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SCHÉMAS EN GROUPES ET IMMEUBLES DES
GROUPES EXCEPTIONNELS SUR UN CORPS LOCAL.

PREMIÈRE PARTIE : LE GROUPE G2

par Wee Teck Gan & Jiu-Kang Yu

Résumé. — Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les
groupes exceptionnels de type G2 sur un corps local. Nous décrivons chaque construc-
tion concrètement en termes de réseaux : l’immeuble, les appartements, la structure
simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec
les espaces symétriques réels et des espaces symétriques associés à G2 réel et complexe.

Abstract (Group Schemes and Buildings of Exceptional Groups over a Local Field.
First Part : the Group G2)
We give an explicit Bruhat-Tits theory for the exceptional group of type G2 over

a local field. We describe every construct concretely in terms of lattices: the building,
the apartments, the simplicial structure, and the associated group schemes. The ap-

pendices discuss analogy with symmetric spaces and the symmetric space of the real
or complex G2.
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1. Introduction

The title of this paper is chosen as a tribute to the fundamental contributions
of Bruhat and Tits to the structure theory of reductive groups over local fields
through their series of papers [3], [4], [5], [7], [6], and is as far as we dare
to venture with the French language. In [3], [4], Bruhat and Tits attach to
any connected reductive group G over a local field k its building B(G), which
is a polysimplicial complex equipped with an action of G(k). To each point
x ∈ B(G), they also attach a smooth connected affine group scheme Gx over
the ring of integers A, with generic fiber G and such that (at least when G
is simply-connected) Gx(A) is the stabilizer of x in G(k). The description
of B(G) in [3], [4] is given in terms of the notion of valuations of root datum.
However, in [5], [7], the building of a classical group G is given a more concrete
description in terms of the standard representation V of G: B(G) is realized
geometrically as a set of norms, or equivalently a set of graded lattice chains,
on V satisfying certain conditions, and the group schemes Gx are realized
as stabilizers of these lattice chains in V . Using such a concrete description
ofB(G), one can give a lattice-theoretic description of the Moy-Prasad filtration
on the parahoric subgroups of classical groups (cf. [20] and [19]). In view of
such applications, it is useful to extend this concrete description of B(G) to the
case when G is an exceptional group, and the objective of the present paper is
to carry out such a programme for the exceptional group of type G2.
The reader familiar with Bruhat-Tits theory will be disappointed to learn

that we will be working over a field which is complete with respect to a discrete
valuation. Such a restriction would be considered a sin in [3], [4], but is already
present to some extent in [5], [7]. Hence, throughout the paper, A will denote
a complete discrete valuation ring, with valuation map ord, field of fractions k,
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uniformizer π, and perfect residue field A/π of characteristic p. Let G denote
a simple algebraic group over k of type G2; we remind the reader that if the
residue field A/π has cohomological dimension ≤ 1 (e.g. if A/π is a finite field
or is algebraically closed), then such a group is necessarily split [6]. Although
all our main results are valid for an arbitrary form of G2, we will assume that G
is the split form of G2 in most part of the paper. The non-split case, which is
very easy, is treated in §12.
The group G can be constructed as the automorphism group of an octonion

algebra V over k, and thus has a natural 8-dimensional rational representation.
We call V the standard representation of G. Though this representation is not
irreducible, it seems more natural to describe the building B(G) in terms of V ,
rather than, say, the 7-dimensional submodule of trace zero elements in V .

The octonion algebra V possesses a natural quadratic form which is pre-
served by G. Hence the representation V gives an embedding ι : G ↪→ SO(V ).
We show in §4 that this gives rise to a canonical embedding ι∗ : B(G) ↪→
B(SO(V )). The building B(SO(V )) has been described explicitly in [7] as the
set of maximinorante norms on V (relative to the natural quadratic form on V ).
Our main results can now be summarized as follows.

(a) The determination of the image of ι∗ (Thm. 7.2). The answer is most
natural: B(G) is simply the set of maximinorante norms which are algebra
norms for the octonion multiplication. This describes B(G) as a metric space.
(b) The description of the simplicial complex structure of B(G), in terms of

certain orders in the octonion algebra (Thm. 9.5). Using these orders, we de-
scribe the parahoric subgroups ofG(k), as well as their associated smooth group
schemes over A (Thm. 10.1). We also describe the structure of apartments in
B(G) (Prop. 8.1).
(c) There is a S3-action on Spin(V ) whose group of fixed points is G. This

induces an action of S3 on B(Spin(V )). We show that B(G) is precisely the set
of points on B(Spin(V )) fixed under this action (Cor. 11.4).

The determination of the image of ι∗ is an application of a general formalism
described in §3 (Thm. 3.5). This formalism is quite useful for identifying the
image of a descent map. In addition to (a) and (c), it can be applied to:

(d) The determination of the building of a classical group as a subset of
the building of the ambient general linear group (Prop. 4.1). This reproves the
results of [7] concerning the buildings of classical groups, at least when the
residue characteristic p is not 2.
(e) An explicit description of the building of the split group Spin8

(Thm. 11.3), together with the action of S3; this will be needed in the
study of the building of a general trialitarian Spin8.

When p �= 2, 3, the results (c) and (d) also follow from the general results of
[13]. The proof here is valid also in residue characteristic 2 or 3, and has the
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advantage/disadvantage of offering/requiringmore information about the arith-
metic and geometry underlying the groups involved. The formalism (Thm. 3.5)
will also be useful in the study of the buildings of the other exceptional groups.
As is well-known, the reduced Bruhat-Tits building of G(k) is the p-adic

analogue of the symmetric space of a reductive real Lie group. In the Appendix
§13, we introduce the notion of the extended symmetric space, which is the real
analogue of the extended building and which has better functorial properties
than the symmetric space. We also prove real analogues of (c) and (d), and
more generally the analogue of the main theorem in [13]. Finally, in §14, we
prove a real analogue of (a) (Thm. 7.2), which describes the symmetric space
of G2(R) in terms of self-dual norms of an octonion algebra.

2. Generalities on Norms

In this section, let V be a finite dimensional vector space over k. We shall
recall some basic notions about norms on V . The material is largely taken from
[5], [7], and we include it here for the convenience of the reader and for ease
of reference.
A norm on V is a function α : V → R ∪ {∞} satisfying:
– α(x+ y) ≥ inf {α(x), α(y)}, for all x, y ∈ V ;
– α(λx) = ord(λ) + α(x), for λ ∈ k and x ∈ V ;
– α(x) =∞ if and only if x = 0.
A basis {x1, . . . , xn} of V is called a splitting basis for α if

α
(∑
i

λixi

)
= inf

i
α(λixi).

Since we are assuming that k is complete with respect to a discrete valuation,
every norm α possesses a splitting basis [5, 1.5]. Moreover, if β is another norm
on V , there is a common splitting basis for α and β. For each 0 ≤ t ≤ 1, there
is a norm γt which is characterized by the property that any common splitting
basis {x1, . . . , xn} for α and β is also a splitting basis for γt, and

γt(xi) = tα(xi) + (1− t)β(xi), i = 1, . . . , n.

Another way of characterizing γt is to say that it is the smallest norm satisfying

γt(x) ≥ tα(x) + (1− t)β(x), for all x ∈ V .

We shall denote γt by tα+ (1− t)β. This defines an affine structure on the set
of norms on V .
The norm α determines a norm α∗ on the dual space V ∗, which is given by

α∗(ϕ) = inf
x∈V

(
ord(ϕ(x)) − α(x)

)
.
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More concretely, if {x1, . . . , xn} is a splitting basis for α, then α∗ is char-
acterized by the requirement that it is split by the dual basis {x∗1, . . . , x∗n},
and α∗(x∗i ) = −α(xi). Moreover, we have
(1) (tα+ (1 − t)β)∗ = tα∗ + (1 − t)β∗,

for norms α and β on V .
If W is another finite-dimensional vector space over k, equipped with a

norm β, then one can form a norm α⊗ β on V ⊗W , which is given as follows.
Let {x1, . . . , xn} be a splitting basis for α. Then any element of V ⊗W can be
written in the form

∑
i xi ⊗ wi, and

(α ⊗ β)
(∑
i

xi ⊗ wi
)
= inf

i

(
α(xi) + β(wi)

)
.

In particular, since every non-zero vector is an element of a splitting basis for
any norm, we have

(α⊗ β)(v ⊗ w) = α(v) + β(w), for v, w �= 0.
Now suppose that V is equipped with a non-degenerate bilinear form f , and

thus an isomorphism V → V ∗ given by: x 
→ f(x,−). Via this isomorphism,
we can regard α∗ as a norm on V , and we say that α is self-dual (with respect
to the given bilinear form f) if α = α∗. By (1), one sees that the set of self-dual
norms is a convex subset of the set of all norms, in the sense that tα+(1− t)β
is self-dual if α and β are.
There is another way of viewing the self-dual norms. Suppose that (q, f)

is a pair consisting of a non-degenerate quadratic form q and the associated
symmetric bilinear form f , so that

f(x, y) = q(x+ y)− q(x)− q(y).
Following [7], we say that a norm α minorizes f if it satisfies

α(x) + α(y) ≤ ord
(
f(x, y)

)
, for all x, y ∈ V .

It was shown in [7, Prop. 2.5 (ii)] that α is self-dual with respect to f if and
only if it is a maximal element in the set of norms minorizing f . Similarly, say
that α minorizes (q, f) if it minorizes f , and satisfies

α(x) ≤ 1
2
· ord(q(x)), for all x ∈ V .

If α is a maximal element in the set of norms minorizing (q, f), then we say that
α is maximinorante (suppressing the mention of (q, f)). Note that if the residue
characteristic p is not 2, then α minorizes f if and only if it minorizes (q, f),
and hence α is self-dual if and only if it is maximinorante. The situation is
more complicated when p = 2. For example, when dim(V ) is odd, the form
f is degenerate if char(k) = 2, so that there is no notion of self-duality; even
if char(k) = 0, it is possible to have a norm α which minorizes f but not
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(q, f), and hence a maximinorante norm need not be self-dual. However, as we
shall see later, when dim(V ) is even, a maximinorante norm is in fact always
self-dual.
Assume further that V is a k-algebra. We do not assume that the multipli-

cation in V is commutative or even associative. A norm α on V is called an
algebra norm if it satisfies

α(x · y) ≥ α(x) + α(y), for all x, y ∈ V .
In particular, if V has a unit e, we have α(e) ≤ 0. We now make the following
series of observations:

Lemma 2.1. — Let {x1, . . . , xn} be a splitting basis for α. For α to be an
algebra norm, it is necessary and sufficient that

α(xi · xj) ≥ α(xi) + α(xj), for all i and j.

Proof. — The necessity follows from definition. For the converse, let x =∑
i λixi and y =

∑
j µjxj be given. Then

α(x · y) ≥ inf
i,j

{
α(λixi · µjxj)

}
≥ inf

i

{
α(λixi)

}
+ inf

j

{
α(µjxj)

}
= α(x) + α(y).

This proves the lemma.

Lemma 2.2. — The set of algebra norms is a convex subset of the set of
all norms. In particular, the set of self-dual (respectively maximinorante) alge-
bra norms is a convex subset of the set of self-dual (respectively maximinorante)
norms.

Proof. — Suppose that α and β are algebra norms, with common splitting
basis {x1, . . . , xn}. Let γt denote tα+ (1− t)β. Then

γt(xi · xj) ≥ tα(xi · xj) + (1− t)β(xi · xj)
≥ tα(xi) + (1− t)β(xi) + tα(xj) + (1− t)β(xj)
= γt(xi) + γt(xj)

Hence, γt is also an algebra norm by Lemma 2.1.

Now suppose that E is a finite extension of k. The valuation ord on k extends
uniquely to a valuation, still denoted by ord, on E. Hence, we can form the
norm αE = α ⊗ ord on the k-vector space VE = V ⊗ E. Of course, VE has
the natural structure of an E-algebra, and it is easy to see that αE is in fact a
norm of E-vector space. Further, we have:

Lemma 2.3. — (i) (αE)∗ = (α∗)E. In particular, α is self-dual if and only
if αE is self-dual.
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(ii) If α is an algebra norm on V , then αE is an algebra norm on the E-
algebra VE.

Proof. — Let {x1, . . . , xn} be a splitting basis for α. Then it is also a basis
for the E-vector space VE , and is splitting for the norm αE . Moreover, if
{x∗i , . . . , x∗n} is the dual basis, it is splitting for α∗ and also for α∗

E . State-
ment (i) then follows immediately from the definition of the dual norm, and
statement (ii) follows by Lemma 2.1.

Another way of viewing norms on V is through the notion of graded lattice
chains. Recall that a lattice chain in V is a totally ordered (non-empty) set
L• of lattices of V (i.e. A-submodules L of V such that L⊗A k = V ) which is
stable under homotheties. Such a lattice chain can be represented as:

L0 � L1 � · · · � Ln−1 � πL0,

and the number n is the rank of the lattice chain. A graded lattice chain is a
pair (L•, c) where L• is a lattice chain and c is a strictly decreasing map from
L• to R such that

c(λ · L) = ord(λ) + c(L) for λ ∈ k and L ∈ L•.

