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COMPARING HEAT OPERATORS THROUGH LOCAL

ISOMETRIES OR FIBRATIONS

BY MANLIO BORDONI (*)

ABSTRACT. — Our aim is to generalize and improve the Kato's inequality, which compares
the trace of the heat kernel of a compact Riemannian manifold with the one of a finite-
sheeted covering of it. A comparison with the heat kernel of a suitable space-form gives, as a
consequence, an analogous of Kato's inequality for non compact manifolds, which improves the
classical inequality when the manifolds are compact. We get another generalization for local
isometries, which are no more supposed to be covering maps (as a typical example, we apply
this to the exponential map). Last, we consider Riemannian submersions with minimal fibers.

RESUME. — COMPARAISON ENTRE OPERATEURS DE LA CHALEUR PAR ISOMETRIES
LOCALES OU FIBRATIONS. —Notre but est de generaliser et d'ameliorer Pinegalite de Kato, qui
compare la trace du noyau de la chaleur d'une variete riemannienne compacte donnee a celle
d'un revetement riemannien fini de la variete. Une comparaison avec Ie noyau de la chaleur
d'une variete simplement connexe de courbure constante convenablement choisie donne, comme
consequence, un analogue de Pinegalite de Kato qui ameliore Pinegalite classique quand Ie
revetement n'est pas compact. On obtient une generalisation dans Ie cas ou les varietes sont
reliees par une isometrie locale (qui n'est pas obligatoirement un revetement, un exemple
typique etant donne par Papplication exponent ielle). Enfin, on traite Ie cas des submersions
riemanniennes a fibres minimales.

1. Introduction
Let (M, g) be any connected Riemannian manifold of finite dimension n. Let

us denote by AM = ^(M,g) tne Laplace-Beltrami operator acting on functions
and let us consider the heat equation:

(1-1) (^^^t^^0'
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152 M. BORDONI

with Dirichlet or Neumann condition on the boundary if M has a nonempty
boundary QM. The corresponding heat kernel will be denoted by pM(t^x^y)
when the boundary is empty, p^{t^ x^ y) or p^(t, x^ y) resp. when the boundary
condition is Dirichlet's or Neumann's one. For a non compact manifold, we shall
consider pM to be the unique minimal heat kernel, i.e. the limit of the Dirichlet
heat kernels of regular compact domains exhausting M; if M is complete and
if its Ricci curvature is bounded from below, then PM is the unique heat kernel
on M (see [9, p. 189]). If M is compact, the spectrum of AM is a discrete sequence
{A^(M)}^=o,i,2,... (each eigenvalue is repeated according to its finite multiplicity);
in this case, we shall also consider the trace ZM(I) of the heat operator e~^Mt

(with positive t):
+00

ZM(t)=^e-x^t

1=0

and similar expressions for Zj^(t) and Z^(t).
Given a mapping /: (M', g ' ) -—> (M, ̂ ), our aim is to compare the heat kernels

of the two manifolds, under suitable assumptions for /. It turns out that a good
assumption is that / satisfies the following Fubini ' s property for every continuous
function u on M'\

(1.2) / u{xf)dvg^xf)= { / u\f-i^(y)dvg^(y)\dvg(x)
J M' J M ^Jf-1^) )

where Vg^Vg are the measures canonically associated to the metrics g ' ^ g ^
and where Vgi denotes the measure associated to the metric g^ induced on
F,=/-1(^W.

Notice that, by Sard's theorem, if / is smooth on the outside V of a closed
subset of measure zero in M', and if dim M' > dim M, then the intersection of F^
with U ' is a submanifold for almost every x, so that the integrals which occur
in the formula (1.2) make sense. By the coarea formula (see [8, thm. 13.4.2]),
this may be extended to the case where / is only a Lipschitz map. In this
case, the differential dfx' exists for a.e. x ' and, considering its restriction to the
orthogonal complement H^ of ^/(F^/)) in T^M'', we may define its Jacobian
as the determinant of this restriction. By Corollary 13.4.6 of [8], condition (1.2)
is, in this case, equivalent to saying that this Jacobian is a.e. equal to ±1. The
property (1.2) is automatically satisfied for instance by Riemannian submersions
and coverings, or by local isometries.

If / is a fibration of compact manifolds with typical fiber F^ the so called
Kato's inequality compares the trace of the heat operator on (M7, g ' ) with the one
of the trivial fibration with the same typical fiber F. P. Berard and S. Gallot [1]
and in a different way G. Besson [4] show that, if / is a Riemannian submersion of
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COMPARING HEAT OPERATORS 153

compact boundaryless manifolds, whose fibers are totally geodesic submanifolds
of M', then

(1.3) ZM'W ^ ZMXFW = ZM(t) • Zp(t)^
in particular, if / is a regular ^-sheeted Riemannian covering, one obtains:

(1.4) Z M ' ( t ) < ^ Z M ( t )

(see also [22]); they also show that the inequality in (1.3) is an equality if and only
if / is the trivial fibration. The inequality (1.4) was extended by J. Tysk [30] to
a branched covering whose singularity set is a submanifold of M' of codimension
at least 2.

In Section 2, we consider any mapping /:(M',p') —^ (M,^) which is locally
isometric. In this case, Fubini's property is automatically satisfied. Most of the
difficulties come from the fact that we don't assume that / is a covering map.
A typical example is given by the exponential map, which is a local isometry on
an open set in the tangent space (endowed with the pull-back metric), but not a
covering. We show (Prop. 2.4) that the series ^-y/^-i/ ^ p M ' ^ t j X ' \ y ' ) converges
in the sense of distributions, and that its limit is not greater than pM^t^ f ( x ' ) ^ y ) .

To obtain the equality case for boundaryless manifolds, we must assume that
the manifolds are stochastically complete (Prop. 2.12); in this case, the sum of
the series does not depend on x ' 6 M' but only on /(^/) G M. Remember
that a Riemannian manifold {X,g) is stochastically complete if and only if
f ^ p x ( t ^ x ^ y ) d v g ( y ) = 1 for any x G X and for any t > 0. A geometrical
sufficient condition on a complete manifold (X, g) to be stochastically complete
concernes the volume of geodesic balls (Grigor'yan theorem 2.9, see [20] and [21]
for the proof).

In the case of manifolds with boundary, notice that, when Mf has a nonempty
boundary, the fact that M' is complete does not imply that M' is geodesically
complete. In this case we show (Lemmas 2.2 and 2.3) a weak Hopf-Rinow
theorem, and we prove that the restriction of / to the interior of M1 is a covering
map onto the interior of M. Proposition 2.4 also gives a sharp lower bound of
the Dirichlet heat kernel pj^ in terms of sums of^^/. To obtain the equality case
for manifolds with boundaries (Prop. 2.15), we must assume that / maps the
boundary of M' onto the boundary of M, that M' is a complete metric space
and that it satisfies the condition of Grigor'yan theorem 2.9.

