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CANONICAL HOMOTOPY OPERATORS

FOR THE 9 COMPLEX IN STRICTLY

PSEUDOCONVEX DOMAINS

BY MATS ANDERSSON, JORGEN BOO AND

JOAQUIM ORTEGA-CERDA (*)

ABSTRACT. — In a strictly pse_udoconvex domain D •==• {p < 0} in C"', we study
the homotopy operators Ka for Q that are canonical with respect to the metric
(— p)i9 Q log(l / — p) and weights (—p)0 ', a > 0, and their relation to the canonical
homotopy operator K^ for Q^ on QD. We prove that the boundary values of the kernel
of Ka in the ball are provided by well-known integral formulas due to Henkin, Skoda
et al. We are able to compute the kernel for Ka in the interior of D, by using a
technique for representing forms in D by complex tangential forms on the boundary
of a higher dimensional domain. This is a generalization of a well-known technique for
functions. In the ball we also prove the commutation rule 9/9z^Ka = Ka+iQ/9^,
which generalizes a well-known fact about the weighted Bergman projections, and use
it to construct homotopy formulas for OQ in the ball.

RESUME. — OPERATEURS D'HOMOTOPIE DANS LES DOMAINES STRICTEMENT
PSEUDO-CONVEXES. — Dans un domaine strictement pseudoconvexe D = {p < 0}
dans !Cn, on etudie les operateurs d'homotopie Ka pour les Q canoniques pour la
metrique {—p)i99 log(l/—p) et les poids (—p)", a > 0 et leur relation avec Poperateur
canonique d'homotopie K^ pour Ie Q^ dans QD. On demontre que les valeurs au bord
du noyau de Ka pour la boule sont donnes par les formules integrales de Henkin, Skoda
et al. On parvient a calculer Ie noyau de Ka a Pinterieur du domaine D en utilisant une
technique pour representer les formes dans D par des formes tangentielle complexes
au bord d'un domaine dans une dimension plus elevee. II s'agit la d'une generalisation
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246 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

d'une technique bien connue dans les cas des fonctions. Dans la boule, on prouve aussi
la loi de commutation Q/Oz^Ka = -FCa+l<9/<9(^, qui generalise un resultat deja connu
des projections de Bergman a poids. On utilise ce fait pour construire des formules
d'homotopie pour Ie 09 dans la boule.

1. Introduction
Estimates of growth and regularity of solutions to the 9-equation in

domains in C71 were obtained by I^-methods in the 1960's by Kohn,
Hormander et al. In the 1970's Henkin, Skoda, and others introduced
formulas for representation of solutions that gave further information
such as L^-estimates, Holder estimates, and so on. These two methods
have been living side by side but the interplay between them is not fully
understood. In this paper we offer a geometrical interpretation of the well-
known Henkin-Skoda solution formula for 9 and its weighted analogues
in strictly pseudoconvex domains. This leads to mutual exchange of
information between the explicit formulas and I^-theory. For instance,
regularity properties of the abstractly defined operators can be derived
from the explicit formulas, and in the other direction, by studying the
adjoint of the 9-operator, we can prove a certain commutation property
of the kernels and derivatives in the case of the ball, which makes it
possible to construct explicit homotopy formulas for 99.

The Henkin-Skoda solution formula provides the Z^-minimal solution
for 9 in the ball but it does not coincide as an operator with the Kohn
operator, which is the one that gives the minimal solution when applied
to a 9 closed form and vanishes on forms that are orthogonal to the kernel
of 9, with respect to the Euclidean L2 norm. In [16], Harvey and Polking
found an explicit expression for the Kohn operator, essentially expressed
by rational functions, but anyway not as simple as the Henkin-Skoda
formula. In order to interpret the Henkin-Skoda formula geometrically we
have to introduce norms closely related to the Bergman norm.

Throughout this paper we let D be a smoothly bounded strictly
pseudoconvex domain in C^, and p a strictly plurisubharmonic defining
function. For a > 0, let L2^ be the space of locally square integrable forms
in D such that

^ ii/n^s^/^™2
dV

is finite, where |/| is the norm of the form / with respect to the metric
defined by the form

(1.2) fl={-p)i99\og(-^-}
\-p/
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CANONICAL HOMOTOPY OPERATORS 247

(in the case of the ball fl, is just distance to the boundary times the
Bergman metric) and dV = ̂ /n!. The volume form dV is equivalent
to (I/ - p ) times the Lebesgue measure, and therefore A^ = L2, D 0(D) is
the usual Bergman space with weight (-p)01"1. We let Ka be the operator
on L^ defined so that K^f is the minimal solution to 9u = f if / is a 9-
closed (0, g+ l)-form in D (the existence of such a solution is well-known,
see Theorem 2.2) and K^f = 0 if / is orthogonal to ICa = L^ H Ker<9.
If Pa is the orthogonal projection of functions in L^ onto A^, the Bergman
projection, then the relation

(1.3) K^Qf^QK^f =/-Pa/,

holds for / in Dom<9. (It is enough to verify it separately for / e ICa
and / € /C^ H Dom9, and both these cases follow immediately from the
definition.)

These operators are natural to study for several reasons. To begin
with, it is well-known that the 9-operator behaves like half a derivative
in the complex tangential directions near the boundary of a strictly
pseudoconvex domain. This is reflected in the standard estimates for <9.
For instance, the well-known Henkin-Skoda estimate, [19] and [21], states
that Ou == / has a solution (/ being a 9-closed (0, q + l)-form) such that

(1-4) / \9p^u\E<C (\-p)-^[^—p\f\^+\Qp^f\E\.
JQD JD

Here, | \E denotes the Euclidean norm of a form, and since —p is
approximately the distance to the boundary, 9p A / determines the
complex tangential part of / near the boundary. It is well-known that
this boundary behaviour of 9 is reflected by the Bergman metric and
therefore by ^2 as well.

The estimate (1.4) was the first important success for weighted integral
formulas; once they are constructed the estimate follows nicely, as the
very feature of the formulas reflects this difference in normal and complex
tangential part. This suggests that these operators better should be
understood in terms of a metric like fl, that takes this difference into
account.