If the set of real numbers {c(Li) − c(Li−1) : 0 ≤ i ≤ n − 1} generates a free
abelian group of rank 1, with positive generator δ, then we say that the graded
lattice chain (L•, c) has period δ.
A norm α on V gives rise to a graded lattice chain (Lα, cα) as follows. The

lattices in Lα are:

Lα,r =
{
x ∈ V : α(x) ≥ r

}
for r ∈ R,

and the map cα is given by:

cα(Lα,r) = inf
x∈Lα,r

α(x).

Conversely, a graded lattice chain (L•, c) gives rise to a norm α on V as fol-
lows. For x ∈ V , let Lx be the smallest member of L• containing x, and set
α(x) = c(Lx). These two constructions are inverses of each other, and thus
furnish a bijection between the set of norms on V and the set of graded lattice
chains. One can check that:

Lemma 2.4. — Suppose that f is a non-degenerate bilinear form on V , and

L0 � L1 � · · · � Ln−1 � πL0,

with c(Li) = ci is a graded lattice chain corresponding to a norm α. Then the
graded lattice chain (L∗

• , c
∗) corresponding to the dual norm α∗ (relative to f)

is:
π−1L∗

0 � L∗
n−1 � · · · � L∗

1 � L∗
0,

with c∗(L∗
i ) = −ci−1 − ord(π).
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3. A General Formalism

The goal of this section is to formulate a general approach which will allow
one to identify the building of G as a subset of the building of H when G is an
algebraic subgroup of H . This formalism will be applied in later sections for
the study of the buildings of exceptional groups. We begin by recalling some
basic properties of buildings.
If G is a connected reductive algebraic group over k, then its (extended)

building B(G) is a set equipped with the following structures:
– B(G) is a complete metric space, with an affine structure;
– B(G) is the product of a polysimplicial complex and a real vector space;
– G(k) acts isometrically on B(G) as simplicial automorphisms;
– B(G) has a collection of distinguished subsets, known as apartments,

which are indexed by the maximal split tori of G.
If T is a maximal split torus of G, then the corresponding apartment A(T )

can be described as follows. Let G1 be the derived group of G and Z(G) the
connected center ofG, so that there is a natural central isogenyG1×Z(G)→ G.
Let T1 and T2 be the maximal split tori for G1 and Z(G) such that the image
of T1 × T2 is T , so that we have:

X•(T )⊗Q =
(
X•(T1)⊗Q

)
⊕
(
X•(T2)⊗Q

)
.

The reduced apartment Ared(T ) corresponding to T is a torsor for the real
vector space (

X•(T )⊗ R
)
/
(
X•(T2)⊗ R

)
,

equipped with the structure of a simplicial complex. The apartment A(T ) is
the direct product

A(T ) = Ared(T )×
(
X•(T2)⊗ R

)
of the reduced apartment with a real vector space, and is a torsor for X•(T )⊗R.
Note that the real vector space X•(T )⊗ R has a natural Z-structure given

by the lattice X•(T ). Hence, for a fixed point x ∈ A(T ), it makes sense to
speak of the R-valued points of A(T ) relative to x, for any subring Z ⊂ R ⊂ R:
these are simply the points of A(T ) which are the translates of x by X•(T )⊗R.
Suppose that x = (x1, x2) ∈ A(T ) is a point such that x1 is a vertex in Ared(T ),
and x2 ∈ X•(T2)⊗Q. We shall simply call the Q-valued points of A(T ) relative
to x the rational points of A(T ). As suggested by the terminology, this notion
is independent of the choice of the point x of the above type. Moreover, for
any x ∈ B(G), say that x is a rational point if x is a rational point of any
apartment containing it; this notion is again well-defined. Once we have a
natural rational structure on A(T ), it makes sense to speak of rational affine
functions ϕ on A(T ). A rational half-space H of A(T ) is a subset of A(T )
defined by the inequality ϕ(x) ≥ 0 for some rational affine function ϕ. To be
more precise, if x0 is a rational point onA(T ), the choice of a basis forX•(T )⊗Q
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determines a coordinate system (ui) for A(T ) with x0 as origin. Then we
want H to be the set of points x in A(T ) satisfying an inequality of the form∑

i

aiui(x) ≥ λ

with ai and λ in Q. We say that a subset of A(T ) is a rational polytope if it is the
intersection of a finite number of rational half spaces. Note that in a rational
polytope, the subset of rational points is dense.
Now let E be a Galois extension of k. Then one can form the building B(GE)

of GE = G ×k E. This is equipped with an action of Gal(E/k), and there is
a natural embedding j : B(G) ↪→ B(GE) which is G(k)-equivariant and whose
image is contained in B(GE)Gal(E/k).

Proposition 3.1. — If E/k is tamely ramified, then B(G) = B(GE)Gal(E/k).

Proof. — For the unramified case, this is proven in [3], and the general case is a
well-known but unpublished result of G. Rousseau; recently, however, a simple
proof has been provided by G. Prasad. We refer the reader to [12].

We are now ready to formulate the main result of this section.

Definition 3.2. — A descent datum ι∗ consists of:
– an embedding ι : G ↪→ H of connected reductive algebraic groups over k;
– an embedding ι∗ : B(G) ↪→ B(H) which is isometric, G(k)-equivariant

and toral in the sense of [11].

This notion of descent data differs from that used in [3], where the definition
is given in terms of valuations of root datum. The equivalence of the two
definitions is verified in [18]. Following [18], we have:

Definition 3.3. — A strong descent datum (ιE∗) consists of:
– an embedding ι : G ↪→ H of connected reductive algebraic groups over k;
– for each finite Galois extension E of k, an embedding

ιE∗ : B(GE) ↪−→ B(HE)

which is isometric, G(E)-equivariant, Gal(E/k)-equivariant and toral in the
sense of [11];
– for E ⊂ F any finite Galois extensions of k, the diagram

B(GE)
ιE∗−−−−→ B(HE)

jG


 
jH
B(GF )

ιF∗−−−−→ B(HF )

is commutative.
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Remark 3.4. — In [3], [4], the functoriality of the formation of buildings is
largely undiscussed. This question is resolved in a recent paper of Landvogt [11],
where he shows that given any ι : G ↪→ H and any Galois extension E, a map
ιE∗ exists. In particular, the embedding ιE : GE ↪→ HE can be completed
to a descent datum. What is not apparent from [11] is that one can find a
compatible system of such embeddings ιE∗ as required by the second and third
conditions above, i.e. that ι can be completed to a strong descent datum. This
turns out to be true fairly generally, for example if G and H are split by tamely
ramified extensions. For more details, we refer the reader to [18].

Now suppose we are given a strong descent datum {ιE∗}. Our goal is to
determine the image of ι∗. To this end, suppose we are given a subset NE ⊂
B(HE) for each E. Say that the collection {NE} satisfies condition (BC) if

– NE is convex and stable under the action of G(E) for each E;
– for any E ⊂ F ,

j(NE) ⊂ NF .

Let us write N in place of Nk. Say that N satisfies condition (RAT) if N∩A

is a rational polytope for any apartment A of B(H). We need to formulate
one more property. For a rational point x0 ∈ N, say that x0 satisfies condition
(TRANS) if the following holds:

– x0 is the image of a rational point of B(G) under ι∗;
– for each finite Galois extension E of k, the set

N0
E = {x ∈ NE : x is in the H(E)-orbit of x0}

is in the image of ιE∗.

To verify condition (TRANS), it suffices to show that:

(i) x0 is the image of a rational point under ι∗;
(ii) G(E) acts transitively on N0

E for each E.

The main result of this section is:

Theorem 3.5. — Given

– a strong descent datum {ιE∗};
– a collection {NE ⊂ B(HE)} satisfying (BC) and (RAT);
– a rational point x0 ∈ N satisfying (TRANS).

Then the image of ι∗ is N.

Proof. — By definition, (TRANS) implies that x0 is in the image of ι∗. Since ι∗
is G(k)-equivariant, and N is G(k)-invariant, the translates of x0 by G(k) lie in
the image of ι∗, as well as inN. Now ι∗(B(G)) is a convex subset ofB(H), and is
in fact the convex hull inB(H) of the set of points {g · x0 : g ∈ G(k)}. SinceN is
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convex, we have ι∗(B(G)) ⊂ N, and it remains to prove the surjectivity of ι∗
onto N. Set

N′ =
{
x ∈ N : x is in the H(E)-orbit of x0 for some

tamely ramified Galois extension E/k
}
.

By (BC) and (TRANS), if x ∈ N′ is in the H(E)-orbit of x0 with E tamely
ramified over k, x lies in the image of ιE∗. Hence

x ∈ ιE∗
(
B(GE)

)
∩B(H).

Since ιE∗ is Gal(E/k)-equivariant, Prop. 3.1 implies that x ∈ ι∗(B(G)). Hence
we have shown that N′ is in the image of ι∗. Since ι∗(B(G)) is a closed subset
of B(H), it remains to prove that N′ is a dense subset of N. More precisely,
since

N =
⋃

A:x0∈A

N ∩A

it suffices to show that for each apartment A of B(H) containing x0, N′ ∩ A

is a dense subset of N ∩ A. By (RAT), the rational points of N ∩ A are dense
in N ∩ A; hence it suffices to show that any rational point of N ∩ A can be
approximated by points in N′ ∩A.
Let T be the maximal split torus of H corresponding to the apartment A,

and fixing the base point x0 as the origin, we identify A with the real vector
space X•(T )⊗ R. Let

L =
{
t · x0 : t ∈ T (k)

}
.

Then L is a lattice in A, with the property that L ⊗ Q is precisely the set of
rational points on A, and for any extension E/k with ramification index e,

1
e
· L ⊂

{
x ∈ A : x is in the H(E)-orbit of x0

}
.

In particular, if x ∈ N ∩ A lies in L ⊗ Z(p), then x ∈ N′. Now let x be any
rational point in N ∩A, and consider the line {tx : 0 ≤ t ≤ 1} joining x0 to x.
By convexity, this line lies in N. Taking, for example, the sequence

pn

pn + 1
x, for n sufficiently large,

we see that x can be approximated by points in N′. The theorem is proved.

4. The Buildings of Classical Groups

In this section, we give two examples to illustrate the use of Thm. 3.5. The
first example concerns buildings of classical groups. We will show that Thm. 3.5
gives quickly a new proof of one of the main results of [7] when the residue
characteristic is �= 2. Although our method can be applied to an arbitrary
classical group (and even for some classical groups in residue characteristic 2,
e.g. the symplectic groups) in a uniform way as in [7], the general setting
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requires too many notations. Hence we shall only concentrate on the case that
will be used in this paper, namely the case of a special orthogonal group.

We begin by recalling some results from [5], [7]. Let V be a finite dimensional
vector space over k. In [5], the building of GL(V ) is canonically identified with
the set of norms on V . Moreover, the various structures on B(GL(V )) can all
be described naturally in terms of norms. See also [8].

Proposition 4.1. — Let (q, f) be a non-degenerate quadratic form on V , with
associated symmetric bilinear form f , and let H = SO(q) be the associated
special orthogonal group.

1) B(H) can be canonically identified with the set of maximinorante norms
on V (relative to (q, f)). In particular, when the residue characteristic p is
different from 2, B(H) is the set of self-dual norms (relative to f).
2) Assume that p �= 2. Let g 
→ g∗ be the involution on GL(V ) defined by

f(gx, g∗y) = f(x, y), for all x, y ∈ V .

Then H is the identity component of the algebraic subgroup fixed by the involu-
tion ∗, and the induced automorphism ∗ on B(GL(V )) is the map which sends
a norm α to its dual α∗. In particular, B(H) is the subset of B(GL(V )) fixed
by ∗.
3) If dim(V ) is even, a norm is maximinorante if and only if it is self-dual

and minorizes q.

Proof. — The first two statements are special cases of results in [7]. It is easy
to see that 1) and 2) are equivalent in case p �= 2. We now give a new proof
of 1) (and hence 2) using Thm. 3.5, under the assumption that p �= 2 and q
is split.
Let L0 be a self-dual lattice in V . Then H(k) ∩ Aut(L0) is a parahoric

subgroup of H(k) corresponding to a hyperspecial point y0 ∈ B(H). Similarly,
Aut(L0) determines a hyperspecial point x0 ∈ B(GL(V )). By a result of Bruhat
and Tits [3, p. 203] recalled as Prop. 7.1 below, there is a strong descent datum
{ιE∗} extending the embedding ι : H ↪→ GL(V ) such that ι∗(y0) = x0.
Let NE ⊂ B(GL(VE)) be the set of self-dual norms on VE . It is easy to see

that (BC) and (RAT) are satisfied. It remains to verify (TRANS). So let α be
a self-dual norm on V ⊗ E such that α is GL(VE)-conjugate to x0. Then α is
completely determined by the lattice L = {v ∈ VE : α(v) ≥ 0}, which is easily
seen to be self-dual. Since p �= 2, L is H(E)-conjugate to L0 ⊗ OE and hence
α is H(E)-conjugate to x0. This proves (TRANS) and hence Thm. 3.5 implies
that the image of ι∗ is N.
The identification of B(H) with N via ι∗ is canonical in the sense that there

is only one descent map from B(H) to B(GL(V )) whose image is fixed by ∗.
This follows directly from [11, Cor. 2.7.4] since the centralizer of H in GL(V )
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is the center of GL(V ). It also follows from a much more elementary result
in [18].
Statement 1) is now proven for split q.
Next, assuming p �= 2, we will show that 2) can be reduced to the case that

q is split. It is well-known that there exists a splitting field E for H which
is unramified or a ramified quadratic extension over an unramified extension.
Since p �= 2, E/k is tamely ramified.
Since the action of φ = {1, ∗} on GL(VE) is defined over k, it commutes with

the action of Γ = Gal(E/k). Therefore, the action of φ on B(GL(V ⊗E)) also
commutes with that of Γ. It follows that

B(H) =
(
B(H ⊗ E)

)Γ = (B(GL(VE))φ)Γ = (B(GL(VE))Γ)φ = B(GL(V ))φ.

