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A MEAN-VALUE LEMMA AND APPLICATIONS

by Alessandro Savo

Abstract. — We control the gap between the mean value of a function on a subman-
ifold (or a point), and its mean value on any tube around the submanifold (in fact,

we give the exact value of the second derivative of the gap). We apply this formula
to obtain comparison theorems between eigenvalues of the Laplace-Beltrami operator,
and then to compute the first three terms of the asymptotic time-expansion of a heat
diffusion process on convex polyhedrons in euclidean spaces of arbitrary dimension.
We also write explicit bounds for the remainder term of the above expansion, which
hold for all values of time. The results of this paper have been announced, without
proof, in [16].
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Résumé (Un lemme de valeur moyenne et quelques applications)
On contrôle l’écart entre la valeur moyenne d’une fonction sur une sous-variété

d’une variété riemannienne, et sa valeur moyenne sur un voisinage tubulaire autour
de la sous-variété (on donne, en effet, la valeur exacte de la dérivée seconde de cet
écart). On applique ensuite cette formule afin d’obtenir des théorèmes de comparaison
pour les valeurs propres et les fonctions propres de l’opérateur de Laplace-Beltrami,
et pour calculer les trois premiers termes du développement asymptotique relatif à
un problème de diffusion de la chaleur sur les polyèdres convexes dans un espace
euclidien de dimension quelconque. On donne enfin des bornes explicites des restes du
développement susdit, qui sont valable pour toute valeur du temps. Les résultats de
cet article ont été annoncés (sans démonstrations) dans [16].
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1. Introduction

Section 2 contains the technical background of the paper. Let N be a com-
pact, piecewise-smooth submanifold of the complete, n-dimensional Rieman-
nian manifold M . The tube of radius r around N is the set

M(r) =
{
x ∈M : ρ(x) < r

}
,

where ρ is the distance function from N . Given a function u on M , our aim is
to describe, in Theorem 2.5, the second derivative of the function

F (r) =
∫
M(r)

udvn

where r > 0, and where dvn is the volume form on M given by the metric.
This is equivalent to estimate

F (r)
vol(M(r))

−
∫
N

u,
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A MEAN-VALUE LEMMA AND APPLICATIONS 507

and thus it may be seen as a generalization of the classical mean-value lemma,
which says that, when M is the euclidean space and N = {x0}, any harmonic
function satisfies F (r)/vol(M(r)) = u(x0) for all r.

For an arbitrary function u, it turns out that the second derivative of F
involves the Laplacian of u, as well as the Laplacian of the distance function ρ.
Now, if we stay within the injectivity radius of N , i.e. if we stay away from the
cut-locus of N in M , both ρ and F will be smooth functions (of x ∈ M and r
respectively); however, the nature of the problems we intend to investigate
(which include the piecewise-smooth case) forced us to take into account also
the points of the cut-locus, and then to consider F (r) as a singular function on
the whole half-line.

Due to the cut-locus, both F and ρ are only Lipschitz regular, and their
Laplacians must therefore be taken in the sense of distributions. Hence, our first
preoccupation will be to describe, in Lemma 2.1, the distributional Laplacian
of the distance function, and to show that it decomposes in a regular part ∆regρ
(an L1

loc-function on M), and a singular part, which is in turn the sum of a
positive Radon measure ∆Cutρ, supported on the cut-locus of N , and the Dirac
measure −2δN , supported on the submanifold N and vanishing when N has
codimension greater than 1.

As a preparatory step, we prove a version of Green’s theorem for the (gener-
ally singular) tubesM(r) (Proposition 2.3); and we then proceed with the proof
of the main technical lemma, called the Mean-value Lemma (see Theorem 2.5):

(1) −F ′′(r) =
∫
M(r)

∆udvn + ρ∗(u∆ρ)(r),

where ρ∗ is the operator of push-forward on distributions, which is dual to the
pull-back operator ρ∗. (If r = ρ(x) is smaller than the injectivity radius of N ,
then ∆ρ is smooth at x, and gives the trace of the second fundamental form
of the hypersurface ρ−1(r) at x; in that case, ρ∗(u∆ρ)(r) =

∫
ρ−1(r) u∆ρ, the

integration being performed with respect to the induced measure on ρ−1(r)).
Section 3 deals with the applications of Theorem 2.5 to eigenvalue estimates.

Some of the results exposed here are already known, but the proofs we provide
are, we believe, new, and we have chosen to include them to show the usefulness
of our approach, which gives a simple unified proof of all these results. So let
us select an eigenfunction u of the Laplace-Beltrami operator,

∆u = λu,

and let

F (r) =
∫
M(r)

u.

Theorem 2.5 becomes the following statement:

(2) −F ′′ = λF + ρ∗(u∆ρ).
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If u is harmonic, and if all the geodesic spheres of M around x0 have constant
mean curvature (in particular, if M is a manifold of revolution around x0, or
if M is a symmetric space) then one can immediately re-derive the “classical
mean-value lemma”by applying (2) in the case where ρ is the distance from x0.

The basic idea in the use of equation (2) is that it is possible to bound
from below the distribution ∆ρ by an explicit radial function on M (that is,
a function which depends only on the distance from N), if one assumes in
addition a lower bound of the Ricci curvature on M . Then we derive from (2)
a second order differential inequality in F , which can be studied by standard
comparison arguments. We explicitly carry out the idea in the following two
cases: when ρ is the distance from a point, and when ρ is the distance from the
boundary of a domain.

Let us apply principle (2) when N = {x0}. Assume that Ricci ≥ (n− 1)K,
where K is any real number. Let B(x0, R) (resp. B(R)) be a geodesic ball
of radius R in M (resp. in the simply connected manifold MK of constant
curvature K). We then obtain, in Theorem 3.1, for any positive solution of

∆u ≥ λu on B(x0, R)

(resp. for any positive solution of ∆ū = λū on B(R)), the following inequality∫
∂B(x0,r)

u∫
B(x0,r)

u
≤

∫
∂B(r)

ū∫
B(r) ū

for all 0 < r < R. Theorem 3.1 reduces to the classical Bishop-Gromov inequal-
ity if u = ū = 1. Notice that R is not assumed to be smaller than the injectivity
radius of x0, so that the above inequality extends beyond the cut-locus of x0.

We observe two consequences of Theorem 3.1: the first (Corollary 3.3), states
that if u is a positive superharmonic function on B(x0, R), then, for 0 < r < R,
we have

u(x0) ≥
1

vol∂B(r)

∫
∂B(x0,R)

u,

and the second (Theorem 3.4) is a well-known inequality of Cheng’s regarding
the first eigenvalues of the Dirichlet Laplacian on open balls in M and M re-
spectively: λ1(B(R)) ≤ λ1(B(R)) which is proved in [6], by different methods.

In the second part of Section 3, we use equation (1) in the case where ρ is
the distance function from the boundary of a domain Ω in M . We assume a
lower bound η̄ for the mean curvature of ∂Ω, a lower bound (n − 1)K for the
Ricci curvature of ∂Ω, and we denote by R the inner radius of Ω (that is, the
radius of the biggest ball that fits into Ω). We then consider the “symmetrized”
domain Ω corresponding to the data η̄, K,R: it will be the cylinder of constant
curvature K, and width R, having constant mean curvature equal to η̄ on
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A MEAN-VALUE LEMMA AND APPLICATIONS 509

one, say Γ, of the two connected components of the boundary. We then show,
in Theorem 3.6, that

λ1(Ω) ≥ λ1(Ω)
where λ1(Ω) is the first eigenvalue of the Dirichlet problem on Ω, and λ1(Ω) is
the first eigenvalue of the following mixed problem on Ω: Dirichlet condition
on the component Γ, Neumann condition on the other. The result extends
to any domain with piecewise-smooth boundary satisfying an additional prop-
erty (see Property (P), before Lemma 3.5), and should be compared with the
corresponding result obtained by Kasue [13], by different methods. In the spe-
cial case η̄ = 0, K = 0, Theorem 3.6 reduces to the well-known inequality
λ1(Ω) ≥ π2/4R2, due to Li and Yau (see [15], Theorem 11).

Section 4 deals with the applications of the Mean-Value Lemma to heat
diffusion. We fix a domain Ω (we assume ∂Ω piecewise-smooth), and we fix
the solution u(t, x) of the heat equation on Ω satisfying Dirichlet boundary
conditions, and having unit initial conditions (u(0, x) = 1 for all x ∈ Ω). We
call u(t, x) the temperature function of Ω. Integrating it over Ω, we obtain the
heat content function H(t):

H(t) =
∫
Ω

u(t, x)dx.

The function H(t) has been the object of investigation by a number of au-
thors (see [1], [2], [3]); its importance lies also in the fact that, if one denotes
by k(t, x, y) the heat kernel of the domain Ω relative to Dirichlet boundary
conditions, H(t) is the integral on Ω×Ω of k(t, · , ·) with respect to the product
measure.

Our basic idea in dealing with H(t) is to introduce an auxiliary variable
r ≥ 0, and then consider the map

H(t, r) =
∫
Ω(r)

u(t, x)dx,

where
Ω(r) =

{
x ∈ Ω : d(x, ∂Ω) > r

}
are the parallel domains of Ω. By the Mean-value Lemma, applied for N = ∂Ω,
we immediately obtain that H(t, r) satisfies a heat equation on the half-line
(0,∞), of the type (

− ∂2

∂r2
+
∂

∂t

)
H = −ρ∗

(
u(t, ·)∆ρ

)
.

The main advantage of the method is that it reduces the problem to a
one-dimensional one, where all computations can be performed explicitly: in
fact, using Duhamel principle (Lemma 4.1), we can represent the heat content
H(t) in terms of the measure ρ∗((1− u(t, ·))∆ρ) and in terms of the Neumann
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heat kernel of the half-line, which, unlike k(t, x, y), has the advantage of being
explicit. One gets (see (11)):∫

Ω

u(t, x)dx = vol(Ω)− 2√
π
vol(∂Ω)

√
t+

+
∫ t

0

1√
π(t− τ)

∫ ∞

0

e−r2/4(t−τ)ρ∗
(
(1− u(τ, ·))∆ρ

)
drdτ.

We emphasize the fact that all these computations extend beyond the cut-
radius and the focal radius of the normal exponential map, and therefore the
estimates are valid for arbitrary values of time, and not just for small t’s.

In this paper, we apply (11) to obtain the first three terms of the asymptotic
expansion, for small times, of the heat content on a convex polyhedral body in
the Euclidean space of arbitrary dimensions.

For a domain with smooth boundary, the third term of this expansion is

1
2
(n− 1)

∫
∂Ω

η · t,

where η is the mean curvature (see [1], [2], and [17] for the complete asymp-
totic expansion). However this term does not pass to the limit under smooth
approximations of the boundary (for the unit square in the plane this term
is 16t/π, while rounding off the corners a little bit one always gets πt). The
fact is that in the polyhedral case the cut-locus hits the boundary, and then the
singular part of the Laplacian of the distance function contributes with a non-
neglectable term to the double integral in (11). It is exactly this contribution
which we want to evaluate in this paper, leading to Theorem 4.2:∫

Ω

u(t, x)dx = vol(Ω)− 2√
π
vol(∂Ω)

√
t+ c2t+ �(t)

with

c2 = 4
∑
E

voln−2(E) ·
∫ ∞

0

(
1− tanh(γ(E)x)

tanh(πx)

)
dx.

