
Bull. Soc. math. France
129 (3), 2001, p. 357–359

APPENDIX TO THE ARTICLE OF T. PETERNELL:
THE KODAIRA DIMENSION OF KUMMER

THREEFOLDS

by Frédéric Campana & Thomas Peternell

Abstract. — We prove that Kummer threefolds T/G with algebraic dimension 0
have Kodaira dimension 0.

Résumé (La dimension de Kodaira des variétés de Kummer). — Nous montrons
que les variétés de Kummer T/G de dimension 3 et de dimension algébrique 0 sont de
dimension de Kodaira nulle.

In this appendix we prove the following

Theorem. — Let T be a 3-dimensional torus with algebraic dimension
a(T ) = 0. Let G be a finite group acting on T. Let h : X → X ′ = T/G be a
desingularisation. Then κ(X) = 0.

Proof. — 1) We first treat the case that T is not simple, therefore covered by
elliptic curves. In this case we have a holomorphic map g : T → B to a 2-
dimensional torus (of course with a(B) = 0). Then G acts on B and we obtain
a map

ḡ : T/G−→B/G.

Since κ(B/G) (= κ of a desingularisation, by definition) vanishes (otherwise
B/G would be uniruled!), we obtain κ(X) = 0. In fact, the fibers of ḡ are
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elliptic; they cannot be rational, because g has no multi-sections, so that h :
T → T/G is étale on the general fiber of g. So κ(X) = 0 follows from C3,1.

2) So from now on we shall assume T simple, hence there are no curves
in T at all. In particular X ′ has only isolated singularities. Moreover X ′ is
Q-Gorenstein with only log-terminal singularities (see e.g. [3]), and

h∗(mKX′) = mKT = OT ,

if m is chosen such that mKX′ is Cartier. It will be sufficient to show that X ′

has only canonical singularities. Since κ(h∗(L)) = κ(L) for any line bundle L
(e.g. [7, 5.13]), it follows that κ(mKX′) = 0, i.e. nKX′ = OX′ for some n ∈ N.
We choose r ∈ N minimal with rKX′ = OX′ .

Let p : Y → X ′ be the associated canonical cover (see [3], [6]). Then
KY = OY and Y has only canonical singularities [3].

Let τ : Ŷ → Y be a crepant partial resolutions so that Ŷ has only terminal
singularities, in particular KŶ = OŶ (see [6]). Reid’s construction being local,
it works also in the analytic category (notice that isolated singularities are
algebraic by Artin). Since Ŷ is Gorenstein, we have the following Riemann-
Roch formula:

24χ(OŶ ) = −KŶ · c2(Ŷ ),
see [4], [2], [6] (the arguments e.g. in [4] work as well in the analytic category).
Thus

χ(OŶ ) = 0.

On the other hand h2(OŶ ) $= 0, since Ŷ is not algebraic. Hence q(Ŷ ) =
h1(OŶ ) $= 0 and we can consider the Albanese map of Ŷ (or of a desingulari-
sation of Ŷ ). Since Ŷ is simple, it follows q(Ŷ ) = 3 and the Albanese is finite
étale. Hence Ŷ is a torus, and therefore Ŷ = Y.

The upshot is that we may assume from the beginning that h : T → X ′

is the canonical cover, in particular G ∼= Zr. Notice also that instead using
Riemann-Roch one can use [5] to construct a 1-form on Ŷ from the 2-form, so
that q(Ŷ ) > 0.

3) So from now on h is the canonical cover determined by rKX′ & OX′ .
Since H2(OX′) $= 0, Serre duality (see e.g. [6, p. 348]) gives

H1(KX′) & H2(X ′,OX′) $= 0.

We claim that

(*) H1(λKX′) $= 0

for 2 ≤ λ ≤ r − 1. By Riemann’s extension theorem (see e.g. [1, II.3.6])

H1(λKX′) = H1(X ′
reg, λKX′)

since codim Sing X ′ = 3. Analogously

H1(λKT ) = H1(h−1(X ′
reg), h

∗λKX′).
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Therefore we can compute H1- cohomology on the “étale part” of h.

By [7, 5.12], H1(KX′) ∼= H1(KT )G. Now

h∗(OT ) = OX ⊕ KX′ ⊕ · · · ⊕ (r − 1)KX′ ,

at least on X ′
reg. Since KT = h∗(KX′) over X ′

reg, the projection formula yields

h∗(λKT ) = λKX′ ⊕ (λ + 1)KX′ ⊕ · · · ⊕ (r + 1)KX′ ⊕ · · · ⊕ (r + λ − 1)KX′

over X ′
reg. Now (r+1)KX′ = KX′ , since rKX′ = OX′ . Thus H1(λKT ) contains

a G-invariant part, namely H1(KT )G ∼= H1(KX′). Hence H1(λKT )G $= 0, and
therefore we get H1(λKX′) $= 0. By (*) and h1(OT ) = 3, we conclude r ≤ 4,
since

h1(OT ) =
r−1∑

λ=0

h1(λKX′).

In case r = 2 or r = 3 Reid [6, p. 376] shows that the singularities are
canonical. So suppose r = 4. If a singularity xi ∈ X ′ is not canonical, [6]
implies that it is of type 1

4 (1, 1, 1) in Reid’s notation which is just multiplication
by i in every component. Now a holomorphic 2-form on C3 which is invariant
under multiplication with i, must have a zero 0. Therefore no 2-form on the
torus T can survive this action.
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