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LOCAL-GLOBAL DIVISIBILITY OF RATIONAL POINTS
IN SOME COMMUTATIVE ALGEBRAIC GROUPS

by Roberto Dvornicich & Umberto Zannier

Abstract. — Let A be a commutative algebraic group defined over a number field k.
We consider the following question: Let r be a positive integer and let P ∈ A(k).
Suppose that for all but a finite number of primes v of k, we have P = rDv for
some Dv ∈ A(kv). Can one conclude that there exists D ∈ A(k) such that P = rD?
A complete answer for the case of the multiplicative group Gm is classical. We study
other instances and in particular obtain an affirmative answer when r is a prime and A
is either an elliptic curve or a torus of small dimension with respect to r. Without
restriction on the dimension of a torus, we produce an example showing that the answer
can be negative even when r is a prime.

Résumé (Divisibilité locale-globale des points rationnels en certains groupes algé-
briques commutatifs)

Pour un groupe algébrique commutatif A, défini sur un corps de nombres k, on se
pose la question suivante : étant donnés un entier r strictement positif et un élément
P de A(k), on suppose que pour tout premier v de k, à l’exception d’au plus d’un
nombre fini, il existe un élément Dv de A(kv) avec P = rDv. Peut-on en déduire
l’existence d’un élément D de A(k) tel que l’on ait P = rD ? Une réponse complète à
cette question est bien connue dans le cas où A est le groupe multiplicatif Gm . Nous
étudions d’autres cas particuliers. Nous obtenons notamment une réponse affirmative
dans le cas où r est un nombre premier et où A est, soit une courbe elliptique, soit un
tore de dimension petite par rapport à r. En outre, nous montrons par un exemple que,
dans le cas où A est un tore de dimension arbitraire, la réponse peut être négative,
même si r est un nombre premier.
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1. Introduction

A strong form of the Hasse principle for binary quadratic forms (over Q)
is the following: if a quadratic form aX2 + bXY + cY 2 ∈ Q[X,Y ] of rank 2
represents 0 non-trivially over all but a finite number of completions Qp, then
it represents 0 non-trivially over Q. This amounts to the fact that if a rational
number is a square modulo all but a finite number of primes, then it is a
perfect square. A generalization of this fact to higher powers r and arbitrary
number fields k holds subject to certain assumptions (see Example 1.1 below).
Now, taking r-th powers can be interpreted as multiplying by r in the algebraic
group Gm; this rephrasement motivates the following more general question:
for which algebraic groups A/k and natural numbers r, the divisibility of a
point P by r in A(k) is equivalent to local r-divisibility almost everywhere?

In the present paper we shall investigate some instances of this question in
the case of commutative algebraic groups. We shall show that there are cases
in which the answer is positive (Theorem 3.1 and Theorem 4.1) and cases when
it is negative (Example 2.4 and Example 5.1).

In order to formulate precisely our questions and results, we first introduce
some notation.

Notation. — In the sequel k denotes a number field with algebraic closure
k̄ = Q. As usual we put Gk := Gal(k̄/k). By a prime of k we mean a discrete
valuation v of k. The completion (resp. residue field) at v will be denoted
by kv (resp. k(v)).

Let A be a commutative and connected algebraic group defined over k,
supposed to be embedded in some projective or affine space. We shall write A
additively and denote by O its origin (defined over k).

Let m be a positive integer and define

A[m] :=
{
P ∈ A(k̄) | mP = O

}
.

We have A[m] ∼= (Z/(m))n for a certain integer n = nA depending only on A
(see the beginning of §2 for a sketch of the proof).

Problem. — Let r be a positive integer and let P ∈ A(k). Suppose that for
all but a finite number of primes v of k we have P = rDv, for some Dv ∈ kv.
Can one conclude that there exists D ∈ A(k) such that P = rD?

Example 1.1. — In case A = Gm a complete answer is provided by [AT,
Thms 1 of Chap. IX and Chap. X]: the answer is affirmative e.g. if r is odd; in
any case one can conclude that 2P is divisible by r in A(k). A counterexample
to the case of general r is given by k = Q, P = 16, r = 8. See also Example
2.4 below for a direct verification of these facts.
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LOCAL-GLOBAL DIVISIBILITY OF RATIONAL POINTS 319

Remark 1.2. — For almost all v we have that A has good reduction mod-
ulo v (whence the reduction is nonsingular) and that the point P is v-integral.
In particular, for such a v, Hensel’s lemma implies that the existence of Dv

is equivalent to the fact that the reduction of P modulo v is divisible by r
in A(k(v)).

Also, the conclusion becomes trivial, in view of the Čebotarev theorem, if we
assume that all r-th roots of P lie in kv for almost all v.

The paper is organized as follows.
In §2 we shall interpret the Problem in cohomological terms, as is classical

in the context; we shall introduce a certain cohomology group whose vanishing
is sufficient for the local-global principle to hold (see Propositions 2.1 and 2.5).
This condition is possibly not necessary in the general case.

In §3 we shall consider in some detail the case n = 2 and make just a few
remarks on the case of other small values of n; in particular, the local-global
principle for p-divisibility in elliptic curves will follow in a very simple way (see
Theorem 3.1). On the other hand, we shall also give simple examples where
the relevant cohomology group is nonzero.

In §4 we shall consider the case when A is a torus, namely it becomes
isomorphic to Gn

m over k̄. The classical result recalled here as Example 2.4
shows that the answer is negative for general r even when A is isomorphic
to Gm over Q. We shall study in detail the case when r is prime. It will turn
out rather easily that, when r = p and n < 2(p − 1), the Problem has an
affirmative answer. With more substantial work, also the case n = 2(p−1) will
follow (see Theorem 4.1).

It is perhaps possible to improve further on the bound n ≤ 2(p − 1), but
certainly Theorem 4.1 does not hold without restrictions on n. In §5 we shall
describe in detail an example suggested by J.-L. Colliot-Thélène (see Exam-
ple 5.1). We shall explicitly construct a torus in which our Problem has a
negative answer for r = p.

Acknowledgements. — We wish to thank Professor J.-L. Colliot-Thélène for
valuable remarks, in particular for pointing out the example described in §5
below. We are indebted to the referee for helping us in clarifying the conse-
quences of such example, as well as for his detailed report.