Here E runs through the set of all (n− 2)-dimensional faces of ∂Ω (the “edges”
if Ω ⊆ R

3), and γ(E) is the interior angle of the two (n − 1)-planes whose
intersection is E. The remainder |l(t)| is bounded, for all t, by Ct3/2+h(t), for
a constant C, and for an exponentially decreasing function h(t), both explicited
in (26).

Theorem 4.2 generalizes to arbitrary dimension, in the convex case, the re-
sult of [3] obtained for domains in the two-dimensional plane having polygonal
boundary; but in fact, if n = 2 the constant C is zero, our proof simplifies con-
siderably, and we can extend it to cover the (not necessarily convex) polygonal
case in R

2 (Theorem 4.10).
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A MEAN-VALUE LEMMA AND APPLICATIONS 511

We remark that formula (11) holds for both the smooth and the polyhe-
dral case, and provides a unified approach to the problem of computing the
asymptotics of the heat content in these two cases. Smooth boundaries will be
in fact considered in [17], where we apply formula (11) to derive a recursive
algorithm for the computation of the complete asymptotic series of the heat
content, and to give sharp upper and lower bounds of the heat content in case
the Ricci curvature of the domain and the mean curvature of its boundary are
both non-negative (these conditions in fact guarantee that the measure ∆ρ is
positive).

We sketch the main steps in the proof of Theorem 4.2.
Let then Ω be a convex polyhedral body in R

n. In order to approximate the
double integral in (11), one needs to accomplish two tasks:

1) Approximate the temperature function, near the boundary, by an explicit,
simpler “model”.

2) Control the distribution ∆ρ near the boundary.
For convex polyhedrons in a euclidean space, the regular part of the Lapla-

cian of the distance function vanishes, i.e. ∆ρ is “purely singular”, and is zero
outside the cut-locus; moreover, the cut-locus is a polyhedral set itself, and we
can describe ∆ρ in Proposition 4.3. The appropriate model for u(t, ·), near
an (n − 2)-dimensional face of Ω, is shown to be the temperature function on
the infinite wedge in R

n bounded by the two hyperplanes which meet at the
given face (this is the most delicate step in the proof). Since we only need to
approximate u on the cut-locus, which is contained in the bisecting plane of the
wedge, we can, by a symmetry argument, reduce our calculations to the bisec-
trix of a wedge in the plane, and then use an explicit expression of the Laplace
transform of the temperature function, due to Kontorovich and Lebedev and
already employed in [3].

2. The mean-value lemma

Let N be a smooth submanifold of the complete Riemannian manifold M of
dimension n. We assumeN compact. The properties of the cut-locus stated be-
low are proved in [14] in the case N = {x0}. They can be extended to arbitrary
codimensions by replacing the unit sphere in the tangent space Tx0M with the
unit normal bundle U(N) of N . However, all we say in this section holds if N
is assumed, more generally, piecewise-smooth; we refer to the Appendix D for
the extension, to the piecewise-smooth case, of all the results exposed below
under the assumption of smoothness for N .

So let π(ξ) be the projection of the unit vector ξ ∈ U(N) onto its base
point, and let the cut-radius c(ξ) be the non-negative real number (possibly∞),
having the property that:
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the geodesic γ : [0, r] → M defined by γ(t) = expπ(ξ) tξ minimizes the
distance from N if and only if r ∈ [0, c(ξ)].

The map c is then continuous from U(N) to [0,∞], the 1-point compactifi-
cation of [0,∞).

The cut-locus Cut(N) ofN is, by definition, the set of all points expπ(ξ) c(ξ)ξ,
as ξ runs through U(N). Cut(N) is a closed set of measure zero in M. Setting
Φ(r, ξ) = expπ(ξ) rξ, we have a diffeomorphism from the open set

U =
{
(r, ξ) ∈ (0,∞)× U(N) : 0 < r < c(ξ)

}
to Φ(U) =M \(N∪Cut(N)). The (r, ξ) are called the normal coordinates ofM
(based at the submanifold N). Let dvn be the Riemannian volume form onM .
We pull it back by the diffeomorphism Φ, and we will write

Φ∗(dvn) = θ(r, ξ)drdξ

on U , θ being the density of the Riemannian measure in normal coordinates.
We denote by ρN (x), or simply by ρ(x), the distance of x from N . The

function ρ :M → [0,∞) is Lipschitz, as it immediately follows from the triangle
inequality. In normal coordinates we have simply ρ(r, ξ) = r, hence ρ, restricted
to the set of its “regular points”Φ(U) =M \ (N ∪Cut(N)) is C∞ smooth, and,
on Φ(U), we have ‖∇ρ‖ = 1. We let

∆regρ

denote the Laplacian of ρ|Φ(U) with respect to the Riemannian metric. The
following formula holds true on U :

(3) ∆regρ ◦ Φ = −1
θ

∂θ

∂r
·

For the proof, see [10, p. 40]. Since θ vanishes at the focal points of N , we see
that ∆regρ is not bounded. Nevertheless, viewed as a function on M (recall
that M \ Φ(U) has measure zero), we have:

(4) ∆regρ ∈ L1
loc(M).

For the proof of this fact, see Appendix A.

The distance function ρ is not, in general, C1-smooth all overM , and there-
fore its Laplacian is not a function in the usual sense, but only a distribution;
more precisely, if we define the distributional Laplacian of ρ in the natural way,
we have the following description of ∆ρ:

Lemma 2.1. — (i) There exists a positive distribution on M , denoted by ∆Cutρ
and supported on Cut(N), such that

∆ρ =

{
∆regρ+∆Cutρ if codim(N) ≥ 2,

∆regρ+∆Cutρ− 2δN if codim(N) = 1,
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A MEAN-VALUE LEMMA AND APPLICATIONS 513

where 〈δN , φ〉 =
∫
N
φdvn−1 and dvn−1 is the (n− 1)-dimensional measure;

(ii) ∆ρ is a Radon measure, and if φ is a Lipschitz, compactly supported
function on M :

〈∆ρ, φ〉 =
∫
M

(∇ρ · ∇φ)dvn.

Proof. — We show that the lemma holds if we define ∆Cutρ by the formula

(5) 〈∆Cutρ, φ〉 =
∫
{ξ∈U(N):c(ξ)<∞}

θ
(
c(ξ), ξ

)
· φ

(
expπ(ξ) c(ξ)ξ

)
dvU(N)(ξ),

for all test-functions φ ∈ C∞
c (M), where θ(c(ξ), ξ) = limr→c(ξ)− θ(r, ξ) (it is a

continuous function of ξ).
Now, since ρ is Lipschitz, and since M \ Φ(U) has measure zero, we have,

by the definition of distributional Laplacian of ρ:

〈∆ρ, φ〉 =
∫
M

ρ∆φ =
∫
M

∇ρ · ∇φ.

Integrating in normal coordinates (in which ∇ρ = ∂/∂r):

〈∆ρ, φ〉 =
∫
U(N)

∫ c(ξ)

0

θ(r, ξ)
∂(φ ◦ Φ)
∂r

(r, ξ)drdξ.

Integrating by parts in dr, and then integrating in dξ, we obtain, thanks to (3)
and (5):

〈∆ρ, φ〉 = 〈∆Cutρ, φ〉+
∫
Φ(U)

(∆regρ)φ−
∫
U(N)

θ(0, ξ)φ(π(ξ))dξ

Now the last integral is zero if codim(N) ≥ 2 (because then θ(0, ξ) ≡ 0),
and it equals 2

∫
N φdvn−1 if codim(N) = 1 (because in that case θ(0, ξ) ≡ 1,

and U(N) is locally isometric with N × Z2). That ∆Cutρ is positive, and
supported on Cut(N), is immediate from (5). Hence (i) is proved.

Proof of (ii). It follows from (i) and (5) that ∆ρ is a zero-order distribution:
a classical result (see for example [19]) implies that ∆ρ is a Radon measure,
as asserted. (Note in particular that ∆Cutρ is a positive Radon measure.) As
regards to the last statement, first note that the formula

〈∆ρ, φ〉 =
∫
M

∇ρ · ∇φdvn

is true if φ ∈ C∞
c (M). Since C∞

c (M) is dense in the space of Lipschitz functions,
and since both φ �→ 〈∆ρ, φ〉 and φ �→

∫
M
(∇ρ · ∇φ)dvn are continuous on this

space, the formula extends to Lipschitz functions. The proof is complete.

The singular Laplacian of the distance function has been considered by Cour-
tois in [8]. For the extension of Lemma 2.1 to the case where N is piecewise-
smooth, see Appendix D.
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Next, we prove Green’s theorem for the tubes M(r) = {ρ < r}. We use the
Hausdorff measuresHp, for the definition and properties of which we refer to [5]
and [9]; let us only remark here that, if A is a subset of a Riemannian manifold
of dimension n, then the n-dimensional Hausdorff measure of A coincides with
the Riemannian measure of A, and, in particular, if V is a domain of M with
piecewise-smooth boundary, then voln−1(∂V ) = Hn−1(∂V ).

Lemma 2.2. — Let K be a compact subset of M with Hn−1(K) < ∞ (n =
dimM). Then there exists ε0 > 0 such that, for all 0 < ε < ε0, we can find an
open set V (ε) with piecewise smooth boundary which covers K, is contained in
a 2ε-neighborhood of K, and which satisfies:

vol
(
∂V (ε)

)
≤ 2n−1(n− 1) ·Hn−1(K) + Cε,

where C is a positive constant which depends only on ε0 and on a lower bound
of the Ricci curvature on a neighborhood of K.

Proof. — Appendix B.

We can now give a version of Green’s theorem which will suit our needs.
Given a domain Ω, we will say that ∂Ω is almost regular if it is the disjoint
union of two pieces ∂regΩ, ∂singΩ, where ∂regΩ is a C1-smooth submanifold
of M , and ∂singΩ is compact, and has zero Hn−1-measure.

Proposition 2.3. — Let Ω be a domain with almost regular boundary, and
let ν denote the unit vector, normal to ∂regΩ and pointing inside Ω. Then if
u ∈ C2(Ω): ∫

Ω

∆u =
∫
∂regΩ

∂u

∂ν
dvn−1 =

∫
∂Ω

∂u

∂ν
dHn−1,

where dvn−1 is the induced volume form on ∂regΩ and where Hn−1 is the Haus-
dorff measure.

Proof. — Fix ε > 0, and apply Lemma 2.2 to K = ∂singΩ. Then∫
Ω

∆udvn = lim
ε→0

∫
Ω\(V (ε)∩Ω)

∆udvn.

The domain Ω\(V (ε)∩Ω) has piecewise smooth boundary given by the disjoint
union of ∂Ω ∩ V (ε)c and ∂V (ε) ∩ Ω. Hence by the classical version of Green’s
theorem,∫

Ω\(V (ε)∩Ω)
∆udvn =

∫
∂Ω∩V (ε)c

∂u

∂ν
dvn−1 +

∫
∂V (ε)∩Ω

∂u

∂ν
dvn−1.

Since V (ε) is contained in a 2ε-neighborhood of K, we see that∫
∂regΩ∩V (ε)

∂u

∂ν
dvn−1
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A MEAN-VALUE LEMMA AND APPLICATIONS 515

tends to zero with ε, by Lebesgue bounded convergence theorem. Therefore∫
∂Ω∩V (ε)c ∂u/∂νdvn−1 converges to

∫
∂regΩ

∂u/∂ν dvn−1. On the other hand, by
Lemma 2.2, vol(∂V (ε)) → 0, and therefore

∫
∂V (ε)∩Ω ∂u/∂νdvn−1 converges to

0 as ε→ 0, since |∂u/∂ν| ≤ ‖∇u‖ is bounded.

