pnk)A)KU((pnl,"'7pnk))

ny12ng > 2ng 20
X(p)m +otng et tng

Here we used the [CS] formula

Ko((p™,...,p™)) = XxaLk) (N1, - - -, k).
On the other hand
o0
> tr(S™(A%(By)))x*™ = L(o, A%, 25(k + 1) — k)
m=0
Hence,

LW, f)= > K@GE™,....p™)")

ny > 2020
Ko (™., 0™)) x(p)™ttregnato e
_ C(p, B; )
L(o,s(k+1) — 5 (k—1))
3 Ly(F®0,s(k+1)— k)
T L(o,s(k+1) - L(k—1))L(0,A%,25(k + 1) — k)

0
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3.2. A Nonvanishing Result. — Let F' be a local field. The main
result in this section is to prove that given sy € C there is a choice of data
such that our local integrals are nonzero. As in [JS], [S1] and [S2] we have
the following asymptotic expansion for the Whittaker spaces. Let

t=diag (t1- tn,ta  tnyestntytol)
be a parametrization of the maximal torus T, of Sp,,,. We have

LEMMA 3.3. — There is a finite set A of finite functions of (F*)™ such
that for all W in W(m,vp) and for o € A there is ¢o € S(F™ x K(Spyy))

such that
= Galts,-. tn,m)alts, ..., t).
a€A

Here t € T parametrized as above and m € K(Sp,,). [J

The asymptotic expansion for functions in W(o, ¢, ) is given in [JS].
We use this to prove :

LEMMA 3.4. — For all W in W(m,¢y), ¢ in S(F*) and f, in
IW(o,¥n,), s), the integral I (W, ¢, fs) converges absolutely for Re(s)
large.

Proof. — Let T denote the maximal torus of GLj parameterized by
t={(t1tirta - th,. .. te)}

We let ¢ denote the embedding of ¢ in Sp,;,. Following the same steps as
in the unramified computation (Theorem 3.1), I; (W, ¢, f5) equals

/ / / / i (Err((,0,0))m))wy (m)é(x)

X .
¢ K(Spa) F.(Em)| det {|*15+22 dr da dm .
Here a; € N and a3 € Z. Let R be the subgroup of GL,, defined by

A {( )7 M)

We embed R in Sp,,, via the embedding of GL,, in Sp,,,. One can check
that j(R7(Xk)) = R. Ignoring the compact it is enough to prove the
absolute convergence of

/ /~ W (5(E)F) $(Frre) W ()] det £]255F 04 didlt.
TJR

Here az € N, ay € Z and 7,_; denotes the last row of 7. Notice
that TR C GL,. Now we can proceed as in Proposition 4.2 of [S1] or
Proposition 7.1 in [JS]. []
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LEMMA 3.5.— With notations as in Lemma 3.4 the integrals I, (W, ¢, f5)

admits a meromorphic continuation to the whole complez plane. Moreover
this continuation is continuous in W, ¢ and f;.

Proof. — Using the notations of Lemma 3.4, we consider first the
integral

(3.3) / /~ W (§(E)7) ¢(Frn—k) Wo (t)| det t|*1*F2 d7 dt.
TJR
Let En_k_l be the subgroup of R defined by
En—k—l = {77 S E Tk = 0}.

Thus the above integral equals
/ /~ W1 (§(t)7) W, (t)| det ¢|**5F*2 dF dt,
TJRy k-1

where

Wl(m) = /Fk W(mfn_k)(zﬁ(fn_k)dfn_k.

Here m € Sp,,, and we identified the last row of R with F*. Thus to prove
the meromorphic continuation of (3.3) it is enough to prove it for

(3.4) /T [g W (j(t)7) Wo (t)| det t|*+°F2 dF dt.

Denote

k
Ln={l+Y tiew: t; € F} CGL,.
=1
The function W is a linear combination of functions of the form
Ws =/ o(O)m ()W de,
Ln

where ¢ € S(L,,) and Wy € W(r, ). This is clear if F is nonarchimedean,
and follows from [DM] if F' is archimedean. Here, as before we view L,
as a subgroup of Sp,,, via the embedding of GL,, in Sp,,,. Thus to prove
the meromorphic continuation of (3.4) we may consider

/ /~ / W ((8)70) ()W, (£)] det ¢|15+e2 dedrdt.
TJRp_k—1JLn
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Conjugating £ to the left this equals
[ L WO0A8 s Wolo] devtfrrrearat
TJIRp—k-1

where 7, _;_1 denotes the n — k — 1 row of 7 and {5 the Fourier transform
of ¢. Let B _
Ry 2= {f ERp_k-1: Thok—1= O},

Hence to prove the meromorphic continuation of the above integral it is
enough to consider

/ /N W (5(0)F) Wo (8)] det 8|15+ df dt.
TJRp—k—2

Continuing this process we get rid of the unipotent integration and
reduce to

/W(j(t))Wa(t)Idett|°“s+"‘2dt.

The meromorphic continuation of this integral is obtained by Lemma 3.3.
This establishes the meromorphic continuation of (3.3). Moreover, it
follows from Theorem 2, Section 4, and Lemma 2, Section 5, in [S2]
that (3.3) admits a meromorphic continuation to all s € C which is
continuous in W, W, and ¢. Hence, as in Lemma 1 of [S2] we obtain
the meromorphic continuation of

/ / / / (3 (Err((z,0,0))m)wy (m)d(x) fs (fm) dr dz dm dt.

R Xk K(Spay)
From this the Lemma follows. (]

Finally we prove :

PROPOSITION 3.6. — Given so € C there is W € W(m,%n), ¢ € S(FF)
and a K (Spyy,)-finite function f, € IW(o,¢n, ), s) such that I, (W, ¢, fs)
18 monzero at Sq.

Proof. — We construct the following family of sections in I(o, s). Let ®
be an arbitrary smooth function on (Paok.kx N K(Spar)) \ K(Spoy), and

felnd %‘:Z’; (W(o,¥n,) @ 771). We denote

f(pm) = 6%, , (0) f(pm)®(m),
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where p € 132;4,;c and m € K(Spyy). Thus f}s € I(o, s). Denote

1MW, , 5;m) / / / i (rr((z,0,0))gm))

Ni\GLk wy(gm)¢ (a:)ﬁp%k( )dzdrdg.

Then, as can be checked, we have for Re(s) large

65  LWefte= [ BWésmemdn
K1\ K(Spz)

As in Lemma 3.5 we can show that I}(W,¢,s;m) which converges for
Re(s) large, admits a meromorphic continuation to the whole complex
plane. Moreover, I (W, ¢,s;m) is a continuous function in m. Suppose
that I (W, ¢, fs) is zero at s = s¢ for all choice of data. This implies
that the right-hand-side of (3.5) is zero at sg. Since ® is arbitrary
we may deduce that the meromorphic continuation of I} (W, ¢, s;m) is

zero at s = sg for all choice of data. Plugging m = 1 and applying the
definition of f we may deduce that the meromorphic continuation of

/ W (3 (r7((2,0,0)))) wy (9) b(z)
Ne\GLe R X W (g)| det 9|(s_1)(k+1)7;;gdxdrdg

is zero at s = sg, for all choice of data. Conjugating g to the left, and
changing variables we may assume that the meromorphic continuation of

CONEN / / (i(g77((2,0,0))) ()

Ni\GLx R W, (g)| det g|***P dzdrdg

is zero at s = sg for all choice of data. Here a € N and 3 € Z. Recall that
¢ € S(F*). Consider, for z € F*

B0 Wosia) = [ [ W(i(orr((2.0,0)))Walg)| detgl™*** drdg.
Ni\GLx R
As before, we can prove that IZ(W, W,, s; x) converges absolutely for Re(s)

large and admits a meromorphic continuation to the whole complex plane.
Thus (3.6) equals

(W, W,, s;2)¢(x)dz
Xk

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



206 D. GINZBURG, S. RALLIS, D. SOUDRY

Hence we may deduce that the meromorphic continuation of the above
integral is zero at s = s for all choice of ¢ € S(F*). Thus I?(W, W,, s; )
is zero at s = sg for all choice of data. Let x = 0, and hence we may
assume that the meromorphic continuation of

/ / W (j(gr)) Wo(g)| det g|***# drdg
Np\GLt YR

is zero at s = sg for all W and W,. At this point we will use a similar
process as in the proof of Lemma 3.5.

Using the notations there we may rewrite the above integral as

[ [ wlenWalo)ldetgl™* drag.
Ni\GLx Y Rpn_k_1
Let ¢ € S(L,). Replace W by

/ G(O)m (L)W de.

Thus the above integral equals

/ /~ W ((0)7€) ()W ()] det g|* 5 dedi dg
N\GLy VRy_j—1 Y Ln

/ / g)r)qb(rn k—1)Wo (g)|detg|°‘s+ﬁdrdg
N\GLx Y Rp_ g1

where ¢ is the Fourier transform of ¢ and 7,_x_; denotes the n — k — 1
row of R,_x—1. Arguing as before, we may deduce that the meromorphic
continuation of

[ wi@nwalaldetgisdrdg
Ni\GLg Y Rp_k—2

is zero at s = sq for all choice of data. Continuing this process, we may
assume that the meromorphic continuation of

/ W (5(9)) Wo (g)| det g|*+4 dg
NE\GLj

is zero at s = sq for all choice of data.

