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POLYNOMIAL DECAY OF CORRELATIONS FOR A
CLASS OF SMOOTH FLOWS ON THE TWO TORUS

by Bassam Fayad

Abstract. — Kočergin introduced in 1975 a class of smooth flows on the two torus
that are mixing. When these flows have one fixed point, they can be viewed as special
flows over an irrational rotation of the circle, with a ceiling function having a power-
like singularity. Under a Diophantine condition on the rotation’s angle, we prove that
the special flows actually have a t−η-speed of mixing, for some η > 0.

Résumé (Décroissance polynomiale des corrélations pour une classe de flots lisses
sur T2)

Kočergin a introduit en 1975 une classe de flots C∞ sur le tore à deux dimensions
qui sont mélangeants. Quand ces flots ont un seul point fixe, ils correspondent à des flots
spéciaux au-dessus d’une rotation irrationnelle du cercle, dont la fonction de suspension
présente une singularité en puissance fractionnaire. Sous une condition diophantienne
sur l’angle de la rotation, on prouve que ces flots spéciaux ont une vitesse de mélange
en t−η , pour un certain η > 0.

1. Introduction

1.1. Kočergin gave in [5], examples of C∞ measure-preserving flows on the
two torus that are mixing. He starts by proving that special flows over irra-
tional rotations of the circle (or over interval exchange transformations) with
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a ceiling function having a power-like singularity are mixing. It is possible to
identify these special flows with smooth flows on the two torus, having one fixed
point or more. In the same article, Kočergin describes in some examples how
to realize this identification by smoothly gluing to an irrational flow Rt(1,α) a
small neighborhood of the fixed point of an adequatly chosen Hamiltonian flow
in the plane. We will prove that under a Diophantine condition on the rota-
tion number, the special flow has a polynomial decay of correlations between
rectangles. We will see later why the arithmetical condition is required.

1.2. First we give the definition of a special flow over an irrational rotation.
Given a strictly positive function ϕ ∈ L1(T1), the special flow constructed
over Rα and under the function ϕ is the quotient flow of the action

T
1 × R −→ T

1 × R,

(x, s) −→ (x, s + t),

by the relation (
x, s + ϕ(x)

)
∼

(
Rα(x), s

)
.

This flow acts on the space

MRα,ϕ = T
1 × R/ ∼,

is uniquely ergodic and preserves the normalized Lebesgue measure on MRα,ϕ,
i.e. the product of the Haar measure on the basis T

1 with the Lebesgue measure
on the fibers divided by the constant

∫
T1 ϕ(x)dx. In the sequel, we will simply

denote by M the space MRα,ϕ, and by µ the invariant measure described above.

We call rectangles in M the sets

B =
t0+�⋃
t=t0

T t(I),

when the union is disjoint and I is an interval of T
1, t0 ∈ R and � ∈ R

∗
+.

It is immediate that the collection of rectangles generates the σ-algebra
of Borel sets on M . There is of course a slight abuse in calling rectangles
the latter sets, because under the action of the flow, when t0 or � are large,
they get distorted and do not have rectangular shapes anymore. Nevertheless,
when t0 = 0 and � ≤ infT1 ϕ, we have real rectangles that we call rectangles on
the basis.

1.3. Description of the flow under consideration. — In what follows we
will consider the special flow {T t} constructed over an irrational rotation Rα,
and under a ceiling function ϕ.

We assume the following hypothesis on ϕ:
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• ϕ ∈ C3(T/{0}), and infT1 ϕ = c > 0;

• there exists 0 < γ < 1 such that

lim
x→0+

ϕ(x)
x−γ

= 1, lim
x→0−

ϕ(x)
(−x)−γ = 1,

lim
x→0+

ϕ′(x)
−γx−γ−1

= 1, lim
x→0−

ϕ′(x)
γ(−x)−γ−1 = 1,

lim
x→0+

ϕ′′(x)
γ(γ + 1)x−γ−2

= 1, lim
x→0−

ϕ′′(x)
γ(γ + 1)(−x)−γ−2 = 1.

For commodity, we will also suppose that
∫

T1 ϕ(x)dx = 1.

It follows from Kočergin’s result that these special flows, for any α and any
γ ∈ ]0, 1[, are mixing. But to force estimates on the decay of correlations, our
techniques require that the exponent should be at least less than 1

2 , and we will
assume γ ≤ 2

5 .

Remark. — The exponent obtained in one of the smooth examples given by
Kočergin is γ = 1

3 < 2
5 .

As for the rotation number α, we require that the sequence {qn}n∈N
of

denominators of its convergents satisfies for some positive constant Cα

(CD-ε) qn+1 ≤ Cαqn
1+ε,

where ε is small compared to γ, ε = 1
100γ being enough for our purpose.

Finally, we introduce the number

η :=
1
50

γ.

In the sequel, we will often use the fact that 2ε ≤ η 	 γ.