Now fix r > 0. We say that r is a regular value of ρ if

Hn−1

(
ρ−1(r) ∩ Cut(N)

)
= 0.

We see immediately that, if r is a regular value of ρ, then ∂M(r) = ρ−1(r) is
almost regular, with ∂regΩ = ρ−1(r) ∩ Φ(U), and ∂singΩ = ρ−1(r) ∩ Cut(N).
Since Cut(N) has zero measure, we have, as a consequence of Eilenberg’s in-
equality (see [5, Thm 13.3.1]), that the complement of the set of regular values
of ρ has zero Lebesgue measure. Therefore, for almost all r ∈ (0,∞), ∂M(r)
is almost regular; and since ∇ρ coincides with the unit normal to ∂regM(r),
pointing outside M(r), we have, for all u ∈ C2(M) and for almost all r:

(6)
∫
M(r)

∆udvn = −
∫
ρ−1(r)

(∇u · ∇ρ)dHn−1.

Now fix u ∈ C2(M), and consider the function F : (0,∞) → R defined by

F (r) =
∫
M(r)

udvn

where M(r) is, as usual, the tube of radius r around N . If N is smooth,
then F is smooth on (0, Rinj), where Rinj is the injectivity radius of the normal
exponential map of N . In the general case, we have:

Lemma 2.4. — F is Lipschitz on each compact interval and, for almost all
r ∈ (0,∞):

F ′(r) =
∫
ρ−1(r)∩Φ(U)

udvn−1.

Moreover, the map r �→
∫
ρ−1(r)∩Φ(U) udvn−1 is continuous from the right

on (0,∞).

Proof. — From the formula of co-area (see [5, Cor. 13.4.6]):

F (r) =
∫ r

0

∫
ρ−1(s)

udHn−1ds.

Hence

F ′(r) =
∫
ρ−1(r)

udHn−1

a.e. on (0,∞), and in turn F ′(r) =
∫
ρ−1(r)∩Φ(U)

udvn−1 a.e. on (0,∞) (pre-
cisely, on the set of regular values of ρ).
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Now observe that∫
ρ−1(r)∩Φ(U)

udvn−1 =
∫
U(N)

fr(ξ)dξ

where fr(ξ) = u(Φ(r, ξ))θ(r, ξ) if c(ξ) > r and fr(ξ) = 0 if c(ξ) ≤ r. Since
θ(r, ξ) is uniformly bounded in r ∈ [a, b] (and ξ ∈ U(N)) by Rauch’s comparison
theorem, so is

∫
ρ−1(r)∩Φ(U)

udvn−1, hence F is Lipschitz on [a, b]. Finally, if
rn ↓ r, then, for ξ fixed, frn(ξ) → fr(ξ) and the last assertion follows by
Lebesgue’s bounded convergence theorem.

We now come to the computation of F ′′. Let ψ ∈ C0
c (0,∞). Since ρ is a

proper map, the pull back ψ ◦ ρ is a continuous, compactly supported function
onM . Hence if T is a Radon measure onM , its push-forward ρ∗(T ) exists and
is the measure on (0,∞) defined by the relation〈

ρ∗(T ), ψ
〉
= 〈T, ψ ◦ ρ〉.

Note that, if u is a function on M , then, by the co-area formula, ρ∗(u) is
the regular distribution defined a.e. by ρ∗(u)(r) =

∫
ρ−1(r) udHn−1 = F ′(r)

(see Lemma 2.4).

We can now state our main technical lemma.

Theorem 2.5 (Mean-value Lemma). — Let ρ : M → [0,∞) be the function:
distance from N , where N is a compact, piecewise-smooth submanifold of M ;
let u ∈ C2(M), and M(r) = {x ∈ M : ρ(x) < r}. If F (r) =

∫
M(r)

udvn, then
we have, as Radon measures on (0,∞):

−F ′′(r) =
∫
M(r)

∆udvn + ρ∗(u∆ρ)(r) .

Proof. — It is enough to verify the equality when both sides are tested on a
smooth, compactly supported function ψ on (0,∞). Then, by Lemma 2.4:

−〈F ′′, ψ〉 =
∫ ∞

0

F ′ψ′ =
∫ ∞

0

∫
ρ−1(r)

u(ψ′ ◦ ρ)dHn−1 dr =
∫
M

u(ψ′ ◦ ρ).

The last equality uses co-area formula. Now, on the set of regular points
Φ(U), (hence a.e. on M) the map ψ◦ρ is C∞ and we have∇(ψ◦ρ) = (ψ′◦ρ)∇ρ.
Hence:

−〈F ′′, ψ〉 =
∫
M

u(∇(ψ ◦ ρ) · ∇ρ) =
∫
M

∇(u(ψ ◦ ρ)) · ∇ρ−
∫
M

(ψ ◦ ρ)(∇u · ∇ρ).

Since ψ ◦ρ is Lipschitz, we have, by Lemma 2.1 (ii), that the first term is equal
to 〈∆ρ, u(ψ ◦ ρ)〉, and then, by the definition of push-forward, also equal to
〈ρ∗(u∆ρ), ψ〉. The second term is equal to

−
∫ ∞

0

ψ

∫
ρ−1(r)

(∇u · ∇ρ)dHn−1 dr
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by the co-area formula, and then, thanks to formula 6, also equal to∫ ∞
0 ψ(

∫
M(r)∆u)dr. The proof is complete.

An important particular case is whenN is the boundary of a domain Ω inM ;
for our convenience, we then restrict ρ to Ω, and consider ∆ρ as a distribution
on Ω. ChangingM(r) in Ω(r) = {x ∈ Ω : ρ(x) > r}, and the previous definition
of F (r) in F (r) =

∫
Ω(r)

udvn, we obtain the following version of the Mean-value
Lemma:

(7) −F ′′(r) =
∫
Ω(r)

∆udvn − ρ∗(u∆ρ),

as Radon measures on (0,∞). For the proof of (7), just repeat the proof
of Theorem 2.5, with the indicated changes; and observe that now F ′(r) =
−

∫
ρ−1(r)

udHn−1 (a.e. on (0,∞)).

Remark 2.6. — We can replace u in Theorem 2.5 (or in its special case 7) by
any continuous, compactly supported function on M having the property that
∆u is a Radon measure.

3. Applications to eigenvalue estimates

3.1. Applications when ρ is the distance from a point. — Let M be
a manifold on which we make the following curvature assumptions

Ricci ≥ (n− 1)K,

where K can assume all real values. Let θ = θ(r, ξ) denote, as before, the
density of the Riemannian measure in normal (polar) coordinates centered at
a given point x0 ∈ M , and let θ̄ be the corresponding density, relative to a
given point x̄0, on the simply connected manifold MK of constant curvature K.
By Bishop comparison theorem (see [4]), we have θ′/θ(r, ξ) ≤ θ̄′/θ̄(r) for all
(r, ξ) ∈ U and therefore

(8) ∆regρ ≥ − θ̄
′

θ̄
◦ ρ

at all regular points of ρ (see (3)).
We will be dealing with the integral of a function on geodesic spheres centered

at x0 in M . We point out the fact that, when r > Rinj(x0), ∂B(x0, r) is no
longer a regular submanifold ofM ; however, we can integrate a function on the
“regular part” of it: ∂regB(x0, r) ≡ ∂B(x0, r) ∩ Φ(U).

Hence, in this section, we agree to set, for all r∫
∂B(x0,r)

u ≡
∫
∂regB(x0,r)

udvn−1.
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Recall that
∫
∂Breg(x0,r)

udvn−1 does coincide with
∫
∂B(x0,r)

udHn−1 on the
set of regular values r of ρ, hence a.e. on (0,∞) (see §2).

We can now state the main result of this subsection, which is a comparison
theorem between solutions of the equation ∆u = λu on M and MK .

Theorem 3.1. — Let M be a manifold satisfying Ricci ≥ (n − 1)K, and let
λ ∈ R, and R ≤ diam(M). Assume that u is positive on the open ball B(x0, R)
in M and satisfies ∆u ≥ λu, and let ū be a solution of ∆ū = λū on the ball
B(x̄0, R) ≡ B(R) in MK such that ū(x̄0) �= 0. Then, for all r ≤ R:∫

∂B(x0,r)
u∫

B(x0,r)
u

≤
∫
∂B(r)

ū∫
B(r) ū

and
1

u(x0)

∫
B(x0,r)

u ≤ 1
ū(x̄0)

∫
B(r)

ū.

Let us notice that in Theorem 3.1 we don’t assume any boundary conditions
for the functions u and ū. About the existence of solutions of ∆ū = λū on the
space form MK , we have the following:

Lemma 3.2. — Let λ ∈ R, x̄0 ∈ MK , R ≤ diam(MK). Then there ex-
ists a unique radial solution of ∆ū = λū on the open ball B(x̄0, R), having
a preassigned value at x̄0. Here “radial” means that there exists a function
f : [0, R)→ R such that ū = f ◦ ρ, where ρ = d(x̄0, ·) in MK .

Proof. — Since ∆(f ◦ ρ) = −(f ′′ + θ̄′/θ̄f ′) ◦ ρ, solving the equation ∆ū = λū
on B(x̄0, R) amounts to solve the equation: θ̄f ′′ + θ̄′f ′ + λθ̄f = 0 on the
interval (0, R). The assertion now follows from the theory of second order
differential equations (see for example [7]), and the regularity of ū which implies
f ′(0) = 0.

Proof of Theorem 3.1. — We can assume that ū(x̄0) > 0. Let F (r) =∫
B(x0,r)

u, and fix a small ε > 0. By Theorem 2.5 and by Lemma 2.1 (i),
we have, as measures on (ε, R):

−F ′′ ≥ λF +
∫
∂B(x0,r)

u∆regρ+ ρ∗(u∆Cutρ)

and then, from (8), the positivity of ∆Cutρ, and Lemma2.4:

(9) F ′′ − θ̄′

θ̄
F ′ + λF ≤ 0.

On the other hand, the corresponding map F (r) =
∫
B(r)

ū satisfies, on (ε, R),
the equation:

(10) F ′′ − θ̄′

θ̄
F ′ + λF = 0.

In fact, on MK the cut-locus of any point reduces to a single point or is
empty, so that ∆Cutρ = 0; and as ∆regρ = −θ̄′/θ̄ ◦ ρ, we have (10) by the
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Mean-value Lemma. Now let R0 be the first zero of F , so that F ≥ 0 on
(ε, R0), and let R1 = min{R0, R}. We multiply (9) by F , (10) by F and add.
Then, on (ε, R1), we have the inequality (F ′ F −F ′ F )′− θ̄′/θ̄(F ′ F −F ′ F ) ≤ 0
so that, if

W (r) =
F ′(r)F (r) − F ′(r)F (r)

θ̄(r)
,

then W ′ is a negative measure on (ε, R1). It is a well-known fact that then
W ′ = dg for a monotone decreasing function g; since W = g on a dense subset
of (ε, R1), and sinceW is continuous from the right (by Lemma 2.4),W is itself
decreasing on (0, R1). Now W (ε) tends to zero with ε, and we obtain the first
inequality of the theorem with R1 replacing R. Next, we integrate both sides
of F ′/F ≤ F ′/F from ε to r, and get

F (r)
F (r)

≤ F (ε)
F (ε)

;

but since vol(B(x0, ε))/vol(B(ε)) → 1 when ε → 0, we see that the limit in-
equality is F (r)/F (r) ≤ u(x0)/ū(x̄0), which is precisely the second inequality
with R1 replacing R. It then remains to show that R1 = R, or that R0 ≥ R.
Assume not. Then we would have 0 < F (R0) ≤ u(x0)/ū(x̄0)F (R0) = 0. The
proof is complete.