Arguing as in [JS] this implies that W (e)W, (e) is zero for all W and
W, which is a contradiction. []

We have a similar result for Iz(ﬁ;, ¢, fs). As in the case of Iy(W, ¢, fs)

we may prove that Io(W, ¢, fs) converges absolutely for Re(s) large and
admits a meromorphic continuation to the whole complex plane, which is
also continuous in W, ¢ and fs. From this as in Proposition 3.6 we have :
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PROPOSITION 3.7. — Given so € C there is W € W(T, ), ¢ES(F’“)

and a K(Spyy,)-finite function fs € IW(o,¥nN, ), s) such that Ia(W, ¢, fs)
s nonzero at s = Sg.

4. A Double Coset Decomposition

In this Chapter we shall prove a Lemma and fix some notations needed
later. We fix n and k with k > n. Denote Q9 ,_,, = Spa, Vak,k—n. Clearly
ng’k_n is a subgroup of Qax x—n. We embed GLy_,, in Sp,, as

gr— (g[2n g*)’ g € GLg_,,

and all subgroups of GLj_,, will be embedded in Sp,, via this embedding.
Here g* is such that the above matrix is in Spyy.
For given 0 < ¢ < k —n denote by M; the maximal parabolic of GLj_,,
defined by
Mi = (GLZ X GLk:—n—i )Lz

We let My = My_, = GLg_,,. Here L; is the unipotent radical of M; and
we choose it to consist of lower unipotent, that is,

() A M)

For 0 < i < k — n let W; denote the Weyl group of GL;. We shall
identify W, with all ¢ x ¢ permutation matrices. Finally for 0 <i <k —n
we set

Thus «; is an element of the Weyl group of Sps,.

LEMMA 4.1. — A set of representatives for Pogr \ Spoy /Q(Z)k,k—n is
contained in the set of all matrices of the form v;w, where 0 <i <k —n
and w € (W; X Wg—pn—i) \ Wi—_n.

Proof. — Clearly Pog g—n, D ng’k_n. It is not hard to check that ~;,
0 < i <k —nis a set of representatives for Py i \ Spay /Pak k—n- Indeed,
the space Pk i \ Spgy, can be identified with the set of all k¥ dimensional
isotropic subspaces. Hence, we can parametrize the above double cosets
with all possible intersections of k¥ — n dimensional isotropic subspaces
with all k£ dimensional isotropic subspaces and for these we can choose
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as representatives +y;. Hence every representative of Pk \ SPay /Q9% p_n
can be chosen in the set of all elements ;w, where

w € (¥ Pak ki N Pokg—n) \ P2k,k—n/ng,k_n-

Since vy, lek,k'yi N Pog k—n O M; then we may choose a set of representa-
tives for the set

(¥ " Par i O Paryo—n) \ Pokk—n/Q% k—n

to be contained in the set M; \ GLg_y /Nk—n. (The group Np_, is
defined in Chapter 1, Section 4. Clearly, a set of representatives for M; \
GLg_n /Ni_n, can be chosen to be contained in (W; x Wy_n—i)\Wk_n.) []

Next we prove :

LEMMA 4.2.— For 0 < i < n—k, each representative of (W; x Wi_pn_;)\
Wi_n can be chosen to be a symmetric matriz.

Proof. — Let w1, ..., wk—n—1 denote the simple reflections of Wy_,, so
that wy,...,w; are in W; and w;49,...,Wk—pn—1 are in Wi_,_;. Given
w € Wi_,, we shall denote by w(r,j) its (r,j) entry. Let

o (25w

where
A€ Mixi, B€ Mix(k—n-i), C € Mk—n—iyxi» D € M(k—n—i)x(k—n—i)-

By multiplying from the left by elements of W; x Wy_,_; we need to
bring w to a symmetric matrix. Recall that left multiplication is just
changing the rows of w. We claim that by multiplication on the left by W;
we can bring w to the following form. First if w(r,j) = 1, where r < 4
and j < i then r = j. In other words, all nonzero entries of A are on the
main diagonal. Secondly, suppose that w(ry,j1) = w(re,j2) = 1, where
rp<rg<tand i+ 1< j1,j2 < k—mnthen j; < jo. In other words B can
be put in row echelon form. Indeed, if w(1,5) = 1, where j < i, we can
use wi,...,w;—1 to assume that j = 1 and then proceed by induction.
If w(1,5) = 0 for all j <4, then clearly A contains at most ¢ — 1 ones and
hence B is nonzero. Let

p1 = min{w(r,j) =1 where 1 <r <4, j >i+1}.
j
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Using wy, ..., w;—1 we may assume that w(1,p;) = 1. Now we proceed by
induction i.e. using wo,...,w;—; we may arrange all rows in w between
two and 7 in the desired way. Hence we may assume that A and B in w
has the above pattern.

Next, using Wx_,—; we apply similar arguments to C and D. More
precisely, suppose that w(r;,p1) = 1, where 1 < r; < 4, i+ 1 < p;
and if w(rg,p2) = 1 with 1 < 7 < 7 and i+ 1 < py then p; < po.
This means that w(r,j) = 0forall1 < r <iandi+1 < j < p1.
Hence, using w;y2,...,Wk—n—; We may assume that w(r,r) = 1 for all
i+ 1 <7 < p;. Since w(ry,p1) = 1 then w(ry,r;) = 0 and hence, from
the fact that all nonzero entries of A are on the diagonal we may assume
that if w(r,r1) =1 then r > 4. But since w(j,j) =1foralli+1<j <p;
then if w(r,r1) = 1 then r > p;. Hence using wp,, ..., Wx—n—; We may
assume that w(py,r;) = 1. Continuing this process we may assume that
if w(r,p) = 1 then w(p,r) =1 and all nonzero entries of A and D are on
the main diagonal. In particular w is symmetric. []

Let ai,...,ak—n—1 denote the simple roots of GLi_, corresponding
t0 Ni_n- Let z,(t) denote the one parameter unipotent subgroup of Ny_,,
corresponding to the root a. Thus,

To, (1) = Ix—n +tej ji1-

Here e, ; denotes the (k —n) x (k — n) matrix whose only nonzero entry
is one in the (r, j) position.

We shall agree that w = e is the representative of the coset W; x Wy_,,;
in Wk—n-

LEmMA 4.3. — Let w € (W; X Wi_n—;) \ Wi—n, such that w # e. Then
there ezists a simple root o such that wza, (t)w™' € L.

Proof. — Let e # w € (W; X Wi_p—;) \ Wk—rn. We assume that w is as

described in the proof of Lemma 4.2. In other words, if w = (é g)

then w is symmetric and all nonzero entries of A and D are on the
main diagonal. Since w # e, C # 0. Let r1 be the smallest integer such
that w(ry,j1) = 1, where r; > i and 1 < j; < i. If r; > i+ 1 then
w(r; — 1,71 — 1) = 1. Hence

wxarl_l(t)w_l =1+twer—1,, =1+ ter,—1,5, € L;.

Hence we may assume that r; = i+1. Thus w(i+1,51) = 1. Let 7o > 71 be
the smallest integer such that w(rs, j2) = 1, where 1 < j3 < 7. Of course
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such an ro may not exist. However if it does, then arguing as with rq,
we may assume that ro = ¢ 4+ 2. We claim that j, = j; + 1. Indeed,
from the shape of w we may deduce that jo > j;. If jo # j1 + 1, then
w(j1 + 1,51 + 1) = 1 and hence

WLay, (t)w_l =1+ twejlyjl_,_lw_l =1+ tei+1,jl+1 e L;.

Thus we may conclude that w has the shape

I/

where p+q+s=4¢and ¥ = k—p—q—2s. p,q or k' can be zero but not s,
sincew #e. If ¢ #0, then wp+s+1,p+s+1)=w(l+s,p+s)=1
and then

w:c%ﬂ(t)w_1 =1+ twep+s,p+s+1w_1 =1 +teiysptst+1 € L.

If ¢ = 0 then wz,, (t)w™! € L;. We are done. []

5. The Global Integrals (k > n)

In this chapter, we introduce the global integrals which will represent
the tensor product L-function in the case when k£ > n. These integrals
are “dual” to the ones introduced in Chapter 2 in the sense that the cusp
form and the Eisenstein series are interchanged. We define

J1(4p7¢7.fa,s) = / / /
szn(F)\Spgn(A) Hn(F)\Hn(A) Vzk,k—n—1(F)\V2k,k—n—l(A)
#(9)04(hg) E(vr (h)g)tpk—n-1(v) dvdhdg.
Here ¢ € Vy, ¢ € S(A™) and f, , € I(0,s). We have the covering version,

n@sf)= [ / /

SP2n (F)\SPay, (A) Hn(F)\Hn(A) Vg k—n—1(F)\Vak,k—n_1(A)
3(9)05(hg) E(or()g)dn k1 (0) dudhdg.