1.4. Statement. — Under the above assumptions on α and ϕ, we will show
the following:

Theorem 1.1. — For any two rectangles A and B, for any η0 < η, we have
for t large enough

∣∣µ(A ∩ T−tB) − µ(A)µ(B)
∣∣ ≤ 1

tη0
·(1)

In the statement, the rectangles and the measure µ are as defined in (1.2).
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1.5. Remarks. — For a fixed ε > 0, the set of rotation numbers satisfying a
Diophantine condition (CD-ε) is of total Lebesgue measure.

To simplify the presentation we considered only one power-like and symmet-
rical singularity

ϕ(x)∼
0
ϕ(−x)∼

0
|x|−γ .

From the proof it will appear clearly that the same result holds when there
are finitely many singularities, and not all of them being necessarily power-like
(some of them could be logarithmic for example), under the condition that the
strongest one should be power-like (with exponent γ ≤ 2

5 ). Furthermore, our
assumption of symmetry is not necessary, to the contrary, symmetry plays in
general against mixing. When the singularity is logarithmic for example, the
symmetry impedes mixing as proved by Kočergin in [4]; while Khanin and Sinai
proved mixing in the case of asymmetrical logarithmic singularities [3].

Our estimates are far from optimal and η = γ
50 is certainly not the best

polynomial rate of decay one can obtain. A faster speed of mixing than t−
1
2−ε

would be very interesting because it would imply a Lebesgue spectrum for the
flow. But since it appeared very hard to obtain faster decay than t−

1
2 by the

techniques involved in this paper we wrote the proof with the above η = γ
50 .

Correlations between functions. — Through the proof of the theorem, it will
appear that (1) is valid when t ∈ [qn, qn+1], n sufficiently large, for any pair of
squares A and B with side of length equal to q−η

n . Hence we could establish
for any couple of complex functions of class C1 on T

2, the same decay of
correlations obtained for rectangles.

1.6. Plan of the proof. — The property underlying mixing for a special
flow over a rigid transformation is the uniform stretch of the Birkhoff sums of
the ceiling function,

ϕm(x) := ϕ(x) + ϕ
(
Rα(x)

)
+ · · ·+ ϕ

(
Rm−1

α (x)
)
.

When the Birkhoff sums have large derivatives, the image of a small interval J ∈
T
1 by the flow is stretched with time in the vertical direction along the fibers,

and as t tends to infinity the interval actually breaks down into a lot of almost
vertical curves whose projections on the circle follow the trajectory of Rα.
By unique ergodicity of the rotation these projections become more uniformly
distributed on the circle as their number increases, and so will be T t(J) in the
whole space (see [6], [5], [3], [2] and [1]).

For each t, we want to cover the circle excepted a small set with intervals
being stretched as described above (here, we want the exceptional set to have
measure less than t−η). The first intervals to be over ruled are those that
come too close to the singularity before time t and eventually get trapped in its
neighborhood (Lemma 2.3). Other intervals must be automatically discarded,
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those where there is no stretch at all, i.e. where the first derivative of ϕm is
small (the singularity being symmetric this likely occurs): a lower bound on
the second derivatives due to the convex average behavior of ϕ will allow us to
estimate the size of such bad intervals (Lemma 2.5 and Step 2 in Section 3.1).

For the remaining part of the circle, we seek a good control on the stretch
of ϕm, when m is comparable with t, and here the Diophantine condition on α
is required to insure the uniformity of stretch (Lemmas 2.4 and 2.5). Still,
uniform stretch (Properties (P1)–(P2′) in (3.1)) of an interval J is not enough
by itself to estimate the asymptotic repartition of T t(J) in the space as t
goes to infinity. We need in addition to make sure that the pieces of T t(J)
(those almost vertical curves) do not enter in a too small neighborhood of the
singularity, otherwise a lot of measure can be lost there (See (2.4)).

A “good” partition is finally constructed for each time t (Proposition 3.1)
and Lemmas 3.3 and 3.2 give a precise description of T t(J), for an interval J
in this partition.

To conclude, we need a good estimate on the asymptotic distribution of
the trajectories of the rotation on the circle that we obtain using again the
Diophantine condition on α.

2. Preliminary estimates and lemmas

2.1. A Fubini Lemma. — We begin by a Fubini lemma that reduces our
problem to studying the image under the special flow of intervals on its basis T

1.
Given ν > 0 and a finite partial partition P = {I0, ..., Im} of T

1, we say
that P is ν-fine if, for any interval I on the circle, there exists a collection of
atoms from P such that the symmetrical difference between their union and I
has Lebesgue measure less than ν.

We recall that a rectangle on the basis is a subset B =
⋃

0≤t≤� T
t(I), where

I is an interval of T
1 and � ∈ R

∗
+ is the height of B. We also recall that η is

the fixed number 1
50γ (2ε ≤ η 	 γ ≤ 2

5 ).

