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ÉTALE COHOMOLOGY AND REDUCTION OF
ABELIAN VARIETIES

by A. Silverberg & Yu.G. Zarhin

Abstract. — In this paper we study the étale cohomology groups associated to
abelian varieties. We obtain necessary and sufficient conditions for an abelian variety
to have semistable reduction (or purely additive reduction which becomes semistable
over a quadratic extension) in terms of the action of the absolute inertia group on the
étale cohomology groups with finite coefficients.

Résumé (Cohomologie étale et réduction des variétés abéliennes)
Nous étudions les groupes de cohomologies étales associés aux variétés abéliennes.

Nous obtenons des conditions nécessaires et suffisantes pour qu’une variété abeliénne
ait une réduction semistable (ou une réduction purement additive qui devient semi-
stable sur une extension quadratique), en termes de l’action du groupe d’inertie absolu
sur les groupes de cohomologies étales à coefficients finis.

1. Introduction

Suppose X is a smooth projective variety over a field F , v is a discrete
valuation on F , and ! is a prime number not equal to the residue characteristic
of v. Let F s denote a separable closure of F , let v̄ be an extension of v to F s,
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let I denote the inertia subgroup at v̄ of Gal(F s/F ), and let X = X ×F F s.
For every positive integer k, the group I acts naturally on the k-th !-adic
étale cohomology group Hk

ét(X, Q!). Grothendieck proved the Monodromy
Theorem (see the Appendix to [10], and 1.2 and 1.3 of [4]), which says that
I acts on Hk

ét(X, Q!) via quasi-unipotent operators, i.e., for every σ ∈ I we
have (σm − 1)rHk

ét(X, Q!) = 0 for some positive integers m and r. It is known
(see 3.7 of [4], and 3.5 and 3.6 of [5]) that if k = 1, then one may take r = 2. It
easily follows (see Theorem 5.6 (i), (ii) below) that if X is an abelian variety,
then one may take r = k + 1. It is shown in [6] (see 3.4 and 3.8 of [4], and p. vi
of [3]) that one may take r = k + 1 whenever one knows the Purity Conjecture
(3.1 of [4]) and resolution of singularities.

From now on, suppose X is a d-dimensional abelian variety. The Néron
model X of X at v is a smooth separated model of X over the valuation ring R
such that for every smooth scheme Y over R and morphism ϕ : Y ⊗R F → X
over F there is a unique morphism Y → X over R which extends ϕ. The generic
fiber of X can be canonically identified with X , and X is a commutative group
scheme over R whose group structure extends that of X . Let X0

v denote the
identity component of the special fiber of X at v. Over an algebraic closure of
the residue field, there is an exact sequence of algebraic groups

0 → U × T −→ X0
v −→ B → 0,

where B is an abelian variety, T is the maximal algebraic torus in X0
v , and U is a

unipotent group. By definition, X is semistable at v if and only if U = 0. As I-
modules, H1

ét(X, Z!) ∼= HomZ!(T!(X), Z!), where T!(X) is the !-adic Tate mod-
ule. Grothendieck’s Galois Criterion for Semistability says that X is semistable
at v if and only if every σ ∈ I acts on T!(X) as a unipotent operator of echelon
≤ 2, i.e., if and only if (σ − 1)2H1

ét(X, Z!) = 0 for every σ ∈ I.
Suppose n is a positive integer relatively prime to the residue characteristic

of v. Raynaud’s criterion says that if I acts trivially on the n-torsion Xn, and
n ≥ 3, then X is semistable at v. The authors (see [13] and [15]) proved that
if n ≥ 5, then X is semistable at v if and only if (σ − 1)2Xn = 0 for every
σ ∈ I. In other words, necessary and sufficient conditions for semistability can
be read off not only from the !-adic representation, as shown by Grothendieck,
but also from the mod n representation (for n ≥ 5). The aim of this paper
(see Theorem 5.10) is to generalize this result to the case of the higher étale
cohomology groups Hk. Note that H1

ét(X, Z/nZ) and Xn are dual. Assume
that 0 < k < 2d, that k < r ∈ Z, and that n does not belong to a certain finite
set N(r) of prime powers, defined explicitly in terms of r in § 2. (For example,
N(2) = {1, 2, 3, 4}.) We show that if k is odd, then X is semistable at v if
and only if (σ − 1)rHk

ét(X, Z/nZ) = 0 for every σ ∈ I. If k is even, we show
(under an additional assumption; see § 7) that (σ − 1)rHk

ét(X, Z/nZ) = 0 for
every σ ∈ I if and only if either X is semistable at v or X has purely additive
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ÉTALE COHOMOLOGY 143

reduction at v but is semistable over a (ramified) quadratic extension of F . We
call the latter abelian varieties briefly unstable (see Definitions 5.2 and 5.3).

We gave such necessary and sufficient conditions for semistability in the case
k = 1 and r = 2 in [13] and [15]. Poincaré duality then gives such criteria in
the case k = 2d − 1. One can check that in the cases k = 1 or 2d − 1, one
cannot replace N(r) by a smaller set. However, when 2 ≤ k ≤ 2d − 2 one may
replace N(r) by an explicitly defined subset N ′(r) for which the result is sharp
(see § 6).