When / is a ^-sheeted Riemannian covering of compact manifolds, we obtain
(Cor. 2.18) a first improvement of Kato's inequality (1.4), in which appears
explicitely the difference between £ • ZM^I) and ZM'(^}- We obtain also a
comparison between the heat kernels of M' and M in the case where / is
not a covering map and, as a typical example, when / is the exponential map
(Prop. 2.20, 2.22); this gives an estimate of the heat kernel of a manifold in
terms of a computable euclidean one.
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154 M.BORDONI

It is well known that the heat kernel ?MK (^ ^(b • ) of the space-form (MK^K)
of constant curvature J^ only depends on t and on the distance from XQ.
There are many works where a pointwise comparison between the heat kernel
of a manifold (M,^) and the heat kernel of (MK^K) is established, under
suitable assumptions on the curvature of (M, g) (see for instance J. Cheeger
and S.T.Yau [10], A. Debiard, B. Gaveau, E. Mazet [15], G. Courtois [11]). We
give (Theorem 2.25) a unified proof of these results by clarifying the role played
by the different singularities of the Laplacian of the functions which is obtained
by transplantation of the heat kernel of MK-, extended by a constant outside a
ball. By combining these results with the ones of Section 2, we obtain an effective
improvement of Kato's inequality in the Corollaries 2.26, 2.27. The inequalities
which appear in the corollaries are sharp (they are for example equalities in
the case of the 2-sheeted covering of the real projective space by the standard
sphere). These inequalities remain valid when the fibers have infinite cardinality.

In the case that f ' . ^ M ' . g ' ) -^ (M,g) is a Riemannian submersion with
minimal fibers (the manifolds are now assumed to be compact and boundary less),
we obtain that the resolvent and heat operators on M dominate the resolvent
and heat operators on M' respectively (Prop. 3.6). To prove this result, we show
that the mapping w from H^M1) in H-^(M) which sends u on wu, where wu(x)
is the I^-norm of u on -Fr, is a symmetrization in the sense of G. Besson [5],
which obeys a Kato-type inequality with respect to the Laplacians (Def.3.2):
then a generalized Beurling-Deny principle (3.3) gives the result.

ACKNOWLEDGEMENTS. —The author is grateful to S. Gallot for the "heat" of
his welcome and for stimulating suggestions, and to G. Besson for the sharpness
of his remarks on this text.

2. Kato's inequality for local (quasi) isometries and applications

a) Some topological remarks.
Let f : X / — ^ X b e any local homeomorphism from a Hausdorff topological

space Xf to a topological space X. The unique lift lemma is then valid, in the
sense that the continuous lift passing through some point of X' of any continuous
mapping 7:V —> X, where Y is a connected topological space, when it exists,
is unique. The proof is the classical one: let c\^c^'.Y —> X' be two continuous
mappings satisfying c^yo) = 02(2/0) for some yo € Y and / o c i = 7 = / o c 2 .
The set of y C Y such that c\ (y) = c^ (y) is closed and open because / is locally
injective and X' is Hausdorff.

If / is such that any continuous path 7:[0,1] —> X admits a continuous lift
c:[0,1] —> X' beginning at any x/ e /"^(O)), and if X is arcwise connected,
then all the fibers f~l(x) have the same cardinality: for x\,x^ e X, let us fix
a path 70 from a-i to x^. The mapping f~l(x^) —> f~l{x^), which sends
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COMPARING HEAT OPERATORS 155

x[ e f~l(x^) to the endpoint of the unique lift of 70 starting from x[, is
bijective. Moreover, we can deduce the property of lifting homotopies of paths
(with fixed endpoints) from the property of lifting paths. Suppose in fact that
7o ^ 7i ^1 {0,1} and let H:R -^ X be the homotopy, where R is the square
[0,1] x [0,1]. Let us fix a point x ' e /-^(O)). As each curve 7^) = H(s,t)
admits a unique lift Cs(t) starting from x ' ' , we can define a mapping H:R^ X'
by setting Hs(t) = Cs(t). The mapping H is obviously continuous with respect
to t. A covering of the image of H by open sets, each of which is homeomorphic
(by /) to some open set in X, induces an open covering of the image of H.
By compactness of R, we may consider a finite subdivision of R in closed
rectangles R,j = [5,,s,+i] x [tj^j+i] such that the image by H of each of
them lies in an open set Uij C X which is the homeomorphic image by / of
some open set Vij C X' containing H(si,tj). We are going to prove that H is
continuous on each R^ by an iterating process. In fact, H and {f\v,}~1 ° H
coincide at (si, tj}, so they coincide on the interval [^, s^+i] x {^}, by uniqueness
of the local continuous lift and because H is continuous on this interval (by the
iteration assumption). For the same reason, as these two mappings coincide at
(s, tj), they coincide on {s} x [tj, ̂ -+1] because H is continuous with respect to t.
So H coincides with a continuous mapping on R^ and the iteration assumption
(continuity of H on [5,, 5^+1] x {^-+i}) is satisfied. It follows that H is continuous
on R and that s >—^ H ( s ^ l ) is a continuous mapping with values in the discrete
set /-l[7o(l)], thus it is constant and H has fixed endpoints.

Notice that / is not in general, under the previous assumptions, a covering
map, even if we suppose that X' and X are manifolds. For a detailed discussion
about this kind of topological problems, a good reference is the Chapter 2 of [19].

b) General facts about local isometries.
A mapping f \ { M ' , g ' ) —> (M^g) is a local isometry if it is continuous and if,

for any interior point x ' in M7, there exist two neighborhoods V^' of x ' in M' and
U^ of x = f (x ' ) in M such that f\y^ is an isometry from V^i onto U^. In the
sequel, we will denote by Int(M) the interior of a manifold M, and we shall
sometimes write M = Int(M) U 9M to underline the existence of a boundary.

Let us denote by if(xf) the isometry radius of / at x ' € Int(M'), i.e. the
supremum of all positive r such that the restriction of / to the geodesic ball
Bg'(x'\r) centered at x ' and of radius r is an isometry, where d g ' denotes the
distance induced on M' by the metric g'; the isometry radius is stricly positive
for any x ' e In^M7).
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LEMMA 2.1. — Let f:(M',g') —. (M,g) be a local isometry. Then, for any
interior point x' in M', f~l[f(xf)] is a discrete closed set and any pair of points
x[ / x^ in f~l[f(xf)} satisfy:

dg^x[,x^) > 2m^[if(x[),if(x^)}.

Proof. — Assume (by commuting eventually x[ and x'^) that if(x[) ^ if(x^).
Set 6 = if(x[) and suppose that there exists a curve in M' from x[ to x'^ of
lenght less than 26. As / o c is then a loop 7 starting from x = f{x') with the
same length, its image lies entirely in Bg(x, 6), which is the isometric image by /
of B ' = Bgf(x[,6). By f\B'~1, we may lift 7 as a loop 7. By the uniqueness of
the lift, we get x^ = endpoint of c = endpoint of 7 = x[. []

We know that, in some cases, we can prove that d g ' ( x [ , x ^ ) ^ 2inj (x), where
inj^(a;) is the injectivity radius of (M,g) at the point x, i.e. the largest r such
that expx is a diffeomorphism from the open ball of radius r in T^M onto its
image in M. This would be a major improvement of Lemma 2.1, because the
lower bound would no more depend on / and on (M' , g ' ) . However, this is false
in general: a counterexample is the mapping f(z) = zk from (C \ {0},(/) to
(C,^), where g is the canonical metric and g ' is the pull-back metric f^g. Let
x = e e R4", then the distance between two consecutive points in f'1^) is
smaller than 27T£, though the injectivity radius of (C,p) is infinite. Analogous
counterexamples may be built from branched coverings.

Roughly speaking, there are two kinds of boundaries in a convenient com-
pactification of { M ' , g ' ) : the actual boundary QM' and the so called "boun-
dary at infinity". The problem comes from the fact that, when M' is not com-
plete, this "boundary at infinity" may be at finite distance. We shall say that
M' = Im^M') U QM' is complete if it is complete as a metric space (M'.cL')
endowed with the Riemannian distance. Notice that, when 9Mf is not empty,
Hopf-Rinow's theorem is no more valid in the usual formulation and the fact
that M' is complete does not imply that M' is geodesically complete.

