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CANONICAL HOMOTOPY OPERATORS
FOR THE 8 COMPLEX IN STRICTLY
PSEUDOCONVEX DOMAINS
BY MATs ANDERSSON, JORGEN BOO AND
JoaquiM ORTEGA-CERDA (*)

ABSTRACT. — In a strictly pseudoconvex domain D = {p < 0} in C™, we study
the homotopy operators K, for 0 that are canonical with respect to the metric
(—p)iddlog(l/ — p) and weights (—p)®, o > 0, and their relation to the canonical
homotopy operator Kj for 9, on 8D. We prove that the boundary values of the kernel
of K4 in the ball are provided by well-known integral formulas due to Henkin, Skoda
et al. We are able to compute the kernel for K, in the interior of D, by using a
technique for representing forms in D by complex tangential forms on the boundary
of a higher dimensional domain. This is a generalization of a well-known technique for
functions. In the ball we also prove the commutation rule 8/9z,Ko = Ka410/0¢,
which generalizes a well-known fact about the weighted Bergman projections, and use
it to construct homotopy formulas for 89 in the ball.

RESUME. — OPERATEURS D’HOMOTOPIE DANS LES DOMAINES STRICTEMENT
PSEUDO-CONVEXES. — Dans un domaine strictement pseudoconvexe D = {p < 0}
dans C", on étudie les opérateurs d’homotopie K, pour les 0 canoniques pour la
métrique (—p)i00 log(1/ — p) et les poids (—p)*, a > 0 et leur relation avec 'opérateur
canonique d’homotopie K} pour le 0 dans 0D. On démontre que les valeurs au bord
du noyau de K pour la boule sont donnés par les formules intégrales de Henkin, Skoda
et al. On parvient & calculer le noyau de K, & 'intérieur du domaine D en utilisant une
technique pour représenter les formes dans D par des formes tangentielle complexes
au bord d’un domaine dans une dimension plus élevée. Il s’agit 1a4 d’une généralisation
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246 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

d’une technique bien connue dans les cas des fonctions. Dans la boule, on prouve aussi
la loi de commutation 8/0z¢Kq = Ko+198/0¢s, qui généralise un résultat déja connu
des projections de Bergman a poids. On utilise ce fait pour construire des formules
d’homotopie pour le 99 dans la boule.

1. Introduction

Estimates of growth and regularity of solutions to the d-equation in
domains in C® were obtained by L2?-methods in the 1960’s by Kohn,
Hormander et al. In the 1970’s Henkin, Skoda, and others introduced
formulas for representation of solutions that gave further information
such as LP-estimates, Holder estimates, and so on. These two methods
have been living side by side but the interplay between them is not fully
understood. In this paper we offer a geometrical interpretation of the well-
known Henkin-Skoda solution formula for 0 and its weighted analogues
in strictly pseudoconvex domains. This leads to mutual exchange of
information between the explicit formulas and L2-theory. For instance,
regularity properties of the abstractly defined operators can be derived
from the explicit formulas, and in the other direction, by studying the
adjoint of the d-operator, we can prove a certain commutation property
of the kernels and derivatives in the case of the ball, which makes it
possible to construct explicit homotopy formulas for §0.

The Henkin-Skoda solution formula provides the L2-minimal solution
for O in the ball but it does not coincide as an operator with the Kohn
operator, which is the one that gives the minimal solution when applied
to a 0 closed form and vanishes on forms that are orthogonal to the kernel
of 0, with respect to the Euclidean L? norm. In [16], Harvey and Polking
found an explicit expression for the Kohn operator, essentially expressed
by rational functions, but anyway not as simple as the Henkin-Skoda
formula. In order to interpret the Henkin-Skoda formula geometrically we
have to introduce norms closely related to the Bergman norm.

Throughout this paper we let D be a smoothly bounded strictly
pseudoconvex domain in C”, and p a strictly plurisubharmonic defining
function. For o > 0, let L? be the space of locally square integrable forms
in D such that

2 TI'lnta) ol g2
(L1) 1£15 = T () D( p)*|fI7dV
is finite, where |f| is the norm of the form f with respect to the metric
defined by the form

(1.2) Q= (—p)iaélog(_ip)

ToME 126 — 1998 — ~° 2



CANONICAL HOMOTOPY OPERATORS 247

(in the case of the ball Q is just distance to the boundary times the
Bergman metric) and dV = Q™/n!. The volume form dV is equivalent
to (1/ — p) times the Lebesgue measure, and therefore A2 = L2 NO(D) is
the usual Bergman space with weight (—p)*~1. We let K, be the operator
on L2 defined so that K, f is the minimal solution to u = f if f is a O-
closed (0, ¢+ 1)-form in D (the existence of such a solution is well-known,
see Theorem 2.2) and K, f = 0 if f is orthogonal to K, = L2 N Kerd.
If P, is the orthogonal projection of functions in L2 onto A2, the Bergman
projection, then the relation

(1'3) Ka5f+5Kaf = f = Paf,

holds for f in Domd. (It is enough to verify it separately for f € K,
and f € KX N Domd, and both these cases follow immediately from the
definition.)

These operators are natural to study for several reasons. To begin
with, it is well-known that the J-operator behaves like half a derivative
in the complex tangential directions near the boundary of a strictly
pseudoconvex domain. This is reflected in the standard estimates for 9.
For instance, the well-known Henkin-Skoda estimate, [19] and [21], states
that Ou = f has a solution (f being a 9-closed (0, g + 1)-form) such that

a9 [ enus<c [ o2 V5Ifls + 100 A fle).

Here, | |g denotes the Euclidean norm of a form, and since —p is
approximately the distance to the boundary, 0p A f determines the
complex tangential part of f near the boundary. It is well-known that
this boundary behaviour of J is reflected by the Bergman metric and
therefore by Q as well.

The estimate (1.4) was the first important success for weighted integral
formulas; once they are constructed the estimate follows nicely, as the
very feature of the formulas reflects this difference in normal and complex
tangential part. This suggests that these operators better should be
understood in terms of a metric like © that takes this difference into
account.

One of our main results (Theorem 5.1) is that in the ball case, the
boundary values of the operator due to Henkin and Skoda, and its
weighted analogues, in fact coincide with (the boundary values of) the
canonical operator K,. Expressed in the inner product ( , ), connected
t0 || ||, the kernel for the boundary values of K, has the simple expression

(L5) ka(¢,2)
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248 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

_ZI‘(a+n q—l) Z-d¢ A (dz- dQ)?
I'(n+a) (1= 2z)oe-14n=q(] — (- z)a+1

)ZE@]B.