In § 2 we introduce basic definitions and notation. Section 3 deals with
multilinear algebra in characteristics 0 and ! and over Z!. We use the Jordan
decompositions of exterior powers of linear operators to obtain a Minkowski-
Serre type result. Section 4 contains some abelian variety results that will be
used later. In § § 5–6 we state and prove our main results. We give necessary
and sufficient conditions for semistability, and also necessary and sufficient
conditions for an abelian variety to either be semistable or have purely additive
reduction which becomes semistable over a quadratic extension. In § 6 we shrink
the exceptional set in the criteria when 2 ≤ k ≤ 2d − 2. We prove that this
exceptional set is minimal.

We hope that our results and/or methods will be useful in the study of
semistability for the more general class of motives [9].

Silverberg would like to thank IHES, the Bunting Institute, and the Math-
ematics Institute of the University of Erlangen-Nürnberg for their hospital-
ity, and NSA, NSF, the Science Scholars Fellowship Program at the Bunting
Institute, and the Alexander von Humboldt-Stiftung for financial support.
Zarhin would like to thank NSF and Université Paris-Sud for financial support
and Centre Émile Borel (Institut Henri Poincaré) and University of Glasgow
for their hospitality. He also would like to thank Ed Formanek for helpful
discussions.

2. Notation and definitions

If F is a field, let F s denote a separable closure. Throughout this paper, X
is a d-dimensional abelian variety defined over F , and v is a discrete valuation
on F of residue characteristic p ≥ 0. Let v̄ denote an extension of v to F s, and
let I denote the inertia subgroup at v̄ of Gal(F s/F ). If ! is a prime not equal
to the characteristic of F , let

ρ!,X : Gal(F s/F ) −→ Aut
(

T!(X)
) ∼= GL2d(Z!)

denote the !-adic representation on the Tate module T!(X) = lim←− X!n . Let
V!(X) = T!(X) ⊗Z! Q!, let X = X ×F F s, and let

Hk
! = Hk

ét(X, Z!) = HomZ!

(

∧k(T!(X)), Z!

)

.
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Then Hk
! is a free Z!-module of rank

(2d
k

)

=: b, and Hk
! ⊗Z! Q! = ∧k

Q!
(V ∗),

where V ∗ = HomQ!(V, Q!) is the dual vector space. Let

ρ!,k : I −→ Aut(Hk
! ) ∼= GLb(Z!)

be the representation giving the action of I on Hk
! .

Definition 2.1. — If r is a positive integer, define a finite set of prime powers
N(r) by

N(r) =
{

prime powers !m | 0 ≤ m(!− 1) ≤ r
}

.

For example, N(1) = {1, 2}, N(2) = {1, 2, 3, 4}, N(3) = {1, 2, 3, 4, 8},
N(4) = {1, 2, 3, 4, 5, 8, 9, 16}.

3. Some linear algebra

Lemma 3.1. — Suppose g is a linear operator on a finite-dimensional vector
space over a field of characteristic zero. Suppose (gm − 1)2 = 0 for some
positive integer m. If g is unipotent, then (g − 1)2 = 0. If −g is unipotent,
then (g + 1)2 = 0.

Proof. — If g is unipotent then all the eigenvalues of gm−1 + · · · + g + 1 are
m += 0. Therefore gm−1 + · · · + g + 1 is an invertible operator. Since

0 = (gm − 1)2 = (g − 1)2(gm−1 + · · · + g + 1)2

we have (g − 1)2 = 0.
If −g is unipotent then all the eigenvalues of gm are (−1)m. Since gm is

unipotent, m = 2r is even. We have

0 = (gm − 1)2 = (g2r − 1)2 = (g + 1)2(g − 1)2(g2(r−1) + · · · + g2 + 1)2.

All the eigenvalues of g−1 are −2 and all the eigenvalues of g2(r−1)+· · ·+g2+1
are r += 0. Therefore g − 1 and g2(r−1) + · · · + g2 + 1 are invertible, and
(g + 1)2 = 0.

Theorem 3.2. — Suppose m, r and g are positive integers, ! is a prime num-
ber, and A ∈ Mg(Z!) satisfies (A−1)r ∈ !mMg(Z!). Suppose λ is an eigenvalue
of A which is a root of unity. If r = m(! − 1) then λ! = 1. If r < m(! − 1)
then λ = 1.

Proof. — This is a special case of Theorem 6.7 of [12].

Theorem 3.3. — Suppose Z̄ is the ring of algebraic integers in Q̄, n and r
are positive integers, λ is a root of unity in Z̄, and (λ− 1)r ∈ nZ̄. Then λ = 1
if n /∈ N(r).

Proof. — This is a special case of Corollary 3.3 of [12].
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Lemma 3.4 (see Lemma 4.3 of [13]). — Suppose O is an integral domain of
characteristic zero, and ! is a prime number. Suppose r, s, and m are positive
integers such that r ≥ m!s−1(! − 1). Suppose α ∈ O and α!s

= 1. Then
(α− 1)r ∈ !mZ[α].

Suppose V is a finite-dimensional vector space over Q!. Suppose k is an
integer and 0 < k < dim(V ). Let

fk : GL(V ) −→ GL
(

∧k(V )
)

denote the natural representation defined by fk(g) = ∧k(g). For g ∈ GL(V ),
let g = sgug = ugsg be the Jordan decomposition, where ug, sg ∈ GL(V ), ug

is unipotent, and sg is semisimple. Then fk(g) = fk(sg)fk(ug) = fk(ug)fk(sg),
fk(ug) is unipotent, and fk(sg) is semisimple.