One of our main results (Theorem 5.1) is that in the ball case, the
boundary values of the operator due to Henkin and Skoda, and its
weighted analogues, in fact coincide with (the boundary values of) the
canonical operator Ka- Expressed in the inner product ( , )a connected
to || 11^, the kernel for the boundary values of Ko, has the simple expression

(1.5) k^z)
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248 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

_1 r(a + n - q - 1) _ z ' dQ A (dz • dQ9

- 2^ r ( n + a ) ( 1 - C • zY-^-^d - C • z)9+1 z e

In the general strictly pseudoconvex case one cannot hope for completely
explicit formulas for Ka. However, it turns out that well-known solution
operators approximately provide the boundary values of Ka, in much the
same spirit that certain known explicit holomorphic projection operators
approximate the Bergman and the Szego projections in D, as was proved
by Kerzman-Stein, [17], see [4] and [5].

The spaces L2, and operators Ka have connections to the boundary
complex. In Section 2 we notice that ||/||a tends to \\f\\b, the I^-norm
of the complex tangential part f\b off over 9D, when a -» 0. It is also
true that (the boundary values of) Ka tend to Kb, the canonical operator
for 9b. In the ball case this follows from Section 5, whereas the general
case is treated in [4], [5].

There is another useful connection to the boundary complex that is
exploited in Section 4. It is well-known and used by many authors the
fact that if

D = { (^ ,w) G C^; p(z) + |w 2 < 0},

then L^^D) can be identified with the subspace I^^QD) consisting of
functions that are rotation invariant in the last variable, and that further-
more, via this identification, the orthogonal projection onto the Bergman
space A2 in D, the Bergman projection, corresponds to the Szego projec-
tion on 9D. We extend this representation to higher order forms, so that
forms in D correspond to certain tangential forms on 9D and so that the
orthogonal projection of forms in L2 onto 1C\ corresponds to the ortho-
gonal projection of L2 onto /Q, = Lj D KerQb on 9D. We also show that
the canonical operator Ko, can be represented b^the complex tangential
boundary values of the corresponding Ka-i in D. Since well-known for-
mulas in the ball give the boundary values, we therefore get an effective
procedure to compute the values of Ka in the interior. This is the done
in Section 5. The resulting formulas have not previously occurred in the
literature (as far as we know).

A basic ingredient in our proofs is the formula for the formal adjoint <9^,,
that is computed in Section 3. It is a first order differential operator with
coefficients that are smooth up to the boundary. It turns out that any
smooth / belongs to the domain Dom<9^ of the_von Neumann adjoint
of 9, and for a > 1, / G Dom^ if and only if /, 9^f C L2,.

It is known since long ago that in the ball

^paf=pa+^-P.f=P^^-\
TOME 126 — 1998 — N° 2



CANONICAL HOMOTOPY OPERATORS 249

We prove (Theorem 6.1) that this formula extends to the operators Ka,
acting on higher order forms. This formula is then used to construct
homotopy formulas for the 99 operator in the ball.

ACKNOWLEDGEMENT. — Most of the material in this paper has pre-
viously occurred in the two preprints [6] and [4]. We are grateful to
J. Bruna and M. Passare for several valuable comments on one of these
preprints.

2. Boundary behavior of the metric f^
The pointwise inner product </,^), defined by the form f^, cf. (1.2),

degenerates on the boundary of D, and in order to understand its
asymptotic behavior, we shall express it in terms of /3 = i99p, which
is equivalent to the Euclidean metric since p is strictly plurisubharmonic.

LEMMA 2.1.—If( , )p denotes the inner product with respect to f3^ then
for (0,^)-forms f and g we have

f (f^9) = ((-P)(/^)/3 + (9p A /, 9p A ̂ )/5,

{{-p)dV=B(3n/n^

where the function B = —p+ |<9p|| is smooth up to the boundary and
nonvanishing.

Proof. — Let 7 = i9p A 9p and uj = i99\og(l/ — p). Choose an
orthonormal frame e i , . . . , e n with respect to f3 for the space of (1,0)-
forms, such that ei = 9p/\9p\p. Then f3 = i ̂  Cy A e^, and

p.2) ^_+__,.S;-i.^.^a->
(-P) (-P)2 (-P) (-?)2

n

= a z e i A e i + 6 % ̂ ^ ej A e j ,
J=2

where a = B / ( — p ) 2 and b = l/(—p). Therefore we have that

(~p)dV = (-p)^/n! = (-^Vy^!

= (-p)7^1^-1/^/^! = B ^ / n } .

The first equality in (2.1) is easily checked for / = g = e^ / \ . . . A ej^, and
then the general case follows. []

Hence dV is equivalent to the Lebesgue measure divided by the
distance to the boundary. If D is the ball and p{z) = \z\2 — 1, then B = 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



250 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

THEOREM 2.2. — Suppose that a > 0. For any 9 -closed (0, q + l)-form
f in Lĵ  there is a form u such that 9u = /, and

(2.3) ||< ̂  C\\f\\2^.

Of course, to define Ka^ cf. Section 1, we only need the weaker
statement that the 9-equation is solvable in L^. Theorem 2.2 is readily
proved by integral formulas; see e.g. [4], [5]. It is worth to notice that
this theorem, however, does not immediately follow from the standard
Z^-technique, but it requires an extra argument due to Donelly and
Fefferman, [12].

REMARK 1. — From the proof of Lemma 2.1 it follows that if / is a
(p.g)-form, then {f^dV = (-p^-^f^^/n^ which implies that

(OA\ iifip _ n^"^) \\f\\2
\zl•i±) \\J\\a— ^Tr^lYa) ll'/"rl-P-9+a^

if

\\f\\l.=/^-pY\f\l^'
Therefore, (2.3) can be rephrased as |M|^o; <: C^H/H^o; for all £ > n — q.

Recall that a vector at a point p € QD is complex tangential if it is
annihilated by both dp\p and d°p\p. If / is any form over <9D, we denote
its restriction to the complex tangential vectors by f\^. This restriction is
determined by dp A d^A /, and in particular if / is a (0, g)-form then f\^
is determined simply by 9p A /. In particular, f\^ is smooth if and only
if 9p A / is smooth etc. On the boundary, (/, g} degenerates to an inner
product of the complex tangential parts f\^ and g\^ of / and g . When a
tends to 0 we get the following inner product for complex tangential (0, q)-
forms f\b and g\^ :

(^= (^ / ^d(7= ̂ )! / {Qp^f^p^g}^|B^zl 7r JQD " 7r JQD

where do- = dS/\dp\/3 and d5' is the surface measure induced by f3.
Let I/j denote the corresponding I^-space and let /C& be the kernel

of §b in L^. It is well-known, see [13], that 9^ has closed range, and
therefore Q^u == / is solvable in Lj for a (0,9)-form /, 1 <_ q <_ n — 1,
if and only if / is orthogonal to Ker<9^. For q <_ n — 2 this is equivalent
to that 9bf == 0. Therefore we can define the operator K^ on Lj such

TOME 126 — 1998 — N° 2



CANONICAL HOMOTOPY OPERATORS 251

that Kbf is the minimal_solution to 9bU = f if / is orthogonal to Ker<9?
and Kbf = 0 if / e Kerc^. We then have the homotopy relation

<9^ + Kb9b = I - P b - S b ,

where 5fc is the orthogonal projection of (0,n - l)-fbrms onto Ker<9?;.