A substantial part of this paper was written when the authors were guests
of the Institute for Advanced Study, Princeton. We thank the School of Math-
ematics of the Institute and the James D.Wolfensohn Foundation for their
hospitality and support.
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2. The cohomological interpretation

For the reader’s convenience, we start this section with a sketch of the proof
that A[m] ∼= (Z/(m))n for a certain integer n = nA depending only on A.
It follows from the classification of commutative algebraic groups in character-
istic 0 (see for instance [9, Prop. 11, 12 of Chap. III, §2.7 and Cor. of Chap. VII,
§2.7]) that there exists an exact sequence

0 → Gr
a × Gs

m −→ A −→ B → 0,

where B is an abelian variety. It is a straightforward consequence of the com-
mutativity of A and the divisibility of Gr

a × Gs
m that this leads to an exact

sequence
0 → (Gr

a × Gs
m)[m] −→ A[m] −→ B[m] → 0.

Now (Gr
a×Gs

m)[m] ∼= (Z/(m))s and B[m] ∼= (Z/(m))2t, where t is the dimension
of B. Therefore the abelian group A[m] has order ms+2t and can be generated
by ≤ s+ 2t elements. Since A[m] has exponent m, the result follows from the
theory of finite abelian groups.

Coming back to our Problem, first of all we note that it is sufficient to
analyze the case when r is a prime power. Let then q = r = pe, where p is
a prime and e is an integer and define A[q] ⊂ A(k̄) to be the kernel of the
multiplication by q map. This is a finite abelian p-group.

Let K = k(A[q]) be the field generated over k by the points in A[q]. Then K
is normal over k.

Since the abelian group A[q] is isomorphic to (Z/(q))n, the absolute Galois
group Gk = Gal(k̄/k) acts as a subgroup of GLn(Z/(q)). We denote by G its
image: observe that G is isomorphic to Gal(K/k).

Let D ∈ A(k̄) be any point satisfying P = qD and let L = k(D) be the
number field generated by D over k. Then F := LK ⊂ Q̄ is normal over k,
with Galois group Σ, say. For σ ∈ Σ we have clearly

(2.1) σ(D) = D + Zσ,

for some Zσ ∈ A[q]. A quick computation gives the cocycle equation

(2.2) Zστ = Zσ + σ(Zτ ),

for σ, τ ∈ Σ. We let c : σ �→ Zσ denote this cocycle and [c] its image
in H1(Σ,A[q]).

Note that [c] = 0 if and only if P = qD′ for some D′ ∈ A(k).

Let now v be a prime of k, unramified in F and satisfying the assumptions of
the Problem. We may embed F in a finite extension Fw of kv, corresponding to
some prime w of F extending v. We have that Gal(Fw/kv) is cyclic, generated
by some Frobenius automorphism of v relative to F/k. By the basic assumption
of the Problem, P = qDv for some Dv ∈ A(kv). By the same argument as
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LOCAL-GLOBAL DIVISIBILITY OF RATIONAL POINTS 321

above, the restriction of [c] to H1(Gal(Fw/kv),A[q]) vanishes. We note that,
by the Čebotarev theorem, Gal(Fw/kv) varies over all cyclic subgroups of Σ
as w runs over almost all primes of F . In other words, for each σ ∈ Σ there
exists Wσ ∈ A[q] such that

(2.3) Zσ = (σ − 1)Wσ.

This argument motivates the following general definition.

Definition. — Let Γ be a group and let M be a Γ-module. We say that
a cocycle [c] = [{Zγ}] ∈ H1(Γ,M) satisfies the local conditions if there exist
Wγ ∈ M such that Zγ = (γ − 1)Wγ for all γ ∈ Γ. We denote by H1

loc(Γ,M)
the subgroup of such cocycles. Equivalently, H1

loc(Γ,M) is the intersection of
the kernels of the restriction maps H1(Γ,M) → H1(C,M) as C varies over
all cyclic subgroups of Γ.

Working with all valuations, instead of almost all, we would get the classical
definition of the Shafarevic group. Modified Shafarevich groups, similar to
our definition, appear in [6]. In order to render the paper self-contained, we
prefer to keep our own notation. The next proposition can be obtained from
rather well-known arguments (see for instance [6, Lemma 1.1 (ii)],). It gives a
sufficient condition for the Problem to have an affirmative answer.

Proposition 2.1. — Assume that H1
loc(Gal(K/k),A[q]) = 0. Let P ∈ A(k)

be a rational point with the following property: for all but finitely many primes v
of k, there exists Dv ∈ A(kv) such that P = qDv. Then there exists D ∈ A(k)
such that P = qD.

Later in the paper we shall study the vanishing of H1
loc(Gal(K/k),A[q]) in

various special cases.

Remark 2.2. — In some cases, Proposition 2.1 has a converse, namely: sup-
pose that H1(Gal(K/k),A(K)) = 0, but H1

loc(Gal(K/k),A[q]) �= 0. Then the
Problem has a negative answer for some P ∈ A(k).

In fact, the non-vanishing of H1
loc(Gal(K/k),A[q]) gives a cocycle Zσ sat-

isfying (2.3) for σ ∈ Gal(K/k). Since H1(Gal(K/k),A(K)) = 0, we have
Zσ = σ(D) −D for some D ∈ A(F ). Necessarily P = qD ∈ A(k) satisfies the
assumptions, but not the conclusion of the Problem.

Hilbert’s Theorem 90 says that H1(Gal(K/k),A(K)) = 0 is true in the case
when A = Gm of Example 1.1 above. In general however the analogue of
Hilbert’s theorem is false; in those cases there seems to be no obvious reason
why the mentioned converse should nevertheless be true. In §5 we shall give a
different instance of the converse implication.
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Proof of Proposition 2.1. — Let Σ be as at the beginning of this section. The
arguments above show that H1

loc(Σ,A[q]) = 0 implies the conclusion of the
proposition. Hence we need only to show that we may replace the group
H1

loc(Σ,A[q]) by H1
loc(Gal(K/k),A[q]).

Since F ⊃ K, the action of Gk on A[q] factors through Σ. Hence Gk

and Σ have the same image G in Aut(A[q]). We observe that G is isomor-
phic to Gal(K/k).