Here ¢ € V~ and fo,5 € I(0,s). In the next Theorem we shall show that
these integrals are Eulerian.
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First, let

0O I, O 0

0 0 0 —Ix_,
Iien 0 0 0

0 o I, 0

"y::

We shall also need to consider the following unipotent subgroup of Vag —n-
Let

Ix_, 0O 0
T In 0 t* t € M(k_n)xn Such that the
k—n = : )
" In Iko bottom row of ¢t is zero

and let & = (0,...,1) € F™. Due to the embedding of H,, in Sp,, as
described in Chapter 1 Section (3), we need to change the character ¢, .

More precisely, let ¥, be the character of IV, defined by

Y, (7)) = (an i+1 + 20 g1 + Z i z+1)

1=n+1

Here n = (7;,;) € Ng. Since o is a cuspidal representation of GL,

W(U’ ka) = W(U’ ,ZZNk )

As in Chapter 1, Section 5 we denote for ff,,s el (0,9),

fwa,s(g) = fa,S(ﬁg)JNk (n)dn

/Nk(F N\ Nk (A)
A similar definition applies to f, s € I(0,s).
We have :

THEOREM 5.1. — The integral J1(p, ¢, fms) converges absolutely for
all s except for those s for which the FEisenstein series has a pole. For
Re(s) large :

J1(<P, ¢a fa,s) =

V2n,n(A)\Sp2n (A) Yn(A)\Hn (A) Tk—n(A)Nk—n(A)\V’.’k,k—n—l(A)

W (9)wy (hg)$(&0) fwv, s (yor(R)g) dvdhdg.

Here W, € W(m, Jn) and as always we view Ni_p, as a subgroup of Spyy
via the embedding of GLg_y, in Spy.
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Proof. — We prove that J1 (g, ¢, f;,s) is Eulerian. Unfolding the Eisent-
stein series and interchanging summation with integration we obtain that

J1 (()Da ¢a fa,s) equals

wE [

8 8P, (F)\Span () HE(F)\Hn(A) V5 . (F)\Vak k—n—1(A)
©(9)04(hg) f,s(8v7(h)g)k—n—1(v) dvdhdg,

where 6 € Pa(F) \ Spgy,(F)/Q x_,, and where, for a given group
G C Spy,

G?=6""Pyx6NG and H} =7"1(6""Po b N7(Hy)).

Recall that Qghk_n = Spy,, - T(Hn)Vak k—n—1. From Lemma 4.1 we may
choose § = v;w, where 0 < i < k—nand w € (W; X Wy_pn—;) \ Wi—p.
Let § = v;w with 0 < i < k—mn—1 and w # e as above. It follows
from Lemma 4.3 that there exists a simple root o; of GLy_, such that
WZq, (t)w™! € L;. (See Chapter 4 for notations.) It is easy to check
that v;L;7y; e Uak k. However f(,,s is left invariant under elements in
Uzk,k(A). Thus ywza, (t)(yiw)™t € Uz k(A). Since 1p_n_1 restricted
to x4, (t) is nonzero we end up with | #\a ¥(t) dt as an inner integral. Hence
the contribution of such é to Ji(p, ¢, f:,,s) is zero. Assume § = y; with
0 < i < k—n—1. It is not hard to check that 'yiT(Zn)'yi_1 =7(Zy,) C Ugg .
However 0,4((0,0,2)hg) = %(2)04(hg) for all z € Z,(A). Hence, once
again we get [ F\A ¥(2)dz as an inner integral. Hence in (5.1) we are left
with § = Yg—n. Since we may change yx_, on the left with any Weyl
element of GLg, we may replace yx_, by <. Simple matrix multiplication
shows that

Spgn = P2n,n; H

Yo; ‘/2’)][97]9_”_1 = Ng—nTk—n-

2t
n
Indeed, recall that if g = (é g) € Sp,,,, its embedding in Sp,; is

Iy R
g gIk )

and after conjugating with ~y, the image of the element above is

A B
k

I
c *bp
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such an element lies in Py i if and only if C' = 0, and hence SpJ,, = Pay, ».
The other identities follow similarly. Hence J1(g, ¢, fs,s) equals

/ ©(9)04(hg) fr,s (Yo7 (R)g) Yk—n—1(v) dvdhdg.

Here g is integrated over Pa, ,,(F)\ Sps,(A), h is integrated over Y, (F)\
H,(A) and v over Ti_n(F)Ng_n(F) \ Vak g—n—1(A).
Let M?_, C GL,, denote the mirabolic subgroup of GL,,. Thus

= {(5 1) con)

Using Lemma 4.3.2 in [GPS] we have

04(hg) = wy(hg)$(0) + 3 wy (8hg)d(&o),

6€M?_ (F)\GLy(F)
where we recall that & = (0,...,0,1) € F™. We plug this expansion in

the above integral. We consider the contribution of each summand. The
first term contributes

62 [ e@wnlhg)(O o (r07()g) s (0)dudhdl.
We claim that this integral is zero. Indeed, let P, , = GL, Uz, n. Write

Pan,n (F)\Spay, (A) GLn (F)Uzn,n (A)\SP2, (A) Uzn,n(F)\Uzn,n(A)

Thus we obtain as an inner integral to (5.2)

/ 0 (ug)y (hug) $(0) s (707 () ug) i1 (v) dudhdo,

where u is integrated over Usp n(F) \ U2nn(A) and v and h as before.
Conjugating u to the left, using the left invariant properties of wy, and f, s
and changing variables, we obtain

/ o(ug) du
U2n,n(F)\U2n,n(A)
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as an inner integral, which is zero by cuspidality. Hence Ji(p, @, f(,,s)
equals

/ (9) > wy (6h9)B(€0) fo,s (V0T (h)g)k—n—1(v) dudhdg.

seM?_, (F)\GLn(F)
Collapsing the summation with the integration this equals
[ £(0)00(009)6(60) Frn (107 (B)g) -1 (0) o,

where g is integrated over M2_; (F)Uzp n(F') \ Spa,(A). Write

Mg_l(F)Uzn,"(F)\Sp2n(A) Mg_l(F)UZn,n(A)\San(A) U2n,n(F)\U2n,n(A)

Thus J1 (g, ¢, fgys) equals

[ tug)es (g0 s (ror(h)ug) 1) dvdhdudg.
Here g is integrated over M2_, (F)Uzn n(A) \ Spa,(A), u over Usy (F) \
Uann(A) and h and v as before. We have, using Chapter 1, Section 6,
formula (1.4),

wy (uhg)$(€0) = Pn(w)wy(hg)$(Eo), u € Uzn,n(A).

Here Jn is as defined in Chapter 1, Section 4. Conjugating u to the left,
changing variables in v and h the above integral equals

/ ( / o (ug)Pn(u) dU)ww(hg)aﬁ(&o)fa,s (vor(h)g) Yk—n—1(v) dvdhdg.
Let GL,,_; C GL,, be embedded as
g'__’(g 1), QEGLn—l-

As in [PS] we have

(ug)tn () du = > Wo(6g).

/UZn,n(F)\UZn,n(A) 5€Nn_1(F)\GLn_1(F)
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From the definition of M?_; we may collapse the summation with
integration to obtain that Ji(y, ¢, f,s) equals

/ W ()0 (hg) $(E0) s (Y0 () 9) Y- (v) du dhdlg,

where g is integrated over Ny, (F)Uzy (A)\Sp,, (A) and v and h as before.
Write '

/Yn (F)\Hnr(A) /Yn (A)\Hnr(A) /Yn (F)\Yn(4) .

Let y = (y1,..-,Yn) € Yn. It follows from Chapter 1, Section 6,
formula (1.2) that

wy ((0,,0)hg) p(€0) = ¥(y1)wy (hg)d(éo)-
Write (recall that Vo, , = NyUspn)

/JVW(F)UZn,n(A)\szn(A) /Vzn,n(A)\szn(A) /Nn(F)\Nn(A)'

We have W, (ng) = 1/);,711 ()W, (g) for all 7 € N,. Also, write

T —n(F)Nk—n(F)\Vak,k—n-1(A)

Tr—n(A) Ng—n(A)\Vak,k—n—-1(A) Th—n(F)Ni—n(F)\Tk—n(A)Nk_n(A)

Combining all this, we obtain as an inner integration
/ fos (v'7((0,y,0)) 7T (h)g) Yr—n—1 (v’)i/J;,i (7)Y (y1) dv' dy dn.

Here v’ is integrated over Tx—n(F)Ng—n(F) \ Tr—n(A)Ni_n(A), y over
Y. (F)\ Y,(A) and 71 over N, (F) \ N,(A). It follows from matrix multi-
plication that

YT —nNk—nT(Yn) Noy ™! = Ny,

and that if yv'7(0,y,0)y~! = ng € Ny, then

Pk—n1(V )N, @)Y(y1) = P, (n1)-

Hence the above integral equals to fy,, «(yv7(h)g). From this the Theorem
follows. []

We also have the same Theorem for the integral J2(3, ¢, fo.s)-
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THEOREM 5.2. — The J2(®, @, fs,s) converges absolutely for all s except
for those s for which the Eisenstein series has a pole. For Re(s) large,

J2((ﬁa ¢7 fa,s) =
Van,n(A)\Spy, (A) Yo (A)\Hn(A) Tx—n(A)Nk_n(A)\Vak,k—n-1(A)

W(9)wy (hg)$(éo) fw, s (vur (h)g) dvdhdg,

where W € W(T, Un).