We observe that, for u = 1, the theorem reduces to the well-known Bishop-
Gromov inequality.

Corollary 3.3. — Assume Ricci ≥ (n − 1)K. If u is a positive super-
harmonic function on B(x0, R) (i.e. ∆u ≥ 0) then, for all r ≤ R, we have:

u(x0) ≥
1

vol(∂B(r))

∫
∂B(x0,r)

u.

Another application of Theorem 3.1 is a new proof of the following result
of Cheng (see [6]) on the first eigenvalue of the Laplace-Beltrami operator on
geodesic balls. Let us denote by λ1(Ω) the first non-zero eigenvalue of the
Dirichlet problem on Ω.

Theorem 3.4 (Cheng). — If Ricci ≥ (n− 1)K, then, for all R:

λ1
(
B(x0, R)

)
≤ λ1

(
B(R)

)
where B(R) is the ball of radius R in the simply connected manifold of constant
sectional curvature K.

Proof. — Let us assume that λ1(B(x0, R)) > λ1(B(R)). Then there exists
R′ < R such that λ1(B(x0, R)) = λ1(B(R′)). Choose corresponding positive
eigenfunctions u (resp. ū) on B(x0, R) (resp. B(R′)). The positivity of u in
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the interior of B(x0, R) implies that
∫
∂B(x0,R′)

u > 0; as ū ≡ 0 on ∂B(R′), this
is a contradiction with Theorem 3.1.

3.2. Applications when ρ is the distance from the boundary of a
domain. — In this subsection we give a lower bound for the first eigenvalue
of the Dirichlet Laplacian of a relatively compact domain Ω having smooth
boundary, or piecewise-smooth boundary satisfying an additional condition (see
Property (P) below). Denote by

ρ : Ω −→ R

the distance function from the boundary of Ω. Then we have, as distributions
on Ω (i.e. as continuous linear maps on C∞

c (Ω))

∆ρ = ∆regρ+∆Cutρ,

where ∆Cutρ is positive, and supported on the cut-locus of ∂Ω. Let us write

∂Ω = ∂regΩ ∪ ∂singΩ

where ∂regΩ is a smooth submanifold of codimension 1 and ∂singΩ is the singular
part of ∂Ω.

We will say that Ω satisfies property (P) if

For each x ∈ Ω\Cut(∂Ω) the foot of the geodesic segment which minimizes
the distance from x to ∂Ω is a regular point of ∂Ω.

For example, a two-dimensional domain satisfies (P) if and only if the interior
angle at any of the singular points of the boundary is convex. In fact, the
condition (P) is imposed to insure that the mean curvature of the level sets
does not become too negative near the singularities of the boundary.

Under the assumption (P), we then have

∆regρ = −θ
′

θ
◦ ρ,

where θ is the Jacobian of the diffeomorphism (normal chart)

Φ : U −→ Ω \ Cut(∂Ω)

which sends (r, ξ) to expπ(ξ) r ξ. Here

U =
{
(r, ξ) ∈ (0,∞)× U(∂regΩ) : 0 < r < c(ξ), Φ(r, ξ) ∈ Ω

}
.

If ρ is smooth at x, and if ρ(x) = r, then ∆regρ gives the trace of the second
fundamental form of the level submanifold ρ−1(r) at x; the mean curvature
is then defined as 1/(n− 1)∆regρ(x) (our sign convention is that the mean
curvature of the unit sphere in euclidean space is positive).
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Lemma 3.5. — Let Ω be a relatively compact, open set of M, with piecewise
smooth boundary satisfying property (P). Assume that the mean curvature of
∂regΩ is bounded below by η̄, and that Ricci ≥ (n − 1)K on Ω. Then, as
distributions on Ω:

∆ρ ≥ − θ̄
′

θ̄
◦ ρ,

where
θ̄(r) =

(
s′K(r)− η̄sK(r)

)n−1
,

and where

sK(r) =




1√
K

sin(r
√
K ) if K > 0,

r if K = 0,
1√
|K|

sinh(r
√
|K| ) if K < 0.

In particular, if Ω satisfies property (P), and if the mean curvature of the
regular part of the boundary and the Ricci curvature of Ω are both non-negative,
then ∆ρ ≥ 0.

Proof. — Since ∆Cutρ ≥ 0, it is enough to show that ∆regρ ≥ −θ̄′/θ̄ ◦ ρ.
This fact is a consequence of (3) and Heintze-Karcher’s estimates in [12], or
else it can be re-derived by the same procedure followed in [10, p. 41]. In the
last statement, we suppose that K = 0 and η̄ = 0, so the fact that −θ̄′/θ̄ =
(n− 1)η̄/(1− rη̄) ≥ 0 implies that ∆ρ ≥ 0.

To state our comparison theorem, we need to define the model domains to
which we will compare our domain Ω. Then let

Ω ≡ Ω(K, η̄, R)

be the cylinder with constant curvature K, and width R, such that the mean
curvature is constant, equal to η̄, on one of the two connected components of
the boundary. Depending on K and η̄, Ω will be an annulus in either the space
formMK , or the hyperbolic cylinder of constant curvatureK. We postpone the
explicit realization of Ω after we have proved the following comparison theorem.

Theorem 3.6 (compare with [13]). — Let Ω be a domain with piecewise
smooth boundary satisfying property (P). Assume that the Ricci curvature of
Ω is bounded below by (n − 1)K, that the mean curvature of ∂regΩ is bounded
below by η̄, and let R be the inner radius of Ω. Then:

λ1(Ω) ≥ λ̄1(Ω),
where λ1 is the first non-zero eigenvalue of the Dirichlet problem on Ω,
and where λ̄1(Ω) denotes the first non-zero eigenvalue of the following mixed
problem on Ω(K, η̄, R): Dirichlet condition on the component having mean
curvature η̄, Neumann condition on the other.
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Proof. — Let ρ̄ : Ω → (0,∞) denote the distance function from Γ, the com-
ponent of ∂Ω having constant mean curvature η̄. From the explicit expression
of Ω, it will be clear that the cut-locus of Γ is either empty, or reduces to a
point: hence ∆Cutρ̄ = 0; moreover ∆ρ̄ = ∆regρ̄ = −θ̄′/θ̄ ◦ ρ̄ where θ̄ is as in
Lemma 3.5. Let u be a positive eigenfunction corresponding to λ = λ1(Ω), let
ū be the eigenfunction associated to λ̄ = λ̄1(Ω) which is positive on Ω and is
normalized so that

∫
Ω
ū =

∫
Ω
u, and let

F (r) =
∫
Ω(r)

u and F (r) =
∫
Ω(r)

ū.

By the version (7) of the Mean-value Lemma, by Lemma 3.5, and the fact that
ρ∗(u)(r) = −F ′(r), and ρ̄∗(ū)(r) = −F ′(r) (see Lemma 2.4), we see that, in
the sense of distributions:

F ′′ − θ̄′

θ̄
F ′ + λF ≥ 0, F ′′ − θ̄′

θ̄
F ′ + λ̄F = 0.

Assume λ < λ̄. We multiply the first inequality by F , the second equation
by F , and subtract. We get(F ′F − FF ′

θ̄

)′
≥ FF (λ̄− λ)

θ̄
> 0.

Hence (F ′F − FF ′)/θ̄ > (F ′(0)F (0)− F (0)F ′(0))/θ̄(0) = 0, which implies:
F ′(r)/F (r) > F ′(r)/F (r) on (0, R). By our normalization (F (0) = F (0)) we
obtain F (r) > F (r), and, in turn F ′(r) > F ′(r) on (0, R). Ultimately we would
have

F (0) = −
∫ R

0

F ′(r)dr < −
∫ R

0

F ′(r)dr = F (0)

which is a contradiction. Hence λ ≥ λ̄.

We now proceed to the explicit construction of the model cylinder

Ω = Ω(K, η̄, R).

Case 1. — K > 0, η̄ ∈ R, or K < 0, |η̄| >
√
|K|, or K = 0, η̄ ∈ R \ {0}.

Let us denote by BK(r) the geodesic ball of radius r (centered at some fixed
origin point x0) in the simply connected space of constant curvature K. In
normal coordinates around x0, the metric is written

ḡ = dr2 + s2K(r) · gSn−1 ,

where sK(r) is defined in Lemma 3.5. Let us set

cotK(r) =
s′K(r)
sK(r)

and R = cot−1
K

(
|η̄|

)
,
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which is defined for any value of η̄ when K > 0, for η̄ �= 0 when K = 0, and
for |η̄| >

√
|K| when K < 0. As we already remarked, the inner radius R of Ω

is bounded above by R, and we may take:

Ω =

{
BK(R) \BK(R−R) if η̄ ≥ 0,

BK(R+R) \BK(R) if η̄ < 0.

In both cases, Γ = ∂BK(R), viewed as the boundary of Ω, has constant
mean curvature η̄.

Case 2. — K = 0, η̄ = 0, or K < 0, η̄ ∈ (−
√
|K|,

√
|K|).

Set tK(r) = s′′K(r)/s′K(r), and let R̃ = 0 in the first case, R̃ = t−1
K (η̄) in the

second case. We take Ω = (R̃−R, R̃)× Sn−1 and we endow it with the metric
ḡ = dr2 + s′K(r)2 · gSn−1 . In both cases the component Γ = {R̃} × Sn−1 of ∂Ω
has mean curvature tK(R̃) = η̄.

Case 3. — K < 0, η̄ = ±
√
|K|.

These are the limit cases of Case 1 as R→∞.

Remark 3.7. — We observe that when both the Ricci curvature of Ω and
the mean curvature of ∂Ω are non-negative, then Ω = (0, R) × Sn−1 and
Theorem 3.6 reduces the the inequality λ1(Ω) ≥ π2/(4R2) due to Li and Yau
(Theorem 11 in [15]).

4. Heat content asymptotics of a convex polyhedral body

Let Ω be an open set with compact closure and piecewise-smooth boundary
in a complete Riemannian manifold M , and let w(t, x) be any solution of the
heat equation on Ω. Consider the function f : (0,∞)× [0,∞) → R defined by

f(t, r) =
∫
Ω(r)

w(t, x)dx,

where Ω(r) = {x ∈ Ω : ρ(x) > r}, and where ρ is the distance function from
the boundary.

It is an immediate consequence of the mean-value lemma (formula (7)) that
f(t, r) satisfies the following heat equation on the half-line

(
− ∂2

∂r2
+
∂

∂t

)
f = −ρ∗

(
w(t, ·)∆ρ

)
.
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Lemma 4.1 (Duhamel principle). — Let f(t, r) be as above. Then, for all
t > 0 and r ≥ 0, we have:

f(t, r) =
∫ ∞

0

e(t, r, s)f(0, s)ds−
∫ t

0

∫ ∞

0

e(t− τ, r, s)ρ∗
(
(w(τ, ·)∆ρ

)
(s)dsdτ

−
∫ t

0

∂f

∂r
(τ, 0)e(t− τ, r, 0)dτ

where e(t, r, s) denotes the heat kernel of the half-line relative to Neumann
boundary conditions at 0, which is given by the explicit formula

e(t, r, s) =
1√
4πt

(
e(r−s)2/4t + e(r+s)

2/4t
)
,

for all t > 0, r, s > 0.

Proof. — ∂2f/∂r2(τ, ·) is a measure on (0,∞), and we can integrate by parts
twice in

∫ ∞
0
e(t − τ, r, s)∂2f/∂r2(τ, s)ds. Therefore the classical proof applies

without change.