We denote by Σ′ the kernel of the representation of Σ in Aut(A[q]). By def-
inition, Σ′ acts trivially on A[q], hence the restriction-inflation exact sequence
[8, Prop. 4, Chap. IX, §6], takes the form

0 → H1
(
G,A[q]

)
−→ H1

(
Σ,A[q]

)
−→ H1

(
Σ′,A[q]

)
.

We claim that the middle arrow induces an isomorphism

H1
loc

(
G,A[q]

) ∼= H1
loc

(
Σ,A[q]

)
.

To prove the claim note first that, since the inflation is injective, it induces
trivially an injective map. On the other hand, take an element [{Zσ}] of
H1

loc(Σ,A[q]); it restricts to zero in H1(Σ′,A[q]), as follows from (2.3) and
the fact that Σ′

p acts trivially on A[q]. By the exactness of the restriction-
inflation sequence, [{Zσ}] comes from an element [{Yτ}] ∈ H1(G,A[q]), and
now it suffices to check that it lies in H1

loc(G,A[q]): in fact, we may choose
[{Zσ}] such that Yτ = Zσ for each σ which projects to τ ; with this choice
Equation (2.3) gives the verification.

In particular, we obtain the following corollary, which can also be easily
proved directly.

Corollary 2.3. — Let P ∈ A(k) be a rational point such that for all but
finitely many primes v of k, there exists Dv ∈ A(kv) such that P = qDv. Then
D ∈ A(K) for all D such that P = qD.

Proof. — We may view P as a point in A(K). The assumptions imply, a
fortiori, that for all but finitely many primes w of K there exists Dw ∈ A(Kw)
such that P = qDw. Since Gal(K/K) is trivial, we have

H1
loc

(
Gal(K/K),A[q]

)
= 0.

By Proposition 2.1 there exists D ∈ A(K) such that P = qD. Finally, if
D′ ∈ A(k̄) also satisfies P = qD′, then D′ −D ∈ A[q] ⊂ A(K).

We have already observed that A[q] ∼= (Z/(q))n and that Σ acts on A[q] as a
subgroup of GLn(Z/(q)). In the following we shall identify A[q] with (Z/(q))n

and Aut(A[q]) with GLn(Z/(q)).
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Example 2.4. — We can reinterpret in our language the case A = Gm of
Example 1.1 (see also [6, formula (2.5), p. 22]). In this case nA = 1 and G is
isomorphic to a subgroup of (Z/(q))∗. If q = pa is an odd prime power, then G
is cyclic, hence H1

loc(G,Z/(q)) = 0 trivially. In virtue of Proposition 2.1, our
Problem has an affirmative answer in this case. On the other hand, it is easy
to verify that, for k = Q and q = 8, we have

H1
loc(Gal(Q(ζ8)/Q),Z/(8)) ∼= Z/(2).

Since H1(GQ,Q
∗
) = 0 (Hilbert’s Theorem 90), Remark 2.2 guarantees the

existence of counterexamples to the conclusion of the Problem. An explicit one
is given by taking 8-th roots of 16.

To simplify things further, we define Gp to be a Sylow p-subgroup of G. We
have another remark:

Proposition 2.5. — An element of H1
loc(G, (Z/(q))

n) is zero if and only if
its restriction to H1

loc(Gp, (Z/(q))n) is zero.

Proof. — By [8, Thm. 4, Chap. IX, §2], the restriction

H1
(
G, (Z/(q))n

)
−→ H1

(
Gp, (Z/(q))n

)

is injective on the p-primary part of H1(G, (Z/(q))n), which is the whole group
in the present case, since (Z/(q))n is a p-group. On the other hand, if a cocycle
satisfies the local conditions (2.3) relative to G, it satisfies them relative to any
subgroup of G, and the conclusion follows.

Remark 2.6. — In the sequel we shall be primarily concerned with the calcu-
lation of H1

loc(Gp, (Z/(q))n) in various special cases. We remark however that
considering the whole G may be sometimes very useful. For example, it may
be easily shown (using the restriction-inflation sequence) that, if G contains a
nontrivial multiple of the identity matrix, then H1

loc(G, (Z/(q))
n) = 0.

3. The case when n = 2, q = p or q = p2

When n = 2 and q = p, we have that G = Gp is contained in the p-Sylow
subgroup of GL2(Z/(p)). Therefore the order of Gp divides p, whence Gp is
cyclic and H1

loc(Gp, (Z/(p))2) = 0. By Propositions 2.1 and 2.5 we deduce that
our Problem has an affirmative answer. In particular, we obtain the following:

Theorem 3.1. — Let E be an elliptic curve defined over a number field k.
If a point P ∈ E(k) is divisible by p in almost all E(kv), then it is divisible
by p in E(k).
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When q = p2, as we now assume, things are more involved. Let G0 be the
kernel of the reduction map GL2(Z/(q)) → GL2(Z/(p)). We formulate our
result in terms of H = Gp ∩ G0. Note that H has a natural structure of Fp-
vector space.

Proposition 3.2. — Suppose that either
(i) p �= 2, 3 and dimH �= 2, or
(ii) p = 3 and dimH ≥ 3, or
(iii) p = 2 and dimH = 4.

Then H1
loc(Gp, (Z/(p2))2) = 0.

Proof. — We begin by looking at the group H1
loc(H, (Z/(p

2))2). By definition,
any element σ ∈ H can be written as

(3.1) σ = I + p
(
x′σ t

′
σ

w′
σ y

′
σ

)

for some x′σ, t
′
σ, w

′
σ, y

′
σ ∈ Z/(p2). Clearly (3.1) depends only on the residue

classes mod p of x′σ, t
′
σ, w

′
σ, y

′
σ. If z′ is an element of Z/(p2), we shall denote

throughout this section by z its residue class mod p.
It is easy to see that

σ �−→
( xσ tσ
wσ yσ

)

is an injective homomorphism H → (Z/(p))4.
Let now {Zσ, σ ∈ H} be a 1-cocycle representing a class inH1

loc(H, (Z/(q))
2).

By the local condition, Zσ ∈ Im(σ − 1) ⊂ p(Z/(q))2. Therefore we may write

Zσ = pZ ′
σ = p

(
a′σ
b′σ

)
, a′σ, b

′
σ ∈ Z/(p2).

Also, denoting again by aσ and bσ the classes of a′σ and b′σ mod p, by the
cocycle condition we may verify that

σ �−→
(aσ
bσ

)

is a homomorphism of H to (Z/(p))2.