Remark 3.5. — In the notation of § 2, with “ ∗ ” denoting the dual map, for
every σ ∈ I we have

ρ!,k(σ) =
(

fk(ρ!,X(σ−1))
)∗

.

Remark 3.6. — The kernel of fk is {γ ∈ Z! | γk = 1}. In particular, if
(k, !− 1) = 1 then fk is injective.

Lemma 3.7. — The element ∧k(g) is unipotent if and only if there exists a
k-th root of unity γ ∈ Z! such that γg is unipotent.

Proof. — If ∧k(g) is unipotent, then ∧k(sg) = 1. By Remark 3.6, sg is a k-th
root of unity in Z!. Let γ = s−1

g .

Now assume that V is even-dimensional, choose a non-degenerate alternating
bilinear form on V , and let Sp(V ) ⊂ GL(V ) be the corresponding symplectic
group. Write

ρk : Sp(V ) −→ GL(∧k(V ))
for the restriction of fk to Sp(V ). It is well-known that ug, sg ∈ Sp(V ) for
every g ∈ Sp(V ).

Remark 3.8. — Remark 3.6 easily implies that the kernel of ρk is {1} if k is
odd and is {1,−1} if k is even.

Lemma 3.9. — Suppose that g ∈ Sp(V ).

(i) If (g − 1)2 = 0, then (ρk(g) − 1)k+1 = 0.
(ii) If k is even and (g + 1)2 = 0, then (ρk(g) − 1)k+1 = 0.
(iii) If γg is unipotent for some γ ∈ Q!, then γ ∈ {±1}.
(iv) Suppose ∧k(g) is unipotent. If k is odd then g is unipotent. If k is even

then either g or −g is unipotent.
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Proof. — Note that

(ρk(g) − 1)(v1 ∧ v2 ∧ · · · ∧ vk) = gv1 ∧ · · · ∧ gvk − v1 ∧ v2 · · · ∧ vk.

Part (i) follows by substituting g = 1+η, and (ii) follows from (i) applied to −g.
Suppose now that g is not unipotent. Then g has an eigenvalue λ += 1. Since
g ∈ Sp(V ), λ−1 is also an eigenvalue of g. Suppose also that γg is unipotent
for some γ ∈ Q!. Then γλ and γ/λ are eigenvalues of the unipotent element
γg and thus are equal to 1. Therefore γ2 = 1, i.e., γ ∈ {±1}, so either g or −g
is unipotent. If ∧k(g) is unipotent, then γg is unipotent for some γ ∈ Q!, by
Lemma 3.7. If k is odd then ∧k(−g) = − ∧k (g) is not unipotent, so −g is not
unipotent and thus g is unipotent.

Theorem 3.12 below will be used in § 6. To prove it, we first prove a lemma
and a theorem.

Lemma 3.10. — Suppose W is an (!−1)-dimensional vector space over a field
of prime characteristic ! ≥ 5, and A is a unipotent linear operator on W whose
Jordan form consists of one Jordan block of size !−1. If r ∈ Z and 2 ≤ r ≤ !−3,
then (∧r(A) − 1)!−1 += 0.

Proof. — It follows immediately from Corollary III.2.7(a) on p. 43 and Propo-
sition III.2.10(b) on p. 45 of [1] that all but one of the Jordan blocks of ∧r(A)
have size !, and the size of the remaining block is 1 or ! − 1 (since the size is
less than ! and is congruent mod ! to dim(∧r(W)) =

(!−1
r

)

≡ (−1)r). Since
! ≥ 5 and 2 ≤ r ≤ ! − 3, we have dim(∧r(W)) ≥ !. Therefore, ∧r(A) must
have a Jordan block of size !, so (∧r(A) − 1)!−1 += 0.

Theorem 3.11. — Suppose V is a finite-dimensional vector space over a field
of characteristic ! ≥ 5, and A is a unipotent linear operator on V. Suppose
k ∈ Z, 2 ≤ k ≤ dim(V) − 2, and (A − 1)!−2 += 0. Then (∧k(A) − 1)!−1 += 0.

Proof. — Let W be an A-invariant (!−1)-dimensional subspace of V such that
the Jordan form of the restriction of A to W is a Jordan block of size ! − 1.
Then ∧j(W) is a ∧j(A)-invariant subspace of ∧j(V), for all j. By Lemma 3.10,

(

∧j(A) − 1
)!−1(∧j(W)

)

+= 0

if 2 ≤ j ≤ ! − 3. We are therefore done if k ≤ ! − 3. Suppose k > ! − 3.
Then ∧k−(!−3)(V/W) += 0. Since A is unipotent, ∧k−(!−3)(A) is also unipotent,
and there exists a non-zero ∧k−(!−3)(A)-invariant element u ∈ ∧k−(!−3)(V/W).
Then

0 +=
(

∧!−3(A) − 1
)!−1(∧!−3(W)

) ∼=
(

∧!−3(A) − 1)!−1(∧!−3(W)
)

⊗ u

= (∧k(A) − 1)!−1(∧!−3(W) ⊗ u)
⊂

(

∧k(A) − 1)!−1(∧!−3(W) ⊗ ∧k−(!−3)(V/W)
)

.
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There is a ∧k(A)-equivariant projection from the image in ∧k(V) of

∧!−3(W) ⊗ ∧k−(!−3)(V)

onto ∧!−3(W) ⊗ ∧k−(!−3)(V/W). Therefore, 0 += (∧k(A) − 1)!−1(∧k(V)).