This proves 2). Here, we have identified B(H) with a subset of B(GL(V )) via ι∗
and used the fact that the canonicity of ι∗ implies that ι∗ commutes with the
action of Γ.
Now 1) and 2) have been proved in complete generality when p �= 2.
For statement 3), if α is self-dual and minorizes q, it is clear that α must

be maximinorante. To prove the converse, we first suppose that (V, q) is split.
Then by [7], one sees that the hyperspecial vertices of B(H) which correspond
to self-dual lattices give rise to self-dual norms. Since the set of self-dual norms
is convex and H(k)-invariant, and B(H) is the convex hull in B(GL(V )) of
these hyperspecial vertices, we deduce that B(H) is contained in the set of self-
dual norms. Hence, we have verified the statement in the split case. For the
general case, let E/k be a Galois extension over which (V, q) is split. Then αE
lies on the building B(HE) and hence is a maximinorante norm on VE . By the
split case, αE is self-dual and minorizes q. By Lemma 2.3 (i), α is also self-dual
and minorizes q.

We come now to the second illustration of Thm. 3.5. Suppose that (V, q) is
split, that V is equipped with the structure of a k-algebra, and G = Aut(q, f, ·)
is connected and reductive. We then have an embedding ι : G ↪→ H , where
H = SO(q). Suppose that this can be completed to a strong descent da-
tum {ιE∗}. Then we want to identify the building B(G) as a subset of the
set of maximinorante norms. To this end, let NE ⊂ B(HE) be the subset of al-
gebra norms, which is clearly G(E)-invariant. Lemmas 2.2 and 2.3 then imply
that NE satisfies (BC). It is also easy to check that N satisfies (RAT). Indeed,
given an apartment A(T ), a basis {xi} of V consisting of weight vectors for T
is a splitting basis for every norm α corresponding to a point in A(T ). Hence,
α is completely determined by the collection {ui(α) = α(xi)} of real numbers.
A subset of this provides coordinates for A(T ) for which the origin is a rational
point. Now by Lemma 2.1, α lies in N if and only if α satisfies the system of
inequalities:

α(xi · xj) ≥ α(xi) + α(xj) for all i, j.
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320 GAN (W.T.) & YU (J.-K.)

Writing xi · xj =
∑
k λijkxk, the above condition is equivalent to

ord(λijk) + uk(α) ≥ ui(α) + uj(α) for all i, j, k.

Hence, N satisfies (RAT), and as an application of Thm. 3.5, we have:

Proposition 4.2. — Let {ιE∗} be the given strong descent datum. Suppose
further that
– the quadratic form q is integral-valued on all orders of V ;
– for each extension E of k, G(E) acts transitively on the orders LE of VE

with LE a maximal lattice.
– there exists a hyperspecial point α0 which is the image of a rational point

under ι∗, and such that L0 = {x ∈ V : α0(x) ≥ 0} is an order which is a
maximal lattice.
Then B(G) is the set of maximinorante norms which are algebra norms.

Proof. — It remains to verify that α0 satisfies (TRANS). The third assumption
says that the lattice chain corresponding to α0 has rank 1 and its grading c
takes values in ord(k×) with period ord(π). Hence, α0 is completely determined
by L0, with c(L0) = 0. Further, since L0 is an order, α0 is an algebra norm,
i.e. α0 lies in N. For any α ∈ NE , the lattice LE = {x ∈ V : α(x) ≥ 0} is an
order in VE . If α ∈ NE is in the H(E)-orbit of α0, then the graded lattice chain
corresponding to α is in the H(E)-orbit of that for α0; in particular, it is also
a rank 1 chain, with LE a maximal lattice of the quadratic space (V, q). Since
LE is conjugate to L0 under G(E) by the second assumption, α is conjugate
to α0 under G(E), and the proposition follows from Thm. 3.5.

5. The Octonion Algebra

We now begin our investigation of the building of G2. In this section, we give
the construction of the split octonion algebra over Z, following Zorn. We refer
the reader to [10] for general facts about octonion algebras alluded to below.
Let W be a free Z-module of rank 3, and let W ∗ = Hom(W,Z). Fix an

isomorphism of ∧3W with Z, which gives rise to isomorphisms

∧2W −→W ∗, (∧2W )∗ −→ W,

given by
(w1 ∧ w2, w) 
−→ w1 ∧ w2 ∧ w ∈ ∧3W ∼= Z.

Further, we have an isomorphism ∧2W ∗ → (∧2W )∗ which is given by:

(ϕ1 ∧ ϕ2, w1 ∧ w2) 
−→ ϕ1(w1)ϕ2(w2)− ϕ1(w2)ϕ2(w1).

This gives rise to an isomorphism

∧2W ∗ −→W.
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Let Λ be the space of matrices of the form(
a w
ϕ b

)
, with a, b ∈ Z, w ∈ W and ϕ ∈ W ∗.

This is a free Z-module of rank 8, and we define a multiplication on Λ by:(
a w
ϕ b

)
·
(
a′ w′

ϕ′ b′

)
=
(

aa′ + ϕ′(w) aw′ + b′w − ϕ ∧ ϕ′

a′ϕ+ bϕ′ + w ∧ w′ bb′ + ϕ(w′)

)
.

There is an anti-involution x 
→ x on Λ given by:(
a w
ϕ b

)

−→

(
b −w
−ϕ a

)
.

Set Tr(x) = x+x and q(x) = x ·x. Then Tr is a linear form and q is a quadratic
form on Λ, which are explicitly given by:

Tr :
(
a w
ϕ b

)

−→ a+ b, q :

(
a w
ϕ b

)

−→ ab− ϕ(w).

The quadratic form q permits composition, i.e. satisfies

q(x · y) = q(x) · q(y),
so that the triple (Λ, q, ·) is a composition algebra over Z, with the identity
matrix as the unit element e.
The symmetric bilinear form f associated to q takes the form

f(x, y) = Tr(x · y),
and Λ is a self-dual lattice relative to f . Let {e1, e2, e3} be a basis of W so
that e1 ∧ e2 ∧ e3 ∈ ∧3W is identified with 1 ∈ Z, and let {e−1, e−2, e−3} be the
basis of W ∗ determined by the requirement that e−i(ej) = −δij . Then e1 ∧ e2
is identified with −e−3, e−1 ∧ e−2 is identified with e3, and so on. Also let

e−4 =
(
1 0
0 0

)
, e4 =

(
0 0
0 1

)
.

Then, with respect to the basis {ei} of Λ, the quadratic form q is given by

q
(∑
i

aiei

)
= a1a−1 + a2a−2 + a3a−3 + a4a−4.

Hence, {ei} forms a Witt basis for the quadratic space (Λ, q).
The characteristic polynomial of x ∈ Λ is the polynomial

q(λ · e− x) = λ2 − f(x, e)λ+ q(x),
and it can be shown that x satisfies its own characteristic polynomial. Though
multiplication in Λ is neither commutative nor associative, we have

Tr((x · y) · z) = Tr
(
x · (y · z)

)
,
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so that we can write Tr(xyz) unambiguously, and (x, y, z) = Tr(xyz) defines a
trilinear form on Λ. This satisfies

(x, y, z) = (z, x, y)

and is alternating when restricted to the rank 7 submodule of trace zero ele-
ments in Λ. The multiplication in Λ is completely determined by the quadratic
form q (cf. [10, Thm. 33.19]), but it does not seem possible to write down a
formula for the product in terms of q. However, the product can be recovered
from f and (−,−,−) and the unit element e by:

f(x · y, z) = (x, y, z),
with z = f(z, e)e− z.
As is well-known, the composition algebra Λ is alternative. More precisely,

let
[x, y, z] = (xy)z − x(yz)

be the associator of the elements x, y, z. Then we have

[x, x, y] = [x, y, y] = 0, for all x, y ∈ Λ.
This implies that the trilinear map [−,−,−] is skew-symmetric:
(2) [x, y, z] = −[y, x, z] = −[x, z, y].
Sometimes it is convenient to work with a different multiplication on Λ,

defined by
x ∗ y = x · y.

With this new multiplication, one still has

q(x ∗ y) = q(x) · q(y),
so that (Λ, q, ∗) is still a composition algebra, albeit without a unit. It is
an example of a symmetric composition algebra in the sense of [10, §34], i.e.
it satisfies:

(3) f(x ∗ y, z) = f(x, y ∗ z).
Moreover, we have

x ∗ (y ∗ x) = q(x)y = (x ∗ y) ∗ x.
All these identities can of course be stated in terms of the original multiplica-
tion, but they look neater when written in terms of ∗.
Let B be any Z-algebra. By the (split) octonion algebra over B, we mean

the algebra Λ⊗B obtained from Λ, with all its structures described above, by
base extension. In particular, we have the octonion algebra V = Λ⊗ k over k.
An element x ∈ V is said to be integral if its characteristic polynomial has
coefficients in A. An order in V is an A-lattice which is a unital subring, and
an order is said to be maximal if it is not contained in any larger one. Note that
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any order is closed under conjugation and consists only of integral elements.
The following result of van der Blij and Springer [2] will be crucial:

Proposition 5.1. — (i) Suppose that L is a lattice in V which is closed under
multiplication, but which may not contain the unit element e. Then L is a
maximal order if and only if it is a maximal lattice for (V, q) (or equivalently,
it is self-dual with respect to f).
(ii) Any two maximal orders in V are isomorphic.
(iii) If L is a maximal order, any left (or right) ideal of L is of the form

πnL for n ≥ 0.

For example, the lattice R = Λ⊗A is an order in V , and Prop. 5.1 (i) implies
that it is a maximal order.

We conclude this section by describing another model for the octonion al-
gebra Λ over Z (cf. [10, §33C, p. 458]). Let M be the associative algebra of
2 × 2 matrices over Z. It is a composition algebra of rank 4 over Z, and thus
possesses an anti-involution x 
→ x. The Z-module M ⊕M , equipped with the
multiplication

(m,n) · (m′, n′) = (mm′ − n′n,mn′ +m′n),

and the anti-involution
(m,n) 
−→ (m,−n),

is then a composition algebra of rank 8 over Z. For (i, j, k) = (1, 2, 3), (2, 3, 1),
or (3, 1, 2), the map

(4) φ : Λ 
−→M ⊕M
defined by:

(5)
8∑
s=1

ases 
−→
((
a−4 −ai
a−i a4

)
,

(
a−j −a−k
ak aj

))
defines an isomorphism of composition algebras over Z, and we callM ⊕M the
Cayley-Dickson model for Λ. In particular, (M ⊕M)⊗A is isomorphic to the
maximal order R in V = Λ⊗ k.
The Cayley-Dickson construction above can in fact be generalized to produce

other orders in V . Let B be a composition algebra of rank 4 over A, with anti-
involution x 
→ x. In particular, B ⊗ k is a quaternion algebra over k and B
is an order in B ⊗ k. If λ is an element of A, let CD(B, λ) = B ⊕ B be the
A-algebra with multiplication

(m,n) · (m′, n′) = (mm′ + λn′n,mn′ +m′n)

and anti-involution
(m,n) 
−→ (m,−n).
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Then CD(B, λ) is a composition algebra of rank 8 over A, and is an order in the
k-algebra CD(B, λ) ⊗ k. Note that the k-algebra CD(B, λ) ⊗ k is isomorphic
to V if and only if λ is in the image of the norm map x 
→ x · x of B ⊗ k. Still
more generally, one can let J be a left ideal in B, and consider the A-module
CD(B, J, λ) = B ⊕ J . Then the same formulas as above endow CD(B, J, λ)
with the structure of a composition algebra of rank 8 over A. We will later
return to these constructions in Prop. 9.8.