Lemma 2.1. — If there exist partial partitions of T
1, Pt, that are t−η-fine and

such that for any rectangle B on the basis with height less than c = infT1 ϕ, we
have when t is large enough

∣∣λ(J (t)
i ∩ T−tB)− λ(J (t)

i )µ(B)
∣∣ ≤ t−ηλ(J (t)

i ),(2)

for every J
(t)
i ∈ Pt, then Theorem 1.1 is true.

In the statement of the Lemma, λ is the Haar measure on the circle and µ
is the normalized measure on M invariant by the special flow.
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Proof. — Take two rectangles in M ,

A =
⋃

t1≤s≤t1+�1

T s(I) and B =
⋃

t2≤s≤t2+�2

T s(I ′)

(�1 and �2 are the heights of A and B). Since the rectangle B can always be
decomposed into a finite disjoint union of rectangles with height less than c, it
is enough to prove Theorem 1.1 when �2 = δ < c. On the other hand one has

µ
(
A ∩ T−tB

)
= µ

(
A ∩ T−(t−t2)T−t2B

)
,

hence we can also assume for B that t2 = 0. From the hypothesis of the Lemma,
when t is large enough, there exist atoms J

(t)
1 , ..., J

(t)
l from Pt such that

λ
(
I �

�⋃
i=0

J
(t)
i

)
≤ t−η

and for each one of which (2) holds. Hence,∣∣λ(I ∩ T−tB) − λ(I)µ(B)
∣∣ ≤ 3t−η.

Since A =
⋃

t1≤s≤t1+�1
T s(I), we apply the Fubini lemma and obtain the es-

timation of the Theorem 1 when t is large enough (we took η0 < η to avoid
having constants in the statement of the theorem). Of course the same conclu-
sion holds if we establish (2) with some constant in front of t−η.

2.2. Avoiding the singularity at time t. — We recall that

ϕm(x) =
m−1∑
k=0

ϕ
(
Rk

α(x)
)
.

For any x ∈ T
1 (a point on the basis), and any positive time t, there is a unique

integer m such that
0 ≤ t− ϕm(x) < ϕ

(
Rm

α (x)
)
.

We denote this integer by N(x, t). Since infT1 ϕ = c > 0, we have:

Lemma 2.2. — For every x ∈ T
1 and any time t, we have

N(x, t) ≤ t

c
·(3)

Proof. — One has t ≥ ϕN(x,t)(x) ≥ N(x, t)c by definition of N(x, t).

Let t ∈ [qn, qn+1]. From the lemma above, we know we will avoid going too
close to the singularity at time t if we consider only the set

Fn = T
1 −

2[qn+1/c]⋃
k=0

R−k
α

[
− 1

q1+η
n+1

, 1
q1+η
n+1

]
.

(The notation [r] stands for the integer part of r ∈ R.) For this set we can
state the following, when n is large enough
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Lemma 2.3. — For any x, y ∈ Fn, for any t ∈ [qn, qn+1], we have∣∣N(x, t) −N(y, t)
∣∣ ≤ q γ+2η

n+1 ,(4)

t

2
≤ N(x, t) ≤ t

c
·(5)

Proof. — By definition of the number N(x, t), we have∣∣t− ϕN(x,t)(x)
∣∣ ≤ ϕ

(
RN(x,t)

α (x)
)
.

Since x ∈ Fn, (3) implies that R
N(x,t)
α (x)∈ T

1 − [−q−1−η
n+1 , q−1−η

n+1 ], hence
∣∣t− ϕN(x,t)(x)

∣∣ ≤ 2q(1+η)γ
n+1(6)

because ϕ(|x|)∼0 |x|−γ and ϕ ∈ C3(T1/0).
Now, on one hand t ≥ qn ≥ qn+1

1/(1+ε), and the other γ ≤ 2
5 , ε 	 1

and η 	 1, hence (6) leads to

ϕN(x,t)(x) ≥
9
10

t.(7)

We want now a bound on |ϕm(x)−m|, when x ∈ Fn and m ≤ 2qn+1/c. First,
we write m′s expansion:

m =
�m∑
s=0

msqs, 0 ≤ ms ≤ as+1,(8)

where as+1 denote the partial quotients of the continued fraction expansion
of α. Since α is ε-Diophantine, as+1 ≤ qε

s, by definition. Furthermore, because
m ≤ 2qn+1/c, we have �m ≤ n + 1 and supms ≤ qε

n in the expression of m.
Let ϕ̃ be the function equal to ϕ outside [−q−1−η

n+1 , q−1−η
n+1 ], constant on the

latter interval and of integral one on the torus. Applying the Denjoy-Koksma
inequality to ϕ̃ we have, for any s ∈ N,∣∣ϕ̃qs(x) − qs

∣∣ ≤ Varϕ̃,

but the variations of ϕ̃ on the circle are of the order of q(1+η)γ
n+1 , hence

∣∣ϕ̃qs(x) − qs

∣∣ ≤ Cq
(1+η)γ
n+1

where C is a constant depending only on ϕ. Using m’s expansion, we have for
any x on the circle ∣∣ϕ̃m(x) −m

∣∣ ≤ C(n + 2)qε
nq

(1+η)γ
n+1 ,

so when n is large enough, we have∣∣ϕ̃m(x) −m
∣∣ ≤ q

(1+η)γ+2ε
n+1(9)

when n is large enough.
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494 FAYAD (B.)