We will use Duhamel principle to study the heat content function

H(t) =
∫
Ω

u(t, x)dx,

where u(t, x) is the solution of the heat equation on Ω, with Dirichlet boundary
conditions, and with unit initial conditions: u(0, x) = 1 for all x ∈ Ω. To that
end, we apply Lemma 4.1 taking w(t, x) = 1− u(t, x); since

∂

∂r

∣∣∣
r=0

∫
Ω(r)

(
1− u(t, x)

)
dx = − vol(∂Ω)

for all t, we obtain:

H(t) = vol(Ω)− 2√
π
vol(∂Ω)

√
t(11)

+
∫ t

0

∫ ∞

0

e(t− τ, r, 0)ρ∗
(
(1− u(τ, ·)

)
∆ρ)(r)drdτ

We use (11) to obtain the following theorem:

Theorem 4.2. — If Ω is a convex polyhedron in the n-dimensional euclidean
space, then ∫

Ω

u(t, x)dx = vol(Ω)− 2√
π
vol(∂Ω)

√
t+ c2t+ �(t)

with

c2 = 4
∑
E

voln−2(E) ·
∫ ∞

0

(
1− tanh(γ(E)x)

tanh(πx)

)
dx,
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and where E runs through the family of all (n − 2)-dimensional faces
of Ω (the “edges” if n = 3), and γ(E) is the interior angle of the two
(n − 1)-planes whose intersection is E. The remainder �(t) is bounded,
in absolute value, for all t, by Ct3/2 + h(t) for a constant C, and for a
function h(t) which is exponentially decreasing as t → 0 (C and h(t) are
explicited in (26)).

Let us fix some notation. The closure Ω of Ω is a polytope, in the sense that
it is the intersection of a finite family I = {1, . . . ,m} of closed half-spaces Hi.
We may write Hi = {x ∈ R

n : ρπi(x) ≥ 0} where ρπi denotes the distance,
taken with sign, from the oriented affine hyperplane πi of R

n. Note that ρπi

is an affine map. The (n − 1)-dimensional faces of Ω are the subsets of ∂Ω
defined by Fi = πi ∩ Ω for i ∈ I. Each Fi is a polytope in πi; the hyperplanes
which bound Fi are given by all the intersections πi ∩ πj , with j �= i (with the
obvious orientation). In turn, each (n−2)-dimensional face Fi∩Fj , with j �= i,
is a polytope in the (n− 2)-dimensional euclidean space πi ∩πj , and so on. By
vold(P ) we denote the Lebesgue measure of the polytope P in R

d, and by γij
we denote the interior angle at Fi∩Fj : it is the unique angle between 0 and π
such that cos(γij) = −νi · νj , where νi and νj are the respective unit normal
vectors of πi and πj , positively oriented. Note that, if Fi and Fj are incident
faces, then 0 < γij < π.

Our aim is then to prove that

c2 = 2
∑
i�=j

voln−2(Fi ∩ Fj) ·
∫ ∞

0

(
1− tanh(γijx)

tanh(πx)

)
dx.

The proof proceeds in the following way: we first describe the cut-locus
of ∂Ω, show that it is a polyhedral set (i.e. a finite union of polytopes) and
give a convenient expression of ∆Cutρ as integration on the cut-locus. We then
give the proof in four steps. Finally, we examine the special case n = 2, and
extend our proof to cover the (not necessarily convex) polygonal domains in
the plane (Theorem 4.10), already obtained in [3].

4.1. Description of the cut-locus of a convex polyhedron. — Let ρ :
Ω → R denote the distance from ∂Ω. We observe the following fact, which
follows easily from the convexity of Ω: for all x ∈ Ω,

ρ(x) = min
i=1,...,m

ρπi(x).

Since there are no focal points of ∂Ω, the cut-locus of ∂Ω is the closure of
the set of points of Ω which can be joined to ∂Ω by at least two minimizing
line segments. Therefore:

Cut(∂Ω) =
⋃
i�=j

Cutij with Cutij = {x ∈ Ω : ρ(x) = ρπi(x) = ρπj (x)}.
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Proposition 4.3. — (i) For each i �= j, Cutij is a polytope in the hyperplane
πij = {x ∈ Ω : ρπi(x) = ρπj (x)} (the “bisecting hyperplane” of πi and πj);

(ii) Let φ ∈ C0(Ω), and ψ ∈ C0([0,∞)). Then:∫
Ω

φ∆ρ =
∑
i�=j

cos(
γij
2
)
∫
Cutij

φ(x)dx and

∫ ∞

0

ψρ∗(u∆ρ) =
∑
i�=j

cos(
γij
2
)
∫
Cutij

u(x)ψ(ρ(x))dx,

dx denoting Lebesgue measure on the hyperplane πij of R
n.

Proof. — (i) Consider the set

Ri =
{
x ∈ Ω : ρ(x) = ρπi(x)

}
.

Then Ω =
∑

i∈I Ri; moreover, for each j �= i, Ri lies entirely on one side
of the bisecting hyperplane πij : denote by Hij the closed half-space having
that property. Then it is easy to show that Ri =

⋂
j∈I Hij (we agree to set

Hii = Hi). Hence Ri is a polytope, and since Cutij is one of its faces, so
is Cutij . Note also that the faces of Cutij are Fi ∩ Fj, together with all
polytopes Cutijk ≡ Ri ∩Rj ∩Rk with k ∈ I, k �= i, k �= j.

Proof of (ii): we assume φ smooth; the assertion will follow by a density
argument. As ∆ρ = 0 on the interior of Ri, by Green’s formula and the fact
that the boundary of Ri consists of Fi together with all Cutij (j �= i), we get:

0 =
∫
Ri

φ∆ρ =
∫
Ri

∇φ · ∇ρ+
∫
Fi

φdvn−1 +
∑
j �=i

∫
Cutij

φ(∇ρ · νij)dvn−1,

where νij is the unit normal to πij (oriented towards the interior of Ri). As
cos(12γij) = −∇ρ · νij , we get the first formula by summation and by Green’s
formula again. The second formula follows from the first by the definition of
push-forward.

By the representation (11) of the heat content, and Proposition 4.3:

H(t) − vol(Ω) +
2√
π
vol(∂Ω)

√
t(12)

=
∑
i�=j

cos(
γij
2
)
∫ t

0

∫
Cutij

e
(
t− τ, ρ(x), 0

)(
1− u(τ, x)

)
dxdτ

so c2 is the coefficient of t in the asymptotic expansion of the right-hand side
of (12) as t→ 0. To compute it, we restrict to a suitable ε-neighborhood of ∂Ω.
Let us fix some notation on the incidence relations of the F ′

is, and set:

I2 =
{
(i, j) ∈ I × I : i �= j, Fi ∩ Fj �= ∅

}
;

I3 =
{
(i, j, k) ∈ I × I × I : i �= j �= k �= i, Fi ∩ Fj ∩ Fk �= ∅

}
.
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Then:

Lemma 4.4. — Let ε = inf
(i,j,k)/∈I3

dist(Cutij ,Fk). Then ε > 0, and:

(i) If x ∈ Cutij and (i, j) /∈ I2, then ρ(x) ≥ ε;
(ii) If x ∈ Cutijk and (i, j, k) /∈ I3, then ρ(x) ≥ ε.

Proof. — Recall that Cutij and Fk are closed subsets of R
n. To show that

ε > 0, it is then enough to show that, if (i, j, k) /∈ I3, then Cutij ∩Fk = ∅. But
this is clear, since Cutij ∩Fk ⊆ Fi ∩ Fj ∩ Fk.

Proof of (ii): if x ∈ Cutijk, then ρ(x) = d(x, z) for some z ∈ Fk. If (i, j, k) /∈
I3, we have d(x, z) ≥ ε by our definition of ε, and (ii) is proved.

Proof of (i): let (i, j) /∈ I2; the restriction of ρ to Cutij is just ρπi : an affine
map. Hence ρ|Cutij

attains its absolute minimum on the boundary of Cutij :
this implies, since ∂ Cutij ∩∂Ω = ∅, that there exists an index k, k �= i, k �= j,
and a point y ∈ Cutijk (see the proof of Proposition 4.3) such that ρ(x) ≥ ρ(y)
for all x ∈ Cutij . Since (i, j) /∈ I2, a fortiori (i, j, k) /∈ I3, hence ρ(y) ≥ ε
by (ii).

4.2. The main steps of the proof. — The proof of the theorem is in four
steps, which we outline below. Set, for brevity:

(13) Zij(u; τ) =
∫
Cutij

e
(
t− τ, ρ(x), 0

)(
1− u(τ, x)

)
.dx

Step 1. — If Fi∩Fj = ∅, then Cutij is at distance ≥ ε from ∂Ω. Hence each
pair (i, j) /∈ I2 contributes to the sum in (12) with an exponentially decreasing
term. Precisely, since Zij(u; τ) ≤ e(t − τ, ε, 0) voln−1(Cutij), and since, from
Proposition 4.3 (ii) applied to φ = 1∑

(i,j)/∈I2

cos(γij/2) voln−1(Cutij) ≤ vol(∂Ω),

we get ∣∣∣H(t)− vol(Ω) +
2√
π
vol(∂Ω)

√
t−

∑
(i,j)∈I2

cos(γij/2)
∫ t

0

Zij(u; τ)dτ
∣∣∣(14)

≤ 4√
πε2

vol(∂Ω)t3/2 e−ε2/4t.

In Steps 2–4, we assume that (i, j) ∈ I2 (that is, Fi and Fj are incident
faces).

Step 2. — It is the most delicate estimate. We show that, in order to com-
pute the term in t in the expansion of the heat content, we can replace the
temperature function u on Cutij by the temperature function uij, relative to
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the infinite open wedge Wij in R
n bounded by the oriented hyperplanes πi and

πj. Precisely:

(15)
∣∣∣ ∫ t

0

Zij(u; τ)dτ −
∫ t

0

Zij(uij ; τ)dτ
∣∣∣ ≤ C1(i, j)t3/2 + C2(i, j)t2 e−ε2/4nt,

for some positive constants C1(i, j), C2(i, j) (see (23)). If dim(Ω) = 2 then
C1(i, j) = 0.

Step 3. — We observe that, when restricted to πij (the bisecting plane of the
wedge Wij), the temperature uij(t, x) depends only on ρij(x) = distance of x
from πi ∩ πj , so that it can be written uij(t, x) = ũij(t, ρij(x)), where ũij is a
function defined on (0,∞)× [0,∞). Hence we show that∣∣∣ ∫ t

0

Zij(uij ; τ)dτ − voln−2(Fi ∩ Fj) · cij(t)
∣∣∣(16)

≤ C3(i, j)t3/2 + C4(i, j)t2 e−ε2/4t,

where C3(i, j), C4(i, j) are positive constants (see (25)), and

(17) cij(t) =
∫ t

0

∫ ∞

0

e
(
t− τ, r sin(γij/2), 0

)(
1− ũij(τ, r)

)
drdτ.

If dim(Ω) = 2, then C3(i, j) = 0.

Step 4. — It is the explicit computation:

(18) cij(t) =
2

cos(γij/2)

∫ ∞

0

(
1− tanh(γijx)

tanh(πx)

)
dx · t.

The theorem follows from formulas (14) to (18). See (26) for the explicit ex-
pressions of C and h(t).