Theorem 3.12. — Suppose ! is a prime number, ! ≥ 5, V is a finite-dimen-
sional Q!-vector space, T is a Z!-lattice in V , and g is a quasi-unipotent linear
operator on V such that g(T ) = T . Suppose k and m are positive integers and
2 ≤ k ≤ dim(V ) − 2. If (∧k(g) − 1)m(!−1) ∈ !mEnd(∧k(T )), then ∧k(g) is
unipotent.

Proof. — By Theorem 3.2, all the eigenvalues of ∧k(g) are !-th roots of unity.
In particular, ∧k(g)! is unipotent. By Lemma 3.7 there exists a k-th root of
unity γ ∈ Z! such that (γg)! is unipotent. Replacing g by γg, we may assume
that g! is unipotent.

First, suppose that g is semisimple. Then g! = 1 and ∧k(g)! = 1. By
Theorem 6.8 of [12] there is a ∧k(g)-invariant splitting of the free Z!-module
∧k(T ) into a direct sum of free Z!-modules ∧k(T ) = P1 ⊕ P2 such that ∧k(g)
acts as the identity on P1, and

∧k(g)!−1 + · · · + ∧k(g) + 1 = 0 on P2.

This implies easily that
(

∧k(g) − 1
)!−1 ∈ !End

(

∧k(T )
)

.

If g += 1 then g has an eigenvalue which is a primitive !-th root of unity, and
therefore by Theorem 3.2, (g − 1)!−2 /∈ !End(T ). If we let V = T/!T , and
let A : V → V be the linear operator induced by g, then (A − 1)!−2 += 0, but
(∧k(A) − 1)!−1 = 0. This contradicts Theorem 3.11, and proves that g = 1
when g is semisimple.

Next we will induct on the maximum of the multiplicities of the roots of the
minimal polynomial P (t) of g (i.e., on the maximal size of the Jordan blocks
for g). Let P1(t) ∈ Z![t] be the monic polynomial whose roots are the same as
those of P (t), but all with multiplicity one. Then P1 divides P , and P1 = P
if and only if g is semisimple. Let

T0 =
{

x ∈ T | P1(g)(x) = 0
}

.

Then T0 is a pure free Z!-submodule of T which is g-invariant, and the restric-
tion g0 : T0 → T0 is semisimple. Let T1 = T/T0 and let g1 denote the induced
automorphism g1 : T1 → T1. Then T1 is a free Z!-module of finite rank, and
the maximal multiplicity of a root of the minimal polynomial of

g0 ⊕ g1 : T0 ⊕ T1 −→ T0 ⊕ T1

is strictly less than that of P (t), if g is not semisimple. Note that (g0 ⊕ g1)! is
unipotent, since g! is unipotent. Further, g0 ⊕ g1 is unipotent if and only if g
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is unipotent. To apply induction and finish the proof, it suffices to check that

(1) (∧k(g0 ⊕ g1) − 1)m(!−1) ∈ !mEnd
(

∧k(T0 ⊕ T1)
)

.

For 0 ≤ i ≤ k, let Hi be the image of the natural homomorphism

∧i(T0) ⊗ ∧k−i(T ) −→ ∧k(T ).

Then
Hi/Hi+1

∼= ∧i(T0) ⊗ ∧k−i(T1),
and

∧k(T ) = H0 ⊃ H1 ⊃ · · · ⊃ Hk = ∧k(T0) ⊃ Hk+1 := 0
is a natural filtration of ∧k(g)-stable pure Z!-submodules of ∧k(T ). Since Hi

is pure in ∧k(T ), we have Hi ∩ !m ∧k (T ) = !mHi. Therefore,
(

∧k(g) − 1
)m(!−1)(Hi) ⊆ !mHi.

Since
k

⊕

i=0

(Hi/Hi+1) =
k

⊕

i=0

(

∧i(T0) ⊗ ∧k−i(T1)
)

= ∧k(T0 ⊕ T1),

we have (1).

4. Abelian variety lemmas

As stated earlier, we suppose X is an abelian variety over a field F , v is a
discrete valuation on F of residue characteristic p ≥ 0, and ! is a prime different
from p. Recall that I is the inertia subgroup at v̄ of Gal(F s/F ).

Theorem 4.1 (Galois Criterion for Semistability). — The following are
equivalent:

(i) X is semistable at v;
(ii) I acts unipotently on T!(X), i.e. all the eigenvalues of ρ!,X(σ) are 1 for

every σ ∈ I;
(iii) for every σ ∈ I, (ρ!,X(σ) − 1)2 = 0.

Proof. — See 3.5 and 3.8 of [5], and Theorem 6 on p. 184 of [2].

Lemma 4.2. — Suppose σ ∈ I. Then:

(i) ρ!,X(σ) is unipotent if and only if (ρ!,X(σ) − 1)2 = 0;
(ii) −ρ!,X(σ) is unipotent if and only if (ρ!,X(σ) + 1)2 = 0.

Proof. — There exists a finite Galois extension L ⊂ F s of F such that if w is
the restriction of v̄ to L then X is semistable at w (see Prop. 3.6 of [5]). Let
Iw = I ∩ Gal(F s/L) be the corresponding inertia group, let m = [L : F ], and
let g = ρ!,X(σ). Then σm ∈ Iw. By Theorem 4.1, (gm − 1)2 = 0. Now apply
Lemma 3.1.
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The following result follows immediately from Lemmas 3.9 (iii) and 4.2.