On the other hand, for m ≤ 2qn+1/c we have Rm
α (x)∈ T

1− [−q−1−η
n+1 , q−1−η

n+1 ]
for any x ∈ Fn, so ϕ̃m(x) = ϕm(x). The above equation then becomes for any
x ∈ Fn and m ≤ 2qn+1/c∣∣ϕm(x) −m

∣∣ ≤ q
(1+η)γ+2ε
n+1 = o(qγ+2η

n+1 ).(10)

Finally, (4) follows from (6) and (10), while (5) follows from (7) and (10).

2.3. Stretch estimates. — To obtain sharp estimates for the stretch re-
quires a good control on the first and second derivatives of the Birkhoff sums
of ϕ. From Lemma 2.3 we know that when t ∈ [qn, qn+1], we have to con-
sider those sums for m ∈ [qn/2, qn+1/c]. A lower bound on the first derivatives
will guarantee good stretch and an upper bound on the second will insure its
uniformity. Here again, we will exploit the Diophantine condition on α. Never-
theless, because the singularity is symmetrical, we will not be able to minorate
directly the first derivatives of ϕ. It is a fact in this case that at some points
of the circle the Birkhoff sums are not stretching at all. The lower bound on
the second derivatives that comes from the convex average behavior of ϕ will
allow us to overcome this difficulty.

We will denote the first and second derivatives of ϕm by ϕ′
m and ϕ′′

m. When n
is sufficiently large, we have

Lemma 2.4. — For any m ≤ 2qn+1/c and x ∈ Fn,∣∣ϕ′
m(x)

∣∣ ≤ q1+γ+2η
n+1 .(11)

We also have, for sufficiently large n,

Lemma 2.5. — For any m ∈ [qn/2, 2qn+1/c] and x ∈ Fn,

q2+γ−3η
n+1 ≤ ϕ′′

m(x) ≤ q2+γ+3η
n+1 .(12)

Proof of Lemma 2.4. — Write ϕ = ϕ + ϕ, where

ϕ = χ[−1/qn+1,1/qn+1]ϕ

(χL being the characteristic function of a set L). Reasoning exactly as in the
proof of (9), the Diophantine condition on α and the Denjoy-Koksma inequality
imply for m ≤ 2qn+1/c and for any x ∈ T

1

∣∣∣ϕ′
m(x) −m

∫
T1

ϕ′(y)dy
∣∣∣ ≤ q1+γ+2ε

n+1 .

But
∫

T1 ϕ′(y)dy = O(qγ
n+1), hence m

∫
T1 ϕ′(y)dy = O(q1+γ

n+1) and we have for
sufficiently large n ∣∣ϕ′

m(x)
∣∣ ≤ 2q1+γ+2ε

n+1 .(13)

On the other hand under m iterations, m ≤ 2qn+1/c, any point x enters less
than 8[1/c] times in the interval In := [−1/qn+1, 1/qn+1] (where [r] denotes
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the integer part of r ∈ R. We used the fact that successive [ 14qn+1] iterates
of In by Rα are disjoint). Meanwhile, x ∈ Fn and Rm

α (x) still remains outside
[−q−1−η

n+1 , q−1−η
n+1 ] for m ≤ 2qn+1/c, hence

∣∣ϕ ′
m(x)

∣∣ ≤ 9
c
γ q

(1+η)(1+γ)
n+1 ,(14)

because |ϕ′(x)| ∼ γ|x|−γ−1 in the neighborhood of 0.
Lemma 2.4 then follows from (13) and (14) when n is sufficiently large since

2η > η(1 + γ) > 2ε.

Proof of Lemma 2.5. — The right hand side in (12) is obtained in exactly the
same way as (11). For the left hand side consider the decomposition ϕ =
ϕ + ϕ, with this time ϕ = χKϕ, where K is a fixed interval containing the
singularity and on which the second derivative is always positive. It is possible
to do so since we assumed ϕ′′(|x|)∼0 γ(γ + 1)|x|−2−γ . Clearly, for any m ∈ N

and x ∈ T
1, ∣∣ϕ′′

m(x)
∣∣ ≤ Cm,(15)

where C here is the supremum of the second derivative of ϕ outside K.

On the other hand in m iterations, m ≥ 1
2qn ≥ qn−1, the orbit of any point x

enters at least once in the interval [−1/qn−1, 1/qn−1], since the union of the
first qn−1 inverse iterates of this interval cover the circle. From the hypothesis
on the singularity of ϕ and the Diophantine condition on α we conclude that
for x ∈ T

1, m ∈ [ 12qn, qn+1]

ϕ ′′
m(x) ≥ q2+γ

n−1 ≥ q
(2+γ)/(1+ε)2

n+1 .