6. The Automorphism Group

LetH = SO(Λ, q) denote the special orthogonal group of the quadratic space
(Λ, q). More precisely, H is the connected component of identity of the affine
group scheme whose group of B-valued points consists of those g ∈ Aut(Λ⊗B)
satisfying

q ◦ g = q, det(g) = 1.
In particular, H is also affine, and is a closed subgroup scheme of Aut(Λ).
It is well-known that each fiber of H is the split simple algebraic group of
type SO8 over the relevant residue field. Let G be the automorphism group
of the octonion algebra (Λ, q, ·). Then it is known that each fiber of G is the
split simple algebraic group of type G2 over the relevant residue field. Since G
is connected, it is a closed subgroup scheme of H , and hence of Aut(Λ).
From the above, we see that bothH andG have smooth fibers over each point

of Z. We claim that they are both flat over Z, and hence are the Chevalley
group schemes of the relevant type. For this, we use the following flatness
criterion, which may be well-known, but for which we are unable to locate a
precise reference.

Proposition 6.1. — Let X be a noetherian scheme, and S a connected regular
noetherian scheme of dimension 1. Let f : X −→ S be a morphism. Suppose
that
(i) for each s ∈ S, the fiber Xs is an irreducible and reduced variety;
(ii) dimXs is independent of s;
(iii) f has a section.

Then f is flat.

Proof. — Without loss of generality, we assume that S = Spec(A), where A
is a discrete valuation ring with field of fractions k, and X = Spec(B) is an
affine noetherian scheme. Let X ′ be the schematic closure in X of its generic
fiber Xk, so that we have a closed immersion i : X ′ → X . Since S is regular of
dimension 1, X ′ is flat over S;ă indeed X ′ = Spec(B/Btor), where Btor is the
ideal of elements in B which are killed by a power of π (the uniformizer of A).
It remains to show that i is an isomorphism. By (iii), f has a section S → X .
Since A is free of π-torsion, this section must factor through X ′, and thus the
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special fiber X ′
s is non-empty. By (ii), the flatness of X

′ and the fact that ik is
an isomorphism on the generic fibers, we have:

dim(Xs) = dim(X ′
s) = dim(Xk).

By (i), we deduce that is is an isomorphism. In other words, the ring homo-
morphism B → B/Btor is an isomorphism on tensoring with A/π. This implies
that Btor = πBtor, i.e. that Btor is π-divisible. Since B is noetherian, this is
not possible unless Btor is zero, i.e. unless i is an isomorphism. The proposition
is proved.

Corollary 6.2. — Both H and G are smooth reductive groups over Z in the
sense of [9, exposé XIX], and are equal to the schematic closure of their generic
fibers in Aut(Λ).

The corollary implies that we have a closed immersion G→ H of Chevalley
groups over Z. For various computational purposes, it is desirable to have a
more explicit description of this embedding. The Witt basis {ei} of (Λ, q) de-
fined in the last section gives rise to an épinglage forH , as described in [7]. More
precisely, let T be the subgroup scheme of H which preserves each line Zei. Let
ai ∈ X•(T ) be the character of T which gives the action of T on Zei. Then the
fact that T ⊂ H implies that ai+a−i = 0. Hence, the set {a1, a2, a3, a4} serves
as coordinate functions on T , and identifies T with G4

m. We shall represent a
generic element of T as t(a1, a2, a3, a4). In particular, T is a maximal split torus
of H , and the root subgroups of H relative to T are completely determined. To
describe them, for any i and j in {±1,±2,±3,±4} with i �= ±j, and λ ∈ Ga,
let ui,j(λ) be the element of H given by:

ui,j(λ) :


ei 
→ ei + λe−j ,
ej 
→ ej − λe−i,
ek 
→ ek, if k �= i, j.

Then ui,j : Ga ↪→ H is a closed immersion, whose image Ui,j is the root
subgroup of H relative to T , corresponding to the root ai + aj . The collection
{ui,j : Ga → H} is a Chevalley system of épinglage.

We now consider the closed subgroup G of H . One can describe a subgroup
of G isomorphic to SL3 easily. Indeed, for g ∈ SL3, the map

g :
(
a w
ϕ b

)

−→

(
a gw

ϕ ◦ g−1 b

)
defines an element of G, and thus defines a closed immersion SL3 ↪→ G. The
diagonal torus S of SL3 thus serves as a maximal split torus for G, and one sees
easily that S is in fact the intersection of G with T . Indeed, the embedding
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S ↪→ T is given by:a 0 0
0 b 0
0 0 c

 
−→ t(a, b, c, 1), with abc = 1.

The root subgroups of SL3 relative to S are precisely the root subgroups of G
corresponding to the 6 long roots. As subgroups of H, we have, for example,1 λ 0
0 1 0
0 0 1

 
→ u2,−1(λ),

1 0 0
0 1 λ
0 0 1

 
→ u3,−2(λ),

1 0 λ
0 1 0
0 0 1

 
→ u3,−1(λ).

Any other root subgroup of H relative to S is isomorphic to G3
a, given, for

example, by: 
U1,3 × U4,−2 × U−2,−4,

U3,2 × U4,−1 × U−1,−4,

U−2,−1 × U−4,3 × U3,4.

The intersection of these with G is, up to signs, given by the diagonal em-
bedding of Ga. Thus for any root γ of G relative to S, we have described
the corresponding root subgroup Uγ and an isomorphism uγ : Ga → Uγ . The
collection {uγ : Ga → G} is a Chevalley system of épinglage. One can choose
a system of simple roots {a, b} for G relative to S by insisting that

(6) Ub = U2,−1, Ua = G ∩ (U1,3 × U4,−2 × U−2,−4).

The following lemma is now straightforward:

Lemma 6.3. — The image of the natural map

X•(S)⊗ R ↪−→ X•(T )⊗ R

is given by the equations:

a1 + a2 + a3 = 0, a4 = 0.

Further, when restricted to S, we have:

a1 = −a− b, a2 = −a,
a3 = 2a+ b, a4 = 0.

Using the Cayley-Dickson modelM⊕M for Λ, we can describe the root sub-
groups of G corresponding to the short roots. Indeed, there is an embedding j
of SL2 into the automorphism group of M ⊕M given by:

j(g) : (m,n) 
−→ (gmg−1, gn).

From this, we obtain three embeddings SL2 ↪→ G, given by:

g 
−→ φ−1
i ◦ j(g) ◦ φi
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where φi : Λ ∼= M ⊕M is defined in (4) and (5). In particular, we have three
embeddings of the root subgroups of SL2 relative to the diagonal torus, and
these are the root subgroups of G relative to S corresponding to the short roots.

7. The Building B(G)

Henceforth, let
G = G× k, H = H × k.

In this section, we give a concrete description of the building B(G) using norms
on the standard representation V of G.

We have constructed in the previous section an embedding G ↪→ H of
Chevalley groups, as well as maximal split tori S ⊂ G and T ⊂ H satisfy-
ing S = T ∩G. The system ϕH = (ϕi,j) of maps

ϕi,j : Ui,j(k) −→ R

defined by
ui,j(λ) 
−→ ord(λ)

is a valuation of the root datum (T (k), Ui,j(k)), and defines a hyperspecial
point x0 on the apartment A(T ) of B(H) determined by T . The stabilizer
of x0 in H(k) is the maximal bounded subgroup H(A). Similarly, the system
ϕG = (ϕγ) of maps

ϕγ : Uγ −→ R

defined by
uγ(λ) 
−→ ord(λ)

is a valuation of the root datum (S(k), Uγ(k)), and defines a hyperspecial
point x′0 on the apartment A(S) of B(G) determined by S, whose stabilizer
in G(k) is the maximal bounded subgroup G(A).

Proposition 7.1. — The valuation ϕH descends to the valuation ϕG. There
exists a strong descent datum {ιE∗ : B(GE) → B(HE)}, which is uniquely
determined by the property that ι∗(x′0) = x0. Further, the map ι∗ sends A(S)
into A(T ).

Proof. — It suffices to apply the general result on descent mappings for Cheval-
ley groups in [3, p. 203]. The proof given there for this general result involves
passing to a field extension of k for which the image of the valuation map ord
is R. If one is uncomfortable with this procedure, one can prove the result
for the case at hand, using the explicit information given in the last section.
Indeed, from (6), it is easy to verify that ϕH descends to ϕG; one can then
apply [3, Prop. 9.1.17].
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If we identify A(S) and A(T ) with X•(S) ⊗ R and X•(T ) ⊗ R by
choosing x′0 and x0 as origins, the map A(S) → A(T ) is the natural one
X•(S)⊗ R→ X•(T )⊗ R, which was described in coordinates in Lemma 6.3.
Moreover, the functions {a1, a2, a3, a4} serve as coordinates for A(T ). The
norm corresponding to p ∈ A(T ) is given by [7, §2.9]:

(7) αp

(∑
λiei

)
= inf

i

{
ord(λi)− ai(p)

}
.

We would now like to apply Prop. 4.2 to the strong descent datum {ιE∗}
provided by Prop. 7.1. Hence, we let NE be the set of maximinorante norms
on V which are norms of the octonion algebra, and it remains to verify that
the hypotheses of Prop. 4.2 are satisfied. The fact that q is integral on any
order of V follows from the fact that any order consists of integral elements.
Let α0 be the maximinorante norm on V corresponding to the hyperspecial
point x0. Then from (7), one sees easily that {x ∈ V : α0(x) ≥ 0} = R, which
is an order, as well as a maximal lattice; hence the third condition of Prop. 4.2
holds. Finally, the second condition is a consequence of Prop. 5.1 (i) and (ii).
We have verified all the hypotheses of Prop. 4.2, and thus proven:

Theorem 7.2. — The map ι∗ establishes a bijection between the building B(G)
of G and the set N of maximinorante norms for (V, q) which are norms of the
octonion algebra. In this bijection, the hyperspecial points of B(G) correspond
to those algebra norms α which take values in ord(k), which in turn corresponds
to maximal orders in V .

Remark 7.3. — The map ι∗ is canonical in the sense that it is the unique
descent mapping from B(G) to B(SO(V, q)). Again, this follows either from
[11, Cor. 2.7.4], or from an elementary result in [18].

We can also consider the descent datum consisting of the compositions j :
G ↪→ SO(V, q) ↪→ GL(V ) and

j∗ : B(G) ↪−→ B
(
SO(V, q)

)
↪−→ B

(
GL(V )

)
.

By another application of Thm. 3.5 and Prop. 5.1, we can easily show:

Theorem 7.4. — The image of j∗ is the set of self-dual norms for f which
are also norms of the octonion algebra.

As a consequence, we see that an algebra norm which is self-dual for f is
maximinorante for q. This fact can also be checked directly. We omit the
details. Instead, let us record the following corollary:

Corollary 7.5. — Let α be a self-dual algebra norm. Then α(e) = 0 and
α(x) = α(x) for any x ∈ V .
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Proof. — The fact that α is an algebra norm implies that α(e) ≤ 0. On the
other hand, the self-dual algebra norm α0 corresponding to the hyperspecial
point x0 satisfies α0(e) ≥ 0. The same is thus true for all self-dual algebra
norms corresponding to hyperspecial vertices. Since B(G) is the convex hull
in B(SO(V, q)) of all these hyperspecial vertices, we see that α(e) ≥ 0 for
any α ∈ B(G). The first assertion is proved.
Since x = f(x, e)e − x, we see that α(x) ≥ α(x) for any α ∈ B(G). The

second assertion thus follows.

It seems that one should be able to prove this corollary directly, without using
the theory of buildings as we have done here.

8. The Structure of Apartments

We would now like to describe the various structures on B(G) directly in
terms of N. The affine structure of B(G) corresponds to the natural one on N

discussed in Section 2, and the G(k)-action is clear. This section is devoted to
a description of the apartments of B(G).
The apartments of B(G) are parametrized by the maximal split tori of G.

A maximal split torus T of G is contained in a subgroup of G which is isomor-
phic to SL3, and which is the pointwise stabilizer of a sub-algebra k × k of V .
Such a sub-algebra has a unique orthogonal system of primitive idempotents
{u4, u−4}, i.e. a pair of non-trivial idempotents {u4, u−4} with u4 + u−4 = e
and u4 · u−4 = u−4 · u4 = 0. These form a basis of the zero weight spaces for
the action of T on V . Conversely, suppose we are given an orthogonal system
of primitive idempotents {u4, u−4}. Then they generate a sub-algebra of V
isomorphic to k × k. By [10, Cor. 33.21], all such sub-algebras are conjugate
under G(k) to the one spanned by {e4, e−4}, i.e. the diagonal matrices in the
Zorn’s model for V . Hence the stabilizer in G of u4 is isomorphic to SL3.
Further, for i = ±4,

Vi =
{
x ∈ V : ui · x = 0 and x · ui = x

}
is 3-dimensional, and preserved by SL3. The representations of SL3 on V4 and
V−4 are isomorphic to the standard representation and its dual. Indeed, the
symmetric bilinear form f provides a non-degenerate SL3-invariant pairing be-
tween V4 and V−4. Now to give a maximal torus for SL3, it is necessary and
sufficient to give a decomposition of V4 into a direct sum of one-dimensional
spaces ku1 ⊕ ku2 ⊕ ku3. Note that by duality, this induces a decomposi-
tion V−4 = ku−1 ⊕ ku−2 ⊕ ku−3, where f(ui, u−j) = −δij . Concluding, we
have shown:

Proposition 8.1. — To give an apartment of B(G), it is necessary and suf-
ficient to give the following data:
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– an orthogonal system of primitive idempotents {u4, u−4} of V ;
– a decomposition of V4 = {x ∈ V : u4 · x = 0 and x · u4 = x} into a direct

sum of one-dimensional spaces ku1 ⊕ ku2 ⊕ ku3.