4.3. The proofs of Steps 1–4. — We make use, several times, of the fol-
lowing, easily established, facts:

F1. — If S is a p-dimensional affine subspace of R
n, then: volp(S∩Ω) ≤ Bp,

where we have set Bp = vol(Bp(diam(Ω))) and where Bp(a) is the ball of radius
a in R

p. Then vol(B0(a)) = 1, and we set vol(Bp(a)) = 0 if p < 0.
F2. — If ρπ : R

n → R is the distance function from the oriented hyper-
plane π, with unit normal ν = ∇ρ, then the gradient of the restriction of
ρπ to the affine subspace S of R

n is constant, and is equal to the orthogonal
projection of ∇ρπ onto S.

Proof of 15. — We now fix (i, j) ∈ I2 and introduce the notation

Iij =
{
k ∈ I : (i, j, k) ∈ I3

}
.
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Since Fi and Fi are incident, so are the hyperplanes πi and πj . We denote
by Wij the infinite open wedge in R

n given by the intersection of the two
half-spaces determined by πi and πj , i.e.

Wij =
{
x : ρπi(x) > 0

}
∩

{
x : ρπj (x) > 0

}
.

Note that Ω ⊆Wij . We then let uij : (0,∞)×Wij → R denote the solution of
the heat equation on Wij , which satisfies the Dirichlet condition on the boundary
of Wij , and has unit initial conditions uij(0, ·) = 1Wij .

Lemma 4.5. — Let Aij =
⋃

k �=i,k �=j
Fk. Then, for all t > 0:

∣∣∣ ∫ t

0

Zij(u; τ)dτ −
∫ t

0

Zij(uij ; τ)dτ
∣∣∣

≤ n
∫ t

0

∫
Cutij

e
(
t− τ, ρ(x), 0

)
e−d(x,Aij)

2/4nt dxdτ.

Proof. — We introduce the function vij(t, x), which is the solution of the heat
equation on R

n satisfying the boundary conditions vij(t, x) ≡ 1 when x ∈ Aij ,
and the initial conditions vij(0, ·) ≡ 0. From Levy’s maximal inequality

(19) vij(t, x) ≤ 2
∫
‖y‖≥d(x,Aij)

e−‖y‖2/4t

(4πt)n/2
dy

(for an equivalent, probabilistic formulation of this inequality, we refer to [18,
Thm 3.6.5]). Now it is easy to verify that the restrictions of uij − u and vij
to Ω are both solutions of the heat equation on Ω; they have the same initial
conditions on Ω, and moreover, since vij ≥ 0, and 0 ≤ uij − u ≤ 1, we have

(uij − u)|∂Ω ≤ vij |∂Ω
for all t > 0. Therefore, for all t > 0, and x ∈ Ω:

0 ≤ uij(t, x) − u(t, x) ≤ vij(t, x).

It remains to estimate the integral in the right-hand side of (19). Let

In(b) =
∫
‖y‖≥b

e−‖y‖2/4t

(4πt)n/2
dy, J(b) =

∫ b

−b

e−r2/4t

(4πt)1/2
dr.

As (−b/
√
n, b/

√
n)n ⊆ Bn(0; b) ⊆ (−b, b)n, we have

J
( b√

n

)n
≤ 1− In(b) ≤ J(b)n,

and thus 1 − In(b) ≥ (1 − I2(b/
√
n))n/2. Using polar coordinates, one finds

I2(b) = e−b2/4t, and then we get In(b) ≤ 1
2ne

−b2/4t. The lemma follows by
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recalling the definition (13) of Zij(u; τ). We finally observe the inequality
(which will be used later): ∫ ∞

b

e−r2/4t

(πt)1/2
≤ e−b2/4t,

which holds since e−b2/4t = I2(b) ≥ 1− J(b)2 ≥ 1− J(b).

Remark 4.6. — If dim(Ω) = 2, then (15) is an immediate consequence of
Lemma 4.5: in fact, in that case d(x,Aij) ≥ ε for all x ∈ Cutij , by our
definition of ε, and therefore the left-hand side of (15) will be exponentially
decreasing as t→ 0, with C1(i, j) = 0, and

C2(i, j) =
4

ε2 sin(γij/2)
t2 e−ε2/4t.

If dim(Ω) > 2, then Aij will intersect Cutij in the set
⋃

k �=i,k �=j
(Fi ∩ Fj ∩ Fk)

which is not empty, in general. Therefore we must proceed with the proof and
show that

n

∫ t

0

∫
Cutij

e
(
t− τ, ρ(x), 0

)
e−d(x,Aij)

2/4nτ dxdτ

is indeed 0(t3/2), as t→ 0.

For x ∈ πij , let ρij(x) stand for the distance of x from the hyperplane πi∩πj
of πij . Observe that, if x ∈ Cutij , then ρ(x) = ρij(x) sin(12γij). Hence, by the
co-area formula, applied to ρij : Cutij → R:∫

Cutij

e
(
t− τ, ρ(x), 0

)
e−d(x,Aij)

2/4nτ dx(20)

=
∫ ∞

0

e
(
t− τ, r sin(γij/2), 0

)∫
ρ−1

ij (r)∩Cutij

e−d(x,Aij)
2/4nτ dxdr.

Next, since d(x,Aij) = min
k �=i,k �=j

d(x,Fk):

(21)
∫
ρ−1

ij (r)∩Cutij

e−d(x,Aij)
2/4nτ dx ≤

∑
k �=i,k �=j

∫
ρ−1

ij (r)∩Cutij

e−d(x,Fk)
2/4nτ dx.

For a fixed r, ρ−1
ij (r) ∩ Cutij is contained in an (n − 2)-hyperplane section

of Ω; hence, by our definition of ε, we see that each term of the above sum
involving an index k /∈ Iij (that is, an index such that (i, j, k) /∈ I3) is majorized
by Bn−2 e−ε2/4nτ .

Hence it remains to examine the integrals of type∫
ρ−1

ij (r)∩Cutij

e−d(x,Fk)
2/4nτ dx

where k ∈ Iij .
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First, note that d(x,Fk) ≥ ρπk
(x). Now fix r ≥ 0, and consider the (n− 2)-

dim polyhedron
Qij = ρ−1

ij (r) ∩ Cutij
which lies in a hyperplane parallel to πi∩πj . The function ρπk

, when restricted
to Qij , has gradient (by property F2) given by

Pijk = orthogonal projection of ∇ρπk
onto πi ∩ πj ,

and ‖Pijk‖ > 0 since, by assumption, Fi ∩ Fj ∩ Fk �= ∅, and so πk is incident
πi∩πj . By the co-area formula, applied to ρπk

: Qij → R, and by property F1:∫
Qij

e−d(x,Fk)
2/4nτ dx ≤ 1

‖Pijk‖

∫ ∞

0

e−s2/4nτ · voln−3

(
ρ−1
πk

(s) ∩Qij

)
ds

≤
√
nπBn−3

‖Pijk‖
τ1/2.(22)

Summing over k �= i, k �= j, and taking into account formulas (20), (21)
and (22), we obtain:∫

Cutij

e
(
t− τ, ρ(x), 0

)
e−d(x,Aij)

2/4nτ dx

≤ (m− 2)Bn−2

sin(γij/2)
e−ε2/4nτ +

(√nπBn−3

sin(γij/2)
·

∑
k∈Iij

1
‖Pijk‖

)
· τ1/2.

Integrating the above inequality from τ = 0 to τ = t, multiplying by n, and
applying Lemma 4.5, we obtain (15) with:

(23)



C1(i, j) =

2n
√
nπBn−3

3 sin(γij/2)

∑
k∈Iij

1
‖Pijk‖

,

C2(i, j) =
4n2(m− 2)Bn−2

ε2 sin(γij/2)
·

Proof of (16). — We have already observed that, when restricted to the bisect-
ing plane πij of πi and πj , the function uij(τ, x) depends only on the distance
ρij(x) of x from πi∩πj ; so let us set uij(τ, x) = ũij(τ, ρij(x)) with ũij depending
on τ and r ≥ 0. By the co-area formula, applied to the map ρij : Cutij → R,
and the definition (17) of cij(t), writing for brevity

Vij(r) = voln−2

(
ρ−1
ij (r) ∩Cutij

)
we have∣∣∣ ∫ t

0

∫
Cutij

e
(
t− τ, ρ(x), 0

)(
1− uij(τ, x)

)
dxdτ − voln−2(Fi ∩ Fj) · cij(t)

∣∣∣(24)

≤
∫ t

0

∫ ∞

0

e
(
t− τ, r sin(γij/2), 0

)(
1− ũij(τ, r)

)∣∣Vij(r)− Vij(0)∣∣drdτ
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Lemma 4.7. — For 0 < r < ε/sin(12γij) one has
∣∣Vij(r) − Vij(0)∣∣ ≤ Bn−3

∣∣∣ ∑
k∈Iij

cot γijk
∣∣∣ · r,

where γijk is the angle between the faces Fi ∩ Fj and Cutijk of the poly-
tope Cutij .

Proof. — See Appendix C.

We now split at r = ε/sin(12γij) the inner integral in the right-hand side
of (24). By Lemma 4.7, and the fact that

∫ ∞
ε e(t − τ, s, 0)ds ≤ e−ε2/4(t−τ)

(see the proof of Lemma 4.5), we have (16) with

(25)



C3(i, j) =

4Bn−3

3
√
π sin2(12γij)

∣∣∣ ∑
k∈Iij

cotγijk
∣∣∣,

C4(i, j) =
4Bn−2

ε2 sin(12γij)
·

Remark 4.8. — If dim(Ω) = 2, then Vij(r) − Vij(0) = 0 for 0 < r <
ε/sin(12γij), and therefore we see that in that case C3(i, j) = 0, and

C4(i, j) =
4

ε2 sin(12γij)
t2 e−ε2/4t.

Proof of (18). — To compute cij(t), we first take its Laplace transform. Then:

Cij(s)
def=

∫ ∞

0

cij(t)e−st dt = s−1/2

∫ ∞

0

e−
√
sr sin(γij/2)

(1
s
− Ũij(s, r)

)
dr,

where Ũij(·, r) is the Laplace transform, with respect to time t, of ũij(·, r). We
will write down an explicit expression of 1

s − Ũij(s, r). First observe thatWij is
isometric withW (γij)×R

n−2 (with the product metric), if we denote byW (γij)
the open wedge in R

2 with interior angle γij. We adopt cylindrical coordinates
x = (r, α, y) where (r, α) are polar coordinates in W (γij) (the angle α being
counted from the bisectrix of γij), and where y ∈ R

n−2. In these coordinates the
temperature function uij(t, x) is independent from y, hence it can be written, by
a slight abuse of language, as uij(t, r, α). Note that ũij(t, r) = uij(t, r, 0).

The following lemma was suggested by the expression of the Green function
of an open wedge in R

2 as a Kontorovich-Lebedev transform (which we learned
from [3]).

Lemma 4.9. — LetW (γ) be the open wedge in R
2 with interior angle γ, and let

(r, α) be polar coordinates with α ∈ (− 1
2γ,

1
2γ) being counted from the bisectrix
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of γ. Let u(t, r, α) be the solution of:

(∆ + ∂/∂t)u = 0,
u(0, r, α) = 1, r > 0, α ∈ (− 1

2γ,
1
2γ),

u(t, r,± 1
2γ) = 0, t > 0, r > 0,

and let U(s, r, α) =
∫ ∞
0
u(t, r, α)e−st dt. Then:

U(s, r, α) =
1
s
− 2
πs

∫ ∞

0

Kix(
√
sr)

cosh(12πx) cosh(αx)
cosh(12γx)

dx,

where Kix is the modified Bessel function of imaginary argument (see [11,
8.407.1]).