Proposition 4.3. — Suppose σ ∈ I. The following are equivalent:
(i) there exists γσ ∈ Q! such that γσρ!,X(σ) is unipotent;
(ii) either ρ!,X(σ) or −ρ!,X(σ) is unipotent;
(iii) either (ρ!,X(σ) − 1)2 = 0 or (ρ!,X(σ) + 1)2 = 0.

Proposition 4.4. — Let J ⊂ I denote the first ramification group, and let τ
be a lift to I of a topological generator of the procyclic group I/J . The following
are equivalent:

(i) X has purely additive reduction at v;
(ii) 1 is not an eigenvalue for the action of τ on V!(X)J ;
(iii) V!(X)I = 0.

Proof. — The equivalence of (ii) and (iii) is obvious. For the equivalence of (i)
and (ii) see Corollary 1.10 of [7].

5. Higher cohomology groups of abelian varieties

Write V = V!(X) and T = T!(X), and recall that Hk
! = Hk

ét(X, Z!). The
image of ρ!,X lies in the symplectic group Sp(V ), by the Galois-equivariance of
the Weil pairing, and the fact that the inertia group acts as the identity on the
!-power roots of unity.

Assumption 5.1. — For the remainder of this paper (except for Remark 7.1)
we will assume that if p = 2 then the valuation ring is henselian.

Definition 5.2. — If p += 2 then we say that X is briefly unstable at v if X is
purely additive at v and becomes semistable above v over a quadratic separable
extension of F .

Definition 5.3. — If p = 2 then we say that X is briefly unstable at v if X
is purely additive at v and there exists a finite unramified extension M of F
such that X is semistable above v over a quadratic separable extension of M .

Remark 5.4. — By Theorem 4.1, the quadratic extension in Definitions 5.2
and 5.3 is ramified over v.

Theorem 5.5. — Suppose X is an abelian variety over a field F , v is a dis-
crete valuation on F of residue characteristic p ≥ 0, and ! is a prime different
from p. Then the following are equivalent:

(a) X is either semistable or briefly unstable at v;
(b) for each σ ∈ I, either ρ!,X(σ) or −ρ!,X(σ) is unipotent.
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Proof. — Assume (a) holds. By Theorem 4.1, we may reduce to the case
where X has purely additive reduction at v, M is a finite unramified extension
of F , and L is a quadratic separable extension of M over which X is semistable
above v. Then by Theorem 4.1, ρ!,X(σ)2 is unipotent for all σ ∈ I. Let J ⊂ I be
the first ramification subgroup. Then J , and therefore ρ!,X(J), is either trivial
(if p = 0) or a pro-p-group. By [7] (see pp. 282–283), since ! += p, ρ!,X(J) is
either trivial or a finite p-group. If s ∈ ρ!,X(J) ⊂ ρ!,X(I), then s2 is unipotent
and has finite order, and thus s2 = 1. It follows that either ρ!,X(J) = {1}, or
p = 2 and ρ!,X(J) is a finite commutative group of exponent 2.

Suppose that ρ!,X(J) = {1}. Then V J = V . Let τ be a lift to I of a
topological generator of the procyclic group I/J . Then g := ρ!,X(τ) generates
the procyclic group ρ!,X(I). By Prop. 4.4, 1 is not an eigenvalue of g. Since g2

is unipotent, the only eigenvalue of g is −1, i.e., −g is unipotent. For each
integer i either gi or −gi is unipotent. Since in the !-adic topology the set
of integral powers of g is dense in ρ!,X(I) and the set of unipotent operators
in Aut(T ) is closed, therefore for each σ ∈ I either ρ!,X(σ) or −ρ!,X(σ) is
unipotent.

We may thus assume that ρ!,X(J) += {1}, p = 2, and ρ!,X(J) is a finite
commutative group of exponent 2. We may assume that L ⊂ F s. Let w be the
restriction of v̄ to L. Let Iw denote the inertia subgroup at v̄ of Gal(F s/L).
Clearly, Jw := J ∩ Iw is the first ramification subgroup of Iw, and Jw has
index 2 in J . Since X is semistable at w, ρ!,X(σ) is unipotent for all σ ∈ Iw .
Since ρ!,X(J) is finite, ρ!,X(σ) = 1 for all σ ∈ Jw. Since Jw has index 2 in J ,
therefore ρ!,X(J) has order 2.

Since L/F is wild quadratic, therefore the inclusion Iw ⊂ I induces a natural
isomorphism Iw/Jw = I/J . Let τw be a lift to Iw of a topological generator of
Iw/Jw = I/J . Since ρ!,X(τw) is unipotent, and X has purely additive reduction
at v, therefore V J = 0 by Proposition 4.4.

Clearly Jw is normal in I, since it is the intersection of normal subgroups.
We can view ρ!,X as a homomorphism from I/Jw to Aut(T ). The image of

Iw −→ Iw/Jw ⊂ I/Jw = I/J × I/Iw

is I/J ×{1}. Therefore ρ!,X(I/J ×{1}) consists of unipotent operators. Let s
be the non-trivial element of I/Iw and let h = ρ!,X(1 × s). Then h2 = 1. If
h = 1 then ρ!,X(I/Jw) consists of unipotent operators, so X is semistable at v,
which is not the case. So h += 1. If h = −1 then ρ!,X(I/Jw) is the union of
ρ!,X(I/J × {1}) and −ρ!,X(I/J × {1}). Therefore for each g ∈ ρ!,X(I/Jw),
either g or −g is unipotent. So we have reduced to the case where h += ±1. But
then V J , the eigenspace of h corresponding to the eigenvalue 1, is non-zero.
This contradiction proves that (a) implies (b).