LEMMA 2.2. — Lei /^M',^') —> (M,^) be a surjective local isometry which
maps QM' onto <9M, and let (M/,dg') be complete. Then for any pair of distinct
points x^x^ in Im^M'), lying in the same fiber f~l(x\ one has

dg^x[^)>2m]g{x).

Proof. — We first prove the existence of a (unique) lift for any curve
7: To —^ Int(M). The set I of t ' s such that there exists a curve c: [0, t] —^ In^M')
starting from any fixed point x ' G /"^(CO) and satisfying foe = 7|[o,tb ls open:
in fact, if to C J, / is an isometry from a neighborhood V of c(to) in In^M')
onto a neighborhood U of 7(^0) m Int(M) and (f\v)~1 ° 7 gives an extension
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of c. The set I is also closed in IQ: in fact, considering a sequence {tn} in I which
converges to some to G Jo, we get

C^K^M^)] <:Lg\C\^^} =Lg{^^})

(here Lgi and J^ denote the lengths of curves with respect to the metrics g ' and g
resp.); so {c(t^)}^N is a Cauchy sequence and it converges to some point XQ,
which is an interior point of M' because / maps QM' onto 9M. Then / is an
isometry from a neighborhood V ofa:o m In^M') onto a neighborhood U of 7(^0)
in Int(M) and c = (/|y~1) o 7 is a local lift of 7, which provides an extension
of 7 on a neighborhood of to. So to C I and, as I is both closed and open in Jo?
I is equal to Jo-

in order to finish the proof, let us suppose the existence of a curve c in
In^M') from x[ to x^ whose length is smaller than 6 = 2inj g(x). Then the loop
7 = f o c lies in the ball B = Bg(x^6)^ which is diffeomorphic to an Euclidean
ball. So 7 is homotopic to a point in B C Int(M) by a homotopy JJ. By lifting
this homotopy as in 2.a), we have that the lift JJ of JJ has fixed endpoints,
so x[ = Jf(0,1) = JJ(1,1) = x'^ D

REMARK. — Lemma 2.2 is classical when QM' is empty, because / is then a
Riemannian covering map. The analogous in the case "with boundary" is the
following

LEMMA 2.3. — Under the same assumptions as in Lemma 2.2, the restriction
of f to In^M') is a covering map onto Int(AJ).

Proof. — We first notice that any geodesic c of (M7, (/), which does not meet
QM', is defined on the whole of R: an argument similar to the one of Lemma 2.2
(using moreover the fact that any geodesic adherent to XQ lifts by exp^,1 to a
radius in T^' M' and thus admits an extension), shows that the domain of c is
open and closed in R.

For any fixed x € Int(M), let f~l(x) = {x'Aj^j. The injectivity radius
of M' at x1. is greater than the injectivity radius of M at x, because every
minimizing geodesic of M which does not meet the boundary lifts to minimizing
geodesies of M' (/ does not increase the distances). Thus, for any r smaller than
inj {x}, the map fj = exp^od/^/ o exp^,1 is a (diffeomorphic) isometry from
y ' = B g ' ( x ^ r ) onto U = Bg(x,r) whose differential at x^ coincides with that
of /, so fj coincides with / on Vj. In order to prove that /^(L^) = UjeJ^5

let x ' € /'-1(LQ and 7 be the minimizing geodesic from f (x ' ) to x, which entirely
lies in U. The existence of a lift c defined on the same interval proves the existence
of a geodesic c (whose length is less than r) from x ' to some point x'y in f~l{x).
It implies that x ' G B g ' { x - r ) . []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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c) Comparison between heat kernels.

PROPOSITION 2.4. — Let f:(M/,g/) -^ (M,g) be a local isometry (as in
Lemma 2.1). Then for any positive t, for any x' e M' and for any y e M,
ifPM' and PM are the (minimal) heat kernerls of M' and M, one has, in the
sense of distributions:

(2-5) E pM^yy) ^ pM(t^{xf)^
y'ef-ny)

the same result is true for Dirichlet heat kernels if M' and M have nonempty
boundaries.

Proof. —Let us consider a compact exhaustion {^.}^ ofInt(M') by regular'jJ
-> ^ '> y ) — ^^j—^oo y^' v^ x •) [domains: by definition, p M ' ( t , x ' , y ' ) = lim^oop^,(t, x ' , ? / ) .

Let Cg°(M) be the space of the functions on M with compact support
included in the interior of M. The coarea formula (see [8, thm. 13.4.2]) gives,
for any ^ € C§°(M):

(2-6) / [ E PM^W)]-^)d^Q/)
^y'^w

= I P M ' ^ x ' ^ ' ^ o f ^ y ' ) ^ ^ ) .
J M'

The main difficulty is that (p o f is generally not in C^{M'), nevertheless
it is bounded on M'. As J^, p^^t.x^y^dvg^y') < 1, Lebesgue monotone
convergence theorem implies that ^,pM'{t,x1\y')^v^{y') ^ 1. Applying (2.6)
to any positive test function, we get that

) / [ E PM'(^W)] '^(y)dvg(y) < ||^||co
JM y'ef-^y)

and the series converges (in the sense of distributions) for any fixed x ' to a Radon
measure Tt on M (notice that Tt ^ 0 on the complementary of the image by /
of the interior of M').

For every j, the (finite, cf. Lemma 2.1) sum

n — 7 ^ w.v^ ->y )^
y^f-Hy}^

^'= E P^x^y'

for any fixed a:' C ̂ , is a function on M, whose limit as j —> oo (in the sense
of distributions) is, by the same arguments as in (2.6), equal to Tt by Lebesgue
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monotone convergence theorem. Let us denote by v the inward unit normal
vector field on 9^ and by d g ' the (n — l)-dimensional measure on cW induced
by the restriction of g ' on 9^. Replacing (p by AM<^ in the formula (2.6) and
noticing that (AM^) ° f = AM'^ ° /) at any interior point of M', we get,
when </? is a nonnegative function in C§°(M):

(2.7) (AMTf^)= / p^(t^^)^M'^^fW^'{y')
J^ ^

= f ^M'P^^x'^-^ofW^^y')
J^'. 3

f p^xf^)^a(^(yf)da^yf)+
JQ^l'.JQQ.'. 3 ov

[ Q^'
- \ ———(^^.^o/^d^Q/)

J Q ^ ' . oy

-(9-'\af^-W^

because the first boundary term vanishes by the Dirichlet boundary condition
and the second one, which does not vanish in general, is negative (9p^, jQv is

nonnegative). It comes that (AM + 9/9t)Tj1 < 0 in the sense of distibutions.

Let us denote by Tj the limit of T^ when t goes to 0, we have, by (2.6):

<7M= f p^(0,x\y')-{yof)(y')dvg,(y')=y[f(x')]
J^ '

so T^ is the Dirac measure ^/(a;'). Moreover, the support of T} is included in the
compact subset /(^ /) of Int(M). The maximum principle then gives

TO<PMM^-)

and hence the claim when j —^ oo. As each term of the series which defines Tf
is nonnegative, it implies that Tf € L^M) because the coarea formula implies
that fM^y^f-l^pMf(t,xf,yf)dvg(y) < 1. Generally Tt is not C1.

For the Dirichlet problem, as / maps In^M') into Int(M), no point in 9M
has a counterimage by / in Int(M'). By the minimality, RM' goes to 0 on 9M'
and it follows that Tt verifies the Dirichlet condition on 9M. [\
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Notice that the assumptions of Proposition 2.4 do not exclude that / may
map points belonging to QM' to points belonging to Int(M) (a trivial example
is M' = n =regular domain with boundary in M). This is the case of the
exponential mapping, see the following application 2.g).