In the general strictly pseudoconvex case one cannot hope for completely
explicit formulas for K. However, it turns out that well-known solution
operators approximately provide the boundary values of K, in much the
same spirit that certain known explicit holomorphic projection operators
approximate the Bergman and the Szeg6 projections in D, as was proved
by Kerzman-Stein, [17], see [4] and [5].

The spaces L2 and operators K, have connections to the boundary
complex. In Section 2 we notice that | f|, tends to ||fl|s, the L2-norm
of the complex tangential part f|, of f over D, when a@ — 0. It is also
true that (the boundary values of) K, tend to K, the canonical operator
for Jp. In the ball case this follows from Section 5, whereas the general
case is treated in [4], [5].

There is another useful connection to the boundary complex that is
exploited in Section 4. It is well-known and used by many authors the
fact that if 5

D = {(z,w) € C"*; p(2) + |w|* < 0},

then L2(D) can be identified with the subspace L2(8D) consisting of
functions that are rotation invariant in the last variable, and that further-
more, via this identification, the orthogonal projection onto the Bergman
space A? in D, the Bergman projection, corresponds to the Szegd projec-
tion on dD. We extend this representation to higher order forms, so that
forms in D correspond to certain tangential forms on D and so that the
orthogonal projection of forms in L? onto K; corresponds to the ortho-
gonal projection of L2 onto Kj = L N Ker 8, on dD. We also show that
the canonical operator K, can be represented by the complex tangential
boundary values of the corresponding K,—; in D. Since well-known for-
mulas in the ball give the boundary values, we therefore get an effective
procedure to compute the values of K, in the interior. This is the done
in Section 5. The resulting formulas have not previously occurred in the
literature (as far as we know).

A basic ingredient in our proofs is the formula for the formal adjoint 0%,
that is computed in Section 3. It is a first order differential operator with
coefficients that are smooth up to the boundary. It turns out that any
smooth f belongs to the domain Dom 9% of the von Neumann adjoint
of 0, and for a > 1, f € Dom 0% if and only if f,0%f € L2.

It is known since long ago that in the ball

0 of
B"J‘Paf Pa+1(8<J)
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We prove (Theorem 6.1) that this formula extends to the operators K,
acting on higher order forms. This formula is then used to construct
homotopy formulas for the 90 operator in the ball.

ACKNOWLEDGEMENT. — Most of the material in this paper has pre-
viously occurred in the two preprints [6] and [4]. We are grateful to
J.Bruna and M. Passare for several valuable comments on one of these
preprints.

2. Boundary behavior of the metric 2

The pointwise inner product (f,g), defined by the form €, cf. (1.2),
degenerates on the boundary of D, and in order to understand its
asymptotic behavior, we shall express it in terms of 3 = i90p, which
is equivalent to the Euclidean metric since p is strictly plurisubharmonic.

LemMmA 2.1. —If (, )3 denotes the inner product with respect to 3, then
for (0,q)-forms f and g we have
{ (f.9) = ((=p)(f,9) + (p A\ £,0p N g)s) /B,

2.1
. (- p)dV =Bg"/n!,

where the function B = —p + |5p|% is smooth up to the boundary and
nonvanishing.

Proof — Let v = i0p A 0p and w = 190 log(1/ — p). Choose an
orthonormal frame ey, ...,e, with respect to 8 for the space of (1,0)-
forms, such that e; = 9p/|0p|s. Then B =1> ] e; A€;, and

s, v 2j=1€ A€ ApAdp
2.2 w= + =1 %
22 Cor =T ) o7
=atel Né +biZ€j N Ej,
=2
where a = B/(—p)? and b = 1/(—p). Therefore we have that
(—p)dV = (=p)"/n! = (—p)"'w"/n!

= (—p)"*+Lab""18"/n! = B /n!.

The first equality in (2.1) is easily checked for f = g = &5, A...Aé&p,, and
then the general case follows. []

Hence dV is equivalent to the Lebesgue measure divided by the
distance to the boundary. If D is the ball and p(z) = |2|?> — 1, then B = 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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THEOREM 2.2. — Suppose that o > 0. For any 0-closed (0, q + 1)-form
f in L2 there is a form u such that Ou = f, and

(2.3) lullz < ClFIS41-

Of course, to define K,, cf Section 1, we only need the weaker
statement that the 0-equation is solvable in L2. Theorem 2.2 is readily
proved by integral formulas; see e.g. [4], [5]. It is worth to notice that
this theorem, however, does not immediately follow from the standard
L?-technique, but it requires an extra argument due to Donelly and
Fefferman, [12].

REMARK 1. — From the proof of Lemma 2.1 it follows that if f is a
(p, q)-form, then |f|?dV = (—p)"~P~9|f|>w™/n!, which implies that

_ I'(n+a)
(2.4) If12 = T (a) [ E———

if )
2 [ 2 Y.
11 = [ oIS
Therefore, (2.3) can be rephrased as ||ull¢w < Cel|fllew for all £ >n —q.

Recall that a vector at a point p € 9D is complex tangential if it is
annihilated by both dp|, and d°p|,. If f is any form over 8D, we denote
its restriction to the complex tangential vectors by f|;,. This restriction is
determined by dpA d°p A f, and in particular if f is a (0, g¢)-form then f,
is determined simply by 0p A f. In particular, f |» is smooth if and only
if dp A f is smooth etc. On the boundary, (f, g) degenerates to an inner
product of the complex tangential parts f|, and g|, of f and g. When «
tends to 0 we get the following inner product for complex tangential (0, g)-
forms f|, and g|; :

(n—1)!

2nqn

/ (f,g)do = (”_‘_1)_'/ (Op A f,0p A g)pda/B,
oD oD

217,7-‘-11,

(f?g)b =

where do = dS/|dp|s and dS is the surface measure induced by 8.

Let L? denote the corresponding L2-space and let K, be the kernel
of 9y in L. It is well-known, see [13], that 03 has closed range, and
therefore Opu = f is solvable in L2 for a (0,q)-form f,1 < g<n-1,
if and only if f is orthogonal to Ker 8. For ¢ < n — 2 this is equivalent
to that 0,f = 0. Therefore we can define the operator Kj; on Lg such
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that K f is the minimal solution to dyu = f if f is orthogonal to Ker 8*
and Kpf =0 if f € Ker 8* We then have the homotopy relation

0pKp + K0y = I — P, — S},

where S, is the orthogonal projection of (0,n — 1)-forms onto Ker 8} .