3. The adjoint operator^
Let ( , )a denote the inner product connected to the norm || \\a, i.e.,

^-s-^-) /^'^dv'
and let 9^ be the formal adjoint of 9 with respect to ( , )„, i.e.,

(<9/^)a=(/,<9;p).

for all compactly supported smooth / and g . Our first objective is to find
a formula for <9^ that reveals its behavior near the boundary. If 0 is a
form, we let (9-- denote interior multiplication by 0, with respect to the
metric /3, i.e.,

{^f^}(3=(f^^g}f3 for all g .

PROPOSITION 3.1. — With the notation above, the formal adjoint is

9^ = i [9, (/? - (1/BhH + a±^p-lQp^

when acting on a (p^q)-form.

Since (3 is non-degenerate on D, the operators involved have coefficients
that are smooth up to the boundary and hence 9^ is a first order diffe-
rential operator with smooth coefficients. Letting a = 0, the proposition
provides a formula for the 9^ operator on 9D.

Proof. — We use the notation from the proof of Lemma 2.1 and
Remark 1. From (2.4) it follows that

(3-1) (-P)^=9^-p-,^

and since <jj is a Kahler metric, see [8] or [14],
r\

(3.2) 9^^-p-q^ = ^ [9, c^J + (a + n - p - q) -p- ̂ ,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



252 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

if -i^ denotes interior multiplication with respect to uj. Thus we just
have to express uj-^^ and 9p^ m terms of -•. From (2.2) it follows
that ei-i^j = {^i^j}uj = {^/a)olj o^d hence

(3.3) Qp^ = ({-p)2/B)9p-..

Moreover, it is readily verified that
n

(3.4) uj^ = (I/a) i ei A d- + (1/6) i ̂ (-p)(^- A ̂ )-
J=2

= {-pW- (1/^)7)-.
The desired formula now follows from the equations (3.1) to (3.4). []

The following simple consequence of Proposition 3.1 will be used in
Section 6.

PROPOSITION 3.2. — Suppose that D is the ball B and p(z) = \z\2 — 1.
If 9/9C,j acts as a Lie derivative on forms, then

^}9---9^
Proof. — One readily verifies that 9/9Q commutes with /3-i<9 and <9p-i.

Since 9p~^9 is the Lie derivative with respect to the vector field ̂  C,j —,
we have that (^w(^x
The desired equality now follows from Proposition 3.1. Q

An / C L^ is in Dornc?^ (the domain of the von Neumann adjoint) if
there is a g € L^ such that {g,u)a = (f,9u)a for all u C Dom<9. If this
holds, then clearly 9^f == g in the distribution sense, but in general the
converse is not -true, i.e., there are / € L^ with 9^f C L^ such that yet /
does not belong to Dom<9^. Let £q denote the space of (0, g)-forms in D
that are smooth up to the boundary. In the Euclidean case and a = 1 an
/ G <?* is in the domain of <9* if and only if 9p^f == 0 on the boundary.
Our situation is much nicer.

PROPOSITION 3.3. — If a > 0 and f,g e f* then {9^f,g)a = (f,9g)a.
Proof. — Since 9^ has smooth coefficients, the boundary integral

that occurs when integrating by parts must vanish if a > 1. Since
the expression is analytic in a, the general case follows by analytic
continuation. []
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PROPOSITION 3.4. — Suppose that a > 1. If f,g e L2, and 9^f and
9g are in L2, as well, then (9^f,g)a = {f,Qg)a- That is, f e L2, is in
Dom<9^ if and only if Q^f is in L^.

Since the the image of <9:L^_i -^ L^ is equal to 1Ca for q > 1,
<we have in particular that / G L^^ is in JC^q if and only if 9^f = 0.
Proposition 3.4 is an immediate consequence of Proposition 3.3 and the
following approximation lemma.

LEMMA 3.5. — Suppose that P is a first order linear differential
operator with coefficients that are smooth up to the boundary, and suppose
that a >_ 1. If f and Pf are in Z^, then there are fj e ̂  such that fj -^ f
andPfj ->Tj in L2,.

To prove this lemma one first approximates / by a form defined in a
neighborhood of D and then makes a standard regularization of this form.
We omit the details. In general the lemma fails if a < 1; cf. Remark 2
below.

PROPOSITION 3.6. — For any a > 0, we have that (9^(j), g)a = [(f), 9g)a
if (f) € <f* and g , 9 g C L^. That is, any (f) € £„ belongs to Domc^.

Proof. — If g,9g G L^ then g , 9g € L|, for a' > a. Since <9^ is in
<?*, it follows from Proposition 3.4 that (Q^(j),g)^ = 0 for a' ^ 1. The
desired conclusion then follows by analytic continuation. []

The argument above breaks down if one only assumes that (f), Q^(J) C L^,
since this does not imply that Q^(f) e L^, for a' > a.

Let K^L^-> L2, be the L^-adjoint of K^.

PROPOSITION 3.7.—Leta > 0. /// € L2,, then K^f is inDomQ, K^f
is in Domc^ and we have the orthogonal decomposition

(3.5) 9K^f+9^f =/-?,/.

Proof. — If / is a function, then the equality is just (1.3). Therefore
let us assume that / is a (0, q) form, q ^ 1. By the very definition of K^
it follows that 9Kaf is equal to the orthogonal projection of / on /Ca.
Therefore^ K^f is in Dom<9 and the operator 9Ka is self-adjoint. For any
g € Dom<9 we have by (1.3) that

W,9g^ = (f,K^9g)^ = (f,g - QK^ = (f - QK^f.g^,

smce_9Ka is self-adjoint. This shows that K^f e Dom9^ and 9^K" f =
f-QK^f. D
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The preceding proof just depends on the solvability of 3, i.e. (1.3). If

^=99^+9^9 and E^=K^+K^

then by similar arguments, one can prove that

D,^/=/-?,/, feL2^
(3.6)

Ea 0, / = f - P^f, f C DomD^.