Proof. — In polar coordinates

−∆ =
∂2

∂r2
+

1
r

∂

∂r
+

1
r2

∂2

∂α2
·

Hence the function U(s, r, α) must satisfy, on the open wedge W (γ), the
boundary-value problem: ∆U = 1 − sU , and U(s, r,± 1

2γ) = 0 for all s > 0,
and r > 0. Now

V (s, r, α) =
1
s
− 2
πs

∫ ∞

0

Kix(
√
sr)

cosh(12πx) cosh(αx)
cosh(12γx)

dx

is indeed a solution of ∆U = 1 − sU by [11, formula 8.491.6], and satisfies the
given boundary conditions by [11, formula 6.794.2]. The lemma follows.

We now come to the computation of Cij(s). From Lemma 4.9,

Ũij(s, r) = Uij(s, r, 0) =
1
s
− 2
πs

∫ ∞

0

Kix(
√
sr)

cosh(12πx)
cosh(12γijx)

dx,

and therefore

Cij(s) =
2

πs3/2

∫ ∞

0

cosh(12πx)
cosh(12γijx)

(∫ ∞

0

e−
√
sr sin( 1

2γij)Kix

(√
sr

)
dr

)
dx.

The inner integral, after the substitution z =
√
sr, will become:

π

2 cos(12γij)s
1/2

(cosh(12γijx)
cosh(12πx)

−
sinh(12γijx)
sinh(12πx)

)
,

by [11] (formula 6.611.3). Substituting, and changing 1
2x to x, we then obtain:

Cij(s) =
2

cos(12γij)
·
∫ ∞

0

(
1− tanh(γijx)

tanh(πx)

)
dx · 1

s2
·

Taking inverse Laplace transform, we obtain (18).
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4.4. The remainder term. — Collecting the constants in (23) and (25), we
obtain:

(26)

C =
2n
√
nπBn−3

3

∑
(i,j,k)∈I3

cot(γij/2)
‖Pijk‖

+
4Bn−3

3
√
π

∑
(i,j,k)∈I3

| cot(γijk)|
cos(γij/2)

sin2(γij/2);

h(t) = α1t
3/2 e−ε2/4t + α2t2 e−ε2/4t + α3t2 e−ε2/4nt,

with Pijk and γijk as in the proof of (15) and (16), respectively; and with

α1 =
4√
πε2

vol(∂Ω), α2 =
4Bn−2

ε2

∑
(i,j)∈I2

cot(γij/2),

α3 =
4n2(m− 2)Bn−2

ε2

∑
(i,j)∈I2

cot(γij/2).

If dim(Ω) = 2, then C = 0 and, looking back at the proofs of Steps 1–4,
h(t) can be reduced to the following form:

h(t) =
4√
πε2

vol(∂Ω)t3/2 e−ε2/4t +
8
ε2

∑
(i,j)∈I2

cot(γij/2)t2 e−ε2/4t .

With this, the proof of Theorem 4.2 is complete.

4.5. Heat content asymptotics of a polygonal domain in the plane.
— We now apply our methods to prove the two-dimensional, polygonal case.

Theorem 4.10 (van den Berg, Srisatkunarajah [3]). — Let Ω be a (not nec-
essarily convex) polygonal domain in R

2. Then:∫
Ω

u(t, x)dx = A− 2L√
π

√
t+ 4

∑
P

cP · t+ �(t)

where A is the area, L is the length of the boundary. The sum is taken over all
vertices P of Ω, and cP =

∫ ∞
0

(1− tanh(γx)/tanh(πx)) dx, with γ ∈ (0, 2π)
denoting the interior angle at the vertex P . The remainder �(t) is exponentially
decreasing as t→ 0.

Proof. — If Ω is not convex, it is no longer true that the cut-locus is a polygonal
set. However, we just need to describe the cut-locus and to control the measure
∆ρ in a small strip Ωε = {x ∈ Ω : ρ(x) < ε} around the boundary: in fact,
by (11), it is enough to study the double integral:

(27)
∫ t

0

∫ ε

0

e(t− τ, r, 0)ρ∗
(
(1− u(τ, ·)

)
∆ρ)(r)drdτ,
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and show that, as t → 0, its behavior is of type 4
∑

P cP · t+ exponentially
decreasing terms.

Now ∆ρ is zero near the edges and far from the vertices of the polygon; let us
choose ε > 0 small in such a way that near a convex vertex P (where γ ∈ (0, π))
the cut-locus meets the strip Ωε in a segment of the bisecting line CutP of the
two sides meeting at P , and near a concave vertex Q (where γ ∈ (π, 2π)), the
circular sector B(Q; ε) ∩Ω does not meet the cut-locus at all.

The contribution of a convex vertex P to the double integral (27) is therefore:

(28) 2 cos(γ/2)
∫ t

0

∫
CutP ∩Ωε

e
(
t− τ, ρ(x), 0)(1 − u(τ, x)

)
dxdτ.

We already proved that (28) is equal to 4cP · t + exponentially decreasing
terms. Near a concave vertex Q, we have ∆Cutρ = 0, and the level curves of the
distance function are C1 curves given by the union of the two segments parallel
to the two sides meeting at Q, and an arc of circle of angle γ − π. Precisely,
in polar coordinates (r, α) centered at Q, with the angle α being counted from
the bisectrix of γ, we have, for 0 < r < ε:

∆regρ(r, α) =

{
−r−1 if − 1

2 (γ − π) < α <
1
2 (γ − π).

0 otherwise.

On the circular sector B(Q; ε) ∩ Ωε we replace u(t, x) by uQ(t, x), the tem-
perature function on the infinite open wedge with vertex in Q and interior
angle γ; by Levy’s maximal inequality, the error due to this approximation will
be exponentially decreasing as t → 0 (proceed as in Lemma 4.5). Recalling
that ρ∗ is in this case integration on the level curves of the distance function,
we conclude that the contribution of the concave vertex Q to (27) is, modulo
exponentially decresing terms, given by:∫ t

0

∫ ∞

0

e(t− τ, r, 0)
∫ (γ−π)/2

−(γ−π)/2

(
1− uQ(τ, r, α)

)
dαdrdτ.

Its Laplace transform with respect to time t, at s > 0, is, thanks to
Lemma 4.9:

− 2
πs3/2

∫ ∞

0

e−
√
sr

∫ (γ−π)/2

−(γ−π)/2

∫ ∞

0

Kix(
√
sr)

cosh(12πx) cosh(αx)
cosh(12γx)

dxdαdr,

which can be evaluated again by [11], formula 6.611.3. One finds its value to
be (4/s2)cQ. Taking inverse Laplace transform, we obtain, also in this case,
the vertex contribution 4cQ · t.

The remainder term of the asymptotic expansion of the heat content will be
an exponentially decreasing function of t, as t → 0, which depends on ε, on
vol(∂Ω), and on the angles γ; it can be easily estimated by the same methods
used in Theorem 4.2. We omit the details.
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Appendix A

Lemma. — On any Riemannian manifold M , if ρ is the distance function to
a submanifold N , one has that ∆regρ ∈ L1

loc(M).

Proof. — We have to show that, if K ⊆ M is compact, then
∫
K |∆regρ| is

finite. Let R be large enough so that K ⊆ ρ−1[0, R). Then, integrating in
normal coordinates:∫

K

|∆regρ| ≤
∫
U(N)

∫ min{c(ξ),R}

0

∣∣θ′(r, ξ)∣∣drdξ.
Hence it is enough to show that |θ′| is bounded on{

(r, ξ) : 0 < r < min{c(ξ), R}, ξ ∈ U(N)
}
.

Let us consider the map Φ : (0,∞)× U(N) →M defined by

Φ(r, ξ) = expπ(ξ) rξ.

As Φ is everywhere C∞, its Jacobian determinant θ(r, ξ) = Φ∗(dvn)/dr ∧ dξ
(where dvn and dξ are the canonical volume forms of M and U(N), respec-
tively) is also everywhere C∞. Now:

lim
r→0

θ′(r, ξ) =



0 if dim(N) ≤ n− 3,
1 if dim(N) = n− 2,
−

∑
1≤i≤n−1 ηi(ξ) if dim(N) = n− 1,

where ηi(ξ) is the i-th principal curvature of N at the unit normal vector ξ.
From these facts, we deduce that |θ′(r, ξ)| is indeed locally bounded on (0,∞)×
U(N), and then that

∫
K
|∆regρ|dvn is finite.

The comparison theorems of Rauch and R.L. Bishop may be used to produce
upper and lower bounds of θ′(r, ξ) in terms of lower and upper bounds of the
sectional (or Ricci) curvatures of M . We observe, in particular, that if N is a
p-dimensional submanifold of R

n, then

θ(r, ξ) = rn−p−1

p∏
i=1

(
1− rηi(ξ)

)
.

Appendix B

The scope of this appendix is to prove Lemma 2.2. We refer to [5, §13.2] for
the definition of the Hausdorff measures we use here.
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Proof of Lemma 2.2. — By the definition of Hausdorff measure and our as-
sumptions, we can find, for each ε > 0, a finite or countable covering of K by
sets Ei(ε), i = 1, 2, . . . , each of diameter not exceeding ε, and satisfying:

(B.1)
∑
i

(
diamEi(ε)

)n−1 ≤ 2n−1

vol(Bn−1)
·Hn−1(K) + ε,

where Bn−1 is the open ball of radius 1 in R
n−1. For each i and each ε, pick

a point x ∈ Ei(ε) ∩ K; then the open ball Bi(ε) with center x and radius
δ diamEi(ε), where 1 < δ < 2, contains Ei(ε). K being compact, there is
k(ε) such that K ⊆ V (ε) def=

⋃k(ε)
i=1 Bi(ε). Note that V (ε) is contained in a

2ε-neighborhood of K, and that ∂V (ε) is piecewise smooth. Fix an open neigh-
borhoodW of K, and let ε0 > 0 be a number such that V (ε) ⊆W when ε < ε0.

Claim. — Assume that Ricci ≥ −(n − 1)α2g on W . Then there exists a
positive constant C1 depending only on α and ε0, such that

(B.2)
vol(∂Bi(ε))

radius(Bi(ε))n−1
≤ vol(∂Bn−1) + C1 ε ∀i = 1, . . . , k(ε), ∀ε < ε0.

Proof of claim. — Using Bishop comparison theorem one argues that,
if B(x, r) is any ball contained in W , then vol(∂B(x, r)) ≤ vol(∂B−α2(r))
where B−α2(r) is the ball of radius r in the simply connected manifold of
constant curvature σ = −α2. Hence it is enough to prove the claim in that
case. Now a classical formula states that

vol
(
∂Bσ(r)

)
= vol(∂Bn−1)

( 1
α
sinh(αr)

)n−1

.

Write sinh(αr) = αr(1 + ψα(r)r) with ψα(r) smooth and positive for r ≥ 0:
the claim follows easily. Now:

vol
(
∂V (ε)

)
≤

k(ε)∑
i=1

vol
(
∂Bi(ε)

)
≤ δn−1

k(ε)∑
i=1

vol(∂Bi(ε))
(radius(Bi(ε)))n−1

·
(
diam(Ei(ε))

)n−1

and we get the assertion by B.1, B.2 and the fact that δ was arbitrary. Proof
is complete.

Appendix C

In this appendix we prove Lemma 4.7, which is in fact a consequence of the
following more general:

Lemma. — Let P = polytope in R
d with faces Fk, k = 1, . . . , N ; π = hyper-

plane not intersecting the interior set of P ; γk = angle(ν,Fk), where ν is the
unit normal to π, oriented inside P ; δ = inf dist(Fk, π), where the infimum is
taken over all indices k such that Fk is not incident π; ρπ : R

d → R: distance
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from π. Then the map V (r) = vold−1(P ∩ρ−1
π (r)) is differentiable on (0, δ) and

in fact, for 0 < r < δ:

V ′(r) = −
m∑
k=1

cot γk · vold−2

(
ρ−1
π (r) ∩ Fk

)
,

where F1, . . . ,Fm are the faces incident with π.