To prove that (b) implies (a), suppose that X is not semistable at v, and
suppose that for each σ ∈ I either ρ!,X(σ) or −ρ!,X(σ) is unipotent. By
Theorem 4.1, ρ!,X(σ) is not unipotent for some σ ∈ I. For such a σ, the
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eigenvalues of ρ!,X(σ) are all −1. Thus V I = 0. By Prop. 4.4, X has purely
additive reduction at v. Let

(2) Iv,X =
{

σ ∈ I | ρ!,X(σ) is unipotent
}

.

Then Iv,X += I. It is known (see pp. 354–355 of [5] and § 4 of [14]) that Iv,X

is an open normal subgroup of finite index in I. Since ρ!,X(Iv,X) consists of
unipotent operators, V Iv,X += 0 by a theorem of Kolchin (p. 35 of [8]). The
restriction map ρ′ : I → Aut(V Iv,X ) factors through the finite group I/Iv,X .
Therefore the image of ρ′ is finite. If σ ∈ I − Iv,X , then −ρ′(σ) is unipotent
and of finite order, and thus ρ′(σ) = −1 on V Iv,X . Therefore ρ′ has kernel Iv,X

and image {±1}, so [I : Iv,X ] = 2.
First assume p += 2. Then I has exactly one subgroup of index 2 and

thus this subgroup must be Iv,X . Let L/F be a ramified separable quadratic
extension. We may assume that L ⊂ F s. Let w be the restriction of v̄ to L.
The corresponding inertia group Iw ⊂ Gal(F s/L) has index 2 in I and therefore
is Iv,X . By Theorem 4.1, X is semistable at w.

Now assume that p = 2. Let F ur = (F s)I , the maximal extension of F
unramified above v. The valuation ring of F ur is henselian and the residue field
is separably closed. Let L be the quadratic extension of F ur corresponding
to Iv,X ⊂ I ∼= Gal(F s/F ur). Then L = F ur(

√
c ) for some c ∈ F ur, F (c) is

unramified above v over F , and X is semistable over the ramified quadratic
extension F (

√
c ) of F (c).

Theorem 5.6. — Suppose X is an abelian variety over a field F , suppose v is
a discrete valuation on F of residue characteristic p ≥ 0, suppose k is a positive
integer, suppose k < 2dim(X), and suppose ! is a prime number not equal to
p.

(i) If k is odd then the following are equivalent:
(a) X is semistable at v,
(b) for each σ ∈ I, ρ!,k(σ) is unipotent,
(c) for each σ ∈ I, (ρ!,k(σ) − 1)k+1 = 0.

(ii) If k is even then the following are equivalent:
(a) X is either semistable or briefly unstable at v,
(b) for each σ ∈ I, ρ!,k(σ) is unipotent,
(c) for each σ ∈ I, (ρ!,k(σ) − 1)k+1 = 0.

(iii) If k is odd then the following are equivalent:
(a) X is either semistable or briefly unstable at v,
(b) for each σ ∈ I, either ρ!,k(σ) or −ρ!,k(σ) is unipotent,
(c) for each σ ∈ I, either (ρ!,k(σ)− 1)k+1 = 0 or (ρ!,k(σ) +1)k+1 = 0.

Proof. — Clearly, (c) implies (b). That (a) implies (c) follows from Remark 3.5,
combined with Theorem 4.1 and Lemmas 4.2 (i) and 3.9 (i) for (i), with Theo-
rem 5.5 and Lemma 3.9 (ii) for (ii), and with Theorem 5.5 and Lemmas 4.2 and
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3.9 (i) for (iii). Suppose we have (b). To conclude (a), apply Lemma 3.9 (iv)
and Remark 3.5, combined with Theorem 5.5 for (ii) and (iii) and with Theorem
4.1 for (i).

Corollary 5.7. — Suppose X is an abelian variety over a field F , and v is
a discrete valuation on F of residue characteristic p ≥ 0. Suppose k and r are
positive integers, k < 2dim(X), and k < r. Suppose σ ∈ I.

(i) If either X is semistable at v, or k is even and X is briefly unstable at v,
then

(σ − 1)rHk
ét(X̄, Z!) = 0

for every prime ! += p, and

(σ − 1)rHk
ét(X̄, Z/nZ) = 0

for every positive integer n not divisible by p.
(ii) If k is odd and X is briefly unstable at v, then for every prime ! += p,

either

(σ − 1)rHk
ét(X̄, Z!) = 0 or (σ + 1)rHk

ét(X̄, Z!) = 0,

and for every positive integer n not divisible by p, either

(σ − 1)rHk
ét(X̄, Z/nZ) = 0 or (σ + 1)rHk

ét(X̄, Z/nZ) = 0.

Proof. — The first parts follow from Theorem 5.6, since r ≥ k+1. The second
parts follow from the first parts for all prime divisors ! of n, since for all i,

Hk
ét(X, Z/!iZ) = Hk

ét(X, Z!) ⊗ Z/!iZ.