6. The Local Theory (k > n)

In this section we shall study the local integrals in the case where
k > n. The approach here will be based on the method developed in [S1]
and [JPSS]. We shall keep the notations introduced in Section 3. The local
integrals to be studied are the ones which come from the factorization of
the global integrals introduced in Section 5. More precisely, define

nweiy= [ /

V2n,n\SP2n Yo \Hn Tk-nNk—n\Vak,k-n-1
W (g)wy(hg)p (&) fw, . (yvr(h)g) dvdhdg.

Here W € W(r,4), ¢ € S(F™) and fw, , € I(W(0,91),s). We have a
similar integral for the covering case. That is, let

AT R | /

V2n,n\SP2n Yn\Hn Tk—nNk—n\V2k,k—n-—1

W (9)wy (hg)$(€0) fw, .« (vor(hg) dvdhdg,

where now W € W(7,¢) and fw, , € IW(0,%™ 1), s). As before we shall
write fg’s for fWa,s’ etc. Section 6.1, which follows, is presented in the
formal level (i.e. ignoring convergence issues.) All justifications and basic
properties of the local integrals are deferred to Section 6.3.

6.1. — We start our local analysis by proving a formal identity. This
identity is analogous to the one proved in [S1, Section 11.4] and is based
on similar ideas. We start with a few assumptions and notations.
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Let an,n denote the opposite parabolic to Ps, ,. We shall assume that

7 = Ind Sﬁp”" (o'® §2+¢ ),

2n,n P2n,n

where ¢’ is an admissible generic representation of GL,. We shall denote
1
its central character by wes. Given ¢, ¢ € Ind Sﬁp""" W(o',9) ® 61§+C )
2n,n 2n,n
we set

6.1) Wi(g) = / Cor ¢ (ug) T (1) du.

Here g € Sp,,,. The integral converges for Re(() large and as in [S1] it has
an analytic continuation to the whole ¢ plane and hence W € W(m, ).

Also, given W € W(w,v) there is a function ¢, o such that (6.1) holds
in the sense of analytic continuation. Recall that

IW(o,97),s) = Ind Spa W(o, ™) ®8p,, , ©77).

Pok,k

Another induced space we need is

IW(@®x,v71),s) =Ind SPak Weex,y e 6Py © 1),

Por,k

where X(m m*) = (detm,detm) and ( , ) denotes the local Hilbert

symbol. Due to the relation 'yc;ltm - (det m,det m) = Ydet m,

IW(e®x,¥71),s) =Ind 2% (W(o,4™) ® 65, , ® 7).

Pak,k
Given a function fw,.s € IW(0,9™1),s) we associate to it a function
fw, sx € IW(o @ x, 9™ 1), s) satisfying
Fwasx[(™ e )9] = x(m)fw, .(9):

We shall write f, s for fWo,s, - We shall denote

0 -=2I,
-1 Iy, O
wn=<I ") andlet wo=| * 0 I,
n

Also, given g € Sp,, we set j'(g) = wWogw, '. Finally we shall denote
by v(o x o',s,1~!) the gamma factor attached to ¢ and ¢’ as defined
in [JPSS]. We shall prove :
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ProprosiTION 6.1. — With the above notations let W(g) be given
by (6.1). We have

wor (—1)F2y(0 x o', (k+ 1)s — (n+ 1)¢ = 3 k,9~ 1) J1(W, ¢, fo,s)
- / o ¢ (Wng)wy(9)$(22)
fo,s,x(wkuj/(r"'((% 0,0))g)wo) ¥ (u) dudz drdg.

Here g is integrated over Van n \ Spa,, « over F™, u over Uy and r
over R (see Chapter 2 for the definition of R). Each integral converges in
some (s,¢) domain and admit a meromorphic continuation to all values
of (8,¢). The above equality is understood in the analytic continuation
sense.

Proof. — At this point we shall ignore convergence issues and prove
formally the above identity. The convergence properties will be dealt with
in Section 6.3. As can be seen, we may identify the product of the groups
Ti—nNik—n \ Vag k—n—1 and 7(Y,, \ H,,) with the group for all matrices in
Spyy, of the form

In
Ik—n

Iy, A 0 B
(A,0,B) := L

where A € M(y_pn)xn, and B € M(j_p)x—n) satisfying B'Jx_n, = Jr_nB.
Also, A* = —J, A'Ji_,. Under the above identification (z,0,0) in H, is
identified with the last row of A and (0,0, z) is identified with bx_p, g—n.
Hence we can write

Ji(W, ¢, fas) = /W(g)wzp((x,O, 2)9)$(é0) fo,s(¥(A,0, B)g) dAdB dg.

Here g is integrated over Vay, »\Sp,, and A and B as above. Plugging (6.1)
in the above integral and collapsing integrations, J1(W, ¢, f, s) equals

/ Por ¢ (9)wy ((,0,2)9) $(£0) fo,s (¥(A, 0, B)g) dAd Bdyg,

where now g is integrated over N,, \ Sp,,. Proposition 6.8 says that the
last integral converges absolutely in a domain of the form

(n+1)Re(¢+3)+C < (k+ 1) Re(s),
(k+1)Re(s) < (1+¢0)(n+1)Re((+3) +Q,
R < Re((),
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where @, C, R, ¢¢ are constants which depend on (¢,0’,k,n) and gy > 0.
We continue the calculation in this domain. See, also, the remark prior

to Proposition 6.8.
[Vn\Sp2n B /Gan \ Span ~/Nn\GLn .

Hence J; (W, ¢, fa,s) equals

Jore(™ e )o)as(@0.0(™ 1 )0) ke

~ Ik:—n
fo,s (’Y(/‘L 0, B)( i ) g) dAdBdmdyg,
Iy _p

Factor

where m is integrated over N,, \ GL, and g over GL,, \ Sp,,,. We have
65, . (m m ) = |det m|~ D,
From the definition of ¢,/ ¢ we can write
oo c((™,2)9) = 1detm""VGHOW, (),
where W g c € W(o',). We also have
wu((,0,2)(™ . )8)#(60) = | detm] Z i sy ((zm, 0, 2)g) 6 (Eom).

Finally conjugating m to the left in f,,,s and changing variables in A,
JI(W7 ¢7 fo,s) equals

/ Wi g.c (m)wy (2,0, 2))9) #(Eom)

fa,s ((m IZ(k—n) m* >'Y(A7 0» B)Q)

Ydet ml det ml*(""‘l)C‘f‘ % n—k dAdB dmdg,

where all the integration remains as before. ;From the definition of fa,s
there is a function F' € W(o, ) such that

Jos(((y e )2€) = | det mi®HDZL (),
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220 D. GINZBURG, S. RALLIS, D. SOUDRY

where m € GLg and h € §f>2k. To simplify notations, we shall write
fo,s(h;m) for Fy p(m). Thus, J1(W, ¢, fo,s) equals

62) [ Wargclmwe((@,0,29)60m)
~ ‘ m
fou(1(4,0.B): (" ;)
| det | 2P~k (k+Ds=(n+1) 4 4 Ad Bdg,

where the integrations are as before. To proceed let W, (h) € W(a, 1),
and given ¢; € S(F™) define

(o(6)Wo) () = /F W, (h(’" ¢ 8)) b(e)de.

k—n

We also denote 51 € = #1(e)y(2¢et)de and hence ;1(5) = ¢$1(-€).
We have "

(6.3) / W(,/(m)(o(al)wa)(m Ik_ln)|detm|ozdm

Nu\GLn,

= /Nn\GLnWU/(m) o 1 (&)W, [(m Ik_n) (I" (f Ik—gn—l )]

| det m|* dedm

- / Worm)Wo (™ | Videtml* [ G (e)w(2tgme’) dedm
Nn\GL, k—n Fn

- / Worm)Wo (™ | )é2(~Eom)| detm|* drm.
N.\GL, k

In the above equalities W,» € W(a,'¢), W, € W(g,v¢) and a € C with
Re(a) large. Recall that

wo[(" Y )H] = v Wa )

which explains the reason for the presence of the number 2. In (6.2)
changing variables m — —m, we obtain as an inner integration

b 1) [ Worgclmar(-tom) o (i (" ) Idetmf*am,

\GLy,
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where ¢1 = wy((2,0,2)g)¢ and h = (4,0, B)g. Here

0 I, 0 0

_ 0 0 0 —Ix_p
Y=\1r_,. 0 0o o0
0 0 -I, O

and @ = %n —k+ (k+1)s — (n+ 1)¢. Using the equalities in (6.3) the
above integral equals

o0 [ Wargelmo@s) (15 (™

- )) | det m|* dm.