3. The adjoint operator 5;

Let (, ) denote the inner product connected to the norm || ||, i.e.,

(1990 = gt [ (-t19

and let 5; be the formal adjoint of 0 with respect to ( , ), i.e.,

(0f,9)a = (f,029)a

for all compactly supported smooth f and g. Our first objective is to find
a formula for 0% that reveals its behavior near the boundary. If 6 is a
form, we let 68— denote interior multiplication by 6, with respect to the
metric G, i.e., ~

(0-f,9)s = (f,0Ag)s forallg.

ProrosiTioN 3.1. — With the notation above, the formal adjoint is

8y =i[0,(8— (1/By)-) + L5y

when acting on a (p, q)-form.

Since (3 is non-degenerate on D, the operators involved have coefficients
that are smooth up to the boundary and hence 07, is a first order diffe-
rential operator with smooth coefficients. Letting a = 0, the proposition
provides a formula for the 5,’; operator on dD.

Proof. — We use the notation from the proof of Lemma 2.1 and
Remark 1. From (2.4) it follows that

(3.1) (=p)9s =9,
and since w is a Kahler metric, see [8] or [14],

% . 6[)
a+n—p—-q1w =1 [8’ wﬁw] + (a + n— p - q) - _|0J7

(3.2) =

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



252 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

if =, denotes interior multiplication with respect to w. Thus we just
have to express w—, and Op—, in terms of —. From (2.2) it follows
that e;—we; = (e1,€5), = (1/a)é1; and hence

(3-3) dp=w = ((—p)?/B)dp~.
Moreover, it is readily verified that

n

(34) W = (1/a)ier Aer=+(1/b)i ) (—p)(e; A &)

j=2
= (=p)(B - (1/B)y)~
The desired formula now follows from the equations (3.1) to (3.4). []

The following simple consequence of Proposition 3.1 will be used in
Section 6.

PROPOSITION 3.2. — Suppose that D is the ball B and p(z) = |2|? — 1.
If 0/0¢; acts as a Lie derivative on forms, then

(a%)ézﬂzﬂ(a%).

Proof. — One readily verifies that 9/9¢; commutes with 3-0 and 9p.
Since 0p—0 is the Lie derivative with respect to the vector field ) (; a%j’

we have that 9\ ) 9 9
(a—g)apﬁa:apﬂa(—@) + 5?3

The desired equality now follows from Proposition 3.1. []

An f € L2 is in Dom 0} (the domain of the von Neumann adjoint) if
there is a g € L2 such that (g,u)s = (f,0u)s for all u € Dom . If this
holds, then clearly % f = g in the distribution sense, but in general the
converse is not true, i.e., there are f € L2 with 8% f € L? such that yet f
does not belong to Dom 97,. Let £, denote the space of (0, ¢)-forms in D
that are smooth up to the boundary. In the Euclidean case and a =1 an
f € &, is in the domain of 8* if and only if dp—f = 0 on the boundary.
Our situation is much nicer.

PROPOSITION 3.3. — If a > 0 and f,g € Ex then (9%5f,9)a = (f,09)a-

Proof. — Since 0% has smooth coefficients, the boundary integral
that occurs when integrating by parts must vanish if @ > 1. Since
the expression is analytic in «, the general case follows by analytic
continuation. []
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PropPOSITION 3.4. — Suppose that a > 1. If f,g € L2 and 0%f and
dg are in L% as well, then (0%,f,9)a = (f,09)a. That is, f € L2 is in
Dom 8}, if and only if 8% f is in L2.

Since the the image of 9: L2 , ; — L2, is equal to Ky for ¢ > 1,
.we have in particular that f € L2 , is in K%, if and only if 8% f = 0.
Proposition 3.4 is an immediate consequence of Proposition 3.3 and the
following approximation lemma.

LEmMMA 3.5. — Suppose that P is a first order linear differential
operator with coefficients that are smooth up to the boundary, and suppose
that o > 1. If f and Pf are in L2, then there are f; € E, such that f; — f
and Pf; — Pf in L2.

To prove this lemma one first approximates f by a form defined in a
neighborhood of D and then makes a standard regularization of this form.
We omit the details. In general the lemma fails if @ < 1; ¢f. Remark 2
below.

PROPOSITION 3.6. — For any a > 0, we have that (03,¢,9)a = (¢,09)a
if p € E« and g,0g € L2. That is, any ¢ € E, belongs to Dom J7%,.

Proof. — 1If g,0g € L? then g,0g € Lil for o/ > a. Since 9%,4 is in
&, it follows from Proposition 3.4 that (0%,¢,9)e = 0 for &’ > 1. The
desired conclusion then follows by analytic continuation. []

The argument above breaks down if one only assumes that ¢, 0rpe L2,
since this does not imply that 8%,¢ € L2, for o’ > a.

Let K*: L2 — L2 be the L2-adjoint of K,.

PROPOSITION 3.7.— Let a > 0. If f € L2, then Ko f is in Dom 8, K, f
is in Dom 9}, and we have the orthogonal decomposition

(3‘5) 5Kozf + 5ZK2f =f-Puaf.

Proof. — If f is a function, then the equality is just (1.3). Therefore
let us assume that f is a (0, q) form, ¢ > 1. By the very definition of K,
it follows that 0K, f is equal to the orthogonal projection of f on K.
Therefore, K, f is in Dom d and the operator 0 K, is self-adjoint. For any
g € Dom 0 we have by (1.3) that

(K3f,09)a = (f,Ka0g)a = (f,9 — 0Kag)a = (f — 0Kaf,9)as

since_éKa is self-adjoint. This shows that K*f € Dom 9% and %K f =
f - aKaf' D
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The preceding proof just depends on the solvability of 9, i.e. (1.3). If
O, =00, +9%0 and E,=K,K!+K:K,,
then by similar arguments, one can prove that

ioonzf:f_-Pa.f’ feLia

(3.6) _ _
E.On f=f—P,f, f € Dom[,.