Since (1 + ε)−2 is of the order of 1 − η, and (2 + γ)(1 − η) > 2 + γ − 3η, the
last equation and (15) yield the left hand side in (12).

2.4. Central lemma for the asymptotic distribution of the pieces
of T t(J). — In the introduction we explained how an interval I breaks down
under stretch into many almost vertical curves whose projection on the basis
follows the trajectory of the rotation.

From Lemma 2.3, we know more or less where do these parts of T t(J) end
up at time t. To have sharp estimates on their distribution in the whole space,
we want to make sure that the parts stay relatively far from the singularity. We
will define to this end, for each time t ∈ [qn, qn+1], a subset of Fn (see (18)) and
a partition of this subset into intervals (see (3.1)) that after they get stretched
will have a good asymptotic distribution in the space.

The following lemma, is essential in establishing the description of T t(J)
that will given in Lemma 3.2 and Lemma 3.3.
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Let β be a positive number such that

β > γ + 4η,(16)

βγ < γ − 18η,(17)

We can resume the conditions (16) and (17) by asking that

γ + 4η < β < 1 − 18
η

γ
,

which is easy to realize for some β since η 	 γ, and γ ≤ 2
5 is also far from 1.

2.4.1. Denote by γ′ the exponent γ + 2η that appeared in (4).

2.4.2. Define the set

Tn,β = T
1 −

2[qγ′
n+1]⋃

k=−2[qγ′
n+1]

R−k
α

[
− 1

qn+1
β
,

1
qn+1

β

]
.(18)

Remark 2.6. — With our choice of β, we clearly have λ(Tn,β) ≥ 1 − 8q−2η
n+1.

Lemma 2.7. — For any x ∈ Tn,β and for D ∈ N such that

qγ−15η
n+1 ≤ D ≤ 2qγ′

n+1,

we have for sufficiently large n∣∣ϕD(x) −D
∣∣ ≤ q−η

n+1D,(19)
∣∣ϕ′

D(x)
∣∣ ≤ q

(γ+1)β+η
n+1 .(20)

Proof. — Reasoning the same way as in the previous lemmas we obtain, for
D ≤ qγ′

n+1 and x ∈ Tn,β, equation (20) and∣∣ϕD(x) −D
∣∣ ≤ qγβ+2ε

n+1 .(21)

With our choice of β (cf. (17)), we have γβ + 2ε ≤ γβ + η < γ − 16η. Hence,
the lower bound on D and (21) imply (19).

3. Proof of the theorem on correlations.

3.1. Construction of the good partition at time t. — We fix now t in
[qn, qn+1] and pick an arbitrary x0 ∈ Fn. Define

Ft,β = Fn −
N(x0,t)+2[qγ′

n+1]⋃
k=N(x0,t)−2[qγ′

n+1]

R−k
α

[
− 1

qn+1
β
,

1
qn+1

β

]
.

Proposition 3.1. — It is possible to construct a partial partition Pt of Ft,β

consisting of intervals, with the following properties:
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(P0) the partial partition Pt is t−η-fine on the circle;

(P1) the sizes of the intervals in Pt vary between q−1−9η
n+1 and 2q−1−9η

n+1 ;
(P2) for any J ∈ Pt and any m ∈ [N(x0, t) − qγ′

n+1, N(x0, t) + qγ′

n+1]

inf
x∈J

∣∣ϕ′
m(x)

∣∣ ≥ q1+γ−5η
n+1 .

Claim. — As a direct consequence of (P1), (P2) and the upper bound in (12)
we will have for large n:

(P2′) For any J ∈ Pt and any m ∈ [N(x0, t)− qγ′

n+1, N(x0, t) + qγ′

n+1],

sup
x∈J

∣∣ϕ′′
m(x)

∣∣ · |J | ≤ 2q−η
n+1 inf

x∈J

∣∣ϕ′
m(x)

∣∣.
Proof of the claim. — Since N(x0, t) ≤ qn+1/c, m satisfies the hypothesis of
Lemma 2.5 and we have supx∈J |ϕ′′

m(x)||J | ≤ q2+γ+3η
n+1 2q−1−9η

n+1 .

Proof of Proposition 3.1. — We will do the construction in three steps.
First step. — We cover the circle with disjoint intervals of sizes varying

between q−1−η
n+1 and 2q−1−η

n+1 . (We do not care about the ending points of the
intervals because their total measure is always zero and we will indifferently
talk about segments or intervals.) In this first step we just take away from the
above intervals these that are not completely included in Ft,β , or equivalently,
these that intersect either

2[qn+1/c]⋃
k=0

R−k
α

[
−1/q1+η

n+1, 1/q
1+η
n+1

]

or
N(x0,t)+2[qγ′

n+1]⋃
k=N(x0,t)−2[qγ′

n+1]

R−k
α [−1/qn+1

β , 1/qn+1
β ].