Proof. — For 0 < r < δ the hyperplane ρ−1
π (r) will intersect ∂P only in the

faces F1, . . . ,Fm and the section ρ−1
π (r) ∩ P will be bounded by the (d − 2)-

dimensional faces F1 ∩ ρ−1
π (r), . . .Fm ∩ ρ−1

π (r). Consider the strip P (r, h) =
P ∩ {r ≤ ρπ ≤ r + h}. Since ρπ is an affine map, we have

∫
P (r,h)

∆ρπ = 0;
now apply Green’s theorem to the right-hand side, divide by h, and pass to the
limit as h→ 0.

To prove Lemma 4.7, let P = Cutij , and π = πi ∩ πj in the Lemma. Then
d = n−1, ρπ = ρij and V (r) = voln−2(ρ−1

ij (r)∩Cutij). The faces of P incident
π are then all polytopes Cutijk with (i, j, k) ∈ I3. Moreover, if x ∈ Cutijk, and
(i, j, k) /∈ I3, then

ρij(x) =
ρ(x)

sin(12γij)
≥ ε

sin(12γij)

by our definition of ε (see Lemma 4.4 (ii)). Hence δ ≥ ε/sin(12γij) and
Lemma 4.7 follows easily.

Appendix D

The scope of this appendix is to show that, in any Riemannian manifold,
the cut-locus of a piecewise-smooth submanifold is a set of zero measure in
the manifold. To achieve this result, we first define the “unit normal bundle”
U(N) of N , and show that U(N) decomposes as a disjoint union of a regular
part Ureg(N), and a singular part Using(N) which has zero measure in U(N).
We can then carry out the classical procedure, valid when N is smooth, with
Ureg(N) replacing U(N), and prove that the set of points where the distance
function ρ from N is not smooth has zero measure in M (Theorem D.1).

Let N be a compact subset of a complete Riemannian manifold M . We say
that N is a piecewise-smooth submanifold of M if N is the disjoint union of a
finite family I of smooth, open submanifolds Ni of dimension 0 ≤ ni ≤ n− 1.
Let ρ :M → R be the distance function from N . Then ρ is Lipschitz. For each
i ∈ I, let Ri denote the maximal open subset of the set of all x ∈M for which
there is a unique geodesic from x to N minimizing the distance from N , and
the foot of this geodesic belongs to Ni.

Let R =
⋃
iRi. It is clear that, when restricted to Ri, ρ coincides with the

smooth function ρNi = distance from Ni; moreover ρ is C∞-smooth on R, and
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the regular Laplacian of ρ, defined on R by ∆regρ|Ri = ∆(ρ|Ri), satisfies

∆regρ|Ri ◦ Φi = −
θ′Ni

θNi

,

where Φi is the normal chart relative to Ni, sending (r, ξ) ∈ (0,∞)×U(Ni) to
expπ(ξ) rξ ∈M , and θNi is its Jacobian.

We now come to the main theorem of this appendix:

Theorem D.1. — The complement of the open set R of all regular points of
ρ is of zero measure in M .

First, we define a surrogate of the “unit normal bundle” of N , N being a
compact subset of M . Let Un(M) be the unit tangent bundle of M , and
let π : Un(M) → M be its canonical projection. The cut-radius map: c :
π−1(N) → [0,∞] is defined in the usual way (see §1; no property of continuity
is needed at this point). We set

U(N) =
{
ξ ∈ π−1(N) : c(ξ) > 0

}
so that U(N) consists of all unit vectors which are based at points of N , and for
which the corresponding geodesic minimizes the distance from N on a segment
of positive length. U(N) does indeed coincide with U(N) whenN happens to be
a smooth submanifold of M . The normal chart Φ : (0,∞)×U(N) →M where
Φ(r, ξ) = expπ(ξ) rξ, is easily seen to be surjective on M \N and continuous.

Now assume that N is a piecewise-smooth submanifold; then U(Ni) is an
open, smooth submanifold of Un(M) of dimension n − 1, having piecewise-
smooth boundary. Set, for each i in the index set I:

U(Ni) =
{
ξ ∈ U(Ni) : c(ξ) > 0

}
.

Note that U(N) =
⋃
i U(Ni) since, if π(ξ) ∈ Ni and c(ξ) > 0, then ξ must

be normal to Ni. Now set Ureg(N) =
⋃
i Ui, where Ui is the largest open

subset of U(Ni) contained in U(Ni). It follows that Ureg(N) is a smooth, open
submanifold of Un(M) of dimension n− 1; it reduces to U(N) if N is smooth.

We will prove Theorem D.1 by applying the classical proof with Ureg(N)
replacing U(N). We first show that U(N) \ Ureg(N) is, for our purposes, a
negligible set.

Proposition D.2. — We have

U(N) = Ureg(N) ∪ Using(N) (disjoint union)

and Using(N) is contained in a (n− 2)-dimensional submanifold of Un(M).

Proof. — We show that, in fact, Using(N) ⊆ ∪j(∂U(Nj)). Let ξ ∈ Using(N),
say ξ ∈ U(Ni) \ Ureg(N). If π(ξ) ∈ ∂Ni we are done, since then ξ ∈ ∂U(Ni).
Hence assume π(ξ) ∈ Ni: our aim is to show that then ξ ∈ ∂U(Nj) for some
j �= i. Fix r so that 0 < r < c(ξ), and let x = Φ(r, ξ). The assumption r < c(ξ)
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implies that x can’t be a focal point of Ni along the geodesic t �→ Φ(t, ξ).
Hence the normal map Φ = Φi : (0,∞) × U(Ni) → M is locally 1-1 near the
regular point (r, ξ). The assumption ξ ∈ U(Ni) \ Ui implies the existence of
a sequence of vectors ξn ∈ U(Ni) \ {ξ} such that ξn → ξ as n → ∞, and
c(ξn) = 0, i.e. ρ(Φ(t, ξn)) < t for all t > 0. Let xn = Φ(r, ξn); for each
n, there exists ξ′n ∈ U(N) (ξ′n �= ξn), and rn < r such that xn = Φ(rn, ξ′n).
We claim that, for n large, ξ′n /∈ U(Ni).In fact, assume that there exists a
subsequence {ξ′nk

} ⊆ U(Ni). It must accumulate to a vector ξ′ ∈ U(Ni).
Correspondingly, rnk

accumulates to a number s ≤ r. Now since xn → x,
we see that Φ(rn, ξ′n) → x, so that Φ(s, ξ′) = Φ(r, ξ) with s ≤ r. Since, by
assumption, r is the minimum distance of x from N , we have necessarily s = r,
i.e. rnk

→ r. Now if ξ′ �= ξ, we would have two distinct minimizing geodesics
from N to x, and this is impossible since otherwise the geodesic t → Φ(t, ξ)
would not minimize the distance past r. On the other hand, if ξ′ = ξ both
(rnk

, ξ′nk
) and (r, ξnk

) converge to (r, ξ), and this is incompatible with the fact
that Φ is locally 1-1 near (r, ξ), since Φ(rnk

, ξ′nk
) = Φ(r, ξnk

). The claim is then
proved.

Hence, for n large, ξ′n ∈ ∪j �=iU(Nj), a compact set. Pick any accumulation
point ξ′ of {ξ′n} and assume ξ′ ∈ U(Nj). Reasoning as before, we see that
ξ′ �= ξ is impossible, and so ξ′ = ξ, i.e. ξ ∈ U(Nj) ⊆ U(Nj), with j �= i. If
ξ ∈ U(Nj), then π(ξ) ∈ Nj; but also π(ξ) ∈ Ni and j �= i: impossible. Hence,
necessarily ξ ∈ ∂U(Nj).

The proofs of Propositions D.3 and D.4 are obvious adaptations of the proofs
of Theorems 4.2 and 4.3 in [14].

Proposition D.3. — Let ξ ∈ Ureg(N). If Φ(a, ξ) = expπ(ξ) aξ is the cut-point
along the geodesic t → Φ(t, ξ), then Φ(s, ξ) ∈ R for all 0 < s < a. Moreover,
we have one (or both) of the following alternatives:
(i) if ξ ∈ Ui, then Φ(a, ξ) is the first focal point of Ni along t→ Φ(t, ξ);
(ii) there are at least two minimizing geodesics from N to Φ(a, ξ).

Proposition D.4. — Let c : Ureg(N) → [0,∞] be the cut-radius map. Then c
is continuous.

Proposition D.5. — M \ R = Φ(graph(c)) ∪N ∪ Φ(F) with

F =
{
(r, ξ) ∈ (0,∞)× Using(N) : 0 < r ≤ c(ξ)

}
.

Proof. — Since Φ is surjective, if x ∈M \ R, and x /∈ N , then x = Φ(r, ξ), for
some ξ ∈ U(N), 0 < r ≤ c(ξ) . If ξ ∈ Using(N), then x ∈ Φ(F) . On the other
hand, if ξ ∈ Ureg(N), then r = c(ξ), otherwise x ∈ R, by Proposition D.3.
Hence in that case x ∈ Φ(graph(c)).
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Proof of Theorem D.1. — Since c : Ureg(N) → (0,∞) is continuous, graph(c)
has zero measure in Ureg × (0,∞) by Fubini’s theorem, hence Φ(graph(c)) has
zero measure in M ; similarly, since Using(N) is contained in an (n− 2)- dimen-
sional manifold, the set F is contained in an (n− 1)-dimensional submanifold
of (0,∞)×Un(M) hence also Φ(F) has zero measure inM . Theorem D.1 then
follows from Proposition D.5.

We let Cut(N) be the closure of Φ(graph(c)) inM . Then Cut(N) is a subset
of M \ R, and as such it has measure zero. As for Φ(F), this set consists of
all points Φ(r, ξ), 0 < r ≤ c(ξ), with ξ in the overlap of two different pieces
U(Ni) and U(Nj) of the “unit normal bundle” U(N). If c(ξ) < r, then ρ is C1

at Φ(r, ξ), but not C2. The reader is invited to draw a picture of the situation
when N is, for example, a triangle in the plane.

For a piecewise-smooth submanifold, integration in normal coordinates is
the following formula:∫

M

f =
∑
i

∫
Ri

f =
∑
i

∫
Ui

∫ c(ξ)

0

f(Φ(r, ξ))θNi(r, ξ)drdξ,

and Lemma 2.1 becomes the following:

Lemma D.6. — Let N = ∪iNi be a piecewise-smooth submanifold of M , and
let ρ be the distance function from N . Let ∆ρ be the distributional Laplacian
of ρ. Then:

∆ρ = ∆regρ+∆Cutρ− 2T
where

∆regρ|Ri ◦ Φi = −
θ′Ni

θNi

, 〈T, φ〉 =
∑

{i:codim(Ni)=1}

∫
Ni

φdvn−1

for all φ ∈ C0
c (M), and where ∆Cutρ is the positive measure defined by

〈∆Cutρ, φ〉 =
∑
i

∫
Ui

θNi

(
c(ξ), ξ

)
· φ

(
expπ(ξ)c(ξ)ξ

)
dξ.

Proof. — Proceed as in the smooth case, with Ni replacing N , and Ui replacing
U(N), and then sum over the index set I. The proposition follows easily.
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