The inequality (2.5) is not in general an equality, even if we assume f(QM') =
QM. For example, let us consider the local isometry j\M' = R+ -^ M = S1

defined by f (x ' ) = e^', where R+ = (0,+00) is considered as a non complete
boundaryless manifold. The minimal heat kernel of M' automatically satisfies
Dirichlet conditions at 0 ({0} is the part of the "boundary at infinity" which is
at finite distance) and at +00; it writes

PM' (t, x ' , y ' ) = k( t ^x ' , y ' ) - k(t, - x ' , y ' )

where k(t, x ' , y ' ) = (47^t)-l/2e- l^-^l2/4* is the usual heat kernel of the real line.
When y'Q lies in (0, 27r) and when XQ = e2'71', the invariance of k by the diagonal
action of translations gives:

^ PM' (t, 27r, y ' ) = ̂  {k(t, 27r, yo + 2p7r) - k(t, -27r, y^ + 2p7r))
y^f-i^y'o) pez+

=^,27r,^K^, 0,2/0)

< ^A:(t,2p7r,2/o) =pM(^/(2^),e^o).
p€Z

This example generalizes to any covering f:M" —> M, when we consider the
excision M' = M" \ D of a closed domain D with non trivial capacity from M"
and the local isometry f:M' -^ M. In fact, p M ' ( t , x ^ y ' ) < p M " ( t , x ^ y ' ) implies
that

^ P M ' ( t , x ' ^ y ' ) < ^ PM"(t,XQ,y') =pM{t,f{xo),y),
y^f-^y^D y ' ^ f - ^ y )

the last equality being proved in the following Proposition 2.12.

d) The equality case.
In order to characterize the cases where the inequality of Proposition 2.4 is

an equality, let us study the very important notion of

DEFINITION 2.8 (stochastic completeness). — A Riemannian manifold {X ,g)
will be called stochastically complete if and only if f^px(t,x,y)dvg{y) = 1 for
any x C X and for any t > 0.
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A compact Riemannian manifold is always stochastically complete. Many
authors have given sufficient geometric conditions for complete non compact
Riemannian manifolds to be stochastically complete. For instance, M.P. Gaffney
[16] proved that a sufficient condition is that the volume of the geodesic balls
has subexponential growth. S.T. Yau proved that a sufficient condition is that
the Ricci curvature is bounded from below (cf. [31]; see also [9, p. 191, thm. 5]);
notice that this condition is automatically satisfied by any geodesically complete
Riemannian manifold { M ' , g ' ) which admits a local isometry onto a compact
manifold (M,g). K. Ichihara [24] and P. Hsu [23] extended this result to the
case where the Ricci curvature is allowed to go to —oo at infinity, provided
that this growth is controlled in terms of the distance function. L. Karp and
P. Li [25] proved that any geodesically complete manifold, whose geodesic balls
B(xo,R) satisfy Vo\(B(xo,R)) < e^2 when R -^ +00 (for some point XQ and
some constant c), is stochastically complete — see also E.B. Davies [14] and
M. Takeda [29] for different proofs. A. Grigor'yan (cf. [20], see [21, thm 9.1 and
Section 6 for more detailed proofs]) gave the following sufficient condition which
contains the above ones:

THEOREM 2.9.—Any Riemannian manifold (X ,g), which is a complete metric
space with respect to dg and whose geodesic balls B(xQ,R) centered at same
point XQ satisfy the condition

/ , . r°° RdR
^ 1 log[Vol(B(.o^))] =+QO

is stochastically complete.

Let us denote by r^in^x) the infimum of the Ricci curvature at the point
x G X , i.e.

^)=^{^-^\w},
and let (r^n)-(x) = sup(0, -r^[n(x)).

PROPOSITION 2.11. — Let (X ,g) be any geodesically complete Riemannian
manifold. Let us suppose that there exists same point XQ e X and some
p > dim(X) such that

limsup _ log(l + / (r^n)2.p(x)dvg(x))\ < +00,
R^^iH^ ^ JB{XQ,R) n

then (X ,g) is stochastically complete.

Proof. — For a fixed positive e less than the injectivity radius of X at XQ, let
us consider the geodesic ball B(xo,e) and the sphere 9B{xo,e) centered at XQ
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and of radius e. We shall call "normal coordinates system" the mapping ^ from
(—00, +oo) x 9B{xQ,e) onto X defined by ^(t,x) = exp^TV^), where N^ is
the outward unit normal vector at x G 9B(xo,e) (^ is a diffeomorphism from
some open subset in (—00,+oo) x 9B(xo,e) onto an open subset in X whose
complementary is of measure zero). The density of the Riemannian measure
Vg with respect to the product measure in normal coordinates is defined by
^dvg = J^.x^^dtdx. For any x € 9B(xo,e), let (t-(x),t+(x)) be the
greatest interval on which the geodesic 11—^ ^(t,x) minimizes the distance from
^(t,x) to9B(xQ,e), and let us define J^(t,x} equal to J ( t , x ) iH G (t-{x),t^-(x))
and equal to zero elsewhere. Then, the (n — l)-dimensional volume of the
sphere 9B(xo, R) is given by

L(R)=Vo\n^{9B(xo,R)) = f J^R.xY-^dx.
J9B{xo,e)

Let us denote by L ' ( K ) the supremum limit, when h > 0 goes to zero, of
(L(R + h) - L{R))/h. It is proved in [18, p. 198] that, for R > e,

p^
L\R) < L^P-1 \(n - 1Y~1 ( ^{xY^dx

L JQB{xo,e)

+C7(p) I (r^)^(x)dvg(x)
JB(XO,R^-£}\B(XQ,£)

(n-

p __
+C\p) I (r^^Wdv^x)}^1

J B{xo,RJ[-£)\B{xo,£}

where rj is the mean curvature of the geodesic sphere 9B(xo^e), where
r]^(x) = sup(0,?7(.r)), and where C(p) is an explicit constant only depending
on p (and on n = dim(X)).

By assumption, there exist RQ and a constant K such that

1 + I (rmin)l(^)d^)^ ^
JB(xnM}

P
[r^n)2(x)dvg(x) <, e^2

JB{xo,R)

for R > RQ^ and the above inequality becomes:

L ' ( R } KR2
L [ H ) <C' •e~P^ .p^2 -- -

L{R)P-1

Integrating two times, we get, for R great enough and with suitable constants
(see [18, p. 198]):

1 KR2 K'R2

L(R)P-1 < a - ^ - b ' e P - 1 < b • e P-1 ,

Vo\(B(x^ R)) < a' + b' • e^^2 ^ b' . eK"R\
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Thus R-1 log[Vol(B(;ro, ̂ ))j < a" I R + K " R and

f00 RdR -
JR, \og[Vo\(B(x^R))] ~ +oc'

By Grigor'yan theorem 2.9, this implies that (X, g) is stochastically complete. Q

PROPOSITION 2.12. — Let f:(Mf,gf) -^ (M,g) be a local isometry between
boundaryless manifolds.

(i) // (M1\g') is stochastically complete, then (M ,g) is also stochastically
complete when f is surjective.

(ii) If(M,g) is assumed to be stochastically complete, then the equality

(2.13) ^ PM^t,xf,yf)=pM{t,f(xf),y)
y^f-^y)

holds (for any positive i, for any x' G M' and for almost every y <E M) if and
only if (M',(/) is stochastically complete.