The total measure of the discarded segments is bounded by

2
[qn+1

c

] 2
q1+η
n+1

+ 4
[qn+1

c

] 2
q1+η
n+1

+ 4[qγ′

n+1]
2

qn+1
β

+ 8[qγ′

n+1]
2

q1+η
n+1

= O(q−η
n+1)

due to our choice of β. The partial partition we obtained is hence q−η
n+1-fine

(up to a constant).

Second step. — Consider any interval L of the ones we kept in the first step.
It follows from Lemma 2.2 and Lemma 2.5 that for m0 = N(x0, t), ϕ′′

m0
is

greater than q2+γ−3η
n+1 on L. So, after taking off eventually an interval of size

4q−1−2η
n+1 there will remain from L one or two intervals, L� and Lr, where |ϕ′

m0
|

is always greater than 2q1+γ−5η
n+1 . If one of those intervals, L� or Lr has size less

than q−1−2η
n+1 we discard it (see Fig. 1).
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L L� Lr Lr

Figure 1. Different configurations for ϕm over L

The total measure we might loose by this operation on L is 5q−1−2η
n+1 which

is at most a proportion 5q−η
n+1 of the interval L. Hence we remain with a partial

partition that is q−η
n+1−fine (up to a constant).

Moreover, we claim that the bound on ϕ′
m0

leads to (P2). Indeed, for any
m ∈ [m0 − qγ′

n+1,m0 + qγ′

n+1],

ϕ′
m(x) = ϕ′

m−m0
(Rm0

α x) + ϕ′
m0

(x);

but Lr and L� are in Ft,β , so Rm0
α (x) ∈ Tn,β, therefore (20), of Lemma 2.7,

implies that

ϕ′
m−m0

(Rm0
α x) ≤ q

(γ+1)β+η
n+1

when x ∈ Lr, x ∈ L�. From the choice of β (cf. (17) it follows that (γ+1)β+η <
1 + γ − 5η. Hence, ϕ′

m−m0
(Rm0

α x) 	 ϕ′
m0

(x) and the claim follows.

Third step. — In this step we just divide each interval L� and Lr we get from
the first two steps into intervals of size varying between q−1−9η

n+1 and 2q−1−9η
n+1 .

It is possible to do so since the sizes of L� and Lr are larger than q−1−2η
n+1 .

This gives Pt.

3.2. Properties of a good interval. — From now on J will designate an
interval of Pt. Fix a rectangle B =

⋃δ
s=0 T

sV . In the light of Lemma 2.1,
we will finish if we prove that, under the conditions (P1)–(P2)–(P2′) on an
interval J , the measure of the intersection T t(J)

⋂
B satisfies (2). Lemmas 3.2

and 3.4, that we will state below, will be the ingredients of our proof. Let
J ∈ Pt be fixed

J = [x1, x2], m1 = N(x1, t)m2 = N(x2, t).(22)

Since x1, x2 ∈ J ⊂ Fn, Lemma 2.3 implies that

m1,m2 ∈
[
N(x0, t)− qγ′

n+1, N(x0, t) + qγ′

n+1

]
.

From (P2), it follows that ϕm is monotone on J and we will suppose ϕm1(x1) ≥
ϕm1(x2), the other case being similar.
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Define for m ∈ N,

Jm =
{
x ∈ J ;N(x, t) = m

}
,(23)

=
{
x ∈ J ; 0 ≤ t− ϕm(x) < ϕ(Rm

α (x))
}

Jm,δ =
{
x ∈ J ; 0 ≤ t− ϕm(x) ≤ δ

}
.(24)

The set Jm is the part of J such that the projection of T s(Jm) on T
1, when s

runs through [0, t], is translated m times by Rα. And Jm,δ is the part of Jm

that lies at time t in the band T
1 × [0, δ].

Finally, denote by ∆ϕm1 |J the quantity ϕm1(x1) − ϕm1(x2).

For m ∈ ]m1,m2[, we have the following asymptotic estimate of λ(Jm,δ) (λ
being the Haar measure on T

1)

Lemma 3.2. — For any m such that m1 < m < m2 it is true that

∣∣∣λ (Jm,δ) −
δ|J |

∆ϕm1 |J

∣∣∣ ≤ q−η
n+1

δ|J |
∆ϕm1 |J

·

For mi = m1,m2 we have

λ (Jmi,δ) −
δ|J |

∆ϕm1 |J
≤ q−η

n+1

δ|J |
∆ϕm1 |J

·

For m not in [m1,m2], Jm,δ is empty.