There are similar statements for the boundary complex. Since ( , )&
is the limit of ( , )a when a —» 0, the analog of Proposition 3.3 folows
by continuity, and therefore the analog of Proposition 3.4 holds as well,
since the smooth forms are dense in the graph norm. If K^, D^ and E^ are
defined in the obvious way, then the analogues of Proposition 3.7 and (3.6)
hold, if just / — Paf is replaced by / — P& — Sb.

REMARK 2. —Proposition 3.4 is not true for 0 < a < 1; at least not for
(0,n)-forms. To see this, let D be the unit disk. Since 9: L^ 9 —^ L^ ^ is
surjective, the statement would imply that / € L^ ̂  vanishes if 9^f = 0.
However, the latter equation means that 9(1 — l^l2)0 '/ = 0 and_hence the
kernel of 9^: L^ ^ —» L^ 9 consists of all forms / = (1 — \z\'2)~ah, where h
is holomorphic and J(l — \z2)~oi\h\'2 < oo. For q < n the corresponding
result is true in the "limit case" when a —^ 0; therefore, one could guess
that it is true even in the intermediate cases 0 < a < 1. In particular we
would then have that

(3.7) feL^ and 9^-0 implies / e/C^

for (0, g)-forms, 1 <: q < n — 1. Let us relate this statement to the norms
|| ||̂ . In view of (2.4) we have that 9^f = 0 if and only if<9^/ = 0, where
i = a-\-n—q. Since \9\og(—l/p)\^ is bounded, uj is a complete metric, see
[8], and therefore the compactly supported forms are dense in the graph
norms with respect to the norms || ||̂ - In particular, this means that
the formal adjoint 9^ coincides with the corresponding von Neumann
adjoint. Hence (3.7) holds if and only if the image of <9:Lj^ —^ Lj^ is
dense in JCa (as it follows that / is orthogonal to this image if 9^^f = 0).
In view of Proposition 3.4, the image is dense if a > 1. For a > 1,
it is in fact equal to JCa.; this is the content of Theorem 2.2. However,
<9:Lj^ —^ L]^ is not surjective if 0 < a < 1. To see this, let D be
the ball and let f = 9h^ where h is some holomorphic function with
h(0) = 0 that is C1 up to the boundary. Then certainly / € A^i,
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but it is not in the image of 9 unless h = 0. In fact, if Qu = f and
J(l - ICI2)0"2 u\2 < oo, then since g = u - h is holomorphic, (and g and
h are orthogonal with respect to radial measures) we would have that
SO - ICIT"2^!2 + \9\2) < oo which implies that h = 0.

4. Up and down in dimension
Given our domain D and defining function p in C^, let

p0,w) =p0)+ |w|2 for O.w^C714'1.

Then p is a strictly plurisubharmonic defining function for the strictly
pseudoconvex domain D = {p < 0} in C7^1. Hence, anything done so far
applies equally well to D. For a (0, g)-form / in D, we put

f(z^w)=f(z).

We notice that / is determined by the complex tangential values f\ ̂  of /.
In fact, f\b= 0 means that (<9 p{z) 4- w dw) A f\z) = 0 on <9D, in particular
at points (z, ̂ /-p(z)), and this implies that f(z) = 0.

In what follows ( , )a means ( , )^ when a = 0.

PROPOSITION 4.1. — Le^ D and D be as above. Then for (0,q)-forms
we have

(i) (f,g)^= (/,^)o,_i for a > 1. In particular, f e L^(D) if and only
zff C L^{D) for a > 1 and / e L^(D) z/ and on^ if f^ e Lg(9D).

(ii) 9f = g in D if and only if9f=ginD if and only if9bf\b = 9\b-

(iii) (9^f)-=9^_J for f e 8^(D) fora > 1, and (<9^)~|, =9,*/|,.

(iv) f ^ !C^ if and only if f C /C^_i, and f ^ JC-^- if and only if
7|5^.

(v) Jf/eL^o^l, ^/ien / = /i +/2 ^ ^e decomposition in JCa and
!C^ if and only if f == /i + /2 ^ ^e decomposition in !Ca-i arid ̂ _i,
and if^= 1, ^en / = /i + /2 ^ ^/ie decomposition in /Ci and /C^ z/ and
on^/ if f\b= fi\b+ /2\b ls ^e decomposition in /Q) and /C^-.

Proo/. — Since {3 = i 99 p + i dw A dw we find that, at each point, dw is
orthogonal to all dzj with respect to /3, and moreover dw has norm one.
In other words, if a, a7, 6, b' contain no differentials of w, then

{a + 6 A <9|w|2, a' + &' A 9\w\2}^ = (a, a% + ̂ {b, 6%.
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It follows that |<9p|2- = \9p\^ + |w|2 and therefore B = B. In view of (2.1)
we also get

(4.1) {f,g)~ = {f,g).

Moreover, cf. (2.1),

(-p) dV = £?3n+i = B/3n A i dw A dw == (-p) dYA % dw A dw,

and therefore,

L(-p)a~l{f,9rdv = /j-p)"-2(/,^-(-p)dy
JD ^D

= / ( (-p-|w|2)a - 2zdwAdw(/,^(-p)dy
o/D ^Iwl2^-?^)

=^/^a^dv•

This proves part (i) for a > 1. The case a = 1 follows by continuity.
Part (ii) is obvious, just noting that 9bf\b = (9f)\b = (^/)^|b-
To see part (iii), first notice that if (f) is a form that only contains

differentials of w, then 0-«/ = 0. Moreover, (9fY = 9f. Therefore, (iii)
follows from Proposition 3.1 .

Let us now consider part (iv). The nontrivial direction is that / G A^_i
if / G JC^ (we assume a > 1, the case a = 1 is similar). It follows from
Theorem 4.1 that the operator ~ : L^D) -^ L^_^(D) is bounded. Let

M : Li_,{D) -^ Li{D)

be its adjoint. We claim that 9Mg =_0 if 9g = 0. Clearly, 9Mg = 0
in the distribution sense means that (9^(/),Mg)a = 0 for all compactly
supported smooth forms 0. However, for any such cf) we have

(a^.Mp), = ((^r^L_i= (9;-i0^)a-i,
and the last term vanishes by Proposition 3.6. Now take / G /C^
and g C /C^-i. Then (f^g)a-i = (f^Mg)a = 0 by the assumption on /
since 9Mg = 0. Thus part (iv) is proved.

The last statement is an immediate consequence of (ii) and (iv). []
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With the same argument as above it follows that

QMg=MQg if 9g e ^_i(^).

It is possible to verify this equality directly by means of the formula for Mg
in Proposition 5.4 below.