Proof. — By Proposition 2.4 and the coarea formula, we have

(2.14) 0^ / fpM(^/(^)^)- ̂  PM/(^W)]d^O/)
JM y^f-^y} ]

= f PM^f^.y)^^)- f p M ' ^ x ^ y ^ d V g ^ y ' ) .
J M J M '

Stochastic completeness of { M ' , g ' ) implies f^pM^t.x^y^dVg^y') = 1 and
thus fMPM(t,f{xf),y)dVg(y) ^ 1. But property f^pM(t, f(xf),y)dvg(y) ^ 1
is always valid, hence f^pM(t, f(xf),y)dvg{y) = 1 and (M,g) is stochastically
complete.

If (M',^) and (M,p) are stochastically complete, the above inequality (2.14)
is an equality and this implies the equality (2.13). On the other hand, if (M,g)
is stochastically complete and if the equality (2.13) holds, then the above
inequality (2.14) is an equality; this implies that

1= / pM^f(xf)^)dVg(y)= f p M ' ^ x ^ y ^ d V g ^ y ' )
J M J M '

and (M' , g ' ) is stochastically complete. \\

e) The case with boundary.
Let us consider the case where (M', <9M', g ' ) and (M, <9M, g) are Riemannian

manifolds with boundaries. Let us endow these manifolds with the Riemannian
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distances d g ' and dg {i.e. d g ' ( x ' , y ' ) is the infimum of the (/-length of curves
joining xf and y ' ) . We want to compare the heat kernels of M' and M (with
Dirichlet boundary condition), denoted pj^, and p^.

Proposition 2.4 already provides a sharp lower bound ofpj^ in terms of sums
ofpj^,. For the equality case, we get the following sufficient condition:

PROPOSITION 2.15. — Let /:(M',(/) —> (M,g) be a surjective local isometry
which maps 9M' onto 9M {and Int^M') onto Int(M) by assumption). Let us
suppose that (M'\dgi) is a complete metric space^ and that the volume of balls
in (Mf\dg>) satisfies

r RdR
= +00

\og[Vo\(B{x^R))]

for some point XQ G M'. Then^ for any positive t, for any x' C M' and for almost
every y G M, one has

^ p^(t^^)=p^{tJ(xf)^.
y'ef-^y)

Proof. — As QM' is regular, the double Mf -#- M' of the manifold M' =
Int(M') U QM1 is the boundaryless manifold which is obtained by quotienting
the disjoint union of two samples M[ and M^ of M' by the relation

^[(xf) ~ ^2{x') if and only if x ' (E OM\

where ^ denotes the canonical mapping from M' onto M[, i = 1,2. Then
Mf # M' has a structure of (7°°-manifold and the metrics g[ (images of g ' by ̂ )
give a (7051 Riemannian metric h' on M1 # M' (which is C00 on the interior of
each M[). Then (M'^M', d ^ ' ) is complete, where d^' is the Riemannian distance
induced by h ' . To any curve from ^[(x') to ^{y') one associates a curve from
^ [ ( x ' ) to ^[{y') lying in M[ and with the same length (just map any portion of
the curve which lies in M^ into M[ by the isometry ̂  o (V^)"1)- This implies
that

d^\W)^W) >dh\W)^[(y'}} =d^{x\yf).

Thus, if we denote by Bh'(R) and Bg^(R) the balls of (M' # M^d^) and
(M',dg>) of radius R and centered at V^(^o) ^d ^o respectively, we deduce
that Bh'{R) C ^[(Bg^R)) U^(Bg^R)) and that Vol(B^(J?)) < 2Vol(^/(J?)).
We thus get

r00 RdR
j log[Vol(B^(J?))]

= +00.

By Grigor'yan theorem 2.9, this implies that (M' -#- M' ,h ' ) is stochastically
complete.
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In fact, let us notice that Grigor'yan theorem is still valid for C°° manifolds
endowed with a C0'1 metric whose singular set is a smooth (n - l)-dimensional
submanifold. Let us underline the reason why the proof, given in [20] and [21]
section 9, still works in the case (M' # M ' , h'): in this proof, the only argument
which involves the smoothness of the metric is the Green's formula which writes,
for any smooth functions n, (p on M' # M' such that u is compactly supported:

(2.16) / (p'Ah'u= / //(Vn,V(/?)=/ (^.A^+ [ (^-A^n
J M ' ^ M ' J M ' ^ M ' JM[ JM^

= ( ^ O ^ ) . A M ' ( ^ O ^ ) + / ( (^O^) .AM^O^)
J M ' J M '

where A/,/ and AM' are the Laplacians of (M'^M', h') and (M', g ' ) respectively.
In fact, the two first equalities come from the fact that the integrals on 9M[ and
on 9M^ of (y? • Qu/9v) give zero because 9M[ = 9M^ and because the exterior
normal v^ to 9M[ is identified with the inner normal ̂  to QM'^ and thus
^(^xt) - ̂ (^nJ = 0 on 9M[ = 9M^. The last equality comes from the fact
that ̂  and ^3 are isometries.

Let us now denote by a the involutive isometry of {M' -#- M' .h') which
coincides with ̂ °W\}~1 on M[ and with ^[o{^)~~1 on M^. As every eigenspace
of A^/ splits in two subspaces: the spaces of odd (resp. even) functions with
respect to cr, and as (A^/'u) o ̂  = AM'(^ o '00, we get the following simple
expression for p^, (cf. [17, p. 48]):

(2.17) A(^W) =PM^M'(t^[{x')^[{y')} - pM'#M'{t^ W)^ (^)).

We may now buid the double (M -#- M, h) of (M, ̂ ) and a local isometry
F^M^M'./i7) ̂  (M#M,/Q by setting F[^'(^)] = ̂ AfW where ̂  is the
identification of M with one of the samples M, of M in M # M. As / maps <9M'
onto 9M, F is a well defined local isometry; we may then apply Proposition 2.12
(notice that its proof, as the one of Proposition 2.4, is still valid in this case),
which gives, for i = 1,2:

^ PM'^M' {t, V/i (^/), ̂ Q/)) = pM#M (^ 01 (/(^')), ̂ (2/)) .
y'ef-^y)

Plugging this equality in (2.17), we get

Y, PIM^t^f^f)=pM#M{t,^(f(xf))^^y))
yfef-l(y) -PM#M(t^{f(x'))^{y)}

=P]M^{f(xf))^y)^

the last equality being obtained by applying (2.17) to M -#- M. \\
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f) An application to regular or singular coverings with finite fiber.
Propositions 2.12 and 2.15 gives a first improvement of the Kato's inequa-

lity (1.4) for any Riemannian covering with finite fibers. Namely, we have:

COROLLARY 2.18. — Let f:M' —» M be a regular C-sheeted Riemannian cove-
ring between compact boundary less manifolds. Then we have for any positive t:

(2.19) ZM'W+ f ^ pM'(t,x^yf)dv^(xf)=£•ZMW
Ml y^r1^')}

y'^x'

which implies the classical Kato's inequality (1.4). Equality case in (1.4) occurs
if and only if the covering is trivial^ i. e. if and only if M' is the disjoint union
of i copies of M.

The result is also valid^ mutatis mutandis, for the Dirichlet heat kernels of
compact manifolds with boundary, if we assume that f maps QM' onto 9M.