We recall without proof the following

Lemma 3.3. — Let V be a vector space and ψ, ϕ1, . . . , ϕm ∈ V ∗. If
m⋂
i=1

kerϕi⊂ kerψ,

then ψ ∈ 〈ϕ1, . . . , ϕm〉.
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LOCAL-GLOBAL DIVISIBILITY OF RATIONAL POINTS 325

By the local conditions, there exist λσ, µσ ∈ k such that

aσ = λσxσ + µσtσ, bσ = λσwσ + µσyσ.

The last equation implies kerwσ∩ker yσ ⊂ ker bσ, whence, by Lemma 3.3, there
exist λ̃, µ̃ ∈ k such that

bσ = λ̃wσ + µ̃yσ

for all σ ∈ H . Subtracting the coboundary (σ−1)
(
λ̃
µ̃

)
and applying Lemma 3.3

again we may then assume

(3.2) aσ = λxσ + µtσ, bσ = 0,

and the local conditions say that there exist λσ, µσ ∈ k such that

(3.3)
(
λxσ + µtσ

0

)
=

(
xσ tσ
wσ yσ

)(
λσ
µσ

)
.

We are now ready to prove that H1
loc(H, (Z/(p

2))2) = 0 in cases (i), (ii)
and (iii).

• Case 1: dimH = 1. — In this case H is cyclic and the result is trivial.

• Case 2: dimH = 3. — The homomorphisms xσ, yσ, wσ, tσ satisfy a single
non-trivial linear relation of type

Axσ +Btσ + Cwσ +Dyσ = 0.

The cases when either (A,B) = (0, 0) or (C,D) = (0, 0) are dealt rather easily
and we leave them to the reader.

Now suppose that (A,B) and (B,C) are both �= (0, 0), and so wσ and yσ are
linearly independent. Considering the matrices of determinant zero, we have
the system

Axσ +Btσ = −(Cwσ +Dyσ), yσxσ − wσtσ = 0.

By elementary linear algebra, the local conditions are not satisfied if we can
find a vector (w, y) such that

Aw +By �= 0, Cw +Dy �= 0 and λw + µy �= 0.

A counting argument shows that this is always the case unless (λ, µ) = (0, 0)
(the trivial cocycle) or p = 2 and (A,B), (C,D), (λ, µ) are all distinct.
(This case gives in fact H1

loc(H, (Z/(4))
2) �= 0, as shown for instance by the

case (A,B) = (1, 0), (C,D) = (0, 1) and (λ, µ) = (1, 1).)

• Case 3: dimH = 4. — Choose σ such that xσ = wσ = 1, tσ = yσ = 0:
with the notation of (3.2) and (3.3) we have λ = λσ = 0. Similarly, choosing σ
such that xσ = wσ = 0, tσ = yσ = 1, we get µ = 0 and so aσ = 0 for all σ ∈ H .
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Consider now the full group Gp and let H be the kernel of the reduction
map. Then Γ = Gp/H is cyclic, Γ = 〈γ̄〉, and we may suppose

γ̃ =
(1 1
0 1

)
.

It is a simple exercise to verify that, for dimH = 1 and p �= 2, 3, the groupGp

is cyclic, so the conclusion is trivial. Hence we are left with the case dimH ≥ 3
(and p ≥ 3 if dimH = 3).

If Zσ =
(
u′σ
v′σ

)
is a cocycle with values in Z/(p2) such that Zσ = 0 for all

σ ∈ H , then (h− 1)Zσ = 0 for all h ∈ H , for all σ ∈ Gp and, setting

h = I + p∆′
h = I + p

(
x′h t

′
h

w′
h y

′
h

)
,

we have p∆′
hZσ = 0 for all h ∈ H , i.e.

∆h

(uσ
vσ

)
= 0, ∀h ∈ H,

where ∆h, uσ, vσ denote the reduction of ∆′
h, u

′
σ, v

′
σ modulo p.

The local conditions say that
(
uσ
vσ

)
= (σ − 1)

(
µσ
νσ

)

for some µσ, νσ ∈ Z/(p). If dimH ≥ 3, then det∆h does not vanish identically
on H , whence uσ = vσ = 0 for all σ; moreover, the local conditions (for σ �∈ H)
imply that νσ = 0 for all σ, i.e.

(u′σ
v′σ

)
= p

(a′σ
b′σ

)
= (σ − 1)

( µ′σ
pβ′σ

)

for some a′σ, b′σ, µ′σ, β′σ ∈ Z/(p2). For σ = γih we have

p
(a′σ
b′σ

)
= (γih− 1)

( µ′σ
pβ′σ

)

and

γih = γi(1 + p∆′
h) = γ

i + p
(1 i
0 1

)( x′h t′h
w′
h y

′
h

)
.

Setting γi− 1 =
(pr′i i+ ps′i
pt′i pv′i

)
, dividing by p and then reducing mod p, we get

(
aσ
bσ

)
=

(
riµσ + iβσ + (xh + iwh)µσ

(ti + wh)µσ

)
.
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Recalling that the last matrix must be independent of h ∈ H , we see that if wh

is not identically 0 on H , then µσ = 0, bσ = 0, σ �→ aσ is a homomorphism and

p
(a′σ

0

)
= (σ − 1)

( 0
pa′γ

)

for all σ ∈ Gp. Also, if wh is identically zero but xh is not, we get again µσ = 0
and the same conclusion follows.

Example 3.4. — The condition dimH �= 2 in Proposition 3.2 (i) is necessary.
In fact, let xσ = yσ, tσ = nwσ, with (np ) = −1. Then

σ = I + p∆′
σ = I + p

(
y′σ nw

′
σ

w′
σ y

′
σ

)
,

whence det∆σ �= 0 if (yσ, wσ) �= (0, 0) and the local conditions are satisfied.
On the other hand, if

Zσ =
(
py′σ
0

)
,

then Zσ is a cocycle but we cannot have

Zσ = (σ − 1)
(
α′

β′

)
,

since αwσ + βyσ is not identically 0.

Example 3.5. — In the case when dimH = 1 the condition that p �= 2, 3
is necessary, as shown by the following examples.

• If p = 2 let G2 be the group generated by the matrices

γ =
(1 1
0 −1

)
, h =

(1 2
0 1

)

and let Zσ be the cocycle defined by Zγ =
(1
2

)
, Zh =

(0
0

)
.