There are similar statements for theé boundary complex. Since ( , )
is the limit of ( , ), when o — 0, the analog of Proposition 3.3 folows
by continuity, and therefore the analog of Proposition 3.4 holds as well,
since the smooth forms are dense in the graph norm. If K, (0, and Ej are
defined in the obvious way, then the analogues of Proposition 3.7 and (3.6)
hold, if just f — P, f is replaced by f — P, — Sp.

REMARK 2. — Proposition 3.4 is not true for 0 < a < 1; at least not for
(0, n)-forms. To see this, let D be the unit disk. Since 9: L%, — L2 , is
surjective, the statement would imply that f € L2 ; vanishes if 9%, f = 0.
However, the latter equation means that 8(1 — |z|2)®f = 0 and hence the
kernel of 0%,: L2 | — L2  consists of all forms f = (1 —|z|>)~*h, where h
is holomorphic and [(1 — |z]?)~*|h[?> < co. For ¢ < n the corresponding
result is true in the “limit case” when a — 0; therefore, one could guess
that it is true even in the intermediate cases 0 < a < 1. In particular we
would then have that

(3.7) feL?and 85f =0 implies feK2

for (0, q)-forms, 1 < ¢ < n — 1. Let us relate this statement to the norms
| lle,«o- In view of (2.4) we have that 07, f = 0 if and only if 5Z,wf = 0, where
¢ = a+n—q. Since |0log(—1/p)|. is bounded, w is a complete metric, see
[8], and therefore the compactly supported forms are dense in the graph
norms with respect to the norms || ||¢. In particular, this means that
the formal adjoint c'_?zu coincides with the corresponding von Neumann
adjoint. Hence (3.7) holds if and only if the image of 8: L7 , — L7, is
dense in K, (as it follows that f is orthogonal to this image if 52,“) f=0).
In view of Proposition 3.4, the image is dense if « > 1. For a > 1,
it is in fact equal to K, ; this is the content of Theorem 2.2. However,
9:L3, — L, is not surjective if 0 < o < 1. To see this, let D be
the ball and let f = Oh, where h is some holomorphic function with
h(0) = 0 that is C' up to the boundary. Then certainly f € K1,
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but it is not in the image of 0 unless h = 0. In fact, if du = f and
J(1—[¢[*)*2uf® < oo, then since g = u — h is holomorphic, (and g and
h are orthogonal with respect to radial measures) we would have that
J(@=1¢*)22(]h? + |g|?) < co which implies that h = 0.

4. Up and down in dimension

Given our domain D and defining function p in C", let
p(z,w) = p(z) + |w* for (z,w) € C"ti

Then p is a strictly plurisubharmonic defining function for the strictly
pseudoconvex domain D = {j < 0} in C**!. Hence, anything done so far
applies equally well to D. For a (0, g)-form f in D, we put

f(zw) = f(2).
We notice that f is determined by the complex tangential values f |p Of f .
In fact, f|, = 0 means that (8p(z)+wdw)A f(z) = 0 on 8D, in particular
at points (z,/—p(z)), and this implies that f(z) = 0.
In what follows ( , ), means (, ), when a =0.
PROPOSITION 4.1. — Let D and D be as above. Then for (0, q)-forms
we have

i) (f,9)a = (f,3)a-1 for a > 1. In particular, f € L2(D) if and only
if f € L2_{(D) for a > 1 and f € L}(D) if and only if f|, € L2(0D).

(ii) 0f =g in D if and only if0f =g in D if and only ifgbf“, = 0|p-

(iti) (3%/)~ = 8%+ f for f € £.(D) fora > 1, and (31)™|, = 8} f.

(iv) f € KX if and only if f € KL |, and f € Ki if and only if
f|b c ’C#‘

(v) If f € L2, a > 1, then f = f1+ f2 1s the decomposition in K, and
K2 if and only if f = f1 + fa is the decomposition in Ko—1 and KL_;,
and if a =1, then f = f1 + f2 is the decomposition in Ky and Ki if and
only if fiv = f11p + f2b s the decomposition in Ky and Ki-.

Proof. — Since B =i00p+idwA dw we find that, at each point, dw is
orthogonal to all dz; with respect to 8, and moreover dw has norm one.
In other words, if a,a’, b,V contain no differentials of w, then

{a+bAOw|* d +b A 5|w|2>5 = (a,d’)p + |w|*(b, ).
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It follows that |5ﬁ|2 = |8p[% + |w|? and therefore B = B. In view of (2.1)
we also get

(4.1) (.97 ={f.9.

Moreover, cf. (2.1),
(=p)dV = BBpy1 = BB, Aidw Adw = (—p)dV A idw A dw,

and therefore,

Je v = [ (- av

D
a—2, _
-1/ (=p = [wl?)™ i dw A dw(f, g)(=p)dV
D J|w|?2<—p(z)
27

= —p)® dv.
= [ it
This proves part (i) for & > 1. The case a = 1 follows by continuity.
Part (ii) is obvious, just noting that 5bf|b = (5f)|b =0 v
To see part (iii), first notice that if ¢ is a form that only contains

differentials of w, then ¢—f = 0. Moreover, (0f)” = 8f. Therefore, (iii)
follows from Proposition 3.1 .

Let us now consider part (iv). The nontrivial direction is that f € KL _,
if f € KX (we assume o > 1, the case a = 1 is similar). It follows from

Theorem 4.1 that the operator ~ : L2 (D) — L2_,(D) is bounded. Let
M : L%_,(D) — L%(D)
be its adjoint. We claim that 0Mg = 0 if dg = 0. Clearly, 0Mg = 0

in the distribution sense means that (0%¢, Mg), = 0 for all compactly
supported smooth forms ¢. However, for any such ¢ we have

(5;¢7 Mg)a = ((5Z¢)Tag)a_1 = (5;—1&5’ g)a—l’

and the last term vanishes by Proposition 3.6. Now take f € K
and g € Ko—1. Then (f,g)a—1 = (f, Mg)a = 0 by the assumption on f
since 0 Mg = 0. Thus part (iv) is proved.

The last statement is an immediate consequence of (ii) and (iv). []
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With the same argument as above it follows that
OMg=Mbg if dge L2 (D).

It is possible to verify this equality directly by means of the formula for Mg
in Proposition 5.4 below.

Let ¢ be a complex tangential form on dD. We say that ¢ is invariant
if 7*¢ = ¢ for all 7(z,w) = (2, e®w). Notice that 7*¢ is well defined since
7*dp = dp and 7*d°p = d°p.