Let (j) be a complex tangential form on QD. We say that (f) is invariant
if T*^> = (/) for all r(z, w) = (z, e^w). Notice that T*(^ is well defined since
T* dp = dp and r* d0? = d0?.

PROPOSITION 4.2. — r/iere ^5 a one-to-one correspondence between
forms f € L^{D) and invariant complex tangential forms (j) e L^(9D).
Moreover, f is smooth on D if and only if (j) is smooth.

Let £^(9D) denote the space of smooth tangential (0,*) forms. If
/ € E^{D) then clearly f^ e <^(<9D). The proposition states that the
converse holds as well. This is less trivial, and it will be clear from
the proof that, in general, one loses one half unit of regularity on the
"complex normal" component of /. For instance, f\^ is bounded if and
only if / admits a representation / = 14 + 9p(z) A u ^ / ^ - p ( z ) , where Uj
are bounded.

Proof of Proposition 4-2. — Suppose that (f) is an invariant form and
let

^>(z, w) = wdw A a(z, w) + b(z, w)

be a representing (0, 9)-form, where a and b contain no differentials dw.
After possibly taking a mean value of all rotations in w, we may assume
that <I> itself is rotation invariant in w, and then it follows that actually a
and b only depends on z. Therefore (p= f\b if/(^) = -Op{z)/\a{z)-\-b(z).
The uniqueness of / is clear by the remark before Proposition 4.1, and in
view of part (i) of this proposition, / e L^(D) if and only i f / i ^ G L^{9D).

If / is smooth on D, then it is clear that / e £^(9D). Conversely, if (f) is
smooth then there is a smooth invariant representing form <I> over QD as
above, which means that b(z) and wa{z) are smooth on QD. Then clearly
b(z) is smooth on D so we have to prove that a(z) is smooth on D as well.
For simplicity we assume that n == 1 and that D is the unit disk. The
possible problem is when w is close to 0. Here

(w,t) h-» (e'^l - Iwp.w)

are coordinates on QD and so (w,t) }—> wa(e^^/l — |w|2) is a C°°-
function. In particular, for real x, (x,t) i-» xa^^/l — x2) is smooth
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and odd in x. Therefore there is a smooth function u such that
xa^e^^/l — x2) = xu^x2^). Thus a(re^) == u(l — r2,!) and hence it is
smooth up to the boundary. []

Notice that any invariant (0,7i)-form (j) € L^(9D) is orthogonal to
Kerc^ ; in fact, this is equivalent to the solvability of 9 bU = (f) in Lj(<9D),
which in turn follows from Propositions 4.1 and 4.2. This can also be
verified directly, see [6].

Let Ka denote the canonical homotopy operator in D with respect to p,
and let Kb be the canonical operator on QD (corresponding to a = 0),
and similarily with Pa and P;,. From Propositions 4.1 and 4.2 we get the
following basic result.

THEOREM 4.3. — With the notation above we have that

{K^fY = ̂ _J, (P./)- - Pa-lf

if a > 1 and

(K,fY\b=Kbf^ (Pif)~\b=Pbf\b-

Thus K^f (and Paf) can be reconstructed from the complex tangential
boundary values Ka-if\b {and Pa-if\b)- In particular', Kaf is smooth if
(and only if) K^^f\^ is.

Proof. — First suppose that / € K,a- Then u = Kaf solves Qu == /
and u e /C^. By Proposition 4.1, therefore, Qu = f and u G ^_i, so
that u = Ka-if. On the other hand, if / € /C^, then / e A^_i and
therefore, K^f as well as K^-^f vanish. The other statements follow in
the same way. []

For the Bergman projections P^, this theorem is wellknown and has
been used by many authors, see e.g. [I], [7] and [20].

5. Integral representation in the ball
In this section we consider the unit ball B in C71 and p(z) == \z\2 — 1.

There are well-known explicit formulas for the canonical boundary ope-
rators Kb, Pb (and Sb) on <9B. By repeated use of (4.2) one can therefore
compute Ka for all positive integers a. Since the boundary operators are
known to preserve regularity we obtain regularity for Ka, in view of Pro-
position 4.2. However, using (4.3) we can obtain the same results for all a.
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It is well-known that the Bergman projection Pa is given by

Pf^)={f.P^~z))^

where

^ '"•^'(l-c1^

There are similar formulas for P;, and Sb on <9B, with kernels

^(C^O-C^)"71 and ^(C^^A^CKa-C^p,

where 6 is the (0, n — l)-form

n

^E^^Aj==i
in the sense that Pbf(z) and Sbf(z) are the the boundary values of
the holomorphic function (/,?&(•, z) )b and the anti-holomorphic form
(/, S b ( ' , z ) )b, respectively. Moreover it is wellknown and not hard to verify
that Pa as well as Pb and Sb preserve regularity.

REMARK 3. — We thus have adopt the convention that the kernel
^a(C^) corresponds to the operator Tc,f{z) = ( f , t ( ' , z ) ) a . For (0,g)
forms / and g , (f, g) dV = Cqf A g A ^n-q, where Cq = 1 if q is even and
Cq = —i if q is odd. Therefore the corresponding operator on (0,g + 1)-
forms can be written in the form f f A T if T(C, z) = ̂ «, z) A ^n-g(C).

THEOREM 5.1. — Let B be the ball in C72 and let a > 0. T/ie boundary
values of the kernel A^((^ 2;) /or ^/ie canonical operator Ko, are given by

(^ ̂  k ( r ^- V1 n ^ + ^ - g - l ) z ' dQ A (dz » dp)9
(5.2) ^(C^)-^ ^^——(i_^-.^-i+n-,(i_^^+i5

/or z 6 9B. Moreover^ the values in the interior are given by

n-i ^
(5.3) ka(C. z) = ^^ Cn a a ————=——————————————————————————————> ^ ) ^ "•^(i-c.^+^i-c-^+Ki-H2)"

x [[(1 - < . z^^-z • dC - (1 - l^l2)?^"^' • dC] A (dz . d^

+ qP^^z • dC A (di • dC)"-1 A Q\z\2 A C • dc],
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where

r(n + a - q - 1) r(a)r(n - q)
^n^q - r(n + a) r(n + a - q - 1)

l-ld^l-^-l^1-^^l i - c - ^ i 2

and P^Lq"-! ana P^I1^1 are polynomials in |a|2 o/ degree n — 1 — q.
More precisely, P^ = P^(l - 2|a|2), where P^(x) are the Jacobi
polynomials

f_1 \m ^m

P^W = ̂ r (i - ̂ "(i + ̂  ̂  {(i - ̂ "(i + ̂ m+/3}.
Let jf^ be the operator, defined by the kernel (5.2) that maps forms in B

to complex tangential forms. In view of Remark 3 one can confirm that
this is precisely the solution operator for 9^ found by Skoda and Henkin
for a = 1. The general case follows for instance from Example 1 (iii) in [9];
for integer values of a, see also [7]. It is wellknown that K^ maps £^ into £^
(z.e. smooth tangential forms) and that the relation