Using Lemma 2.7 we will prove the following estimate on m2 −m1:

Lemma 3.3. — We have
∣∣∣m2 −m1

∆ϕm1 |J
− 1

∣∣∣ ≤ q−η
n+1.(25)

Proof of Lemma 3.2. — First we will prove the following uniform estimate, for
any m ∈ [m1,m2] and for any x ∈ J

∣∣∣ − 1
ϕ′

m(x)
− |J |

∆ϕm1 |J

∣∣∣ ≤ 3q−η
n+1

|J |
∆ϕm1 |J

·(26)

By the mean value theorem, there exists x1 ∈ J such that

∆ϕm1 |J =
∣∣ϕ′

m1
(x1)

∣∣ · |J |,
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hence

E :=
∣∣∣ − 1

ϕ′
m(x)

− |J |
∆ϕm1 |J

∣∣∣ =
|ϕ′

m(x) − ϕ′
m1

(x1)| · |J |
|ϕ′

m(x)|∆ϕm1 |J

≤ |ϕ′
m(x) − ϕ′

m(x1)| · |J |
|ϕ′

m(x)|∆ϕm1 |J
+

|ϕ′
m−m1

(Rm1
α x1)| · |J |

|ϕ′
m(x)|∆ϕm1 |J

≤ supx∈J |ϕ′′
m(x)| · |J |2

|ϕ′
m(x)|∆ϕm1 |J

+
|ϕ′

m−m1
(Rm1

α x1)| · |J |
|ϕ′

m(x)|∆ϕm1 |J
·

Using (P2′) we obtain

E ≤ 2q−η
n+1

|J |
∆ϕm1 |J

+
|ϕ′

m−m1
(Rm1

α x1)| · |J |
|ϕ′

m(x)|∆ϕm1 |J
.

Exactly as in our proof of (P2) in Proposition 3.1, it follows from (20) that∣∣ϕ′
m−m1

(Rm1
α x1)

∣∣ ≤ q−η
n+1 inf

x∈J
|ϕ′

m(x)|.

This ends the proof of (26).

Now, for m ∈ ]m1,m2[ we have immediately from (26) that ϕm is decreasing
like ϕm1 . Also for such m, we have

t− ϕm(x1) < 0,(27)

t− ϕm(x2) > δ,(28)

the first inequality following directly from m1 := N(x1, t) (in the definition
given in Section 2.2, N(x, t) is the larger integer m such that t− ϕm(x) ≥ 0).
For the second one, we use our assumption δ < c (indeed, t − ϕm2(x2) ≥ 0
implies in this case (28) for any m ≤ m2 − 1).

In conclusion, for each m ∈ ]m1,m2[, by monotonicity of ϕm and the mean
value theorem, there exists xm ∈ J such that

λ (Jm,δ) =
−δ

ϕ′
m(xm)

·

Using (26) we obtain the first point of Lemma 3.2. The second point follows
from (26) in a similar fashion. As for the third one we have to do the following
argumentation: by definition of m2 = N(x2, t) one has t − ϕm2+1(x2) < 0,
but ϕm2+1 is decreasing on J , therefore, for any x ∈ J , t − ϕm2+1(x) < 0.
The same will clearly hold for any m ≥ m2 + 1, and Jm,δ will be empty for
all m > m2. When m < m1, we use in addition that ϕ is greater than δ to
obtain t− ϕm(x) > δ, for any x ∈ J , which implies Jm,δ is empty for m < m1.
The proof of Lemma 3.2 is accomplished.

Proof of Lemma 3.3. — Since J ⊂ Ft,β ⊂ Fn, Lemma 2.3 implies∣∣m1 −N(x0, t)
∣∣ ≤ qγ′

n+1
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hence, from Lemma 2.4 and conditions (P1) and (P2) we obtain

qγ−14η
n+1 ≤ ∆ϕm1 |J ≤ 2qγ−7η

n+1 .(29)

Now J ⊂ Ft,β implies

Rm1
α (J) ⊂ Tn,β.(30)

In particular ϕ (Rm1
α (x1)) ≤ 2qγβ

n+1, and by the definition of m1

0 ≤ t− ϕm1(x1) ≤ ϕ
(
Rm1

α (x1)
)
≤ 2qγβ

n+1.

Together with the similar equation on t− ϕm2(x2) this implies∣∣ϕm2(x2)− ϕm1(x1)
∣∣ ≤ 4qγβ

n+1.(31)

On the other hand, we have

ϕm2(x2) − ϕm1(x1) = ϕm1(x2) + ϕm2−m1(R
m1
α x2) − ϕm1(x1),

= ϕm2−m1(R
m1
α x2)−∆ϕm1 |J .

It follows from our choice of β (17), that

qγβ
n+1 	 q−2η

n+1q
γ−14η
n+1 .

Hence, the left hand side of (29) and (31) imply when n is large∣∣ϕm2−m1(R
m1
α x2) −∆ϕm1 |J

∣∣ ≤ q−2η
n+1∆ϕm1 |J .(32)

From (30), we know that Rm1
α (x2) ∈ Tn,β; to apply Lemma 2.7 and finish,

we still need to prove that qγ−15η
n+1 ≤ m2 −m1 ≤ 2qγ′

n+1. From (29) and (32) we
have

1
2
qγ−14η
n+1 ≤ ϕm2−m1(R

m1
α x2) ≤ 4qγ−7η

n+1 ,

the right hand side of which implies that m2−m1 ≤ c−14qγ−7η
n+1 	 qγ′

n+1. Next,
because Rm1

α (x2) ∈ Tn,β, (21) is valid and implies the lower bound on m2−m1

from the lower bound on ϕm2−m1(Rm1
α x2) and ∆ϕm1 |J .