Theorem 5.8. — Suppose X is an abelian variety over a field F , and v is a
discrete valuation on F of residue characteristic p ≥ 0. Suppose k, n, and r
are positive integers, k < 2dim(X), n is not divisible by p, and n /∈ N(r).

(i) Suppose that (σ − 1)rHk
ét(X, Z/nZ) = 0 for all σ ∈ I. Then either X is

semistable at v, or k is even and X is briefly unstable at v.
(ii) Suppose k is odd, and suppose that for each σ ∈ I either

(σ − 1)rHk
ét(X, Z/nZ) = 0 or (σ + 1)rHk

ét(X, Z/nZ) = 0.

Then either X is semistable at v, or X is briefly unstable at v.

Proof. — Recall ([5], Thm. 4.3) that the characteristic polynomial of ρ!,X(σ)
has integer coefficients and does not depend on the choice of ! += p. Therefore
the characteristic polynomial Pσ of (ρ!,k(σ) − 1)r/n has coefficients in Z[1/n]
and does not depend on the choice of ! += p. Suppose that

(σ − 1)rHk
ét(X, Z/nZ) = 0.

Then for all prime divisors ! of n, (ρ!,k(σ)−1)rHk
! ⊆ nHk

! , so Pσ has coefficients
in Z!. Thus Pσ has integer coefficients. Since X is semistable over a finite
separable extension of F , by Theorem 4.1, Lemma 3.9 (i), (ii), and Theorem 5.6
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there is a positive integer m such that (ρ!,k(σm) − 1)k+1 = 0. Let α be an
eigenvalue of ρ!,k(σ). Then (αm − 1)k+1 = 0, so αm = 1. Since (α − 1)r/n is
an eigenvalue of (ρ!,k(σ)−1)r/n and therefore is a root of Pσ, it is an algebraic
integer. Since n /∈ N(r), we have α = 1 by Theorem 3.3. Thus ρ!,k(σ) is
unipotent. Applying Theorem 5.6, we have (i). To obtain (ii), replace −1
by +1 in the above argument.

Next we specialize Theorem 5.8i to the case r = 1. Note that when k = 1
we recover Raynaud’s criterion for semistability (Prop 4.7 of [5]).

Theorem 5.9. — Suppose X is an abelian variety over a field F , v is a dis-
crete valuation on F , k and n are integers, 0 < k < 2dim(X), n ≥ 3, n
is not divisible by the residue characteristic, and I acts as the identity on
Hk

ét(X, Z/nZ). Then either X is semistable at v, or k is even and X is briefly
unstable at v.

The next result is an immediate corollary of Theorems 5.8 and 5.6 and
Corollary 5.7.

Theorem 5.10. — Suppose X is an abelian variety over a field F , suppose v
is a discrete valuation on F of residue characteristic p ≥ 0, suppose k, n, and r
are positive integers, and suppose ! is a prime number. Suppose k < 2dim(X),
suppose k < r, suppose n! is not divisible by p, and suppose n /∈ N(r).

(i) If k is odd, then the following are equivalent:
(a) X is semistable at v,
(b) for each σ ∈ I, (σ − 1)rHk

ét(X, Z!) = 0,
(c) for each σ ∈ I, (σ − 1)rHk

ét(X, Z/nZ) = 0.
(ii) If k is even then the following are equivalent:

(a) X is either semistable or briefly unstable at v,
(b) for each σ ∈ I, (σ − 1)rHk

ét(X, Z!) = 0,
(c) for each σ ∈ I, (σ − 1)rHk

ét(X, Z/nZ) = 0.
(iii) If k is odd then the following are equivalent:

(a) X is either semistable or briefly unstable at v,
(b) for each σ ∈ I either (σ − 1)r or (σ + 1)r kills Hk

ét(X, Z!).
(c) for each σ ∈ I either (σ − 1)r or (σ + 1)r kills Hk

ét(X, Z/nZ).

6. Non-extremal cohomology groups

The results of § 5 are sharp when k = 1 or 2d− 1. In this section we obtain
sharp results when 1 < k < 2d − 1. Let

N ′(r) =
{

!m | 0 ≤ m(!− 1) < r, or ! = 2 or 3 and r = m(!− 1)
}

.

Clearly, N ′(r) ⊆ N(r), and a prime power !m lies in N(r) − N ′(r) if and only
if ! ≥ 5 and r = m(!− 1).
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Theorem 6.1. — Suppose X is an abelian variety over a field F , suppose v
is a discrete valuation on F of residue characteristic p ≥ 0, suppose k and r
are positive integers, and suppose n is a positive integer which is not divisible
by p. Suppose 2 ≤ k ≤ 2dim(X) − 2, suppose k < r, and suppose n /∈ N ′(r).

(i) If k is odd, then the following are equivalent:
(a) X is semistable at v,
(b) for every σ ∈ I, (σ − 1)rHk

ét(X, Z/nZ) = 0.
(ii) If k is even then the following are equivalent:

(a) X is either semistable or briefly unstable at v,
(b) for every σ ∈ I, (σ − 1)rHk

ét(X, Z/nZ) = 0.
(iii) If k is odd then the following are equivalent:

(a) X is either semistable or briefly unstable at v,
(b) for each σ ∈ I either (σ − 1)r or (σ + 1)r kills Hk

ét(X, Z/nZ).

Proof. — If n /∈ N(r) then the assertion is contained in Theorem 5.10. Thus
we may assume that n = !m with ! ≥ 5 and r = m(!−1). If (a) holds, then (b)
follows from Corollary 5.7. If (b) holds, then (a) follows from Theorems 3.12
and 5.6.