Ik—n

Next we shall use the local functional equation for GLy x GL,,. We shall
apply it as in [S1, p. 70]. We have

wer (1) ty(o x o', B,971)

L, Woacmle@7on) (15 (™ )

| det m|ﬂ‘%(k“") dm

= [ Wesdm @) (1 (3 0000 )

m 0 Yy
Np\GLpn Mpx(k—n—-1)
| det m|P~ 2 (F+m)+n gy dm.

Here 8 = (k+1)s — (n + 1) — k. Multiplying (6.2) by
wo (~1)* 2y (0 x o', (k+ 1)s — (n+ 1)¢ — k,971),
using the definition of (0(51) fs.5), we obtain first formally that
wWor (1) Py(0 x o, (k+1)s — (n+ 1)¢ = Sk, 97" ) (W, 6, fos)

equals

———

/ W g.c (m)wy (2,0, 2)g) dle)

~ 01 0 I, et
fa,s (’YO(A?O» B)g, < 00Ty n ) ( 1 ))
m 0 Yy Iy—n-1

| det m|(FtDs—(n+1)¢—k+37 4y ded Ad Bdm dg.
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Here e is integrated over F™, y over M, (x—n—1) and the other variables
as before. Recall that

m (1) ( L
erc((™ - )9) = Idetm|=IAOW,, ().

The interpretation of this passage is as in [S1,11.8]. We first prove, in
Proposition 6.9, that the last integral converges absolutely in a certain
domain (see (6.39)). Next we note that in this domain, the last integral
must be proportional to Jy, and actually is a rational function in ¢7°. The
reason is that they both satisfy certain equivariance conditions, which hold
uniquely up to scalars for almost all values of ¢7°. In Proposition 6.10,
we use a special substitution to calculate the proportionality factor which
indeed is

wor (—1)F2y(0 x o/, (k +1)s — (n+ 1)¢ — %k,w‘l).

01 o0 01 O In0 m~1y
( 00l _py )= 00T )( 1 0 )
mo0 y mO0 0 Ixn—

Changing variables y — my, the above integral equals

/ Por ¢ (( " m* )g) wm(e)

~ 01 0 I, et Y
fa,s ('YO(Av 0, B)g; ( 00Tk pn_ ) ( 1 0 >)
m 0 0 J A —

| det m|*+tDs=2 dyded AdBdmdg.

Write

It will be convenient to write C = (e%,y). Thus C is an n X (k —n) matrix
whose first column is e’. Given an n x (k — n) matrix D we shall denote

Iien 0 =D* 0

In
(0,D,0) := P

Iy —n

where D* = —J;_,, D*J,. Thus the above integral equals

[eoe((™ e )o) 0. 2000
fois(000,C.00(4,0,B)g: () "5 ) (™))
| det m|**+1*= 3 dAdBdedmdg.
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Next we bring the m across to obtain

/\
/‘PG’,C((m m*)g)ww((xm,o,z)gw(e .tm‘l)
fos (’YO(O,C, 0)(A,0, B)(m m*)g; (I Ix—n ))

n

| det m|™ % yaet m dAdBdC dmdyg.

Here we also performed a change of variables in A and C which explains
the presence of zm and e - ‘m™! in wy(zm,0,2)g)¢(e - 'm~1). Also, the
factor ydet m appears from the definition of f, . Let

We also have

I
_ I, 0 k—mn
"= 0 —In :
I—n
A

wel(om,0,29)0(e - m) = wy[(_; ") (@m,0,2)g]6(2e - )

SN (G T TR GO s
=ldetml raamers[(_y ") @02 (m m*>g]¢(2e).

Plugging this in the above integral, we obtain

Fonel(™ el Y™ oo
Fos (11(0,€,0)(4,0, B)(™ . )g)(detm, detm)dAdBdCdmdg,

where we used the identity Ydet mYdetm = (det m, det m). Recall that g is
integrated over GL,, \ Sp,,, and m over N, \ GL,,. Hence we may collapse
the two integrations to obtain

[eorct@wa](_; ") @0.2)9] 620
fosx(1(0,C,0)(A,0, B)g)dAdBdCdg,
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where now g is integrated over N, \ Sp,,,. We have
Wy [( _J, In ) (z,0, z)g] #(2e) = wy [(0, —xJp, 2) ( . In )g] #(2e)

= (2 — 2ez")wy [( _J, In )9] $(2€).

Plug this to the above integral and also conjugate (0, C,0) across (4,0, B)
we obtain

[eoc@wa[(_; 7)ot
fosx(71(A,0,B)(0,C,0)g)¢(bk—n k—n)dAdBdCdg.

Here we changed variables in B and we remind the reader that by our
notations bg_n k—n was z. Write (_J J") = (J" J )wgl. Changing

variables g — w,g we obtain

/ o ¢ (Wng)wy(9)B(2en)

Ix—n
f, _1
o (W’O’BXO’QO)( 3" )g)
Iy_n

w(bk—n,k—n) dAdBdCdg

1 _Ik—n
51
= 2°n .
Y2 oI,
Ik—n

Then, conjugating the Weyl element to the left the above integral equals

Denote

/ Po! ¢ (wng)de (g)¢(2e']n)
forsx (72(0,— 2 A*, B)(~2C",0,0)g) % (bk—n,k—n) dAdBdC dg.

Recall that g is integrated over N, \ Sp,,,. Write

‘/IVn\SPZn \/V'hlyn\stn LZn,n
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We have
wo[ (T 1 )o]6(2edn) = p@edTewu(g)p(2e,).

Also, one can check that conjugating the matrix
Iy_n

across (—2C*,0,0), bx—n k—n is changed to bx—n k—n + 2eJ,Tet. Hence,
after a change of variables, we obtain

/ o ¢ (Wng)wy(9)$(2en)

Ix_p

J;a,syx ’72(0’_%A*7B) ("20*’0’0)9

Ik-—n
Y(bk—n k—n)dAdBdCdT dg,
where now g is integrated over Va, , \ Sp,, and T over all n x n matrices
satisfying TJ,, = J,T. Now 72 = wy, - Wo. Conjugate Wy to the right. It
is not hard to check that the groups of all matrices of the form
Ik—n

1
u = w(0,~ 3 A", B) I 2T 75"

2
Wo
n
Ilc—n

equals Uz and that ¥(bg—n k—n) = ¥k (u). Recall that C = (et,y). Using
the definition of the group R and changing variables e — eJ,,, we obtain

/ SOU'yC(wrlg)“)1,l’(g)‘75(2"3).);0',5,)( ('U)kuj, (7"7'((6, 0, 0))9)’!1_)0)’lpk(u) dudedrdg.

Here g is integrated over Vs, », \Spyy,, 7 over R, u over Uy i, and e over F™.
From this the proposition follows. []

A similar identity holds for J2(W,¢, fs). More precisely, we shall
assume that

~ é;) ’ L4¢
T=Ind>? (0'® 62
P2n,n ( ® P2

n,n

®77h),
where ¢’ is an admissible generic representation of GL,. Given @,/ ¢ in
Ind %’:?n (V\/(a’7 Y) ® 5%;1 ® 7—1) we get
W)= [ Gocuo)buludu
We have : ’
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ProposiTION 6.2. — With W(g) as above, we have :
wa’(_l)k“LY(U X Ula (k + 1)3 - (’I’L + 1)( - %k7 w_l)JZ(W7 ®, fa,s)

= / o ¢ (wng)wy (9)$(22) fo,.x (wrug’ (r7((z, 0,0))g) o)
Yi(u)dudzdrdg.

Here all variables are integrated as in Proposition 6.1. Fach integral
converges in some (s,() domain and admits a meromorphic continuation
to all values of (s,{). The above equality is understood in the analytic
continuation sense. ||

6.2 The Unramified Computations (k > n). — We keep the nota-
tions of Section 3.1. Following [S1], we shall use the identities established
in Section 6.1 to compute the local unramified integrals.