(5.5) 9^+^9=1-?^

holds. When a —^ 0 then this relation tends to B^K^ + K^9 = I — Pb — 5^.
Since K^ maps £^ into <^, we can use (4.2) and Proposition 4.2 to

conclude that Ka preserves regularity, at least for a ^ 1. However, by loo-
king directly at the formula for the interior valuer one can check that this
is true for all a. Another possibility is to confirm, following [7], that K^
actually has an analytic extension to Re a > —n, that maps 8^ -^ 8^.
From the proof of Theorem 5.1 it follows that one can obtain K^ from
the boundary values of the operator in B obtained by taking the formal
adjoint of the kernel for Ka-i' It is then easy to check that this opera-
tor preserves regularity. However, again one can just as well consider the
kernel for K^ directly. Anyway, we have

THEOREM 5.2. — For any a > 0, the projections Pa and the canonical
operators Ka and their adjoints K^ preserve regularity. In particular, we
have regularity/or the orthogonal decomposition^^.5). Moreover, since Ea
preserves regularity we have regularity/or the \Z\a-equation.

REMARK 4. — Since

P^-rW = F(n + a - q - l)/r(a)F(n - q),
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^a(C^) coincides with k^^.z) as tangential forms when z is on the
boundary. Notice that 1 — |a|2 = 0(\C, — z\2) for (^, z) on compact subsets
of B x B. Since

P^-T(-^=P^7-^-1) and ^ d C A C . d C = 0 ( K - z | )

it follows that A^«, ^) = (^(IC-^I"27^1) as expected. I f n = l (and q = 0)
then

1 ,|2_ K-^l2

' " l i - C ^ I 2

and therefore the kernel reduces to

UC^)^ 'dc
a ( i -^)a(^_^

which corresponds to the weighted Cauchy integrals in the unit disk.
For further discussion about the nature of the singularity of this kernel,
see [4], [5]. For an alternative way of writing the kernel, see [6].

REMARK 5. — Previously there have appeared several constructions of
explicit operators Ba that gives the L2; minimal solution when applied
to a (9-closed (0, l)-form. One such formula was found by Charpentier
in [11]. Other possibilities are provided by Example 1 in [9], by making
various choices of the section S, e.g. S = (1 — C • z)^ ~ (1 — M2)^ or

5' = —(1 — z - C)C+ (1 — ICI 2 )^ - The first choice give back the Charpentier
kernel. However one can verify, see [6], that none of these kernels coincide
with the kernel for the canonical operator Ka. From the geometrical
interpretation it is clear that this kernel neither is equal to the kernel
for the Kohn operator found by Harvey and Polking, [16].

Proof of Theorem 5.1. —Let K^ denote the operator that is defined by
the kernels (5.2). Our starting point is the knowledge that this operator
map smooth forms onto smooth tangential forms and that (5.5) holds.
Now let

^ _ r ( a + n - g - l ) (d^dC)9 ^
a ~o r(n+a)(? (l-C.^-^-^l-C.z)^

where l/x° means logrr, and let H^ denote the corresponding operator.
Then even H^ maps smooth forms onto smooth tangential forms and
since O^h^ = k^ it follows from Proposition 3.3 that

(5.6) K^f = H^f

for smooth forms /.
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Now let a > 1 and consider the operator ^_i and its corresponding
kernel k^_^ on B in C71"^1. It is readily verified that the tangential
forms K^_^f and H^_^f are invariant if / is a form in B. Therefore it
follows from Propositions 4.2 and 4.1 and (5.6) that these operators define
operators K^ and H^ in B, which preserve regularity, and such that

(5.7) K^=H^

We are to show that in fact K^ is equal to Ka' We already know that the
explicit operator Pa represents the orthogonal projection Po,, and that
Paf = Pa-if, cf. (4.2). Hence it follows that

(5.8) QK'J+K^Qf =/-?./.

LEMMA 5.3. — The operator H^ preserves regularity and (H^f,(f))a =
(f^H^)for^fe£..

Taking this for granted, we can conclude the proof. Let II = 9K^. Then
it follows from (5.8) that II is a projection £^ -^ K,a H f*, and from (5.7)
and the lemma it follows that (II/,0)a = (/,n^)c, for smooth 0,/.
Therefore,

l|n/||a ^ H / l l a

(in fact, ||iv||2 = (n/,n/) = (n2/,/) = (iv,/) ^ ||/||||n/||) and
since ^ is dense in L^ we find that 11 is (the restriction to 8^ of) the
orthogonal projection L^ —^ ICa- In particular, we find that the orthogonal
decomposition L^ = /C^e/C^- preserves regularity. Now, let / be a smooth
(9-closed form. Then it follows from (5.8) that K^f is a smooth solution
to 9u = /, and since the projection II preserves regularity, the minimal
solution u is smooth as well. Another application of (5.7) and (5.8) yields
that u == K^f, since K'^u = H^Q^u = 0. Thus we have proved that
actually K^f is equal to the canonical Kaf if / is smooth and a > 1
(or even a >, 1).

To handle the case a > 0 we have to assume that the entire theorem is
already proved for a > 1. We notice that the explicit operator K^f,
defined for / C <?* and a > 1 by the kernel (5.3), has an analytic
continuation to a > 0 and by the remark preceding Theorem 5.2 it
is a mapping <?„ —^ <?*. Again by analytic continuation it follows that
QK'^. £„ -^ <?* is self-adjoint and that (5.8) holds for all a > 0. As before
we can then conclude that 9Ka is the orthogonal projection onto /C^,, and
that K'J = Kaf for all a > 0.

To obtain (5.3) and for the proof of Lemma 5.3 we need the following
proposition.
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PROPOSITION 5.4. — Let M:L^(D) -^ L^(D) be the adjoint of
~:L^D)-^L^_^D). Suppose that ̂ 0 = a(C,0 + d^A 6(C,0. Then

a — I f / , .o^a-2Mg^=^- ( (l-H2)'-2

7r ^lr|<l7r J\r\<l

(a^y^T)x fa( ——apA^v^T^dAM.