• If p = 3 let G3 be the group generated by the matrices

γ =
( 1 1
−3 1

)
, h =

(1 3
0 1

)

and let Zσ be the cocycle defined by Zγ =
(1
3

)
, Zh =

(0
0

)
.

Remark 3.6. — For n > 2, we can have H1
loc(Gp, (Z/(p))n) �= 0 even in the

case q = p. In fact, for n = 3, one can prove, with methods similar to those
used in the proof of Proposition 3.2, that there is essentially one case for which
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H1
loc(Gp, (Z/(p))3) �= 0, namely the case when p �= 2 and Gp is conjugate to a

subgroup of GL3(Z/(p)) of type

Kp,λ =







1 a b
0 1 λa
0 0 1


 : a, b ∈ Fp


 , λ ∈

(
Z/(p)

)∗

for which it is easily seen that

Zσ =



λa2σ − bσ

0
0




satisfies the local conditions but is not a coboundary. If p = 2 (and neces-
sarily λ = 1) the corresponding group K2,1 turns out to be cyclic, so trivially
H1

loc(K2,1, (Z/(2))3) = 0 and hence H1
loc(G2, (Z/(2))3) = 0 for any possible G2.

We shall use this remark when proving Theorem 4.1.

For n > 3 there are also several examples for which H1
loc(G, (Z/(p))

n) does
not vanish: take for instance n = 4 and

G =







1 a 0 b
0 1 0 0
0 0 1 a
0 0 0 1


 : a, b ∈ Fp




;

again the cocycle

Zσ =



bσ
0
0
0




satisfies the local conditions but is not a coboundary.

4. The case of tori

We recall that an algebraic k-torus of dimension n is a linear algebraic group,
defined over k, which is isomorphic to Gn

m over k̄ (see [3, Chap. X.1.3]). As
recalled in Example 1.1, our Problem can have a negative answer already in
the simplest case when the torus is isomorphic to Gm over Q. For q = p a
prime, however, the answer in the case of Gm is positive. In this section we
restrict our attention precisely to the case q = p. We shall see in §5 that even
this restriction does not imply an affirmative answer in general. We shall see
that the answer is positive under certain conditions. The main result of this
section is the following.
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Theorem 4.1. — Let T be an algebraic k-torus of dimension

n ≤ max
(
3, 2(p− 1)

)
.

Then if a point P ∈ T (k) is divisible by p in almost all T (kv), then it is divisible
by p in T (k).

Preliminary to the proof, we introduce some notation and outline some basic
facts from the theory of algebraic tori.

Let φ : T → Gn
m be an isomorphism of algebraic groups defined over k̄. For

σ ∈ Gk := Gal(k̄/k) we put

ψ(σ) := φ ◦ (φσ)−1.

Then ψ(σ) is a 1-cocycle of Gk with values in the automorphism group of Gn
m.

Now this last group may be identified with GLn(Z), with trivial action of GQ.
Therefore σ �→ ψ(σ) is a homomorphism ψ : Gk → GLn(Z). Since φ is defined
over some number field, the kernelH of ψ has finite index in Gk and its image is
a finite subgroup ∆ of GLn(Z). We denote by L the fixed field of H ; then L is a
normal extension of k with Galois group Gal(L/k) ∼= ∆. Moreover, φ is defined
over L and L is the minimal splitting field for T , i.e. T becomes isomorphic
to Gn

m over L. Conversely, the triple (k, L, conjugacy class of ∆ in GLn(Z))
defines a k-torus T up to k-isomorphism. (For a general account of this topic
see for instance [4] or [11, Chap. 1, §3, Chap. 1, §3].)

Proof of Theorem 4.1. — The isomorphism φ shows that T [p] ∼= (Z/(p))n as
an abelian group. We now analyze the Galois action on T [p]. Let χ : Gk →
(Z/(p))∗ be the cyclotomic character defined by σ(ζp) = ζ

χ(σ)
p for a primitive

p-th root of unity ζp. It is easy to verify that Gk acts on T [p] as

tσ −→ χ(σ)ψ(σ)v
if t ∈ T [p] corresponds to v ∈ (Z/(p))n. Therefore we have a homomorphism
ξ : Gk → GLn(Z/(p)) defined by

ξ : σ �−→ χ(σ)ψ̃(σ),
where the tilde denotes the reduction mod p. The field K = k(T [q]) is precisely
the fixed field of the kernel of ξ. Observe that this implies

K ⊂ L(ζp).
(The last assertion can also be derived directly from the fact that φ is defined
over L.)

As in §2, we denote by G the image of ξ. Restricting ξ to Gk(ζp) we have
clearly χ(σ) = 1, so the image of this restriction is a normal subgroup G′ of G
which is also a normal subgroup ∆̃′ of ∆̃. Both indices [G : G′] and [∆̃ : ∆̃′]
divide [k(ζp) : k], and hence are coprime to p. It follows that G and ∆̃ have
the same p-Sylow subgroups.
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By Propositions 2.1 and 2.5, it is sufficient to prove that

(4.1) H1
loc

(
Gp, (Z/(p))n

)
= 0.

By what we have just shown, this is the same as studying the vanishing of
H1

loc(∆̃p, (Z/(p))n), where ∆̃p is a p-Sylow subgroup of ∆̃. We also notice that
the image of a p-Sylow subgroup of ∆ under reduction mod p is a p-Sylow
subgroup of ∆̃.

Example 4.2. — Let F be a number field of degree n over Q and let T =
RF/QGm be the n-dimensional Q-torus obtained by restriction of scalars from F
to Q (see [12, Chap. 1]). Then GQ acts as permutation group on GQ/GF and
this defines an n-dimensional permutation representation of GQ. It may be
easily verified that its image is precisely ∆. The known case of A = Gm (see
Example 1.1) allows to treat this case. It is also possible however to show
directly that, e.g. for q = p, H1

loc(Σp, T [p]) = 0.

By [1, Chap. III, Exercise 7.6], we have that

(a) Gp
∼= ∆p except possibly for p = 2, where the kernel of the reduction has

order at most 2;

(b) ordp(#∆p) ≤
[ n

p− 1

]
+

[ n

p(p− 1)

]
+ · · · .