3.3. Asymptotic distribution on the circle of the rotation’s orbit

Since α is ε-Diophantine, we have:

Lemma 3.4. — Let χV be the characteristic function of an interval V ∈ T
1,

then for N large enough, we have, for any x ∈ T
1

∣∣∣
N−1∑
i=0

χV

(
Ri

α(x)
)
−N |V |

∣∣∣ ≤ N2ε|V |,

where |V | = λ(V ) is the Lebesgue measure of V .
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Proof. — As we did in Section 2, we exploit the Diophantine condition on α
to prove for any x, x′ ∈ T

1 and N large enough,
∣∣∣

N∑
i=0

χV

(
Ri

α(x)
)
−

N∑
i=0

χV

(
Ri

α(x′)
) ∣∣∣ ≤ N2ε|V |,

then we conclude using that
∫

T1

∑N
i=0 χV

(
Ri

α(x)
)
dx = N |V |.

3.4. End of the proof of the theorem. — Let B =
⋃δ

s=0 T
s(V ). We will

prove, for t large enough, the claim (2) for any given interval J in the partition
Pt constructed in Proposition 3.1. Define V − ⊂ V ⊂ V + to be the intervals
obtained from V by fixing its center and respectively shrinking and expanding
the endpoints by a ratio 1 + qn+1

−η. We will keep in mind that

|V +| ≤ (1 + q−η
n+1)|V |,(33)

|V −| ≥ (1 − 2q−η
n+1)|V |.(34)

By definition (see (23)), Jm is the part of J such that T t(Jm) lies on the
fibers over Rm

α (J). But the size of J is less than 2q−1−9η
n+1 hence if x0 is any

fixed point in J we have:

• If Rm
α (x0) ∈ V − then Rm

α (J) ⊂ V.

• If Rm
α (J)

⋂
V is non empty then Rm

α (x0) ∈ V +.

On the other hand, T t(Jm)
⋂

B = T t(Jm,δ)
⋂

B, where Jm,δ was defined
in (23). It follows that for any m ∈ N

χV −
(
Rm

α (x0)
)
λ(Jm,δ) ≤ λ(Jm ∩ T−tB) ≤ χV +

(
Rm

α (x0)
)
λ(Jm,δ).

Since J =
⋃

m∈N
Jm this implies∑

m∈N

χV −
(
Rm

α (x0)
)
λ(Jm,δ) ≤ λ(J ∩ T−tB) ≤

∑
m∈N

χV +

(
Rm

α (x0)
)
λ(Jm,δ).

From the third point in Lemma 3.2 the foregoing becomes
m2−1∑

m=m1+1

χV −
(
Rm

α (x0)
)
λ(Jm,δ) ≤ λ(J ∩ T−tB) ≤

m=m2∑
m=m1

χV +

(
Rm

α (x0)
)
λ(Jm,δ).

We use Lemma 3.2 again to obtain

(1 − q−η
n+1)

δ|J |
∆ϕm1 |J

m2−1∑
m=m1+1

χV −
(
Rm

α (x0)
)

≤ λ(J ∩ T−tB) ≤ (1 + q−η
n+1)

δ|J |
∆ϕm1 |J

m=m2∑
m=m1

χV +

(
Rm

α (x0)
)
.

In the proof of Lemma 3.3, we obtained

m2 −m1 ≥ qγ−15η
n+1 .
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Since η 	 γ as well as ε 	 γ, this implies on the one hand that

(m2 −m1)
2ε ≤ q−2η

n+1(m2 −m1)

and on the other hand that if n is large enough m2 − m1 is large enough so
that Lemma 3.4 applies to V + and V −; in conclusion we have

∣∣∣
m2−m1∑

i=0

χV +

(
Ri

α(x0)
)
− (m2 −m1)|V +|

∣∣∣ ≤ q−2η
n+1(m2 −m1)|V +|,

with a similar equation for V −. Coming back to the estimation of λ(J ∩T−tB),
we now have

(1 − q−η
n+1)

δ|J |
∆ϕm1 |J

(m2 −m1)(1 − q−2η
n+1)|V −|

≤ λ(J ∩ T−tB) ≤ (1 + q−η
n+1)

δ|J |
∆ϕm1 |J

(m2 −m1)(1 + q−2η
n+1)|V +|.

Using Lemma 3.3 we obtain

(1 − q−η
n+1)(1 − q−η

n+1)(1 − 2q−η
n+1)δ|J | · |V −|

≤ λ(J ∩ T−tB) ≤ (1 + q−η
n+1)(1 + q−η

n+1)(1 + 2q−η
n+1)δ|J | · |V +|.

Finally, with (33) and (34), the proof is over.
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