From (5.2) we have that

k^ (C, w; ̂  ̂ +1) = Az . dCA(d^ • dC)9

+ (z^+iA(dz • dC)9 + q(dz • dC)g- lAd^+l)Adw,

r ( a + n - g - l ) __________1_____________
r(n + a) (l-^.z-wzn^^-^-^l-^z-wzn^)^1'

In view of Proposition 5.4 and (the proof of) Proposition 4.2 we then get
that

_ r(a-\-n-q- 1) _______ 1
^(C^) - r ( n + a ) ( l - C ^ ) Q + n - < ? - l (1-^)9+1

x ^z A {dz • dC)9mc,-2,a+n-g-l,g+l

—____ ((l-|^|2)(d^ . d^-z . dC A 9(d^ . dC)9-^ 9|^|2)vTi-^FXi-W
A (9|C|2 A <,-2,a+n-g-l,Q+l}.

where
a-1 r (l-|T|2)a-2dm(T)

^a-2j,A; = /,TT 7|T|<1 (1-0^(1-^)^

a (1- Tp^Tdm^)^/7r ^IT;
m'a-2J,fc :=

7r 7^<i (l-a^^l-aT)'8

and a = ^/l - ICI2^/! - ^/(l - C • -z)- An integration by parts in the
expression for m' reveals that 'm'^_^ , ^ = (aj/a)maj+i,k and hence

r(o: + n — q — 1)
W^)= r(n+a)

_____mQ;—2,Q!+n-g-l,g+l zdC A (dz ' dC)9

- (i - C • ̂ ^-^(i - c • z)^1

_ a-{-n- q-1 mc,-i,c,+n-g,g+i
a (1 - C^)^71-^! - C-z)9+i

((1 - I^Kdz • dC)9 - ̂ dC A ^(dz.dC)9-^ 9|z|2) A ^ICI 2 ] .
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Observe that rriaj^ = 1 when a = 0. It is not hard to see that m^j^
only depends on |a|2. More precisely, see [3], m^j^ = F(j,k,^ + 2, |a|2),
where F is the hypergeometric function

F(m b c z} - (c- 1)' [ tb-l(^ fY-b-i dt
( ? ' ^ ) - ( ^ - l ) ! ( c - & - l ) ! 7 o ( ) (T^F

_ mb m{m + Y)b(b-\-1) ^
=^^~lz+^T^~T^Z + ' " -

The hypergeometric functions that appear in the kernel are of the forms

F{a + n - q - 1, q + 1, a, |a|2) and F(a + n - q, q + 1, a + l,|a 2)

and therefore, if we apply the well-known formula (see for instance [15]),

F(m, &, c, z) = (1 - ̂ ^'"-^(c - m, c - 6, c, z),

the functions that appear are

F( -n+g+l ,a -9- l ,a, |a2) , F(-n + 9 + l,a - q,a + 1, |a 2)
and

(1- a|2)71 (l-|a|2)n

If m is a non-positive integer then actually F(m^ 6, c, z} is polynomial in z
of degree —m. More precisely,

^(_^„+l+^+^^+lJ^)=^^l^^p^(l_2|a|2),

where P^^(x) are the Jacobi polynomials (5.1). Thus the hypergeometric
functions that appear in our expression for the kernel are in fact ratio-
nal functions. If we replace F by its rational expression in (5.4) and plug
it into (5.3) we obtain the stated formula for k^(^,z). Thus the proof
of Theorem 5.1 is complete. [}

Proof of Lemma 5.3. — The kernel for the operator H^f(z) is obtained
in the same manner from H^^(z, ̂ n+i), and a similar computation as for
k^ yields that

^(C, ̂  = Cn^ ( (i _ ^ . ̂ +1-9-1(1 _ ^ . ̂  ̂ ^a+n-g-l^

— C
^d^dO^A^pAaiCI 2 \
(1-C.^+-9(1-C.^ m^^-^)
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for q > 0 and

UC,^)=
Cn,o,q r (1 - H2)0-2 [ log(l - C • z} + log(l - or)] dm(r)

(l-C-^+^./lrKi (l-af)«+"-i

for some real constants Cn,q,a and c. Therefore these kernels satisfy

^O^-i^W^)
and hence they correspond to self-adjoint operators. []

REMARK 6. — For q > 0, h^ can be expressed in terms of Jacobi
polynomials in the same way as k^. In the expression above for the
function h°^, the first term is independent of a (because of rotation
invariance) and hence is equal to log(l — (^ • z). The function

a-1 r ( l-lTl^-^log^-aTJdm^)
TT YI^I (1 - af)^-1

is equal to <I>(|a|2), where <I>(0) =0 and (by a simple computation)

a+n r (1- \T\2)oi-l dm(r)^(\a\^ = a+n [ (l-lTl2)"-^^^)
v / ^ J^(l-ra)^(l-ra)7r yi.^ior^ay^r'̂ a)1

The last term is a rational function in a|2 as before and <I> will involve a
logarithm. An alternative way to compute k^ is to first compute h^ and
then use that k^ = 9^h^. In that computation it is worth to notice that

7 k
9maj,k = —mo;+ij+i^+i(9|a2.

Proof of Proposition 5.4. —We need the following slightly more general
version of (4.1),

(5.9) ^ a + d ^ A & ) ~ = ( / , a ) - ^ - ( / , 9 p A 6 ) ,

which is obtained in the same way. If g = a + d<^ A 6,

M^C) = a-^-1 (-pr^^-p- lei2)""2
7r J\d\<V^p

(a(C^)-—^A&(C, 0)dA(0,
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and after the change of variables ^ = ^"p r we get the desired expres-
sion. []

Notice, by the way, that the right-hand side of (5.9) is equal to

</^-(-p)-1^9A&)~

which means that the mapping a + d ^ A & i — ^ a — (—p)"1^? A b is the
orthogonal projection onto the image of ~.

6. Homotopy formulas for 99

THEOREM 6.1. — Let D he the hall and a > 0. Then

r a n 9paf p ( 9 f }^ ^~=pa+l[a^)-
if f is a smooth function^ and

^ 9K»f (9f^w ~a^=Ka+l[9^)-
if f is a smooth form.

The formula (6.1) is well-known and has been used by several authors,
see e.g. [10]. It follows from the simple equality (Qf/Qzj, /i)a+i = (/, Zjh)a
for holomorphic h. However, (6.2) seems to be new.