By condition (b) we see that Gp is necessarily cyclic whenever n < 2(p− 1),
so the theorem follows in this case. Also, if n ≤ 3, the result follows from §3;
in fact, the only counterexample for n = 3 holds for p �= 2 (see Remark 3.6).

Hence we assume from now on that n = 2(p − 1) ≥ 4, so p ≥ 3 and
n < p(p− 1). By (a) above we have Gp

∼= ∆p and, by (b), ∆p has order ≤ p2.
If ∆p is cyclic the vanishing of the relevant H1

loc is automatic and concludes the
proof. Hence we may suppose that ∆p

∼= Gp
∼= (Z/(p))× (Z/(p)). In particular

∆p corresponds to a representation of (Z/(p))× (Z/(p)) into GLn(Z).

Remark 4.3. — Although all such representations can be diagonalized
over Q(ζp), where ζp is a primitive p-th root of unity, they may be non-
conjugate in GLn(Z[ζp]), even if they are isomorphic over Q. A fortiori, they
may be non-conjugate in GLn(Z). Therefore, in our analysis we must refine the
classical theory of linear representations by introducing integrality conditions.

We give an example of the phenomenon just described. Take p = 3, n = 4
and put

α =
( I −I
0 A

)
, β =

(A I
0 I

)
,

where I = I2 and A is a matrix in GL2(Z) such that A2 + A + I = 0. It is
readily verified that α, β generate a group G isomorphic to (Z/(3))2. On the
other hand G cannot be put in diagonal form over Z[ζ3], for otherwise we would
have α2 + α+ I4 ≡ 0 (mod (ζ3 − 1)), since every eigenvalue satisfies the same
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congruence. This is however not the case: in fact, the right upper corner of
α2 + α + I4 is −A − 2I; if this were divisible by ζ3 − 1 then we would have
A ≡ I (mod 3). Since A3 = I, this would imply A = I.

In practice we shall write down all the representations of (Z/(p))2 in GLn(Z)
up to equivalence in GLn(Z) and verify directly the triviality of the relevant
H1

loc. The method is probably capable to be generalized to some extent.

In the sequel we shall write Γ both for the mentioned subgroup ∆p ⊂ GLn(Z)
and for its reduction Gp modulo p.

To start with, we shall decompose our (faithful) action of Γ on Qn. Suppose
that Qn is equipped with a Q[Γ]-module structure and suppose it is simple.
Then, by Schur’s Lemma (see for intance [5, Chap. XVII.1, Prop. 1.1]), the
ring EndQ[Γ]Q

n is a division ring. On the other hand Γ is abelian, so this ring
contains the image of Q[Γ] as a ring of endomorphism. If the representation
of Γ on Qm were faithful, we would have a contradiction: in fact the equation
Xp = 1 has ≥ p2 solutions in Q[Γ], which therefore cannot be a domain. Hence
either the action of Γ on Qm is trivial, and we have m = 1, or it factors
through a subgroup of order p. In this last case it corresponds to an irreducible
representation of Z/(p) over Q, which is either trivial or has dimension p − 1
(corresponding to the irreducible factors of Xp − 1 over Q).

Therefore, since the action of Q[Γ] on Qn is semisimple (see [7, Chap. 6.1,
Prop. 9]) any representation of Q[Γ] in Qn is either trivial, or may be decom-
posed as the sum of p− 1 trivial 1-dimensional representations with a (p− 1)-
dimensional irreducible representation, or finally is the sum of two (p − 1)-
dimensional irreducible representations. Only the last possibility may come
from a faithful action. In fact, otherwise the (p − 1)-dimensional irreducible
representation would be itself faithful. But we have proved just above that
each simple representation cannot be faithful. Therefore we restrict to these
last cases.

Let V be a (p−1)-dimensional subspace of Qn stable by Γ. By [2, Chap. I.2.2,
Cor. 3], we can find a Q-basis {v1, . . . , vp−1} of V such that

(i) v1, . . . , vp−1 ∈ Zn;

(ii) v1, . . . , vp−1 may be extended to a basis v1, . . . , vp−1, w1, . . . , wp−1 of Zn.

Expressing the matrices in Γ by means of this basis we may suppose that
they have zeros in the lower (p− 1)× (p− 1) left corner. For σ ∈ Γ we denote

σ =
(
ω1(σ) ω2(σ)
0 ω3(σ)

)
,

where ωi(σ) are (p − 1)× (p − 1) matrices over Z. Observe that ω1, ω3 : Γ →
GLp−1(Z) are homomorphisms. Since σp = 1 for each σ ∈ Γ, we see that either
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σ = 1 or there exists at least one eigenvalue of σ different from 1. In fact, σ is
diagonalizable (since it satisfies the separable equation Xp − 1 = 0).

In particular σ �→ (ω1(σ), ω3(σ)) is injective.
Also, kerωi cannot be trivial for i = 1 or i = 3, since Γ cannot be embedded

in GLp−1(Z) (by the mentioned result in [1], i.e. (b) above). Hence Γ is gene-
rated by matrices α, β as follows:

α =
( I M
0 A

)
β =

(B N
0 I

)
,

for suitable integral (p−1)×(p−1) matrices A,B,M,N , with A,B ∈ GLp−1(Z)
(here I denotes the identity in GLp−1(Z)). Since neither α, nor β is the identity,
both A and B have at least one eigenvalue distinct from 1, necessarily a prim-
itive p-th root of 1. Therefore they must admit also the conjugate eigenvalues,
which are p− 1 in number. Hence they satisfy

(4.2) φ(A) = φ(B) = 0, where φ(X) = Xp−1 + · · ·+X + 1.

Since φ(X) is irreducible over Q necessarily it is the characteristic and minimal
polynomial of both A,B.

We shall continue by proving that the minimal polynomial modulo p of both
A and B is φ(X) ≡ (X − 1)p−1 (mod p). Assume the contrary for A, say.
Then (A− I)p−2 ≡ 0 (mod p) and therefore det(A− I)p−2 ≡ 0 (mod pp−1). In
particular p2 would divide det(A−I). On the other hand det(A−I) = φ(1) = p,
since φ(X) is the characteristic polynomial of A.