Given such a data, the corresponding apartment is the subset of N consisting
of those algebra norms which are split by the basis {ui : i = ±1,±2,±3,±4}
of V .

9. Simplicial Structure and Parahoric Subgroups

In this section, we describe the simplicial structure of B(G). More precisely,
we view the vertices of the simplicial complex B(G) in terms of graded lattice
chains in V , and describe the incidence relation. Concurrently, we realize the
parahoric subgroups of G(k) as stabilizers of certain orders of V .

Henceforth, we assume ord(π) = 1. Let us identify the apartments A(S)
and A(T ) with the real vector spaces X•(S)⊗R and X•(T )⊗R by choosing x′0
and x0 as origins, and let us regard A(S) as a subset of A(T ) using ι∗. Having
fixed the origin, the simple roots a and b become affine functions on A(S), and
serve as coordinates for A(S). Let c = 3a+2b be the highest root, and consider
the closed chamber in A(S) defined by:

(8) CG =
{
p ∈ A(S) : a(p) ≥ 0, b(p) ≥ 0, 1 ≥ c(p)

}
.

Then CG looks like the shaded area in the following figure:

c−

−

b

a

b

c

c

v2

v3

v1

The vertices have coordinates (a, b) given by:

v1 = (0, 0), v2 =
(
0,
1
2

)
, v3 =

(1
3
, 0
)
.

In particular, the vertex v1 is the hyperspecial point x′0, and we say that a
vertex of B(G) is of type i if it is conjugate under G(k) to vi.
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As we have seen in Section 6, the functions {a1, a2, a3, a4} serve as coordi-
nates on A(T ). We fix the simple roots of H relative to T to be:

r1 = a3 + a1, r2 = −a1 + a2,
r3 = −a2 + a4, r4 = −a2 − a4.

Then {r1, r2, r3, r4} also serve as coordinates on A(T ). The highest root is
r0 = r1 + 2r2 + r3 + r4, and the inequalities:

1 ≥ r0, ri ≥ 0, i = 1, 2, 3, 4,

define a closed chamber CH of B(H). Using Lemma 6.3, one sees easily that
when regarded as points on A(T ), the vertices v1, v2, v3 have (ri)-coordinates
given by:

v1 = (0, 0, 0, 0), v2 =
(
0,
1
2
, 0, 0

)
, v3 =

(1
3
, 0,

1
3
, 1
3

)
.

In particular, v1 and v2 are vertices of the chamber CH , whereas v3 is the
barycenter of the triangle formed by the other 3 vertices of CH . Moreover, it is
easy to check that CH ∩A(S) = CG.
We have seen in Thm. 7.2 that the hyperspecial vertices ofB(G) are identified

by ι∗ with those maximinorante norms of algebra which take values in ord(k),
which in turn correspond to maximal orders of V . More precisely, the lattice
chains corresponding to such norms are of the form

· · · � πL � L � · · ·
with L a maximal order. We denote the set of maximal orders by V1.
Now consider the vertices of type 2. The vertex v2 determines a graded

lattice chain (L•, c) in V of the type:

(9) · · · � πL � πL∗ � L � · · ·
with c(L) = 0, and c(L∗) = − 1

2 . Using (7), one sees that

L =
〈
e1, e2, πe3, e4, πe−1, e−2, e−3, e−4

〉
.

Moreover, since v2 corresponds to a norm of algebra, we have:

(10)

{
L is an order, and
πL∗ is an ideal of L satisfying (πL∗)2 ⊂ πL.

Let V2 be the set of orders L satisfying

L � L∗ � π−1L, L∗2 ⊂ π−1L.

Here, L∗2 is the A-lattice spanned by all elements x ·y, with x, y ∈ L∗. Since
the set V2 is clearly stabilized by the action of G(k), we have shown that there
is an injection from the set of vertices of type 2 into V2. Now we have:

Lemma 9.1. — The set of vertices of type 2 is in bijection with V2.
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Proof. — It remains to show that the injection above is surjective. Suppose we
are given a L in V2. Let (L•, c) be the lattice chain

· · · � πL � πL∗ � L � · · ·

with grading c(L) = 0 and c(L∗) = − 1
2 . This gives rise to a norm α on V ,

which is easily seen to be self-dual. On the other hand, (3) implies that

(11) f(x · y, z) = f(y, x · z) = f(x, z · y).

Now suppose x ∈ L and y ∈ L∗. Then for any z ∈ L, we have:

f(x · y, z) = f(y, x · z) ∈ A,

so that L · L∗ ⊂ L∗, and a similar argument gives L∗ · L ⊂ L∗. From this, one
sees that πL∗ is an ideal of L, and thus α is an algebra norm. By Thm. 7.4,
α is a point on B(G).

It remains to show that α is a vertex of type 2. Conjugating by an element
of G(k), we may assume α is a point in the closed chamber CG described above,
and we need to show that α is equal to v2. Now the image of the norm α is 1

2Z,
which implies by (7) and Lemma 6.3 that as a point on A(S), its coordinates
a and b lie in 1

2Z, but not both in Z. Since a and b must also satisfy (8), it is
easy to see that the only possibility is

a = 0, b =
1
2
·

In other words, α is equal to v2, and the set of vertices of type 2 are in bijection
with V2.

Corollary 9.2. — If L ∈ V2, then lengthA(L∗/L) = 4. Indeed, L/πL∗ is
isomorphic to the algebra of 2× 2 matrices over A/π.

We now come to vertices of type 3. The vertex v3 gives rise to the graded
lattice chain (L•, c):

(12) · · ·πL � πM = πM∗ � πL∗ � L � · · ·

with

(13) c(L) = 0, c(L∗) = −2
3
, c(M) = −1

3
·

Indeed, L and M are given by:

(14)

{
L = 〈e1, e2, πe3, e4, πe−1, πe−2, e−3, e−4〉,
M = 〈e1, e2, πe3, e4, e−1, e−2, π

−1e−3, e−4〉.
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Moreover, since v3 is a norm of algebra, the following are satisfied:

(15)


L is an order in V , and πL∗ and πM = πM∗ are ideals of L;
(πL∗)2 ⊂ πM ;
(πL∗) · (πM) ⊂ πL;
(πM)2 ⊂ π2L∗.

Note that M is completely determined by L. Indeed, from (14), one can check
that

(16) M = πL∗2 + L.

Let V3 be the set of orders L satisfying

L � L∗ � π−1L, M = πL∗2 + L is a self-dual lattice.

Then we have shown that there is an injection from the set of vertices of
type 3 into V3. Indeed we have:

Lemma 9.3. — The set of vertices of type 3 is in bijection with V3.

Proof. — This is similar to the proof above for vertices of type 2, though
slightly more complicated. Given L, we assemble the graded lattice chain as
in (12) and (13), and observe that the corresponding norm α is self-dual. We
now need to check that α is an algebra norm, which is the same as checking
the statements in (15). We do this systematically as follows:
– L, L∗ and M are closed under conjugation. This is clear.
– L∗ is an ideal, i.e. L · L∗ ⊂ L∗ and L∗ · L ⊂ L∗. This follows from (11).
– M is an ideal. This follows from (2).
– L∗2 ⊂ π−1M . This follows from definition of M .
– M · L∗ ⊂ π−1L and L∗ ·M ⊂ π−1L. To see this, take any x ∈ M and

y ∈ L∗. For any z ∈ L∗, we have

f(x · y, πz) = f(x, πz · y) ∈ A,
since πz · y ∈ πL∗2 ⊂ M . This implies that M · L∗ ⊂ π−1L. The other
containment follows similarly.
– M2 ⊂ L∗. If x, y ∈M and z ∈ L, then

f(x · y, z) = f(y, x · z) ∈ A,
since x · z ∈M .
We have thus shown that α is an algebra norm, which we can assume to lie

in CG. Moreover, the image of the norm α is 1
3Z, so that its coordinates (a, b)

lie in 1
3Z but not both in Z. There is now an added subtlety: there are two

possible points in CG with this property, and their coordinates are

(a, b) =
(1
3
, 0
)
or
(
0,
1
3

)
.
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The first is the vertex v3. After a computation, which we shall not reproduce
here, one sees that the lattice chain corresponding to the second point is not
of the above type. More precisely, the lattice chain corresponding to (0, 1

3 ) has
the form (12) and satisfies (15), but it does not satisfy (16). Hence we have
shown that α must be equal to v3.

Corollary 9.4. — If L ∈ V3, then L/πL∗ is isomorphic to the étale algebra
A/π ×A/π.

We have mentioned that a vertex of type 3 on B(G) is in fact the barycenter
of a 3-simplex in B(H) determined by 3 hyperspecial vertices. Given L ∈ V3,
with corresponding lattice chain

· · · � πL � πM � πL∗ � L � · · ·
one sees from (14) that L/πL∗ ∼= A/π ×A/π is a split rank 2 quadratic space
over the residue field A/π. As such, it has two isotropic lines. Let N and N ′ be
the inverse image of these isotropic lines in L. Then N andN ′ satisfy N = πN∗

and N ′ = πN ′∗. The triple {M,N,N ′} then determines 3 hyperspecial vertices
of B(H) which form a 3-simplex. The barycenter of this 3-simplex is precisely
the vertex of type 3 determined by L. Conversely, given (M,N,N ′) as above,
with M self-dual, we have:

L = N +N ′, πL∗ = N ∩N ′.

We now summarize what we have proven as the first assertion of the following
theorem.

Theorem 9.5. — The vertices of B(G) of type i are in natural bijection with
the orders in Vi. The incidence relation in B(G) can be described as follows.
(i) L1 is incident to L2 if and only if L1 ⊃ L2.
(ii) L1 is incident to L3 if and only if L1 ⊃ L3.
(iii) L2 is incident to L3 if and only if L2 ⊃ L3.
(iv) {L1, L2, L3} is a chamber if and only if L1 ⊃ L2 ⊃ L3.

Proof. — It remains to prove the statements about incidence relations. In
each statement, the “only if” part is clear just by looking at the standard
chamber CG. We now prove the “if” part of (i). Without loss of generality,
we may assume that L1 corresponds to v1 ∈ CG and L2 corresponds to a point
on A(S).
To each point α ∈ B(G), the lattice Lα,0 = {x ∈ V : α(x) ≥ 0} is an order

in V . If α is on A(S) with coordinates (a, b), we can use (7) and Lemma 6.3
to compute the condition Lα,0 ⊂ L1. It turns out that this condition is simply
−1 < −a− b, a, 2a+ b < 1, i.e. α lies in the interior of the convex hull of the
end points of the six long roots. It is clear from the figure that all vertices of
type 2 in this region are incident to v1. Hence (i) is proved. (ii) is proved in
the same way.
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(iii) is verified by a similar analysis. We may and do assume that L2 corre-
sponds to v2 ∈ CG. For α ∈ A(S), the condition Lα,0 ⊂ L2 is simply that α
lies in the interior of the convex hull of v1, b, c, c− b (see the figure). It is then
evident that every vertex of type 3 in this region is incident to v2.
(iv) follows immediately from (i), (ii) and (iii).

Corollary 9.6. — The stabilizer in G(k) of an order in Vi is a maximal
parahoric subgroup of G(k) fixing a vertex of type i.

Remark 9.7. — The lattice chain associated to an order L ∈ Vi can be more
conceptually described as follows. The quotient L = L/πL is an algebra
over A/π, and the reduction q of q is a quadratic form permitting composition.
However, q may be degenerate. It is not difficult to see that its radical R is an
ideal of L, and the quotient L/R is a composition algebra with non-degenerate
norm form. Further, one has a finite decreasing sequence

R ⊃ R
2 ⊃ R

3 ⊃ · · ·
of ideals on L. We call the inverse image of this sequence in L the radical
series of L. Then the lattice chain associated to L is precisely its radical series.

Using the Cayley-Dickson construction, one can give a more natural descrip-
tion of the orders Li. For simplicity, let us assume that k is a local field. Let B
be a quaternion algebra over k, and fix a maximal order RB of B. If λ is an ele-
ment of A, then we have seen that one can construct an A-algebra CD(RB, λ),
which is an order in CD(B, λ) ⊗ k ∼= V . Now we have:

Proposition 9.8. — (i) If B is split, and λ is a unit, then CD(RB , λ) is
a maximal order in V , and thus is isomorphic to L1.
(ii) If B is split, and λ = π, then CD(RB , λ) is isomorphic to L2.
(iii) If B is non-split, and λ is a unit, then CD(RB , λ) is isomorphic to L2.
(iv) Suppose that B is split and let R(π) be an order contained in RB with

RB/R(π) ∼= A/π. If λ is a unit, then CD(R(π), λ) is isomorphic to L2.
(v) With the notations of (iv), let J(π) be the two-sided ideal of R(π) with

R(π)/J(π) ∼= A/π. If λ is a unit, then CD(R(π), J(π), λ) is isomorphic to L3.