PropOSITION 4.2. — There is a one-to-one correspondence between

forms f € L3(D) and invariant complez tangential forms ¢ € L%(0D).
Moreover, f is smooth on D if and only if ¢ is smooth.

Let £2(8D) denote the space of smooth tangential (0,*) forms. If
f € &(D) then clearly f, € £Y(&D). The proposition states that the
converse holds as well. This is less trivial, and it will be clear from
the proof that, in general, one loses one half unit of regularity on the
“complex normal” component of f. For instance, f|, is bounded if and
only if f admits a representation f = u; + 9p(2) A ua/+/—p(2), where u;
are bounded.

Proof of Proposition 4.2. — Suppose that ¢ is an invariant form and
let
O (2, w) = wdw A a(z,w) + b(z,w)

be a representing (0, g)-form, where a and b contain no differentials dw.
After possibly taking a mean value of all rotations in w, we may assume
that @ itself is rotation invariant in w, and then it follows that actually a
and b only depends on z. Therefore ¢ = f), if f(2) = —9p(2) Aa(z) +b(2).
The uniqueness of f is clear by the remark before Proposition 4.1, and in
view of part (i) of this proposition, f € L#(D) if and only if f|, € LZ(0D).

If f is smooth on D, then it is clear that f € £° (815) Conversely, if ¢ is
smooth then there is a smooth invariant representing form ® over 8D as
above, which means that b(z) and wa(z) are smooth on dD. Then clearly
b(z) is smooth on D so we have to prove that a(z) is smooth on D as well.

For simplicity we assume that n = 1 and that D is the unit disk. The
possible problem is when w is close to 0. Here

(w,t) = (e'y/1 — |w|2,w)

are coordinates on dD and so (w,t) — wa(e\/1— |w]?) is a C-
function. In particular, for real z, (z,t) — za(e*v/1 —z2) is smooth
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and 'odd in x. Therefore there is a smooth function u such that
za(eV1 — 22) = zu(z?t). Thus a(re®) = u(l — r? t) and hence it is
smooth up to the boundary.

Notice that any invariant (0,n)-form ¢ € Lg(af)) is orthogonal to
Ker 9} ; in fact, this is equivalent to the solvability of dyu = ¢ in Lg(@ﬁ),
which in turn follows from Propositions 4.1 and 4.2. This can also be
verified directly, see [6].

Let K o denote the canonical homotopy operator in D with respect to g,
and let Kj be the canonical operator on 9D (corresponding to a = 0),

and similarily with 130, and 13;,. From Propositions 4.1 and 4.2 we get the
following basic result.

THEOREM 4.3. — With the notation above we have that

(Kaf) = Ka-1fy,  (Paf) = Pacrf

ifa>1 and o L
(K1) 15 = Kof1s,  (Prf)1o= Pofs

Thus Kof (and P.f) can be reconstructed from the complex tangential
boundary values Ko 1f|b (and Py 1f|b) In particular, K, f is smooth if
(and only if) Ko_ 1 f1b ds.

Proof. — First suppose that f € K4. Then u = K, f solves ou=f
and u € K}. By Proposition 4.1, therefore, 9% = f and @ € KZ_;, so
that @ = Kq_1f. On the other hand, if f € KL, then f € K1 , and
therefore, K, f as well as K,_1 f vanish. The other statements follow in
the same way. (]

For the Bergman projections P,, this theorem is wellknown and has
been used by many authors, see e.g. [1], [7] and [20].

5. Integral representation in the ball

In this section we consider the unit ball B in C* and p(z) = |2|> — 1.
There are well-known explicit formulas for the canonical boundary ope-
rators K, P, (and Sp) on OB. By repeated use of (4.2) one can therefore
compute K, for all positive integers «. Since the boundary operators are
known to preserve regularity we obtain regularity for K, in view of Pro-
position 4.2. However, using (4.3) we can obtain the same results for all c.
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It is well-known that the Bergman projection P, is given by

Pf(z) = (fipal-,2)),,
where

1

(5.1) Pa(C,2) = A=C ova

There are similar formulas for P, and S, on 0B, with kernels

po(G,2) =(1=C-2)™" and s4(C,2) = 6(2) AS(O)((L—C-2) 7,

where ¢ is the (0,7 — 1)-form

=Y (-1)y7*gdg;,

j=1

in the sense that P,f(2) and Syf(z) are the the boundary values of
the holomorphic functlon (f,p(-,2) )» and the anti-holomorphic form
(f,sb(+, 2) )b, respectively. Moreover it is wellknown and not hard to verify
that P, as well as P, and S, preserve regularity.

REMARK 3. — We thus have adopt the convention that the kernel
ta(C, 2) corresponds to the operator Tof(2) = (f,t(-,2))a- For (0,q)
forms f and g, (f,9)dV = cof A g A Q,_g, where ¢ = 1 if g is even and
¢q = —i if ¢ is odd. Therefore the corresponding operator on (0, g + 1)-
forms can be written in the form [ f AT if T((, 2) = ta(¢, 2) A Qn—g(C).

THEOREM 5.1. — Let B be the ball in C™ and let o > 0. The boundary
values of the kernel ko(C, z) for the canonical operator K, are given by

"I Tatn—g-1) z- ¢ A (dz - d¢)
(5.2) ka(C,z) = Z F(’Il ¥ a) (1 _ C )a 14+n— q(l — C . 2)q+1 )

q=0

for z € OB. Moreover, the values in the interior are given by

1
(5.3) ka(C,2) Zcm,q el e Jap)
x [[(1=C-2) Ptz dC = (1= [2P)PegtsC - d¢] A (d2 - Q)

+qP2M 5 dCA (dz - dQ) T A D22 AL dg]
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where
I'n+a—-qg—-1) T(a)'(n-q) ’
I'(n+ ) I'n+a—-—qg-1)

L pap — 1 =R 1)
1=C 2P

Cn,o,q =

and Py, and Pff_—qu" are polynomials in |a|? of degree n — 1 — q.
More precisely, P2# = P%B(1 — 2|a|?), where P%#(x) are the Jacobi

polynomials

Pt = gy gy gy
m 2mm]! dz™ '
Let K? be the operator, defined by the kernel (5.2) that maps forms in B

to complex tangential forms. In view of Remark 3 one can confirm that

this is precisely the solution operator for 0, found by Skoda and Henkin

for oo = 1. The general case follows for instance from Example 1 (iii) in [9];

for integer values of , see also [7]. It is wellknown that K® maps &, into £?