The following example shows that the condition n /∈ N ′(r) is sharp.

Example 6.2. — Suppose that F is a discrete valuation field, m and r are
positive integers, ! is a prime number, and n = !m. Suppose that either
m(!− 1) < r, or ! = 2 and r = m = m(!− 1), or ! = 3 and r = 2m = m(!− 1).
Let X1, Y be abelian varieties of positive dimension with good reduction over
F , and such that Y has an automorphism of exact order !. If ! ≤ 3, assume
dim(Y ) = 1. Let L be a totally ramified degree ! extension of F , and let X2 be
the L/F -form of Y corresponding to a character Gal(L/F ) ↪→ Aut(Y ). Then
X = X1 × X2 has neither semistable nor purely additive reduction. However,
by Lemma 3.4 we have (ρ!,k(σ) − 1)r ∈ nEnd(Hk

! ) for every σ ∈ I.

7. Semistability over quadratic extensions

Remark 7.1. — When the valuation ring is henselian, then v extends uniquely
to F s, I is normal in Gal(F s/F ), and the field (F s)I is the (unique) maximal
extension of F unramified over v. Note that Assumption 5.1 can be dropped in
Theorems 5.6 (i), 5.10 (i), and 6.1 (i), in Corollary 5.7 (i) if X is semistable, and
in Theorems 5.8 (i) and 5.9 when k is odd, since it is not used. (Assumption 5.1
is only used when we deal with brief instability.)

Lemma 7.2. — Suppose X is an abelian variety over a field F , v is a dis-
crete valuation on F of residue characteristic p ≥ 0, and the valuation ring is
henselian. Suppose there exists a finite unramified extension M of F such that
X is semistable above v over a quadratic separable extension L of M . Suppose
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that if p = 2, then the residue field either is separably closed or is algebraic over
F2 (e.g., is finite). Then X is semistable above v over a quadratic separable
extension of F .

Proof. — If K is a subfield of F s, let IK denote the inertia subgroup of I
corresponding to K. Note that IL is an open subgroup of I of index 2.

When p += 2, then F has a tamely ramified separable quadratic extension L′.
Since p += 2, I has exactly one open subgroup of index 2, so IL = IL′ . By
Theorem 4.1 over L and over L′, X is semistable above v over L′.

Now suppose p = 2.
If the residue field is separably closed, then F has no non-trivial unramified

extensions, so M = F .
Suppose the residue field k is algebraic over F2, and let Gk := Gal(ks/k).

Then Gk is a torsion-free procyclic group, since it is a closed subgroup of Ẑ. Let
F ur be the maximal unramified extension of F . Then I = Gal(F s/F ur). Since
the valuation ring is henselian, Gk = Gal(F ur/F ). We may assume that X is
not semistable at v. Let Iv,X be the group defined by formula (2) (proof of
Theorem 5.5) with ! = 3. Applying Theorem 4.1 over F and over L (for ! = 3)
shows that Iv,X is a proper subgroup of I and IL ⊆ Iv,X ⊂ I. Since [I : IL] = 2,
we have Iv,X = IL and [I : Iv,X ] = 2. Let F ′ be the quadratic extension of F ur

cut out by Iv,X . Then F ′/F is Galois, since the group Iv,X is the intersection
of I and

{

σ ∈ Gal(F s/F ) | ρ3,X(σ) is unipotent
}

,

and both are stable under conjugation by Gal(F s/F ). Further, X is semistable
(above v) over F ′ by Theorem 4.1, and G := Gal(F ′/F ) is an extension of
Gk by C := Gal(F ′/F ur). This extension is central, since C has order 2 and
thus has no non-trivial automorphisms. Since every group whose quotient by
its center is (pro)cyclic must be commutative, G is commutative. Let ∆ be
the subset of squares in G. Then ∆ is a closed subgroup, ∆ ∩ C = 1, and
[G : ∆] = 2 or 4 (Gk is procyclic, so 2Gk has index 1 or 2 in Gk). Thus ∆ is
open and G/∆ either has order 2 (in which case let H = ∆) or is isomorphic to
Z/2Z×Z/2Z and we may choose the isomorphism so that the first factor is the
image of C (and then let H be the preimage in G of the second factor). Then H
is an open subgroup of G of index 2, so the corresponding subfield L′ := (F ′)H

is quadratic over F . Since H ∩ C = 1, therefore F ′/L′ is unramified and so X
is semistable over L′.

Corollary 7.3. — Suppose that if the residue characteristic is 2, then the
residue field either is separably closed or is algebraic over F2. Then we may
replace “ briefly unstable at v” by “ purely additive at v and becomes semistable
above v over a quadratic separable extension of F” in the results of § § 5–6.
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Remark 7.4. — The proof of Lemma 7.2 shows that the condition that the
residue field k be algebraic over F2 can be replaced by the condition that
Gal(ks/k) be a torsion-free procyclic group.

Remark 7.5. — The group Iv,X defined in (2) is independent of ! (see p. 355
of [5] and Theorem 4.2 of [14]). It follows that for each fixed σ ∈ I, whether
or not (σ − 1)r kills Hk

ét(X, Z!) (or Hk
ét(X, Z/nZ) for n not a power of 2) is

independent of ! (and n), and depends only on whether or not σ ∈ Iv,X .
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