Proof. — In each case, one verifies directly that the order in question lies in the
relevant set Vi. The result then follows by the first assertion of Theorem 9.5.
We omit the details.

Remark 9.9. — The above proposition shows that RB always embeds as a
subring of L1 or L2. On the other hand, RB cannot be embedded as a subring
of L3. To see this, observe that the A/π-algebra L3/πL3 has a 6-dimensional
two-sided ideal, for which the corresponding quotient ring is isomorphic to
A/π ×A/π. However, it is easy to see that RB does not possess such a quotient
ring.
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It is an instructive exercise to recover the usual description [1] of the spheri-
cal building of type G2 from the description of the simplicial structure of B(G)
given above. For this, let us fix the hyperspecial vertex v1, which corresponds
to the maximal order R. Then the link of v1 in B(G) is the spherical build-
ing of G × A/π. Suppose we are given a vertex of type 2 which is incident
to v1. Let L2 be the corresponding order. Then L2/πR is a 6-dimensional
subspace of R/πR, and its orthogonal complement is the 2-dimensional sub-
space πL∗

2/πR, on which the octonion multiplication is trivial, and all of
whose elements have trace zero. As is well-known, the stabilizer of such a 2-
dimensional subspace in R/πR is a (Heisenberg) maximal parabolic subgroup
of G×A/π. Conversely, it is easy to recover the lattice L2 if we are given such
a 2-dimensional subspace of R/πR: πL∗

2 is simply the inverse image of this
subspace in R. Now suppose L3 is an order in V3 whose corresponding vertex
is incident to v1. Then L3 gives rise to a self-dual lattice M as in (16), and
(πM + πR)/πR is a 1-dimensional subspace of R/πR consisting of trace zero
elements and on which the octonion multiplication is trivial. It is well-known
that the stabilizer of such a subspace of R/πR is a maximal parabolic subgroup
of G×A/π belonging to the other conjugacy class. Conversely, if we are given
such a 1-dimensional subspace 〈x〉 of R/πR, let

x∆ =
{
y ∈ R/πR : x · y = y · x = 0

}
.

Then x∆ is 3-dimensional and its inverse image in R is the lattice πL∗
3. From

this, we can easily recover L3.

10. Group Schemes

The smooth group schemes associated to the parahoric subgroups can be
described using the orders in V := V1 ∪ V2 ∪ V3:

Theorem 10.1. — Given an order L in V, the schematic closure of G in
Aut(L) is the smooth integral model Gx of G associated to the vertex x cor-
responding to L. More generally, let X be a finite set of vertices and L ⊂ V

be the set of orders corresponding to elements of X. Assume that there is an
apartment A on B(G) such that X ⊂ A and let Ω ⊂ A be the convex hull
of X. Then the schematic closure of G in

∏
L∈LAut(L) is the smooth integral

model GΩ of G associated to Ω [17, 3.4.1].

We recall [17, 3.4.1] that GΩ is characterized by
(a) GΩ is affine smooth group scheme over A with generic fiber G;
(b) for any unramified extension k̃/k, GΩ(Ã) is the subgroup of G(k̃) con-

sisting of elements fixing X pointwise, where Ã is the ring of integers in k̃.
Let G be the schematic closure of G in

∏
L∈LAut(L). It is clear that G is

an affine group scheme of finite type over A satisfying (b). The key point is to
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show that G is smooth, and the verification will occupy much of the remainder
of this section.
Let S be the maximal k-split torus corresponding to A and {Ub}b∈Φ(G,S) be

the root subgroups of G relative to S. By [4, 2.2.5], to prove the smoothness
of G, it suffices to show the following two assertions
(i) the schematic closure S of S in

∏
L∈LAut(L) is smooth;

(ii) for each b ∈ Φ(G,S), the schematic closure Ub of Ub in
∏
L∈LAut(L)

is smooth.
Assertion (i) is clear from the assumption X ⊂ A. It remains to prove

assertion (ii). This will be divided into two cases, depending on whether b is a
long root or a short root.
Suppose that b is a long root. Then Gb = 〈Ub, S, U−b〉 is isomorphic to GL2.

Regarding V as a representation of Gb � GL2, we have a decomposition into
isotypical subspaces V =

⊕5
i=1 Vi, with

V1 � 1⊕2, V2 � det, V3 � (det)∨, V4 � st, V5 � st∨.
Here, st denotes the standard representation of GL2. It is easy to see
that for each L ∈ L, L =

⊕5
i=1 L ∩ Vi. Since

∏
L∈L

∏5
i=1 Aut(L ∩ Vi)

is a closed sub-scheme of
∏
L∈LAut(L) and Ub →

∏
L∈LGL(V ) factors

through
∏
L∈L

∏5
i=1GL(Vi), It follows that Ub is the schematic closure

of Ub in
∏
L∈L

∏5
i=1 Aut(L ∩ Vi), and is also the schematic closure of Ub

in
∏
L∈L

∏5
i=4 Aut(L ∩ Vi).

Lemma 10.2. — Let W be the standard representation of H = GL2. Let A =
A(H,S) be an apartment on B(H) corresponding to the maximal k-split torus S
of H. Let X and X ′ be two finite subsets of hyperspecial points on A. For
x ∈ X ∪X ′, let Mx ⊂ W,M∨

x ⊂ W∨ be the lattices whose stabilizer is H(k)x.
Let Ω be the convex hull of X ∪X ′. Then
(i) The schematic closure of H in

∏
x∈X Aut(Mx)×

∏
x∈X′ Aut(M∨

x ) is the
smooth integral model HΩ of H associated to Ω.
(ii) For b ∈ Φ(H,S), the schematic closure of Ub ⊂ H in

∏
x∈X Aut(Mx)×∏

x∈X′ Aut(M∨
x ) is smooth.

Proof. — It is clear that Aut(M∨
x ) = Aut(Mx). Therefore, we may and do

assume that X ′ = ∅. Then (i) and (ii) are just special cases of [5, 3.9.2].

We now return to the proof of the smoothness of Ub for a long root b. For
L ∈ L, the lattice L ∩ V4 corresponds to a vertex xL on A(Gb, S) ⊂ B(Gb)
by [5]. Similarly, the lattice L ∩ V5 corresponds to a vertex x′L on A(Gb, S).
It is now clear that the smoothness of Ub follows from part (ii) of Lemma 10.2.
Now suppose that b ∈ Φ(G,S) is a short root. Then Gb = 〈Ub, S, U−b〉 is

again isomorphic to GL2. Regarding V as a representation of Gb � GL2, we
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have V � V1 ⊕ V2 ⊕ V3, with

V1 � st⊗ st∨, V2 = st, V3 = st∨.

Again it is easy to see that L =
⊕3
i=1 L ∩ Vi for each L ∈ L.

It is easy to show that V1 is a sub-algebra of V isomorphic to M2(k). We
can write down an isomorphism φ : V1 �M2(k) such that φ(V S1 ) is the subset
of diagonal matrices, and L ∩ V1 is an order of the form

Rn =
{(

a b
πnc d

) ∣∣ a, b, c, d ∈ A}, n = 0 or 1.

Lemma 10.3. — LetW be the standard representation of H = GL2 and S ⊂ H
be the maximal k-split torus consisting of diagonal elements. Let Rn be as above
with n ≥ 0. Then there exist lattices M,M ′ ⊂W corresponding to points x, x′

in A(H,S) such that the schematic closure of Ub in Aut(Rn) is the same as
the schematic closure of Ub in Aut(M) × Aut(M ′) for each root subgroup Ub
of H relative to S.

Proof. — Let w1, w2 be the standard basis of W , then it is easy to check that
M = 〈w1, w2〉, M ′ = 〈w1, π

nw2〉 fulfill the conditions of the lemma.

Now for each L ∈ L, we have a lattice L(1) = L ∩ V2 in W , a lattice
L(2) = L ∩ V3 in W∨, two lattices L(3) = M and L(4) = M ′ in W associated
to L ∩ V1 by the above lemma. All the lattices {L(i) : L ∈ L, i = 1, 2, 3, 4}
correspond to points in A(Gb, S), and Ub is the schematic closure of Ub in∏
L∈L

∏4
i=1Aut(L

(i)). Now part (ii) of Lemma 10.2 again implies that Ub is
smooth.
Thm. 10.1 has been proved completely.
Let L be an order in V, corresponding to a vertex x, with associated graded

lattice chain (Lx,r) and smooth group scheme Gx. Thm. 10.1 implies that
Gx × A/π is a closed subgroup scheme of Aut(L/πL), and thus acts on the
vector space L/πL over A/π. The rest of this section is devoted to a study of
this rational representation of the special fiber.
Let G be the maximal reductive quotient of the special fiber Gx×A/π. The

isomorphism class of G is known by Bruhat-Tits theory [17]. Indeed,

G ∼=


G×A/π, if x ∈ V1;
(SL2× SL2)/∆µ2

∼= SO4, if x ∈ V2;
SL3, if x ∈ V3.

Further, Bruhat-Tits theory associates to the vertex x a decreasing filtration
(Gx,r)r≥0 of open compact subgroups of Gx,0 = Gx(A), such that

Gx,0/Gx,1 ∼= Gx(A/π), Gx,0/Gx,0+ ∼= G(A/π).
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Since Gx(A) stabilizes each of the lattices Lx,r, we see that for 0 ≤ r ≤ 1,
Lx,r/πL is a sub-representation of L/πL. One thus has the sub-quotient rep-
resentations Lx,r/Lx,r+ of the special fiber. It is not difficult to show that, in
fact, Gx,0+ acts trivially on Lx,r/Lx,r+, which then implies that the action of
the special fiber on Lx,r/Lx,r+ factors through G. The following proposition
describes these representations of G explicitly.

Proposition 10.4. — (i) If x ∈ V1, L/πL is the split octonion algebra
over A/π, which is the standard representation of G ∼= Aut(L/πL).
(ii) If x ∈ V2, the filtration

0 ⊂ πL∗/πL ⊂ L/πL

has successive quotients, which, as representations of G, are given by

L/πL∗ ∼= ad⊗ 1, L∗/L ∼= standard representation of SO4,

where ad is the adjoint action of SL2 on the space of 2× 2 matrices over A/π.
(iii) If x ∈ V3, the filtration

0 ⊂ πM/πL ⊂ πL∗/πL ⊂ L/πL
has successive quotients, which, as representations of G, are given by

L/πL∗ ∼= 1⊕2, L∗/M ∼= st, M/L ∼= st∗,
where st is the standard representation of G, under a suitable identification
with SL3.

Proof. — Assertion (i) is a direct consequence of the considerations in §6, and
in particular Cor. 6.2. Since (ii) and (iii) are proved in similar ways, we will
only give the proof for (ii).
Without loss of generality, we assume that x = v2, so that L = L2. Let

S = S ×A/π, where we recall that S is a maximal k-split torus of G. Then we
have an embedding

S ↪−→ G � (SL2× SL2)/∆µ2 � SO4

of algebraic groups over A/π. The root subgroups of G relative to S are special
fibers of the root subgroups of Gx corresponding to the roots ±a and ±δ =
±(3a+2b). We adopt the convention that the first copy of SL2 in G is the one
associated to ±a.
Now the weights of S on V are precisely the 6 short roots and the trivial

character with multiplicity 2. Using Lemma 6.3 and the explicit basis for
L = L2 given in the previous section, it is easy to see that the weights of S
on L/πL∗ are ±a and the trivial character with multiplicity 2. From this, one
deduces that as a representation of G,

L/πL∗ � ad⊗ 1.
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On the other hand, the weights of S on L∗/L are ±(a+ b) and ±(2a+ b), from
which it follows that

L∗/L � standard representation of SO4

as a representation of G.

11. Triality

The closed embedding ι : G ↪→ SO(V ) can be lifted to a closed embedding
ι̃ : G ↪→ Spin(V ), where pr1 : Spin(V )→ SO(V ) is the simply-connected cover
of H = SO(V ). There is a S3- action on Spin(V ) whose group of fixed points
is precisely G. This induces an action of S3 on the building B(Spin(V )), which
can be naturally identified with the building B(H) using pr1. We already know
that B(G) is a subset of B(H), and hence of B(Spin(V )). It is thus natural
to ask if the set of fixed points of B(Spin(V )) under this S3-action is equal to
B(G). When p �= 2, 3, the general result of [13] shows that it is indeed the
case. In this section, we give a proof which works for all p, and in the process,
we give an explicit description of the building B(Spin(V )), together with the
action of S3.
We begin with a more concrete description of the group Spin(V ) over Z.

Recall that we have introduced in Section 5 the octonion algebra (Λ, q, ·) over Z.
It is now more convenient to work with the multiplication ∗ on Λ instead of
the octonion multiplication. Recall that the two are related by: x ∗ y = x · y.
The self-dual lattice Λ can be used to define the Chevalley group Spin(Λ) with
generic fiber Spin(V ) as follows. For any Z-algebra B, we have:

Spin(Λ)(B) =
{
(g1, g2, g3) ∈ H(B)3 : g1(x ∗ y) = g2(x) ∗ g3(y), ∀x, y ∈ Λ⊗B

}
.