(i.e. smooth tangential forms) and that the relation

(5.5) ObK% + K20 = I — P,,

holds. When a — 0 then this relation tends to 8,Kp + Kp0 = I — Py — S.

Since K’ maps &, into £, we can use (4.2) and Proposition 4.2 to
conclude that K, preserves regularity, at least for « > 1. However, by loo-
king directly at the formula for the interior values one can check that this
is true for all a. Another possibility is to confirm, following [7], that K}
actually has an analytic extension to Rea > —n, that maps & — EL.
From the proof of Theorem 5.1 it follows that one can obtain K from
the boundary values of the operator in B obtained by taking the formal
adjoint of the kernel for K,_1. It is then easy to check that this opera-
tor preserves regularity. However, again one can just as well consider the
kernel for K} directly. Anyway, we have

THEOREM 5.2. — For any a > 0, the projections P, and the canonical
operators K, and their adjoints K, preserve reqularity. In particular, we
have regularity for the orthogonal decomposition (3.5). Moreover, since Eq
preserves reqularity we have reqularity for the O, -equation.

REMARK 4. — Since

P 0" () =T(n+a—q-1)/T(@)(n-qg),
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ka(¢,2) coincides with k2((,2) as tangential forms when z is on the
boundary. Notice that 1 —|a|?> = O(|¢ — z|?) for (¢, z) on compact subsets
of B x B. Since

PO"hM(=1) = P77 (=1) and Z-dCAC-d( = O(|¢ - 2)

n—q—1 n—q—1
it follows that k4(¢, z) = O(|¢ —2|~2"*!) as expected. If n = 1 (and ¢ = 0)

then )
1_|a|2= Ic—fl
|1 —¢2f?
and therefore the kernel reduces to
zd¢

1
ko(C2) = — ——— |
D T e
which corresponds to the weighted Cauchy integrals in the unit disk.
For further discussion about the nature of the singularity of this kernel,
see [4], [5]. For an alternative way of writing the kernel, see [6].

REMARK 5. — Previously there have appeared several constructions of
explicit operators B, that gives the L2 minimal solution when applied
to a O-closed (0,1)-form. One such formula was found by Charpentier
in [11]. Other possibilities are provided by Example 1 in [9], by making
various choices of the section S, e.g. S = (1 — (- 2)z = (1 — |2|>){ or
S=—(1-2-¢)¢+(1—|¢|?)z. The first choice give back the Charpentier
kernel. However one can verify, see [6], that none of these kernels coincide
with the kernel for the canonical operator K,. From the geometrical
interpretation it is clear that this kernel neither is equal to the kernel
for the Kohn operator found by Harvey and Polking, [16].

Proof of Theorem 5.1.— Let K? denote the operator that is defined by
the kernels (5.2). Our starting point is the knowledge that this operator
map smooth forms onto smooth tangential forms and that (5.5) holds.
Now let

S Lla+n—g-1) (dz-d()?
b _
e qgo F(n + a)q (1 — E . z)a—1+n—q(1 —C- 2)(1 »  z€ 0B,

where 1/2° means logz, and let HY denote the corresponding operator.
Then even HY maps smooth forms onto smooth tangential forms and
since Ochl, = kY it follows from Proposition 3.3 that

(5.6) Kof = HodLf

for smooth forms f.
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Now let o > 1 and consider the operator K 5 _, and its corresponding
kernel k:f;_1 on B in C™*!. It is readily verified that the tangential

forms K, b . f and flg_l f are invariant if f is a form in B. Therefore it
follows from Propositions 4.2 and 4.1 and (5.6) that these operators define
operators K/, and H), in B, which preserve regularity, and such that

(5.7) K = H' %,

We are to show that in fact K, is equal to K,. We already know that the
explicit operator P, represents the orthogonal projection P,, and that
P,f = Pa_1f, cf. (4.2). Hence it follows that

(5.8) OK!\,f +K/.0f = f — Puf.

LEMMA 5.3. — The operator H!, preserves regularity and (H.,f,$)o =
(f’ HA‘Z&) fO’f’ ¢7f S g*-

Taking this for granted, we can conclude the proof. Let IT =  K/,. Then
it follows from (5.8) that II is a projection & — Ky N &y, and from (5.7)
and the lemma it follows that (IIf,¢)e = (f,Il¢), for smooth ¢, f.
Therefore,

ITf Nl < |l ]l
(in fact, ”Hf“2 = (Hf,Hf) = (H2fvf) = (Hf7f) < ”f“”Hf”) and

since &, is dense in L2 we find that II is (the restriction to &, of) the
orthogonal projection L2 — K, . In particular, we find that the orthogonal
decomposition L2 = K,®KZ preserves regularity. Now, let f be a smooth
O-closed form. Then it follows from (5.8) that K/ f is a smooth solution
to Ou = f, and since the projection IT preserves regularity, the minimal
solution u is smooth as well. Another application of (5.7) and (5.8) yields
that u = K/ f, since K/u = H',0*u = 0. Thus we have proved that

actually K f is equal to the canonical K, f if f is smooth and a > 1
(or even o > 1).

To handle the case o > 0 we have to assume that the entire theorem is
already proved for @ > 1. We notice that the explicit operator K f,
defined for f € &, and a > 1 by the kernel (5.3), has an analytic
continuation to @ > 0 and by the remark preceding Theorem 5.2 it
is a mapping £ — &,.. Again by analytic continuation it follows that
OK!:E, — &, is self-adjoint and that (5.8) holds for all a > 0. As before
we can then conclude that K, is the orthogonal projection onto K., and
that K f = Ko f for all a > 0.

To obtain (5.3) and for the proof of Lemma 5.3 we need the following
proposition.
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PROPOSITION 5.4. — Let M:L%_,(D) — L%(D) be the adjoint of
“: L2(D) — L2_, (D). Suppose that g(¢,€) = a(¢,€) + A€ AB(C,€). Then

_a—- 1 . 2y a—2
Mo = 2 [ (-leP)

x (a(¢,v=pT) - \/—__zépAb(c,J—‘ﬁT))dA(ﬂ.