Proof. —Assume that the manifolds are boundaryless: by setting f(xf) = y in
formula (2.13), an integration on M' gives (2.19), which implies Kato's inequality
by the positivity of the heat kernel. IfKato's inequality is an equality for at least
one positive t, then (2.19) implies pM'(t^ ̂ \ y ' ) = 0 for any x ' 7^ y1 in Ff^^, thus
x ' and y ' lie in two different connected components of M / ' . The same argument
works in the boundary case. []

When the cardinality of the fiber is infinite (for instance when M' is the
universal covering of a compact manifold), we cannot consider the trace of the
heat operator on M1'. Nevertheless the inequality (2.5) gives, by integration, for
any regular compact domain f2' C M':

Z^(t)< sup ^(f-l(x)^^))Z^(t)< sup (^f-\x)n^))ZM(t).
^ej(^) xef^')

An easy application of the minmax principle allows to extend the result
of Corollary 2.18 to local almost-isometries, where we call a C^-mapping
/: (M7, g ' ) —> (M, g ) a local almost-isometry if and only if there exist two positive
constants a and b such that

aV < fg <. &V.

PROPOSITION 2.20. — Let f'.(Mt ,g') —> (M,g) be a local almost-isometry
between compact manifolds. Then

Z(M',g')(t) ^ SUp^/-1^)) -Z^M^C^——t).
x^M \ 0 /
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Proof. — Integrating inequality (2.5) provides a comparison between the heat
kernels of the local isometric manifolds (Mf, f*g) and (M,g):

sup (B/-1^)) • Z^M^t) ̂  Z(MV^).
x^M

The minmax principle implies (see for instance [19, cor. 4.63]) that for any i:

^A,(MW) < WJ-g) < J^M'̂ )

and hence that Z^j-g)(t) > Z^^^/a^t). Q

REMARK 2.21. — If M' is connected (and / still C1), the results 2.18 (resp.
2.20) can be settled under the following a priori weaker assumption: there
exists some subset A of mesaure zero in M such that the restriction of / to
^ ' \ /-l(^) ls a regular Riemannian covering (resp. a local almost-isometry).
In fact, / is then automatically a Riemannian covering (resp. a local almost-
isometry) on the whole of M' (if not, the complement of the union of the subsets
{y C M/ \ a'2gy < (f"g)y < b2gy} and {y € M' \ (Jac/)y = 0} is, by connexity,
a non empty open subset in /^(A) which maps onto an open subset in A,
a contradiction).

g) Application to the exponential map.
A typical example of local almost-isometry is the exponential map

exp^T^M——M,

defined on an open subset V of T^M onto the complementary of the conjugate
locus of M (for instance, if (M, g) has negative curvature, the conjugate locus is
empty and V coincides with the whole of T^M). When V is endowed with the
pull-back metric, the exponential map satisfies the conditions of Lemma 2.1 and
of Proposition 2.4 and not the ones of Lemma 2.2 and of Proposition 2.12, thus
we get only the inequality case for the comparison between the heat kernels of M
and V, and not the equality one. We then obtain the following improvement of
Proposition 5.9 of [7]:

PROPOSITION 2.22. — Let (M,g) be any complete Riemannian manifold
without boundary whose sectional curvature lies in the interval [—-^lin^^iaxL
and let us consider the exponential mapping exp^ : Bp —> M where Bn is the
euclidean ball of radius R < Tr/J^max (R < -t-oo if J^max = 0) • Then we have

sup(»(exp^(.) n B^)) . Z^t) > Z^ (H^ . ̂ K-R_ • R^).
xCM \ "min sm V^max-rz) /
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Proof. — If we assume that the sectional curvature of M lies in the interval
["^un^^iaxL tnen Ranch's comparison theorem gives, at points v C V:

sin^axlHI) . . sh^JHI)
^ax-IHI2 go ̂ exp- ' ^ ̂  • IHI2 go

where ^o is the euclidean metric g^o of T^M. This proves that exp^, restricted
to Bp, is a local almost-isometry as denned before Proposition 2.20. Applying
Proposition 2.20, we finish the proof. []

h) An improvement of Kato's inequality between heat kernels.
Let (M,p) be any Riemannian manifold of dimension n, and let {MK^K) be

the n-dimensional simply connected Riemannian manifold of constant sectional
curvature K (briefly the K space-form). It is well known that, for any XQ C MK,
the heat kernel ?MK (^ XQ•>') ls invariant by the isotropy group of XQ and thus it
only depends on t and on the distance from XQ:

(2.23) P M K ^ ^ O ^ ' ) =(p(^dK(xo,•)) = ^ t O p K ( ' )

where d^ denotes the spherical, euclidean or hyperbolic distance according that
K is positive, null or negative respectively (by homotheties, we may normalize
the metric QK on MK in order that K = +1,0, —1), and where px(') == ^(^o? •).

Let us denote by p^(t,xo, •) the heat kernel on the geodesic ball BK^XQ.PQ}
of {MK.QK) under Neumann boundary conditions. As before, there exists a
function -0:(0,+oo) x [O.po) —^ ^+ such that p ^ ( t , xo , ' ) = ̂  o pj<(«). We
define ^py by

(2.24) <!>,(,?) ̂ {^ i.f/<po'
^ipt(po) np>po.

We shall give below a unified proof of the following theorem, clarifying by the
way some distributional tools already present in [12]:

THEOREM 2.25 (see [10], [15], [II], [12]). — Let {M,g) be any n-dimenswnal
Riemannian boundaryless manifold.

(i) If the Ricci curvature of(M^g) is bounded from below by (n—l)Kg, then

pM(t,x,y) ^ (p(t,dg(x,y))

where (p is the function defined in (2.23);
(ii) if all sectional curvatures of (M^g) are bounded from above by K, then

pM{t,x,y) < ̂ ^(t,dg(x,y))

where <I>pp is the function defined in (2.24) and where po = m]g(x) ifK < 0 and
po = mm(m]g(x),7r/VK) ifK > 0.
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If the inequalities in (i) and (ii) are equalities, then (M,g) is isometric to
(MK^K)-

Proof of (i). — We shall show that (AM + 9/9t)^p <, 0 in the sense of
distibutions, and that, as t goes to O4', (p(t,dg(x, •)) goes to the Dirac measure
6x ( ' ) ' . since pM is a solution of the heat equation on M, the maximum principle
gives (i) and the characterization of the equality case.

To show the inequality above, let x be any fixed point in M, and let us set
p = d g ( x , ' ) and ^ = ^(^-), so that ^(-) = 9 ( p / 9 r ( t , - ) . A simple calculation
gives

AM(^ ° P)= -^ o p + (^ o ?)AMP

= -^ ° P + (^ ° ?)(AMp)reg + (^ 0 P)(AMp)sing.

(AM-p)reg is the regular part of AM/^ which is defined on the complementary
of cut(a;), the cut locus of x (remember that cut(;r) is a closed set of measure
zero). It is classical (see for instance [17, p. 40]) that

(AM?) reg —
1 9a
a 9r

where a is the density of the Riemannian measure Vg with respect to the product
measure in polar coordinates around re, i.e. {cf. the proof of Proposition 2.11)
^*dvg = a(r,X)drdX, where ^(r,X) = exp^(rX) is a diffeomorphism from
an open subset U in (0,+00) x Sx onto M \ ({x} U cut(rr)) {Sx is the unit
sphere of TpM). In the case of the space-form (MK^QK\ let us define the open
subset UK, the diffeomorphism ^/K from UK onto MK\ ({.ro}Ucut(a'o)) and the
function OK (instead of a) in the same way; notice the existence of a function
^^IR"^ —^ R^ such that OK = ̂ K ° P K ' As a = 0 at focal points of x, (AMp)reg
is not bounded, but it lies in L^(M) (see [26]). The singular part (AMp)sing
is a positive distribution which is supported on cut (a;) (see for instance [26]).
The derivative ^p[ o p has no singular part because it is C^-piecewise and hence
in Lj^(M) ((pt is smooth and p is C^-piecewise). As ^ < 0 (see [9, p. 192]),
(AM + 9/9t)((pt ° ?) is not greater than its regular part, which is

K A 9 \ , j „ 1 9a , 9(pt
^M+9t)^top)L^~vtop~a9rytop+^op•

Since (a"~1 9a/9r)(r,X) < b^/bK^r) by Bishop's comparison theorem (see [6,
pp. 256-257]), denoting

-̂,;.-̂ .̂ ,
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we get (AM + 9/9t)((pt ° p) < ^(^) ° P ' On the other side, we have 0 =
(AM,< + 9/9t){ipt ° PK) = L(^t) ° P K - This ends the proof when K ^ 0, for
pK is then defined on [0,+oo). When K > 0, pK is defined on [0, T T / ^ K ) ,
which, by Myers5 theorem, contains the interval of definition of p. Thus we get
(AM + 9/9t)((pt ° p) ^ 0 in all cases.