THEOREM 6.3. — Let p be an odd prime. For all unramified data and
for Re(s) large
Lir®o,s(k+1)— 1k)
L(o,V2,25(k + 1) — k)

J(W, b, fors) =

Proof. — We may assume that 7 = Ind Sp2"( ® 52 3 +¢ ) and ¢’ is a

generic unramified representation of GL,. To use Pr0p0s1t10n 6.1 we first
need to normalize identity (6.1). It follows from [GS], Section 2.3 that

1

/U o c(Win(w)du = L&, (1 +Q)(n+1) = L(n— 1))
L(o", A%, (1+20)(n+1) —n) "

Here o’/ denotes the contragredient representation of ¢’. Hence we can
write

W(g) = L(o", (2 +¢Q)(n+1) — L (n— 1)) L(c", A%, (1 + 2¢)(n + 1) — n)
[ o cua)inu)du

and with this normalization W(e) = 1. Note that we obtain the L
functions of ¢’ since we induce from a lower parabolic. In a similar way
the integral

(6.4) / Forsxx(Wruh)r(u)du, h € Spy,
Ui,k
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defines a Whittaker functional for the induced space I(W(o ® x,1%™1), s).
Again, it follows as in [GS], Section 2.3 that the normalizing factor for (6.4)
is L(o,V?,2s(k + 1) — k)~!. Thus the function

vasyx(h) = L(a’, V2, 28(k + 1) - k) /U fa,s,x(wkuh)zﬁk(u) du

is the normalized unramified vector in [(W(o ® x,¥~1),s). Applying
Proposition 6.1 we have,

v(oxd', (k+1)s— (n+1)¢— 3k,9 ) (W, 0, foo)
=L(o",(3 +O(n+1) = 3(n—1))L(c",A%,(1 + 20)(n + 1) — n)

/ Po’ ¢ (wng)w1/)(g)¢(2x)fa,s,x (wkuj/ (TT((.’L’, 0, 0))9)“—}0)
Yr(u)dudrdzdg,

where the domain of integration is as in Proposition 6.1. Since fa,s,x
is unramified we may ignore wy and using Iwasa decomposition for
Van,n \SPan, we may replace j’ by j and replace ¢(2z) by ¢(x). Multiplying
the above identity by L(o,V?,2s(k + 1) — k) we obtain
(65) ’)’(U X OJ’ (k + 1)5 - (’I’L + 1)( - "21'h7 ¢—1)J1(W> ¢7 fa,s)
L@, (3O +1) ~ F(n- 1)LE A% (1+20)(n+1) —n)
- L(o, V2, 25(k + 1) — )

f Por ¢ (Wng)wy(9)P(2)Wo,s,x (3 (r7((=,0,0)) g) dzdrdg,
where 7, x and g are integrated as before. Notice that

S - 3+
Fyrc(9) = ¢or c(wng) € d 32 (7 @ 82,7°).

Hence the above integral equals Iz(Wms,X,qﬁ, FUI,C,% + ¢). Applying
Theorem 3.2 for the representations o’ and

7=Ind %™ (0® 685, , ®X®75)

Pak,ie
the above integral equals

Ly (Ind 2 (0 ® 6, , ® X ©73) ® 0, (n+ 1)(5 +) = §7)
= Lok 0, m+ (3 +0) - in)
X LE®8pt 2 @6, (n+1)(L +¢) - 1n)
xL((;’,(n+1)(% +¢) - 3(n—1))"
x L(0",A%,2(n +1)(L +¢) —n) 7"

1
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Plugging this to (6.5) we obtain

v(o x o', (k+1)s— (n+1)¢ — 2k, 97 L(W, ¢, fo,s)

B L(Uf V2a 28(k + 1) - k)
x L(G®a’,~(k+1)s+ (n+1)¢ + Lk +1).

(c®0d, (k+1)s+ (n+1)¢ — L&)

It follows from [JPSS] that for @ € C

LG xd',1—aq)

/ -1\ _
’Y(UXU,OM/J )_ L(O’XO”,CM)

Hence

J1(W, ¢, fs)
1

= L
L(o,V?,2s(k+1) — k)

(0®0c", (k+1)s+ (n+1)¢ - Lk)

xLlc®o',(k+1)s— (n+1){ — k)
"~ L(o,V2,2s(k+ 1) — k)

(a®c?'®61;fm,(k+ 1)s — k)
1
xLo®o' ® 6%2n’n,(k+ 1)s— k)

_ L(r®o,(k+1)s— 3k)

T Lo, v2,2s(k+1)— k) 0

In a similar way, using Proposition 6.2 and Theorem 3.1, we prove :

THEOREM 6.4. — Let p be an odd prime. For all unramified data and
for Re(s) large

_ - Ly(@®0o,s(k+1) = 3k)
J2(W, 0, fo,s) = L(o,s(k+1) — 2 (k- 1))L(o, A2,22s(k: +1)—k)

6.3. Justifications (for Section 6.1). — We first establish the
convergence, in a right half plane, of the integrals Ji,J,. Since their
structure is similar, it is enough to consider one family of integrals, say Ji.

PropPoSITION 6.5. — The integrals J, (W, ¢, f;,s) converge absolutely in
a right half plane Re(s) > sq.
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Proof. — Let us write J; in explicit coordinates (performing already
the conjugation yvr(h)y~1)

©5)  hW,0,foe) = [ [ W(gwu(9)6( +ur—n)
VZn,n\szn Xk,n
In
= 0 Iy, _
fo,s w kv Li_n vg | ¥(vk-n,1)dZdg,
0 0 I,
where
In
- _ 0 Iy_,
(6.6.) Xem=9%=| o " 1. € Spyy,

0 o aln

Assume, first, that the local field F' is non-archimedean. Using the Iwasawa
decomposition in Sp,,, (F), it is enough to establish the convergence of

60 [ [ W@ @wul@)o+ whn)fon(@r10)0(0nn) dad
An Xk'n
Here A, is the diagonal subgroup of Sp,,, and Z is the element appearing

in (6.6). B, is the standard Borel subgroup of Sp,,,. Write a = (b b* ),
where b € GL,,(F) is diagonal. Then (6.7) equals

(6.8) / / w(® )5 (* e ) oo+ ukon)fos (75 (° n)

(F»()n Xk,n
| det b|(kHDs+n=F+30(y, 1) dZdb.

In general, we have (as in [S1, p. 22, Lemma 4.4.])

Fralu(* 0 )r)] < 1detdFHORO S 6; (1)

for u € Vok i, 7 € K(Spyy). Here ¢t is diagonal in GL,(F') and lies in the
support of a gauge on GL,, (F"), which is independent of  and r. The n; are
positive quasi-characters which depend on o. Thus, (6.8) is majorized by

- b e(s)+n—k+1
610) e cie [ 051 eg(" ) dettl IRk ) ap

F“ln
) / H(z) "V R0 B (7) da.

Xk,n

(6.9)
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Here £ is a gauge on Spy, (F'), which majorizes W. ¢4 is a bound for ¢,
and H and E; are defined on Spy (F') as follows. In the notation of (6.9)

(6.11) H(u(t t*)r> = |det ],
(6.12) Ej(u(t t*)r) =n;(t).

The dZ-integral in (6.10) converges for Re(s) > 0 (as in [S1, Lemma 4.5]).
Each db-integral in (6.10) is a linear combination of integrals of the form

(6.13) / o(b1,- . b)xa(b1) - xn ()
(F*)m Iblbg"'bZI(k+l)Re(s)d*(b1,...,bn),

where ¢ € S(F™) (is positive) and x1, . . ., Xn are positive quasi-characters
of F* (depending on 7,0). The integrals (6.13) converge in a right half
plane (which depends on x1, ..., Xn, k).

Now assume that F' is archimedean. The absolute convergence in a right
half plane is obtained similarly, only that in the Iwasawa decomposition,
which leads to (6.7), we get rid of the compact integration, not by K-
finiteness, which we do not assume here, but rather by the majorizations

(6.14) |W(a-h)| <&(a), a€ An, he€ K(Spy,),

(6.15) | Fosu(" . )1)] < cal dett]EHO RO wy (1,)] - 7).

In (6.14), £ is a gauge on Sp,,, (F). In (6.15), ¢, is a constant which depends
on s. Here t has the form diag(tito---tn,t2 - tn,...,th—1ts) and w, is
the central character of o. The integer N depends on o. Finally,

n—1 n—1
”dia‘g(a17 az,...,0n-1, 1)“ =1+ Z Iai|2 + Z lail_z'
i=1 =1

With these majorizations the proof now continues as before without
change. [J

Next, we show that the integrals Ji, J> can be made to be identically 1
(for all s), for a choice of data (W, ¢, f, ) in case F' is non-archimedean.
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PropPOSITION 6.6. — Let F' be non-archimedean. There is a choice of
W e W(n,¢), ¢ € S(F™) and a section f, s, such that

JI(VV’ ¢a fa,s) =1, Vse C.

(A similar proposition holds for Ja, with exactly the same proof.)

Proof. — Write the integral (6.5) as follows

(6.16) Jl(m¢afo,s)=/ /W(af)5éi(a)W¢(af)¢(€o+uk—n)

An X‘72n,n X—k,n

In,
fa,s 2 Ik;n I ’YG/Z zﬁ(vk_n,l)da‘cdadz.
0 o 0o I,

— f. (Em 0 (1.0
VZ’n,n'—‘{z-—(yZI)ESp2nazl_<* 1>€GLn}

Write again a = (b b ), b-diagonal. Then (6.16) equals

(6.17) / W(( b1 bz ) (I; I, )) 51—3111 ( b o ) | det bl(k+1) Re(s)+n—k+3

Wy (I; In) d(bnéoZ1 + Uk—n)Y(Vk—n,1)

In _

7 bZ1

fc,s (( 0 Ti-n T >7’ ) d( ' )
v ow ot ( Tj—n )

Choose the right y-translate of fa,s to have support in Py, i -2, where € is
a small neighbourhood of Io, such that £, ,(wy;m) = W’(m), for w € Q.
W’ is a given function in the Whittaker model of o. With this choice
(w,v,y) in (6.17) must lie in a small neighbourhood V of zero, and we can

I, _ I, _
choose € so small that UJ¢( y In)gb = ¢ and W(g( ” In>) = W(g),
for y, such that (u,v,y) lies in V. Up to a constant, (6.17) becomes

(6.18) / W(bzl b*a)égi(b b*)¢(€0b51)

| det bl W (P21 dz, db.
I

Here
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Here s' = (k + 1)Re(s) + n — k + 3. Also v above is so small that

d(E+uk—n) = &(&), if (u,v,y) € V. Now, it is easy to choose data in (6.18),

to make it constant. We can simply choose W’, such that the function
_ bz,

b, W

(bz) W (7

neighbourhood of (I,,,I,,). []

) is the characteristic function of any given small

PROPOSITION 6.7. — Assume that F' is archimedean. For each com-
plex number sg, there are choices of data (Wj,o;, fg(fs)), such that

Y LW, 05, ;(Zg)) is meromorphic and nonzero at sg. (Similar proposi-
J
tion for Jo).