From (5.2) we have that
ko1 (¢, w; 2, z041) = AZ - dCA(dZ - dO)*
+ (Zn+1A(dZ - dC)? + ¢(dZ - d¢)? ' AdZp41 ) Adw,
Fa+n—-—qg-1) 1 ‘
I'(n+ a) (1=Cz—wW2py1)ot =971 (1 —(-Z—wZpy1)9t?

In view of Proposition 5.4 and (the proof of) Proposition 4.2 we then get
that

A=

_T(a+n-q-1) 1
k&(¢,2) = T(n+a)  (1—C.z)atn—a-1(1_(.z)et!

X {z A (dZ - dC)"Ma—2,a4tn—g-1,¢+1

1 _
- 1—|2[2)(dz - d¢)? =z - d¢ A q(dz - d¢)T7 A D) 2)?
(1=[CI2)(1=]2[?) (( ) ) )
ABICI* A m:x—2,a+n—q——1,q+l}’
where
o _a- 1/ (1= |7|2)*=2dm(r)
T T e —an)il—an)F
/ _a-1 / (1= |7]>)227dm(T)
Mes2ik =TT f o T —an)i(T - an)F

and a = /1—[([2y/1—]2[?/(1 = { - 2). An integration by parts in the
expression for m' reveals that m;,_, ; , = (aj/a)ma,j+1,x and hence

MNa+n—q—1)
K9 = N
Ma—2,a+n—q—1,q+1 _ _
= d¢ A (dz - d¢)?
[(1—C-z)a+"—q—1(1_<.§)q+lz ¢ ( z C)
_atn—g-1 Ma—1,a+n—g,q+1
e (1 — C-z)atn—a(1 — (-z)a+1

((1—=[21*)(dz - d¢)? — z-d¢ A q(dz-dQ)* " A D|2[*) A a|¢|2].
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Observe that mq jx = 1 when a = 0. It is not hard to see that m. ;
only depends on |a|?. More precisely, see (3], m. ;jx = F(j,k, v + 2, |a|?),
where F' is the hypergeometric function

B (c=1)! e b1 __ At
F(m,b,e.2) = (b—l)!(c—b—l)!/o G e R
L mb m(me+ Db+ 1)
_1+ﬁz+ C(C—|—1)12 22

The hypergeometric functions that appear in the kernel are of the forms
Fla+n—qg-1,9+1,0,]a*) and F(a+n-g,q¢+1,a+1,laf?)
and therefore, if we apply the well-known formula (see for instance [15]),
F(m,b,c,z) = (1 = 2)° "™ F(c —m,c—b,c, 2),

the functions that appear are

F(-n+g+la-g-lae?) . F(-n+tg+la-ga+la’)

(1= af?)" (1= laf?)

If m is a non-positive integer then actually F(m, b, ¢, z) is polynomial in z
of degree —m. More precisely,

I(a+ 1)T(m + 1)

F(-m,a+14p+m,a+1,|a?) = Mot 1im)

PP (1~ 2[al),

where P%#(z) are the Jacobi polynomials (5.1). Thus the hypergeometric
functions that appear in our expression for the kernel are in fact ratio-
nal functions. If we replace F by its rational expression in (5.4) and plug
it into (5.3) we obtain the stated formula for k%((,z). Thus the proof
of Theorem 5.1 is complete. []

Proof of Lemma 5.3. — The kernel for the operator Hi f(z) is obtained
in the same manner from HZ’E (2, 2n+1), and a similar computation as for
kd yields that

(dz - d¢)
hg((, Z) = Cn,q,a( (1 — E z)a+n_q_1(1 _ 4 - Z)‘l Ma—2,a+n—q—1,q
g(dz - d¢)7~" A 9]z[* A B|¢|? )
(1 — C_ . z)oc+n—<1(1 - Z)q Ma-1l,a+n-q,q
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for ¢ > 0 and

ha(g, Z) =
Cno00 / (1= |r[*)*=2[log(1 — ¢ - 2) + log(1 — ar)]dm(r)
(1 — C . z)a—{-n—l Irl<1 (1 — a7—-)a+n—1

for some real constants ¢y ¢, and c. Therefore these kernels satisfy

he(2,¢) = (=1)7ha(( 2)

and hence they correspond to self-adjoint operators. []

REMARK 6. — For ¢ > 0, hl can be expressed in terms of Jacobi
polynomials in the same way as k1. In the expression above for the
function hQ, the first term is independent of a (because of rotation
invariance) and hence is equal to log(1 — ¢ - Z). The function

a-1 / (1 —|7|2)*21og(1 — ar)dm(r)
D (= ar)ornt

is equal to ®(|a|?), where ®(0) = 0 and (by a simple computation)

/ _atn (1 —|r[%)>" dm(r)
?'(|a*) = - /|T|<1 (1-7a)ot"(1—ra)

The last term is a rational function in |a|? as before and ® will involve a
logarithm. An alternative way to compute k2 is to first compute hZ and
then use that £ = 0chd. In that computation it is worth to notice that

Jk 2
8ma,j,k = Ema+1,j+1,k+laia| .

Proof of Proposition 5.4.— We need the following slightly more general
version of (4.1),

(59) (Foat dENB = (f.a) = < (£0p D),
which is obtained in the same way. If g = a + d A b,

Mo(¢)= 22 /|€I<M<—p)—<a—l>(—p ~lgp)*?
(at¢.) = £ 00 nbc.6)) ()

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



266 M. ANDERSSON, J. BOO, J. ORTEGA-CERDA

and after the change of variables £ = \/—p T we get the desired expres-
sion. []

Notice, by the way, that the right-hand side of (5.9) is equal to
(fra—(=p)""&dp Nb)

which means that the mapping a + dé A b +— a — (—p) " €0p A b is the
orthogonal projection onto the image of ™.

6. Homotopy formulas for 8
THEOREM 6.1. — Let D be the ball and o > 0. Then

OPuf _ , (Of
(61) 825] —Pa+1(a_€7)7

if f is a smooth function, and

(6.2 Bl - Ken(5L),

if f is a smooth form.

The formula (6.1) is well-known and has been used by several authors,
see e.g. [10]. It follows from the simple equality (0f/0z;, h)a+1 = (f, zjh)a
for holomorphic h. However, (6.2) seems to be new.