It remains to show that lhm_o+ ̂  ° ?(•) = ^(') m the sense of distribu-
tions. For any test-function h we have indeed, identifying isometrically T^M
with T^MK,

(^t op,h) = (̂  o p{y)h{y)dvg(y)
J^(u}

= ( (^ o p o ̂  o ̂ )(z)(h o ̂  o ̂ )(z) ̂ - {^(z)) d^ (z)
J ^ K { U } 0'K

= I ^tOpKWo^O^}{z)^-{^\z)}^{z}
J^K{U) aK

which goes to ho^o^^l(xo) = h(x) as t goes to O"1" because a(r,X) ~ a^(r,X)
~ rn~l when r goes to zero. []

Proo/ o/ (ii). —This proof is similar to the one of (i). For the sake of simplicity,
let us denote ^ = <I>^. We shall show that (AM + 9/9t)^> is a non-negative
distribution. As lim^o+ ^(t,dg{x,'}} = <^(-) (same proof as in (i)), the claim
follows by maximum principle.

The radial function ^>t ° P is regular inside Bg(x,po) and constant outside
Bg{x, po), thus its differential is bounded and the singular Laplacian is a measure
supported by 9Bg{x, po), whose sign is given by the gap in the radial derivative.
But this gap does not exist, indeed lime-^o ^t(Po + ^) == 0 because ^t(p) is
constant for p ^ po, and lim^o ̂ (po -e) =0 because p^ verifies the Neumann
boundary condition. Therefore [AM(^ op)]sing = 0, i.e. AM(^ op) e L^(M).
The same computations of the regular Laplacian done in the proof of (i) then
gives:

A^o^^A^op)]^^-^^-^^0^ i fp<p0'
0 l0 i fp>/?o.

Use now the Ranch's comparison theorem instead of the Bishop's one: from
(a-1 9a/9r)(r, X) > b^/bK (r) we obtain (AM + 9/9t)(^t o p ) ̂  0 if p < po.

It remains to show that

(^>,o.)^^wao
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for p > po. The fact that ̂  o p satisfies the heat equation on [0,po] implies

^ (po) = ̂ '(po) + ̂  • ^(po) = ̂ (po)

because the Neumann condition writes ^{(po) = 0. As V^(p) ^ 0 on [0,po],
it comes that Qz^t/Qt (po) ^ 0 (z.e. the point where the temperature ̂ t(r) attains
its minimum has a not decreasing temperature with respect to the time). []

Let us now consider any local isometry f : [ M ' , g ' ) -^ (M,g). Let po be the
injectivity radius in^M') of {M1', g ' ) when K <: 0 and po = min^n^M7), TT/V^)
when K > 0. We just apply the results of Lemma 2.2, of Propositions 2.4 or 2.12
and 2.15 and of Theorem 2.25 written for (M', g ' ) and the properties of ^ and <I>
to obtain

COROLLARY 2.26. — Let /^M',^') -^ (M,g) he a local isometry of n-
dimensional manifolds. For any x € M and for any fixed x' C F^ = f~l(x):

(i) z/Ricci(M^) > (n - l)Kg, then

PM^W)+ ^ (p{t,dg^x'\y1)} <pM(t,x,x)',
y ' ^ F ^ \ { x ' }

moreover^ if the volume of M is finite^ we have

\ p M ' ( t , X ' , X ' } ^ V g ' ( x ' ) + ^ ( t , SUp dmin(^)) • Vol(M) <, \ pM^t ,X ,x) dVg(x)
J u ' x^M J M

where U' C M' is a fundamental domain of /, and where dniin(^) is the infimum
of dg. {x' ,y') for x1, y' e F^, x1 + y ' ;

(ii) if f is surjective and maps 9M' onto 9M, if (M/ ̂ dg') is complete^ and
if the sectional curvatures of (M^g) are bounded from above by K^ then^ for any
xf ̂ f-\x\

pM(t,x,x) <pM'(t^\x')^- ^ ^p^t,dg'(x1\y')};
y'^\{x'}

moreover^ if the volume of M is finite^ we have

\ pM(t,x,x)dvg(x) < \ pM'(t,x',x')^Vg'(x')
J M J U '

+ f (^-l)'^o(^^min(^))d^(^).
JM

These results give an analogous to Kato's inequality in the case where M' is
not compact (and even not complete!). Moreover, also in the compact case, this
Corollary improves the Kato's inequality in the following way.
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COROLLARY 2.27. — Let f-.^M^g') -^ (M,^) be a ^-sheeted regular Rieman-
nian covering of a n-dimensional compact manifold M:

(i) z/Ricci(M,^) ^ (n - l)Kg, then

ZM'(t) + £(£ - 1) • ^(^diam(M')) • Vol(M) < £ • ZM{I)

where diam(M') denotes the diameter of (M1 ,g');

(ii) if the sectional curvatures of (M,g) are bounded from above by K, then

^ • ZM(I} ̂  ZM'{I) + ̂  - 1) • ̂  (^2inj(M)) . Vol(M)

where inj(M) is the injectivity radius of (M,g).

REMARK 2.28. — The sharpness of the above inequalities is proved by
considering the 2-sheeted Riemannian covering /: ( S " , can) -^ (P^M), can). The
fiber consists at any x <E Pn(]R) of two points x ' and -< so in this case d^n(x) =
^max(^) = p o = 7 ^ = 2 i n j ( P n ( I R ) ) for any x. As p s ^ ^ x ^ x ' ) +psr.(t,x^ - x ' ) =
Pp^m(t,x,x) and psr.(t,x'.-x1) = ^{t,d{x',-x')) = ^^(t, 2inj(Pn(R))) =
(^(^7r), we have

Zs.(t) - 2Zpn^)(t) = 2Vol(Pn(M)) . ̂ (^diam(^))

^Vo^R)) .^(^^^(P^R)))

and the inequalities of Corollaries 2.26,2.27 are equalities in this case.

3. Riemannian submersions with minimal fibers
We are going now to consider the case in which f : { M ' , g ' ) —> (M,g)

is a Riemannian submersion of compact boundaryless manifolds. A simple
calculation (cf. [4, p. 277]) gives, for any u e C7°°(M'):

(3-1) AMJJ u\ = ( AM'U- ( diVM^uH),
J Fx J F^ J Fx

where H is the mean curvature vector of the fiber F^ = f~l(x). For any fixed
positive t and x ' e M', Tf = f^ PM' (t, x ' , y ' ) dvg^ ( y ' ) is a Radon measure on M
which verifies, in the sense of distributions:

(AM+ Qt)^ = ~ \ divM/(^/(^a;/^/)^(^))d^(2//) and lim T, = 6f^.
V j~< y t ^ U " 1
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If we assume that all the fibers are minimal submanifolds of M ' , i.e. H = 0,
(3.1) implies that the Laplacians commute with the integration on the fibers
(cf. [2, Prop. 3.13]). In this case, for any x ' G M', the integral oipM'(t^1', •) on
a fiber Fy does not depend on x ' but only on x = f (x ' ) and

/ pM^t.x^y^dVg^) =pM(t,f(xf),y)
J F y

(see also [4]). It is also easy to verify that AM'^ ° /) = (AM^) ° / and
that the functions of the type (p o f are stable under A^7- We deduce that
Spec(AAf) C Spec(AM/) and hence that ZM'(^) >. ^M(t).