This realizes Spin(Λ) as a subgroup of H3, and we let

δ : Spin(Λ) ↪−→ H3

be the closed immersion. The three projections then give the three central
isogenies

pr1, pr2, pr3 : Spin(Λ) −→ H.

Let T be the maximal torus of H constructed in Section 6. Then T 3 is a
maximal split torus of H3, and T 3∩Spin(Λ) is a maximal split torus of Spin(Λ).
We have constructed an embedding ι : G ↪→ H in Section 6. Using ι3, we

embed G as a subgroup of H3. Since G is also the automorphism group of
the multiplication ∗ [10, Remark 34.7], it is clear that the embedding factors
through the subgroup Spin(Λ), so that we have an embedding ι̃ : G ↪→ Spin(Λ).
Moreover, for i = 1, 2 or 3, we have:

pri ◦ δ ◦ ι̃ = ι

as morphisms from G to H .
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We now describe an action of the finite group S3 on H3 which restricts to
an action on the subgroup Spin(Λ). Let the group Z/3Z act on H3 by cyclic
permutation. Further, for g ∈ H , let ĝ be the automorphism of Λ given by

ĝ : x 
−→g(x).

Then ĝ is also an element of H and we define an involution on H3 by:

(g1, g2, g3) 
−→ (ĝ1, ĝ3, ĝ2).

This involution and the Z/3Z-action above generate an action of S3 on H3.
This preserves the subgroup Spin(Λ), and it is clear that

Spin(Λ)S3 = Spin(Λ)Z/3Z = G.

By base extension, we have the group Spin(V ) over k, together with the
closed embeddings

δ : Spin(V ) ↪−→ H3, ι̃ : G ↪−→ Spin(V ).

Being assembled from central isogenies, δ can be canonically completed to a
strong descent datum (δE∗). It follows from definition that the induced action
of Z/3Z on B(H)3 is by cyclic permutation, and this restricts to the induced
action of Z/3Z on B(Spin(V )). Further, the induced action of the involution
g 
→ ĝ on B(H)3 is given by

(α1, α2, α3) 
−→ (α1, α3, α2),

where α is the norm defined by α(x) = α(x), and this restricts to the induced
action of the involution on B(Spin(V )). Thus δE∗ is S3-equivariant. Moreover,
it follows by construction that for i = 1, 2, 3, we have:

(17) pri∗ ◦ δ∗ ◦ ι̃∗ = ι∗

as maps from B(G) to B(H).
The adjoint group of Spin(V ) is PGSO(V ), and PGSO(V )(k) acts

naturally on B(Spin(V )) and B(H). We first describe the action of
PGSO(V )(k) on B(H). Let g1 ∈ GSO(V )(k), with similitude factor λ(g1).
Then, for α1 ∈ B(H), we set:

(18) (g1α1)(x) = α1

(
g−1
1 (x)

)
+
1
2
ord
(
λ(g1)

)
.

This depends only on the image of g1 in PGSO(V )(k), and defines the action
of PGSO(V )(k) on B(H). The action of PGSO(V )(k) on B(Spin(V )) can be
described using the embedding δ∗. We first note [10, Prop. 35.4]:

Proposition 11.1. — Given arbitrary g1 ∈ GSO(V )(k) with similitude
factor λ(g1), there exist g2, g3 ∈ GSO(V )(k), with similitude factors λ(g2)
and λ(g3), such that

λ(gi)−1gi(x ∗ y) = gi+1(x) ∗ gi+2(y), for all x, y ∈ V ,
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where i is taken modulo 3. Moreover,

λ(g1)λ(g2)λ(g3) = 1,

and the pair (g2, g3) is well-defined up to scaling by (λ, λ−1). In particular, as
elements of PGSO(V )(k), g2 and g3 are uniquely determined by g1.

Consider the algebraic subgroup H ′ of PGSO(V )3 consisting of (g1, g2, g3)
satisfying the conditions in Prop. 11.1. The proposition implies that we have
an isomorphism

PGSO(V ) −→ H ′

given by
g1 
−→ (g1, g2, g3),

whose inverse is equal to the first projection. Now H ′(k) acts on B(H)3 by the
formula (18):

(g1, g2, g3) : (α1, α2, α3) 
−→ (g1α1, g2α2, g3α3),

and its restriction to the subset B(Spin(V )) is the action of PGSO(V )(k) on
B(Spin(V )). In other words, the embedding δ∗ is equivariant with respect to
the action of PGSO(V )(k) on B(Spin(V )) and that of H ′(k) on B(H)3.
We can now determine the image of δ∗ by applying the formalism given in

Thm. 3.5. Regarding B(H)3 as the set of triples of maximinorante norms on V ,
we let NE , for any finite extension E of k, be the subset of B(HE)3 given by:

NE =
{
(α1, α2, α3) ∈ B(HE)3 : α1(x ∗ y) ≥ α2(x) + α3(y) for all x, y ∈ V

}
.

It is interesting to note the following lemma:

Lemma 11.2. — The following properties of the triple (α1, α2, α3) of self-dual
norms are equivalent:
(i) α1(x ∗ y) ≥ α2(x) + α3(y) for all x, y ∈ V .
(ii) αi(x ∗ y) ≥ αi+1(x) + αi+2(y) for all x, y ∈ V , and for i = 1, 2, 3.
(iii) ord((x, y, z)) ≥ α1(x) + α2(y) + α3(z), for all x, y, z ∈ V , and where

(x, y, z) = Tr(xyz).

Proof. — Suppose that (α1, α2, α3) satisfies (i). We shall show that so does
(α2, α3, α1), which will be sufficient to prove (ii). Since α2 is self-dual with
respect to f , for any given x and y, there exists z such that

α2(x ∗ y) = ord f(x ∗ y, z)− α2(z).

Since f(x ∗ y, z) = f(z, x ∗ y) = f(z ∗ x, y), we see that
α2(x ∗ y) = ord f(z ∗ x, y)− α2(z)

≥ α1(z ∗ x) + α1(y)− α2(z) ≥ α3(x) + α1(y),

as desired.
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It is easy to show that (ii) implies (iii). So let us now assume that (iii) holds
and proves (i). By the self-duality of α1, for any given x and y, there exists z
such that

α1(x ∗ y) = ord f(x ∗ y, z)− α1(z).

By (iii), we see that

α1(x ∗ y) = ord(x, y, z)− α1(z)

= ord(z, x, y)− α1(z) ≥ α2(x) + α3(y).

The lemma is proved.

Now we have:

Theorem 11.3. — The image of δ∗ is the subset N. Via δ∗, the building
B(Spin(V )) is identified with the set N of triples of norms (α1, α2, α3) on V
which are maximinorante for (q, f), and which satisfy

α1(x ∗ y) ≥ α2(x) + α3(y).

The S3-action on B(Spin(V )) is generated by

(α1, α2, α3) 
→ (α3, α1, α2)

and
(α1, α2, α3) 
→ (α1, α3, α2).

Proof. — Once again, we shall make use of Thm. 3.5. Conditions (BC) and
(RAT) for {NE} can be easily checked; we omit the details.
It remains to verify the condition (TRANS). Let y0 = (x0, x0, x0) ∈ B(H)3,

where x0 is the hyperspecial point on B(H) as in Thm. 7.2. Recall that x0

gives rise to the lattice chain of rank 1 determined by the maximal order R
of V . By (17), we see that

y0 ∈ N ∩
(
δ∗ ◦ ι̃∗(B(G))

)
⊂ N ∩ δ∗

(
B(Spin(V )

)
,

and is moreover the image of a rational point on B(Spin(V )). Hence, the first
condition in (TRANS) holds with the rational point y0.

We now check the second condition in (TRANS). Suppose that y = (α1, α2,
α3) ∈ NE is in the H(E)3-orbit of y0. In particular, αi is a hyperspecial vertex
of B(HE); in fact, each of them corresponds to a self-dual lattice. We need to
show that y is in the image of δE∗. Now the map

δE∗ : B
(
Spin(VE)

)
↪−→ B(HE)3,

is not only Spin(V )(E)-equivariant, but also H ′(E)-equivariant. Hence it suf-
fices to show that y is in the H ′(E)-orbit of y0.
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Let g1 ∈ H(E) be such that x0 = g1α1 and let g = (g1, g2, g3) ∈ H ′(E).
It is easy to check that H ′(E) preserves NE , and hence the point g · y =
(x0, g2α2, g3α3) lies in NE . Now g2α2 and g3α3 are hyperspecial vertices
of B(H) but they may not correspond to self-dual lattices now, since g2 and g3
may not be in H(E). More precisely, they correspond either to self-dual lattices
or to lattices L with L = πEL

∗.
Now let

L =
{
x ∈ V : (g2α2)(x) ≥ 0

}
, M =

{
x ∈ V : (g3α3)(x) ≥ 0

}
.

The fact that g · y ∈ NE implies, in view of Lemma 11.2, that

(19) RE ∗ L ⊂M and M ∗RE ⊂ L.
In fact, since e ∗ (x ∗ e) = x, we see that

(20) M = e ∗ L = L :=
{
x : x ∈ L

}
.

From (19) and (20), we see that L (respectively L ) is a right (respectively left)
ideal of the maximal order RE of VE . By Prop. 5.1 (iii), we have

L = L = πnERE

for some n. But a lattice L of the form πnERE does not satisfy L = πEL
∗.

Hence, L must be self-dual, in which case n = 0 and L = RE . Hence, g2α2

and g3α3 are hyperspecial vertices which give rise to the self-dual lattice RE .
We have thus shown that y0 = g ·y with g ∈ H ′(E) and establish the description
of B(Spin(V )) given in the theorem. Since we have already noted the S3-action
on B(Spin(V )), the theorem is proved completely.

Corollary 11.4. — The building B(G) is the subset of B(Spin(V )) fixed
pointwise by S3.

Proof. — We have already seen that B(G) is the set of self-dual algebra norms.
By Cor. 7.5, an element of B(G) satisfies α = α and thus (α, α, α) belongs to
B(Spin(V ))S3 . Conversely, if (α1, α2, α3) ∈ B(Spin(V ))S3 , then α1 = α2 = α3

and αi = αi. This implies that α1 = α2 = α3 is a self-dual norm of octonion
algebra and thus (α1, α2, α3) ∈ B(G).

Since G = Spin(V )Z/3Z, it is natural to ask if B(G) = B(Spin(V ))Z/3Z. For
some reason, we are unable to deduce this from what we have above, though it
must be the case when p �= 3 by the main result of [13].
Let x be a hyperspecial point on B(G). Then y = ι̃∗(x) is also hyperspecial.

The link L(x) of x in B(G) (respectively the link L(y) of y in B(Spin(V )) is
the spherical building of Gx ⊗A/π (respectively Spin(V )y ⊗A/π).

Corollary 11.5. — L(y)S3 = L(x).

When p �= 2, 3, this corollary also follows from a general result in [13].
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12. The Anisotropic Case

We now give some remarks about the non-split case. Let G be an absolute
simple algebraic group of type G2 over k such that G is non-split. This does
not exist if k is a local field. In any case, it is well-known [16] that G can
be be realized as the automorphism group of an octonion algebra V over k.
Therefore, we again have embeddings G ⊂ SO(V, q), G ⊂ Spin(V, q), where q is
the norm form of V . There is also an action of Z/3Z on Spin(V, q) whose fixed
point is precisely G.
It is also well-known (see [16]) that in this case, G, SO(V, q), and Spin(V, q)

are anisotropic. Therefore, B(G), B(SO(V, q)) and B(Spin(V, q)) are singletons.
The statement

B(G) = B
(
Spin(V )

)Z/3Z

is therefore trivially true. Moreover, the unique maximinorante norm on V is
the norm

α0 =
1
2
ord ◦ q,

and since V is a composition algebra, it follows immediately that α0 is an
algebra norm. Hence, B(G) can again be characterized as the subset of max-
iminorante algebra norms in B(SO(V, q)). What is not yet apparent is the fact
that the map ι∗ : B(G) → B(SO(V, q)) of singleton sets extends to a strong
descent datum {ιE∗}.
As we have mentioned in the introduction, the result of [6] implies that G has

an unramified splitting field E. Let ιE∗ : B(GE)→ B(SO(VE , q)) be the unique
strong descent map of the buildings of split groups over E. By uniqueness, ιE∗
is equivariant with respect to the action of Γ = Gal(E/F ). Thus, as in the
proof of Prop. 4.1, the canonical embedding B(GE) ⊂ B(SO(VE , q)) induces an
embedding B(GE)Γ = B(G) ⊂ B(SO(VE , q))Γ = B(SO(V, q)), i.e. ι∗ extends
to a strong descent datum.