Proof. — We first consider (6.2). In view of Theorem 5.2 we may
assume that either f € Ko N & or f € KL NE. If f € K2, then
0% f = 0 and therefore 9% ,(8f/0¢;) = 0 according to Proposition 3.2.
In view of Proposition 3.4 therefore 8f/9¢; € K2, ,. Hence by definition,
(0/0z;)Kaf = 0 = Ko41(0f/0¢;). If u is the L2 minimal solution to
Ou = f, then by the same argument, du/0z; is the L2 ; minimal solution
to Ov = 9f/0z;. This proves (6.2) in case Of = 0. The equality (6.1)
follows from (6.2) and (1.3). []

In [2], [3] were found operators M, acting on d-closed (1,1)-forms such
that ~
M,00u = u — Iyu,

where II, is the orthogonal projection in L2 onto the pluriharmonic
functions. Explicitly,

(63) Ha=Pa+pa_Hga
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where, as before, P, is the holomorphic projection and 1%, = P, P,, is the
(orthogonal) projection onto the constants. In particular, M,0 provides
the L2 minimal solution to 0u = 6 if d§ = 0. Sharp estimates of the
kernels were given.

By abstract nonsense it follows that there is an operator R,, acting
on 3-forms, such that 0 M,0 = 6 — R, df for any (reasonable) (1,1)-
form 6. We will now construct (semi-explicit) operators M, and R, with
these properties and moreover we will extend to the case of (g, q)-forms.
It should be emphasized that the operator M, constructed below, when
acting on (1, 1)-forms (probably) is not the same as the operator in [2], [3],
but it anyway gives the minimal solutions, and admits the same estimates.

So far, the operator K, is just defined on (0, ¢)-forms. We can extend
to an operator K, : &, « — &, «—1 by the formula

Ko (ars(¢)d¢” A d¢?)(2) = Ka(ars(¢)dC7) Ad2’.

The operator P, is extended in the same way. It is then clear that the
formula B B
0Ky + Ko0=1-P,

still holds. The main observation now is

ProrosisiTiON 6.2. — Let K, be the canonical operator with respect to
a, and P, the corresponding orthogonal holomorphic projection. Then

0K, =—-Ky110 and 0P, = P,+10.

Proof. — By the definition and Theorem 6.1 we have

0K (a(¢)d¢” Ad¢h) = 0K (a(() dc‘J) Adz!
—Z 1)71= 1 Ko (adC?) Adz Ad2!
_Z 1)l1= lKaJrl(ggde)/\dzk/\dzI
= Ko (L DV 55 47 A g n dc?)
= —K(0a(¢) AdC’ AdCT).

The statement about P, now follows by the computation
OPou = 0(u — Ko0u) = Ou — Koy 100u = Pyy10u. (]
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We define K, : Eg — E4—1,4 by the formula
Kof = K,f.
For (g, q)-forms we then let
My = i(KoKoy1 — KoKat1),

Do = (0K BKa + DK 10K )

N =

if g > 1. For ¢ = 0 we let _
D, = P,P,.
Finally, ~ _
M, =0Ky + 0Ky — D,.

Certainly M, D, and II,, map real forms onto real ones. Moreover we
have

THEOREM 6.3.

(a) The operator Dy : ;4 — &q4 is a projection onto the d-closed
forms.

; (b) The operator Iy : €44 — E4.4 1S a projection onto the d0-closed
orms.

(c) The operator M, is a homotopy operator for i 0 in the following
sense,

(6.4) M, (i00u) = u — yu,
(6.5) 100My0 = Doy10 = 6 — Ryy1d,
where

Ra+1d = I?a+18 + Ka+15 — % (K_a+18Ka+15 + Ka+1<§l?a+16).

In particular, M8 is a solution to i 00u = @ if df = 0. Actually any
operator KoK g solves the 00-equation. This is obvious from Proposi-
tion 7.1, since if df = 0 then Kz is a O-closed solution to 0 f = 6 and
thus Ko f solves Ou = f which means that 00u = 6.

Recall that 0K, is a projection of (g,q)-forms onto the O-closed
ones, and analogously for its conjugate, and therefore (b) says that the
projection II of (g, ¢)-forms onto Ker 90 is the sum of one projection onto
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Ker 0 and one onto Ker & minus one projection onto Kerd. When ¢ = 0
this is just the formula (6.3) above.

Proof. — 1t is enough to prove part (c) since (a) and (b) are immediate
consequences of (6.4) and (6.5). To see (6.4), note that by Proposition 6.2,
—00K o Kot1 = 0K 110K at1 = (I = K0410)(I — K0410)

=1—Kq110 — K410 + K410K0110
if ¢ > 2. From this, (6.4) follows. The case ¢ = 1 is completely
analogous, just replace the projections 0K, and 0K, by P, and P,.
By Proposition 6.2 again we have
KoK0100 = —Ko0K,0 = (I — 0K )(I — 0K,)
=1— (0Kq+ 0Ky +0K,0K,),

which implies (6.5). []

Instead of trying to give a complete description of all the operators
involved, we concentrate on M,. It is possible to give a semi-explicit
expression as some real-analytic function of the quantities 1—|¢|?, 1 - -2
and some simple forms but we restrict our ambition to indicate that
it admits some expected L!-estimates. A straight forward estimation,
see [4], [5], gives the estimates

_Zzl C2\é-1/2
(6.6) Au H)WUMVSOAO 122) 12 1w,

for any £ > 0 and

(6.7) AQKJMVSCAH—VWHﬂﬂM,

if « is sufficiently large (depending on ¢). For the operators M, we have
the following expected result.

ProprosITION 6.4. — For (q,q)-forms 6 and any ¢ > 0 we have the
estimates

2\ )t
(6.8) /B(1 122) | M6] AV < C’/B(l 122)+ 6jaV,
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and
(6.9) / [M8|do < C/ |0]dV.
OB B
if M = M,, and « is large enough (depending on £).
Note that for a (p, ¢) form 6,

161 ~ (=p)16l5 + V=P (100 A Bls +10p A Blg) + |8p A Dp A bl

For ¢ = 1, eq. (6.9) gives the Henkin-Skoda estimate of solutions to
the 00-equation, and therefore the statement may be thought of as a
generalized version. It can certainly be proved by the usual method as
well, but our purpose is to point out that actually our operator M works.
Proposition 6.5 follows from (6.6) and (6.7), observing that the kernel for
the commutator

fr—=0l2* NKaf — Ka(8I¢]* A f)

is O(|¢ — z|) times the kernel for K,,. For the details we refer to [6].
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