We shall give a domination theorem in the opposite sense for the heat
and resolvent operators by the method of symmetrization in the sense of
G. Besson [5]. Let us recall this definition.

DEFINITION 3.2. — Let K^~ he a cone in a real Hilbert space K\ the cone
is supposed to be self-dual^ i.e. every w such that {w^K^) ^ 0 lies in K^. A
mapping S from a Hilbert space H to K^~ is a symmetrization if

(a) |(ui,n2)| <: (Su]_,Su^) for any u\,u^ G H, with equality when u\=u^\

(b) for any w € K^~ and for any u\ € H^ there exists u^ C H such that
u\^u^ are w-paired^ i.e. Su^ = w and

(^1,^2) = (Su-i.Su-z) = (Su^.w).

As a symmetrization is a Lipschitz map^ one can define S on a dense subset
of H only^ namely^ in the present application^ S will be defined on C^^M') which
is dense in H = L^M').

A symmetrization S is said to obey Kato's inequality with respect to two
operators A and B acting on H and K respectively if S does not increase energy,
i.e. for any u\,u^ € H which are Su^ -paired

qB{Su^,Su^) < qA(u^,U2)

where QA and qp denote the quadratic forms associated to A and B respectively.

Under the conditions (a) and (b) above, G. Besson gives in [5] a consequence
which can be seen as a generalized Beurling-Deny principle:

GENERALIZED BEURLING-DENY PRINCIPLE 3.3. — If S is a symmetrization
which obeys Kato's inequality, then the operators (B 4- \I)~1 (for any A >
—Ao(-B)) and e~tB dominate the operators (A + XI)~1 and e~tA respectively,
where we say that an operator L acting on K dominates an operator T acting
on H if L{S(u)) > S(T(u)) for any u G H.
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Let now /: [ M ' ^ g ' ) —> (M,g) be any surjective mapping, which verifies
FubinPs property (1.2) (the manifolds are assumed to be connected, compact
and without boundary). For any u: M/ —^ R for which it makes sense, we define
wu\ M —> M to be the j^-norm of the restriction of u to the fibers:

(3.4) (wu)(x) = ( / (^(^d^Q/)) 3

J F x

(this map was introduced, in a more general context, in [7]). It is easy to see
that if u is in L2(Mf)^ then wu is in L^M) and that w preserves the Z^-norms:

(3.5) II^^HL^M) = IH|L2(M')-

PROPOSITION 3.6. — Let f: (Mf .^/) —^ (M\g) be a Riemannian submersion
with minimal fibers^ then the resolvent operator (A^+A)"1 and the heat operator
e~t^M dominate (AM' + A)"1 ^d e'^^ respectively for any positive t and A.

A remark similar to 2.21 could be done for Proposition 3.6. The proof
of this proposition is a direct consequence of the generalized Beurling-Deny
criterion (3.3) and of the following lemmas.

LEMMA 3.7. — Let f: (M',^') —^ (M ^g) be a surjective mapping of compact
boundaryless manifolds^ which verifies Fubini's property (1.2). Then the mapping
wrL^M') —)• L^M) defined by (3.4) is a symmetrization.

Proof. — K^ is the self-dual cone of non-negative functions in L2(M).
Condition (a) is a consequence of Cauchy-Schwarz inequality:

K^^L^MQ = \ U^X^U^X^dVg^X')
1 JM'

< / u-t(y)u2{y)dvg^(y) dvg{x) < ((wui.wu^LnM)-
JM JF^

To show (b), let u^ C (^(M') and w <E K^. We define, for x ' C M' and
x = f ( x ' ) C M:

.(w^) if^(^o,
(3.8) u^xl}= \ (wu,of){x1) u )

[(wo/)(^)^) if^i(a;)=0

where h is any measurable function on M' such that ( fp (^(^^dz^ (y))^ = 1
(for instance h{x'} = (VO^F^/)))"^). The function u^ verifies wu^ = w and
lies in L^M') by (3.4). A direct calculation shows that 14,1(2 are w-paired. \\
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The good assumption to ensure that w obeys Kato's inequality is that / is a
Riemannian submersion with minimal fibers, namely we have:

LEMMA 3.9. — Let f'.^M^g') —)• (M ,^) be a Riemannian submersion with
minimal fibers. Then the symmetrization w defined by (3.4) obeys Kato's inequa-
lity with respect to the Laplacians AM'^M-

Proof. — Let us consider an orthonormal basis {e^} of differential tangent
vector fields on a neighborhood of x in M. Their horizontal lifts {e^} on M'
are horizontal orthonormal vector fields at each point. As the fibers are minimal
submanifolds, the holonomy induces a diffeomorphism from F^ to Fy which
preserves the measure and so the horizontal derivatives commute with the
integrals on the fibers (see [2, Lemma 3.14]). Let us define, for u e COO(M):

{wu)e{x) = {wu{x)2 + e2) k.

We have for the z-th component of the differential of (wu)e, z = 1, . . . , dim(M):

1 /*
(d(wu)^x}}' = ei{wu}^x) = j u(y)(e^u)(y)dvg^(y)

= ̂ w j^W-W^M.
and by the Cauchy-Schwarz inequality:

l^^^l2^^))2^1^'2^^
since in \du{y)\2 one must take into account the derivatives related to vertical
vector fields (i.e. tangent to the fiber). We obtain, as e goes to 0, if wu is
considered as the limit of (wu]e m the sense of distributions:

{ \d{wu)(x)\2 =0 if wu(x) = 0,
(3.10) . r .

\d{wu)(x)\ < \ \du{y)\ dv^(y) if wu{x) ̂  0
JF^

hence wu belongs to H1(M) and satisfies HWHJI^I^) ^ IMIj^M')-
Recall that, as the fibers are minimal, the Laplacians commute with the

integrals on the fibers, then

AM^)^(^)=AM/ u(y)2dvg^y)= / ^M'u2{y)dVg^y)
JF, JF,

= { (2u(y)AM'u(y)-2\du(y)\2)dv^{y)
JF,
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which gives, by comparison with

/\M^u)^(x) = 2(wu)e(x)/\M(^u)e(x) — 2\d(wu)^(x) I

and by the previous estimate (3.10) of \d(wu){x)\2:

{wu)e(x)^M{^u)e(x) <, \ u(y) ̂  M f u(y) dv g^{y).
JF^

Let us now consider the mapping u^ denned by (3.8) with u\ = u. Then

{{/\M^U)^WU2))L^M)

^ Uk ̂ ^ (̂ )̂ dvg'^ dv9(x)

which gives, as e goes to 0:

((d^^d^z^L^M) < {(AM^^^^L^M) = ({du.du^L^M')

i.e. w obeys Kato's inequality with respect to the Laplacians (use in the
computations the fact that, when wu(x) = 0, it implies fy u(y)dvg^(y) = 0
and f^ ^M'u^y) dvg^ (y) = AM fp^ u{y} dvg^ (y)). []
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