We now let A,B act on (Z/(p))p−1 and look at their Jordan decomposition
with respect to this action. By the above, we find that for 1 ≤ j ≤ p− 2,

(4.3) ker(A− I)p−j−1 = Im(A− I)j , ker(B − I)p−j−1 = Im(B − I)j .
Since α, β commute we readily get

(4.4) (B − I)M +N(A− I) = 0.

Let now {Zσ} be a 1-cocycle with values in (Z/(p))n representing a class in
H1

loc(Γ, (Z/(p))
n), and write

Zσ = (tσ, t̃σ), tσ, t̃σ ∈
(
Z/(p)

)p−1
.

By the local conditions, we may assume, subtracting a coboundary, that the
restriction of Z to the subgroup H generated by α is zero. This automati-
cally implies that Zσ depends only on the class of σ modulo H . In particular
Zαβ = Zβ .

By the local condition for β we deduce at once that t̃β = 0. In fact the local
condition applied to Zβ gives the existence of u, v ∈ (Z/(p))p−1 such that

Zβ =
(
B − I N

0 0

)(
u
v

)
.
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Therefore we find t̃αβ = t̃β = 0 and tαβ = tβ .

The local condition applied to Zαβ gives the existence of u, v ∈ (Z/(p))p−1

such that

(4.5) tαβ = (B − I)u+ (M +N)v, 0 = (A− I)v.
By (4.3) we have v = (A − I)p−2w for some w ∈ (Z/(p))p−1. We use (4.4)
and (4.5) to compute

(B − I)p−2tαβ = (B − I)p−2Mv + (B − I)p−2Nv

= −(B − I)p−3N(A− I)v + (B − I)p−2N(A− I)p−2w

= −(B − I)p−1M(A− I)p−3w = 0.

Therefore, by (4.3) again, we have tαβ ∈ Im(B − I). Since tβ = tαβ we
obtain the existence of s ∈ (Z/(p))p−1 such that

tβ = (B − I)s.
Put finally W := (s, 0) ∈ (Z/(p))n. We see that

(α− I)W = 0 = Zα, (β − I)W = (tβ , 0) = Zβ .

Therefore the cocycle Zσ−(σ−I)W vanishes on a set of generators of Γ, whence
always vanishes, proving that Zσ vanishes in H1(Γ, (Z/(p))n). We have proved
that H1

loc(Gp, (Z/(p))n) = 0 and the theorem.

Remark 4.4. — What we have obtained depends heavily on the possibility of
lifting Gp to a subgroup of integral matrices. In fact, take e.g. p = 3, n = 4:
we have seen in §3 that for a subgroup G ⊂ GL4(Z/(3)), G ∼= (Z/(3))2, it is
not always true that H1

loc(G, (Z/(3))
4) = 0.

5. A counterexample

It is likely that the conclusion H1
loc(G, (Z/(p))

n) = 0 may be obtained under
an assumption weaker than n ≤ 2(p− 1), by arguments similar to those in the
proof of Theorem 4.1.

However, for given p, some condition on n is necessary, as shown by the
example detailed below, suggested by Colliot-Thélène. This example implies
that H1

loc(G, (Z/(p))
n) can be nonzero for a suitable subgroup G of GLn(Z),

G ∼= Z/(p)×Z/(p), provided n is a sufficiently large integer (note that the case
G ∼= (Z/(p))2 is the most relevant in Theorem 4.1). The actual value of n in
the example below is n = p4−p2+1, so there is a range of uncertainty localized
in 2p− 1 ≤ n ≤ p4 − p2. It would be interesting to establish the best possible
bound for n in order to have H1

loc(G, (Z/(p))
n) = 0 for such a G.

Actually, the example below will lead not only to H1
loc(G, (Z/(p))

n) �= 0
but to a counterexample to the conclusion of Theorem 4.1. In fact, we shall
produce a k-rational point which is almost always locally p-divisible but not
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globally. We are indebted to Colliot-Thélène and to the referee for predicting
this sharper conclusion and for hinting how it could be reached.

Example 5.1. — There exists a torus T over a number field k and a point P
in T (k) such that P is p-divisible in T (kv) for almost all v, but not p-divisible
in T (k).

Let G = Z/(p)×Z/(p) and consider the standard projective resolution of Z
as a G-module (see [3, Chap. IV, §2])

· · · −→ Z[G×G] −→ Z[G] ε−→ Z → 0;

letting M be the kernel of the map Z[G × G] → Z[G], we obtain an exact
sequence

(5.1) 0 →M −→ Z[G×G] −→ Z[G] ε−→ Z → 0.

For a G-module X , let X0 = HomZ(X,Z); then we have a dual exact sequence

(5.2) 0 → Z −→ Z[G] α−→ Z[G×G] β−→M0 → 0.

The exact sequence (5.2) can be split in the two parts

0 → Z −→ Z[G] −→ N → 0

and
0 → N −→ Z[G×G] −→M0 → 0

(here N = IG = Im(α) = kerβ). It follows that there are isomorphisms

H1(G,M0) ∼= H2(G,N) ∼= H3(G,Z),

H1(C,M0) ∼= H2(C,N) ∼= H3(C,Z)
for each cyclic subgroup C ⊂ G (note that Z[G] and Z[G×G] are both G- and
C-free modules). By [10, Chap. I.4.4, Prop. 28], we have

H3(G,Z) ∼= Z/(p), H3(C,Z) = 0,

whence
H1(G,M0) ∼= Z/(p), H1(C,M0) = 0.

Next, consider the exact sequence

0 →M0 p−→M0 π−→M0/pM0 → 0.

We get a corresponding cohomology exact sequence

H1(G,M0)
p̄→ H1(G,M0) π̄→ H1(G,M0/pM0).

Since H1(G,M0) ∼= Z/(p) is annihilated by the multiplication by p, Im(p̄) = 0
whence π̄ is injective and

H1(G,M0/pM0) �= 0.
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Finally consider the commutative diagram (see [8, Chap. VIII.2, Prop. 2])

H1(G,M0)
Res
−−→

∏
C

H1(C,M0) = 0
�π̄

�π̄
H1(G,M0/pM0)

Res
−−→

∏
C

H1(C,M0/pM0).

Since π̄ is injective, we get

(5.3) 0 �= Im(π̄) ⊂ H1
loc(G,M

0/pM0).

Because of the obvious isomorphisms as abelian groups, we may identifyM0

with Zn and M0/pM0 with (Z/(p))n, where n = p4 − p2 + 1. Also, the action
of G on M0 corresponds to a map ψ : G→ GLn(Z).