Proof. — We first consider (6.2). In view of Theorem 5.2 we may
assume that either / e_ JCa H ̂  or / € /C^ H ̂ . If / C /C^, then
9^f = 0 and therefore (9^+i(<9//(9Cj) = 0 according to Proposition 3.2.
In view of Proposition 3.4 therefore 9f/9(j € A^r+i. Hence by definition,
(9/9zj)Kaf = 0 = Ka^(9f/9(^j). If u is the L2^ minimal solution to
Qu = /, then by the same argument, Qu/Qzj is the i^+i minimal solution
to 9v = 9f/9zj. This proves (6.2) in case 9f = 0. The equality (6.1)
follows from (6.2) and (1.3). Q

In [2], [3] were found operators M^ acting on d-closed (l,l)-forms such
that

Ma99u = u — H^n,

where no: is the orthogonal projection in L^ onto the pluriharmonic
functions. Explicitly,

(6.3) n,=p,+p,-n^,
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where, as before, P^ is the holomorphic projection and 11̂  = P^Po, is the
(orthogonal) projection onto the constants. In particular, M^O provides
the L2, minimal solution to 99u = 0 if dO = 0. Sharp estimates of the
kernels were given.

By abstract nonsense _it follows that there is an operator R^, acting
on 3-forms, such that QQM^O = 9 - R^dO for any (reasonable) (1,1)-
form (9. We will now construct (semi-explicit) operators Mo, and Ra with
these properties and moreover we will extend to the case of (g, g)-forms.
It should be emphasized that the operator M^ constructed below, when
acting on (1, l)-forms (probably) is not the same as the operator in [2], [3],
but it anyway gives the minimal solutions, and admits the same estimates.

So far, the operator Ka is just defined on (0, ̂ )-forms. We can extend
to an operator Kc, : Sp^ -^ Sp^-i by the formula

K^aij^)d^ ^d(I)(z)=K^aIJ((:)d(J)/\dzI.

The operator P^ is extended in the same way. It is then clear that the
formula

QK^ + K^9 = I - P^

still holds. The main observation now is

PROPOSITION 6.2. — Let Ka be the canonical operator with respect to
a, and P^ the corresponding orthogonal holomorphic projection. Then

9K^=-K^9 and 9P^ = P^O.

Proof. — By the definition and Theorem 6.1 we have

QK^ (a(C) d^ A dC7) = 9K^ (a«) d^) A dz1

= E^1)1^"1 -^(adC7) A dzk A dz1

oz^

= ̂ (-l)!7!-1^ (^ d^) A dzk A dz1

= K^ (^(-1)1J!-1 ̂  d^ A d0 A d^)

^-^(^(OAdC^AdC 7 ) .

The statement about Pa now follows by the computation

QP^u = 9(u - K^Qu) =9u- Ka+i99u = Pa+^Qu. Q
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We define Ka : <f^g —> <f*-i,q by the formula

Kaf = Kaf.

For (g, g)-forms we then let

M, = ^(J?^+i - KaK^i\

Da = \ (9Ka9Ka + 9Ka9Ka)

if ^ ^ 1. For g = 0 we let
Da=PaPa'

Finally,
Ha=9Ka+9Ka-Da.

Certainly Mo,, Da and IIo;, map real forms onto real ones. Moreover we
have

THEOREM 6.3.
(a) The operator Da '' ^q,q —> Sq,q ^ a projection onto the d- closed

forms.

(b) The operator Ha : Sq^q —^ Sq^q is a projection onto the 9 9-closed
forms.

(c) The operator M a is a homotopy operator for i 9 9 in the following
sense,

(6.4) Ma{i 99u) =u- Il^u,

(6.5) i 99Ma0 = Da^iO =0- Ra^-i d(9,

where

î +i d = Ka+i9 + K^i9 - \ (Ka^i9Ka+i9 + Ka^i9Ka+i9).

In particular, MaO is a solution to i99u = 0 if d0 = 0. Actually any
operator K^K^ solves the <9<9-equation. This is obvious from Proposi-
tion 7.1, since if d0 = 0 then K^O is a 9-closed solution to 9f == 0 and
thus Kaf solves 9u = f which means that 99u = 0.

Recall that 9Ka is a projection of (g,g)-forms onto the (9-closed
ones, and analogously for its conjugate, and therefore (b) says that the
projection II of (q, g)-forms onto Ker 99 is the sum of one projection onto
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Ker<9 and one onto Ker<9 minus one projection onto Kerd. When q = 0
this is just the formula (6.3) above.

Proof. — It is enough to prove part (c) since (a) and (b) are immediate
consequences of (6.4) and (6.5). To see (6.4), note that by Proposition 6.2,

-QQK^K^ = QK^QK^ = (I - K^,9)(I - K^Q)
=1- K^9 - K^Q + K^iQK^Q

if q ^ 2. From this, (6.4) follows. The case q = 1 is completely
analogous, just replace the projections 9Ka and 9K^ by P^ and P^.
By Proposition 6.2 again we have

K^K^QQ = -K^QK^Q = (I - 9K^(I - QK^)
=1- [9K^ + QK^ + QK^QK^),

which implies (6.5). []

Instead of trying to give a complete description of all the operators
involved, we concentrate on M^. It is possible to give a semi-explicit
expression as some real-analytic function of the quantities 1 — [C|2, 1 — ( , ' z
and some simple forms but we restrict our ambition to indicate that
it admits some expected Z^-estimates. A straight forward estimation,
see [4], [5], gives the estimates

(6.6) /(I - \z\^\K^V <C f(l- l^'-^l/ldy,
^B JB

for any £ > 0 and

(6.7) / \K^f\dV<C /'(l-l^)-1/2!^,
J9M JB

if a is sufficiently large (depending on £). For the operators Ma we have
the following expected result.

PROPOSITION 6.4. — For (q,q)-forms 0 and any £ > 0 we have the
estimates

(6.8) [ ( 1 - M^IMeidV < C f{\ - ̂ V^^dV,
^B JB
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and

(6.9) ( \M0\da<C f \0\dV.
J BE ^B

ifM = Me, and a is large enough {depending on £).

Note that for a (p, q) form 6,

\0\ - (-p)|^ + ̂  (|9p A 0\p + |9p A e\ft) + |9p A 9p A 0\p

For 9 = 1, eq. (6.9) gives the Henkin-Skoda estimate of solutions to
the (99-equation, and therefore the statement may be thought of as a
generalized version. It can certainly be proved by the usual method as
well, but our purpose is to point out that actually our operator M works.
Proposition 6.5 follows from (6.6) and (6.7), observing that the kernel for
the commutator

f^g^^K^f-K^a^^f)
is 0(\C, — z\) times the kernel for Ko,. For the details we refer to [6].
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