Proof. — Write J; in the form (6.16). Let the right y-translate of fo’,s
have support in Po - U,k and assume

Fos (v(m . )u e) = v~ L(det m)| &etm|<k+1>s¢(a)wf(em),

where v € Uz, @ € ng,k (the opposite to Uz k) ; e,m € GL,(F), and
¢ € C(Uak,k). With this choice

(6.19) J(W, ¢, fo,s) =/W((b21 b*zl*)(zl I, ))

wu (T} Yoteobz + ol st (U ).)

bz stn_k4l
W (Vi) detpl Dk g,

Notation being as in Proposition 6.6. ¢(u,v,y) is short for

I,
Ik—n
Pl w v I_p :
y o I,

Choose ¢ of the form ¢(u,v,y) = ¢1(uw)p2(v)es(y). The dv-integration
in (6.19) is carried separately and gives a constant [ ¢2(v)¢(vk—n,1)dv.
Consider the dy-integration

/sps(y)ﬂ(I; In)W®w¢(I; In)¢dy-
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This is a convolution of @3 against W ® ¢ € W(rm, ) ® wy. By [DM], this
represents, up to linear combinations, a general element of W (7, %) ® wy.
Thus, a suitable linear combination of integrals of the form (6.19) gives

bz _
6200 [w(* . )eleba + ua)er(w)
! bZl -1 b =
w ( Ik_n)éBn( b*)|detb|dudbdzl.
Here s' = (k+ 1)s + n— k + 3. Again, by [DM],

/ o1 (W)B(E + ) du

represents, up to linear combinations, a general element of S(F™). Thus,
a suitable linear combination of integrals of the form (6.20) becomes

[ e W (Yo

Note that since 63! b = 655 (b)|detb|~ (1) the last integral
B, BGLn

b*
becomes
m yau s'—(n+1)
(6.21) /N - W( m*)W ( Ik_n)¢(§0m)|detm[ dm
and for
Iny
w” =/a(y)a( 1 )W’dy,
Iy —n-1

where « is a Cg°-function,

(6.22) W”(m Ik_n) =a(§0m)W’(m Ik_n)'

Choosing ¢, such that ¢ = &, we see that (6.21) becomes

/Nn\GLn W(m m* )W”(m Ii—n ) | det m|* ="+ dm.

Now, as in [S2, Section 4], this last integral is meromorphic in s. Fix now
s = s¢. If the integral (6.20) is identically zero for all data, then, since ¢
is arbitrary, it follows that the following integral is identically zero

bz
1 ,( bz
(6.23) /W( . )W( Ik—n+1)
b*z b

sei| by |ldetd* dbdz,

b*
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1
where b = diag(by,...,by—1) and z = ( ) € GL,_1. Replace W’ by
* 1
In—l Yy
W' = /a(y)a( 1 ) dy, where « is a C°-function. As in (6.22),

k—n

W,I(m Ik—n+1) - a(&)m)wl(m Iy _nia )

sgi| |l detb] dbdz =o.

b*

Since « is arbitrary, we conclude that

bz bz b ,
/ -1 I s 5 =
/W( L;bxz*)W( Ik_n+2)53n( 4b*>|detb| dbdz =0,

etc. Finally we get that W (I,)W'(I,) is identically zero, which is
absurd. ]

REMARK. — In case F' is nonarchimedean, with residue field having ¢
elements, the integrals Jp, Jo are rational functions in ¢~°. They satisfy
certain equivariance properties for trilinear forms which guarantee their
uniqueness up to scalar multiples for almost all values of ¢~°. This will
appear in greater generality in a work of Baruch and Rallis (compare
[S1, Sec. 8]). A general principle of Bernstein implies the rationality of
Ji,J2 (See [GPS, 1.2.3]). Here is a description of these equivariance
properties.

Let 7 be an irreducible, 9,-generic representation of Sp,,,(F) (resp.
§f)2n(F)) and o an irreducible, generic representation of GLg(F'). The
integral J; (resp. Jz) belongs to the space E of trilinear forms J on
N(m, ) x S(F™) X Vi(s,s) (resp. W(m,9n) x S(F™) x Vj, ), which
satisfy

J(W,6,1(3,5)(0) fo,5) = Vi1 ()T (W, @, fos),
J(VV, W¢(h)¢, I(Uv S)(T(h))fo,s) = J(W7 ¢a fa,s)»
J(W(Q)Wv ww(g)¢, I(Ua S)(g)fo,s) = J(W, ?, fa,s)
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for W € W(r,v,), (resp. W € W(T,¢,)), ¢ € S(F"),/}Z,,s € Vi(o,s)s
(resp. fo,s € 1(0,5)), v € Vimn-1(F), h € Hu(F) and g € Sp,,(F) (resp.
g € Spy,(F)). We may also replace m by a representation fully induced
from a parabolic subgroup and an irreducible (generic) representation of
the Levi part. The proof of the one-dimensionality of the space of E, for
almost all values of ¢~¢, follows closely the proof of Theorem 5.1.

The following three propositions justify the formal steps taken in
Proposition 6.1. From now on, F' is assumed to be non-archimedean.

ProposITION 6.8. — The integral
020 [ [erc@wul@0.9906)ns (14,0, B)g) dAdB g
N"\Sp2n
converges absolutely in a domain of the form
(n+1)Re(( + 3) +C < (k+ 1) Re(s),
(6.25) (k+1)Re(s) < (1+eo)(n+1)Re(¢+ 3) +Q,
R < Re((),

where Q,C,R, €9 are constants which depend on o,0',n,k and gy is
positive.

Proof. — Using the Iwasawa decomposition in Sp,, (F) (and K-
finiteness). It is enough to consider

(6.26) /«paf,c(p(b b*)"séi(b )

ws(@0.(y 1) (7 4 )t

Fos (’y(A,O, B) (Ik_" (’; ,n) (”b*) ) dAdBdbdy.

Ik—n

(Recall that By_p kx—n = 2, Agx—n = z). Here b is integrated over the
diagonal subgroup of GL(n, F'). We have

b _(n 1
900,(( b*) = | det b| ( +1)(C+2)Wa/(b),
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where W, € W(o’,v). Thus (6.26) has the form

©21) [1Wor®)] -1 dectl” < xo®)wy (T Yoleob + )]

I,
Iien (b
7. (( RE ) : ( . )) dAdBdbdy,

y A I
where ¢’ = (n+1)Re(¢+3),s’ = (k+1) Re(s) and xo is a certain positive
quasi-character (obtained from § and change of variable) f; ; is the right
~-translate of fo,s. Write the Iwasawa decomposition

t1

I, T
Te_n ¢
(6.28) (A y> L ) = k — T
I, .

y A

where v € Vo, k € K(Spy)- As in [S1, p. 81], we have

7% < || <Y, =1k,
(6.29) tj+1

[o] 7 < |dett] < [o] 7,

where 2z = (2 f,) and [2] = max{1,||z||}, where ||z|| is the sup-norm of

the coordinates of z. As in (6.9), we have a majorization

fés(({zk Ik); (b Ik-—n))’
< |dett|s/2ajnj ((b Ik—n)t)’

where t = diag(ti,...,t,) and 7; are positive quasi-characters and,

(6.30)

moreover, ( b )t lies in the support of a gauge on GLy(F'). Assume

Ik—n
that ' > 0. Then, by (6.29)

(6.31) |det ¢)* < [2]~*
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(if s < 0, then, by (6.29), |det|* < [z]7*"). Inequalities (6.29) also
implies that there is an integer K, such that

(6.32) ni(t) <[, Vi

Since (b )t lies in the support of a gauge, then, writing

Ik—n
b= dia'g(blb2 e bnabz te bn’ .. '7bn—1bn7bn)7

there are positive constants c;, such that

bjtjlscjv .7_17 ak_la
tit1
and hence
t; .
(6.33) 03] < | 25| < 5[]
j

(put bpy1 = --- = by = 1). Using (6.30)—(6.33) (for s’ > 0) we get a
majorization
(6:34) o3 1) O D=t

' >\ z I/’ Io_n /)1 — ’

Let &,/ be a gauge on GL, (F'), majorizing W,,. Thus (6.27) is majorized
by a sum of constant multiples of integrals of the form

(6.35) / €, (b)| det b* =" X(b)
[bn|<cn [2]2"

’W (117 L )¢(£0b + x)‘[z]"sl+L1 dbdz.