For any choice of number fields k ⊂ L such that Gal(L/k) ∼= G we may define
a k-torus T with splitting field L by giving the homomorphism ψ. If k ⊃ Q(ζp),
we have seen in Section 4 that the action of G on T [p] corresponds to the action
of G on M0/pM0, hence

H1
loc

(
G, T [p]

)
�= 0,

which is the first result claimed. To complete the picture, we shall show that
this leads to a counterexample to our local-global principle for p-divisibility.

Note that equation (5.3) not only shows that H1
loc(G,M

0/pM0) �= 0, but
also that there is a non-trivial element [ω] ∈ H1

loc(G,M
0/pM0) which is the

image under π̄ of an element [ρ] of H1(G,M0). In fact, [ρ] ∈ H1
loc(G,M

0).
Let σ �→ ρσ ∈ Zn ∼= M0 be 1-cocycle representing [ρ] and let σ �→ ωσ ∈

(Z/(p))n be its reduction mod pM0. Then, for σ, τ ∈ G,
(5.4) ρστ = ρσ + ψ(σ)ρτ
and

(5.5)
(i) ρ̃σ = ωσ,

(ii) ωστ = ωσ + ψ̃(σ)ωτ ,

where the tilde denotes reduction mod p.
Next, we sum (5.4) over τ ∈ G and we let S =

∑
τ∈G ρτ . We get

(5.6) p2ρσ =
(
1− ψ(σ)

)
S.

From now on, we find it convenient to use the isomorphism φ and view the
abelian group T (k̄) as Gn

m(k̄) ∼= k̄∗n. Correspondingly, we adopt the multi-
plicative notation in this final part of the paper.

However, the Galois action on T (k̄), read in k̄∗n, is not the usual one, but
gets twisted by ψ. (In fact, in general, we have T (F ) �= F ∗n for an algebraic
extension F of k.)
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To be precise, let P = (x1, . . . , xn) ∈ k̄∗n and let σ ∈ Gk. Viewing P as an
element of T (k̄), we have

P σ = (σ(x1) . . . , σ(xn))ψ(σ),

where, for a matrix M = (mij) ∈Mn(Z), we put

(5.7) (y1, . . . , yn)M =
( n∏

i=1

y
m1j

j , . . . ,

n∏
i=1

y
mnj

j

)
.

The proof of this formula is a straightforward application of the definitions.
For later purpose, we also define, for a vector m = (m1, . . . ,mn),

(y1, . . . , yn)m = ym1
1 · · · ymn

n .

Before using equation (5.6), we make a definite choice of the fields k and L.
We let k = Q(ζp3), L′ be a normal extension of Q with Galois group G and
linearly disjoint from k, and L = L′k. Note that L′ can be obtained, for
instance, as a suitable subfield of Q(ζq1q2), where q1, q2 are distinct primes
congruent to 1 mod p.

Let γ ∈ k be a primitive p3-th root of unity and let ζ = γp
2
. Let also

Q = (ζ, . . . , ζ) ∈ T [p].

Consider the map σ �→ Zσ := Qρσ , where ρσ is the cocycle with values in
Zn ∼= M0 defined above. Recall that the reduction mod p, {ωσ}, of {ρσ} is a
non-trivial cocycle in H1

loc(G, (Z/(p))
n. One immediately verifies that

(i) σ �→ Zσ is a 1-cocycle with values in T [p];
(ii) σ �→ Zσ represents a non-trivial class in H1

loc(G, T [p]).
By the definition of γ, we have

Q = Rp2
, R = (γ, . . . , γ).

In view of (5.6) we have

Zσ = Rp2ρσ = R(1−ψ(σ))S .

Moreover, since σ(γ) = γ for all σ ∈ G, (5.7) yields

Zσ = D/Dσ, where D = RS .

It follows that the point P = Dp is almost always locally p-divisible, but not
globally. Note that, although D ∈ k∗n, D does not lie in T (k) but only in T (L).
On the contrary, P = Dp ∈ T (k).

In the example just given, the torus and the point P are defined over a
number field k. We can get a similar example with a torus and a point defined
over Q at the cost of increasing the dimension. For this purpose, we consider
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the torus obtained by restriction of scalars T̃ = Rk/Q(T ) (see [11, Chap. 1,
§3.12, Ex. 18]). Then T̃ is defined over Q,

dim T̃ = p2(p− 1) dimT = p2(p− 1)(p4 − p2 + 1),

and there is a bijection between T (k) and T̃ (Q).
The point P̃ ∈ T̃ (Q) corresponding to P ∈ T (k) has the desired properties.

Remark 5.2. — Throughout the paper we have worked with the condition
that a point P be divisible in A(kv) for almost all v. However, sometimes
the Hasse principle holds only under the stronger assumption that the local
conditions are satisfied for all v. We can ask what happens in our situation,
and in particular in Example 5.1, by imposing this stronger assumption.

We contend that examples like 5.1 exist even with the stronger assumption.
In fact, the whole machinery continues to work whenever all the local Galois
groups Gal(Lw/kv) are cyclic. This is automatically true for the non-ramified
primes v. For the ramified ones (in our example, the primes dividing q1q2),
it may be shown that this condition is guaranteed by the following:

q1 ≡ 1 mod p and q2 splits completely in Q(ζpq1 , p
√
q1 ).

Here are some numerical examples of choices of (p, q1, q2) that satisfy this con-
dition:

(2, 5, 11), (3, 7, 337), (5, 151, 22651).
For every given p, the existence of infinitely many pairs (q1, q2) such that
(p, q1, q2) satisfies the condition is an easy consequence of well-known results
in algebraic number theory.
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tores, Ann. Sci. École Norm. Sup., t. 10 (1977), pp. 175–229.

[5] Lang (S.) – Algebra, 3rd ed., Addison-Wesley, 1993.
[6] Sansuc (J.-J.) – Groupe de Brauer et arithmétique des groupes linéaires
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[11] Voskresenskĭı (V.E.) – Algebraic groups and their birational invariants,
AMS Transl. Math. Monographs, vol. 179, Amer. Math. Soc., 1998.

[12] Weil (A.) – Adèles and algebraic groups, Birkhäuser, 1982.

tome 129 – 2001 – n
o
3