(Recall that z = (21 f,), and Agx_, = ). X is of the form xon;. We

used (6.33) and (6.34). Now write the Iwasawa decomposition

I, \_ (L. T\(m,
(3 1) = L )™ g e
where 7, € K(Sp,,) and m, € GL,(F). As in (6.29), we find
(6.36) [y ™" < [detm,| < [y]™' <1.
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From (1.3) and (1.4),
I, N
o (5 1 ) o) = 1detmy | -y (ry)o(u-my)| < |wy(ry)é(um,)]

Thus there is a bound cg, such that |w¢ ( I; I ) q&(u)‘ < ¢y, for all y

and u, and hence (6.35) is majorized by a constant multiple of
(6.37) / £,/ (b)| det b|* ¢ x(b)[2] % T dbde.
lbnlscn[z]zn

This integral is considered in [S1, p. 86] and converges in the indicated
domain. []

ProprosITION 6.9. — The integral.
/\
635 [ ¢aclo.m)ag((2,0,)9)9(0)

- 01 0 I.te 0
fa,s (WO(A,Oa B)97 ( 001Ix_n ) ( 1 0 >)
mo0 y Iy _pn1

| det | (K13~ (n+1)(C+3)=F Ge dy dm d(A, B)dg.
converges absolutely in a domain of the form
(1—e1)(n+1)Re(¢{ + 3) + E < (k+ 1) Re(s),
(6.39) (k+1)Re(s) < (n+1)Re(¢ + 3) + D,
M < Re((),

where D, E, M, e, are constants which depend on (o,0’,k,n) and &1 is

positive. In (6.38), g is integrated over GLy, \ Spa,,, where GL,, is identified

with the Levi part of Pap n. The variable m is integrated over N, \ GLy,.

Proof. — Using the Iwasawa decomposition for g, in (6.38), it is enough

to take g of the form (I; I

n

for m, in (6.38), it is enough to take m of the form b-r, where b is diagonal

and r € K(GLy). As before, let £, be a gauge majorizing ¢, ¢(I;m).
Thus, it is enough to consider

/\
©40) [ er®)os(@o.29(T , ))o@]so) dets <
In

, I 01 0 I,te 0
fa,s A §n Iy_p ) < 00 Ix_p_1 > ( 1 0 ) d( . )
I

u A n br 0 Y Iy—n-1

). Also, using the Iwasawa decomposition
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Here [y is a certain fixed positive qudsi—character and f; ; is the right
~Yo-translate of f, s. We have

/\ —_—
W ((a:,O, z)g(I: I )) #e) = ¥(z — 2z ~te)w¢(1;:‘ I )d)(e)

and hence

e — ——
[wo(@o.2a(’y g, s@]=[on( 1, )o@

u I,

We have

A
]“’*"(% In)¢

—
s
~

Here ¢ is a positive Schwartz function. Thus (6.40) becomes

(6.41) / £,/ (6)Bo(b)] det b}* < |(e)|

, Ix 01 0 )(In te 0 )
| 00 Ij_p— 1 0
fo’s ((W Ik), (bT 0 k y ! ) (S

dbd(W, e, y)dr.

I, te 0
“Move” e = ( 1 o0 ) in (6.41) to the left in f. , and conjugate it
Ix—n-1 ’

. I
via (W Ik). Denote

(“ )G ) () = (i )
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and change variable W — W' (dW = dW’). Then (6.41) becomes

(6.42) / €,/(B)Bo(b) | det b[* ~<' 3(e)

7, (( g{; ; ) (el . ); (bgr é zk_(:,_l )) l dbd(W, e, y) dr.

Y

Since <Z> is a linear combination of characteristic functions of small neigh-
bourhoods, it is enough to consider, instead of (6.44), integrals of the
form

(6.43) / .1 (b)Bo(b)] det b|* ~¢'

N (( Iy )(8 ézk_(l_l» dbd (W, y)dr.
78 W I br 0 y

Change variable y — by (this changes Go(b) to 1(b), by a fixed power of
| det b|). We have

01 0 I 1 1
( 00 Ik—n—l) = ( k=n b) ( Ik _n1 > < Iy_pn_1 )
br 0 by y In T

1
Denote 1’ = ( Ty—n—1 ) In (6.43), “move” 7’ to the left in f , i.e.
T

. 01 0
(6.44) fé’,s((é{} Ik); ( o gfk_n_l))

by

= (/,,73 ((T,*WI}T/_I Ik) (TI r/*); (Ik-" b) (1 Ton- In ))

Y

Change variable r*Wr'~! s W. Now, it suffices to consider the integral
of the form (we use the K-finiteness of f;' )

(6.45) / £ (B)1 (b) | det bl <

fa,s((&} Ik); (Ik_" b)(l Tk—n—1 Iﬂ))‘dbd(W,y)-

Y

Write the Iwasawa decomposition

1
(6.46) ( )=v.tur~,
y In
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where v € Ny, t, = diag(ty,...,t;), r" € K(GLg). As before, by

“moving” r" back, changing variable r*Wr"~1 — W” | etc. It is enough
to consider

(6.47) / £, ()51 (b)) det b[* ~¢

(it 1) (77 5)0)

As in (6.30) and (6.31) we have, for s’ > 0, the estimate

ol(B 1) (5 )] <o ()

where £, is a gauge on GL,(F) (majorizing the Whittaker functions in
o, m— f,s(p;m) for p € K(Spy;)). The matrix ¢, is obtained from the
Iwasawa decomposition

6 (b )=l )

u € Vag k, ty = diag(ti,...,tk), p € K(Spy). So now consider

dbd(W,y).

(6.43)

650 [ & m®)dert < (B Jt) dodwiy).

Clearly, in (6.46), we have t; = 1. Now, we are at the situation of the proof
of Proposition 11.16 (11.16.1) of [S1]. We conclude that the integral (6.38)
converges absolutely in a domain of the form (6.39). []

PROPOSITION 6.10. — The integral (6.38) is equal (in the domain (6.39))
to

wd'(—l)k_zv(a X Ula (k + 1)8 - (n + 1)4 - %k,’lﬂ“l)Jl(VV, (757 fa,s)

(and hence the analytic continuations of (6.38) and Jy are related by the
same functional equation.)

Proof. — By the remark following Proposition (6.7) we know that the
integral (6.38) and Ji(W, ¢, f,,s) are proportional (in the domain (6.39)).
(The equivariance properties, mentioned in the remark, which guarantee
the proportionality are easily seen to be satisfied since (6.38) is obtained
from J; by formal manipulations.)
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We will find the proportionality factor by a special substitution of data.
Choose @, ¢ to have support in P, 5, - £}, where Q is a small neighbour-
hood of I,, and such that ¢,/ ¢, ¢ and f, s are right Q-invariant. Let

<Pa',c((T m*);I") = |det m|~("*VCHD W, (m).

Then, using the form (6.2) of Ji, we get (for this substitution)

(6:51) (W,0,Fo) =c(®) [ Warlmwo (7} )oleam +2)
In

I_pn [ m
Y(2) fo.s A kB Iy _n 7’( Ik—n>
!
u A In

| det | (D= (+ 1S+ 30—k gy 4 (u, A, B).
Here m is integrated over N, \ GL,, ¢(Q) = c is the measure of 2. Recall
that Ax—, = = and By_,,1 = 2. Next choose f,, so that its right o-
translate has support in Py ;- €21, and is also right ;-invariant, where Q;

is a small neighbourhood of Ipg. Denote f, o(v;r) = W, (r). Take Q so
small that

I
InI w”’(u In)¢:¢’
€N = 3 heta) =0, v(z) =1

A B Iy,
u A I,
(x = Ak—n, 2= Bg_n,1)-

We get from (6.51) (and this substitution) that
(6.52) J1(W, ¢, fos) = crcwor(—1) / W, (m)o(¢)
Ny \CL,

Wl

o

(m . )ldetml(k+1)s—(n+1)c+§n—k dm.
k—n

Here W) = a( ~In
Ik—n
now the same substitutions to the integral (6.38). We get
A

(6.53) c/ Wor (m)wy ((x, 0,z2) ( In ul, )) o(e)

)Wt7 and ¢; = ¢(4) is the measure of ;. Apply
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| det m|(k+Ds=(n+1)¢—k+3n

- In I 01 o0
fa,s A kén I ~; ( 00 Ix_—n_
u A I, mo y

(I"tf . ) <—I" Lo >> ...

~ 01 0
= 061/ W (m)cr(¢)Wc’,< 00 Ij_pn1 )
Nn\GL, mo y

i det ml(’ﬂ+1)s—(n+1)§+%n—k dm.

The integrals in (6.52) and (6.53) are related by the local functional
equation of [JPSS] by the stated gamma factor. []
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