13. Appendix: Symmetric Spaces of Real Reductive Groups

In this appendix, we first review the theory of the symmetric space of a real
reductive group G, manifesting the analogy with the theory of the Bruhat-Tits
building in the p-adic case. This analogy is also stressed in Springer’s article
[15]. Here we further emphasize the functoriality of the symmetric spaces, which
is better formulated in terms of the notion of extended symmetric space S(G)
introduced below.
Moreover, we show (Thm. 13.11) that ifH is a connected real reductive group

and F ⊂ Aut(H) is a finite group such that G = (HF )0 is also a connected
real reductive group, then S(H)F = S(G). This leads quickly to a description
of the symmetric spaces associated to all classical groups, which again has a p-
adic counterpart due to Bruhat and Tits. Although this should be well-known,
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we are unable to locate a reference. This formalism also gives immediately
S(Spin(8))S3 = S(Spin(8))Z/3Z = S(G2), which is the real version of the main
result of §11 (Cor. 11.4). The p-adic analogue of Thm. 13.11 is the main result
of [13].

The symmetric space and the extended symmetric space. — Let H
be a Lie group in the class considered in [15]. Let Sred(H) be the set of Cartan
involutions on h = LieH . Then Sred(H) is called the (reduced) symmetric
space of H . It is well-known that a Cartan involution θ ∈ Sred(H) determines
a Cartan involution of H , and a maximal compact subgroup Kθ = Hθ of H .
This allows us to identify Sred(H) with the set of Cartan involutions on H ,
and with the set of maximal compact subgroups of H . It is also well-known
that H acts transitively on Sred(H). It is easy to show that the stabilizer of
θ ∈ Sred(H) is precisely Kθ when the center CH0 of the identity component H0

of H is compact.
Let V = V (H) be the maximal vector subgroup of the center CH0 of H0,

and let 0H be the subgroup generated by Kθ and the derived group [H0, H0]
of H0. We then have

(21) H = V · 0H.

It follows that 0H does not depend on the choice of Kθ, and the decomposi-
tion (21) is a direct product decomposition.
We regard V = H/0H as a homogeneous space of H and define the extended

symmetric space S(H) as the H-set Sred(H)× V .
It is clear that the center of the identity component of 0H is compact. It

follows that H acts transitively on S(H) and the stabilizer of (θ, v) ∈ S(H)
is precisely Kθ. It also follows that the normalizer of Kθ in H is V.Kθ.
From now on, we assume that G is a connected reductive group over R.

Then H = G(R) is in the class considered in [15]. We apply the above to H
and define Sred(G) = Sred(G(R)), V (G) = V (G(R)), S(G) = S(G(R)).
Clearly, AutR(G) acts on Sred(G), V (G), and S(G) canonically. We will

denote by Gx the stabilizer of x ∈ S(G) under the action of G(R).

In the sequel, we will make frequent use the following result [14]:

Theorem 13.1. — Let G ⊂ H be connected reductive groups over R. Then

(i) If θ′ ∈ Sred(H) stabilizes G(R), then θ′|G(R) ∈ Sred(G).
(ii) For any θ ∈ Sred(G), the set{

θ′ ∈ Sred(H) : θ′|G(R) = θ
}

is non-empty, and is permuted transitively by the real points of ZH(G), the
centralizer of G in H.
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SCHÉMAS EN GROUPES ET IMMEUBLES 347

Example 13.2. — Let G = Gdm be an m-dimensional split torus. Then
Sred(G) consists of one element, which is X 
→ −X on LieG and g 
→ g−1 on
G(R). On the other hand, S(G) = (R×

>0)
m � (R×/{±1})m.

If G is anisotropic, then G(R) is compact and Sred(G) consists of only one
point, which is X 
→ X on LieG and g 
→ g on G(R).
More generally, if G is anisotropic modulo its center, then Sred(G) consists

of one point only.

Remark 13.3. — The class considered by [15] contains some disconnected
groups. However, it does not contain the group H = G(R), where G is the full
orthogonal group of a quadratic form in two variables.

Apartments. — For each maximal R-split torus S of G, let Ared(S) = {θ ∈
Sred(G) : θ(S(R)) ⊂ S(R)}. We call Ared(S) the apartment of S. We notice
that θ ∈ Ared(S) if and only if θ extends the only Cartan involution of S(R).
Let Z = ZG(S). If θ ∈ Ared(S), and z ∈ G(R) commutes with S(R), then

θ(z) commutes with θ(S(R)) = S(R). Therefore, θ stabilizes Z(R) and hence
defines a Cartan involution on Z(R) by Thm. 13.1 (i). Since Z is anisotropic
modulo its center, θ extends the only Cartan involution of Z(R).

— All apartments are conjugate. This is obvious.
— Each point lies in an apartment. The unique Cartan involution of S(R)

always extends to a Cartan involution of G(R) by Thm. 13.1 (ii). Therefore, at
least one Cartan involution lies on an apartment. It follows that any Cartan
involution lies on an apartment.
— S(R) acts on Ared(S) transitively. If θ1 and θ2 both extend the only

Cartan involution of S, then θ2 = z.θ1 are conjugate by some z of Z(R) by
Thm. 13.1 (ii). We can write z = sk, where z ∈ S(R) and k is in the maximal
compact subgroup of Z(R) (Cartan decomposition). Since k ∈ Kθ1, we have
Kθ2 = zKθ1z

−1 = sKθ1s
−1. Hence θ2 = s.θ1.

— The dimension of Ared(S) is rankRG − rankR Z(G). Let θ ∈ Ared(S).
The normalizer of Kθ in G(R) is CG(R).Kθ, where CG is the center of G. In
particular, the stabilizer of θ in S(R) is S(R) ∩ CG(R).Kθ.
— Any two points x, y ∈ Sred(G) lie on some apartment Ared(S). Suppose

that x ∈ Ared(S). Then we have the Cartan decompositionG(R) = KxS(R)Kx.
Suppose that Ky = gKxg

−1 with g = ksk′, where k, k′ ∈ Kx and s ∈ S.
Then it is clear that Ky = (ks)Kx(ks)−1 and y lies on the apartment associ-
ated to (ks)S(ks)−1 = kSk−1. It is also clear that x lies in kSk−1 also since
θx(kSk−1) = θx(k)θx(S)θx(k)−1 = kSk−1. Thus x, y both lie on Ared(kSk−1).
— Kx permutes apartments containing x transitively. Suppose that x ∈

Ared(S) and x ∈ Ared(S′). We may assume that S′ = gSg−1. The points of
Sred(G) on Ared(S′) are precisely gS(R)g−1 · (gx) = gS(R) ·x. Therefore, there
exists s ∈ S(R) such that x = gs · x. Let k = gs, then we have k ∈ Kx and
kSk−1 = S′. Therefore, Ared(S′) = k ·Ared(S).
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— Another description of the apartments containing x. Let g = k ⊕ p be
the Cartan decomposition relative to θx. Then there is a bijection between
the apartments containing x and the maximal abelian sub-algebras of p. The
bijection is Ared(S) 
→ LieS. Then the previous statement is the well-known
fact that Kx permutes the abelian sub-algebras of p.
We also define the extended apartment A(S) as Ared(S)× V (G). In partic-

ular, dimA(S) = dimS.

Functoriality. — Assume that G,H are reductive groups over R such that
G ⊂ H . Suppose that x ∈ S(G), y ∈ S(H) are such that the associated maximal
compact subgroups Gx ⊂ G(R), Hy ⊂ H(R) satisfy Gx ⊂ Hy, then we have a
G(R)-equivariant map S(G)→ S(H), sending g ·x to g ·y. It is easy to see that
Hy ∩G(R) = Gx, hence this equivariant map is always injective.
However, the Cartan involution θy associated to y may not stabilize G.

Example 13.4. — Let G = SL2, H = SL4, and define the inclusion ι : G ↪→ H
by g 
→

(
g 0
0 tg−1

)
. The standard maximal compact subgroup K of G(R) is the

stabilizer of the quadratic form represented by the 2× 2 identity matrix I2.
It is easy to see that ιK stabilizes the quadratic form q represented by the

4 × 4 matrix
(
aI2 bI2
bI2 cI2

)
. When q is positive definite (for example, a = c = 1

and b sufficiently small), the stabilizer Kq of Qq in H(R) is a maximal compact
subgroup such that ιK ⊂ Kq. But the Cartan involution θq associated to Kq
does not stabilize ιG(R) as long as b �= 0.

Definition 13.5. — (i) We say that the map S(G)→ S(H), g · x 
→ g · y is a
descent map if θy stabilizes G(R) (and hence θy descends to θx: θy|G(R) = θx).
(ii) We say that S(G)→ S(H) is a toral map if there exists a maximal R-split

torus S of G, a maximal R-split torus T of G such that x ∈ A(S), y ∈ A(T ),
and S ⊂ T .

Proposition 13.6. — (i) A descent map is a toral map.
(ii) A toral map is a descent map.
(iii) If S(G)→ S(H) is a descent map then θy′ |G(R) = θx′ for all x′ ∈ S(G),

where y′ is the image of x′.

Proof. — Let g = k⊕p and h = kH⊕pH be the Cartan decomposition associated
to θx and θy respectively.
(i) Choose S ⊂ G such that x ∈ A(S). Then s = LieS is an abelian sub-

algebra of p ⊂ pH . Let t be a maximal abelian sub-algebra of pH containing s.
Then t = LieT for some maximal R-split torus T of H . By construction, we
have S ⊂ T and y ∈ A(T ).
(ii) We need to show that k ⊂ kH and p ⊂ pH .
It is clear that k = LieGx is contained in kH = LieHy. By our assumption,

there is a maximal abelian sub-algebra a of p, and there is a maximal abelian
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sub-algebra aH of pH such that a ⊂ aH . Since p =
⋃
k∈Gx

k · a, it follows
immediately that p ⊂ pH . Now (ii) is proved.
(iii) is obvious.

Base change. — Denote ResC/R(G ⊗ C) by GC. Then there is a canonical
map Sred(G) → Sred(GC). It is constructed as follows: let θ ∈ Sred(G), and
let k and p be the +1 and −1 eigenspaces of θ on g = LieG. Then a Cartan
involution θC on gC = g ⊗ C = LieGC is defined by θC(k + p) = k − p for all
k ∈ k⊗ C, p ∈ p⊗ C.
Now the base change map Sred(G) → Sred(GC) is θ 
→ θC. It is easy to see

that this map is G(R)-equivariant.
We also have an obvious inclusion V (G) ↪→ V (GC). Combining with the

previous construction, we get a base change map

S(G) −→ S(GC),

which is clearly a G(R)-equivariant descent map.

Proposition 13.7. — The image of the base change descent map S(G) →
S(GC) is S(GC)Gal(C/R).

Proof. — This can be checked directly. It also follows immediately from the
proof of Thm. 13.11.

Proposition 13.8. — Assume that G ⊂ H is an embedding of complex groups
in the sense that there are complex reductive groups G′ ⊂ H ′ such that G =
ResC/RG′ and H = ResC/RH ′. Then any equivariant map S(G) → S(H)
determined by an inclusion Gx ⊂ Hy is a descent map.

Proof. — In this case, g can be identified with the complex Lie algebra g′ =
LieG′ with the complex structure forgotten.
Then the Cartan involution θx on g is determined by Kx as follows:

θx(X) = X on k = LieGx, and θx(X) = −X for X ∈ ik. This describes θx
on g completely since g = k+ ik.
The same description applies to θy as well. It follows immediately that

θy|g = θx.

Descent maps and base change. — Let ι : G ⊂ H be an inclusion of real
reductive groups. Assume x ∈ S(G), y ∈ S(H) are such that Gx ⊂ Hy and
denote by ι∗ the equivariant map S(G)→ S(H), g · x 
→ g · y.

Proposition 13.9. — The map ι∗ is a descent map if and only if ι∗ extends
to a GC(R)-equivariant map S(GC)→ S(HC).

Proof. — The “only if” part is clear from the description of base change.
The “if” part follows from Prop. 13.8.
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Remark 13.10. — We may regard θx as the counterpart of the valuation of
root datum in the p-adic case. The real case is a lot easier than the p-adic case
because θx is really defined on G(R) and can be restricted on any subgroup
directly. In the case of valuation of root datum, the valuation is only defined
on various root subgroups, and to talk about descent, one needs to start in a
situation where the toral condition is satisfied.
Prop. 13.6 is essentially [14, Chap. II, Thm. 2.4]. Its p-adic analogue is shown

in [18]. Prop. 13.8 is an analogue of Landvogt’s criterion for toral map [11,
2.4.1]. Prop. 13.9 says that in the real case, there is no need for the notion of a
strong descent map. The existence of descent maps for arbitrary G ⊂ H is the
main result of [11], the corresponding real analogue is an easy consequence of
Thm. 13.1.

Finite group actions. — Suppose that we have a finite group F acting
on H . Then G = (HF )0 is also reductive (see, for example, [13]). We denote
the inclusion G→ H by ι.

Theorem 13.11. — Let X be the set of descent maps ι∗ : S(G) → S(H) sat-
isfying ι∗(S(G)) ⊂ S(H)F . Then,

(i) X is non-empty.
(ii) ι∗(S(G)) = S(H)F for all ι∗ ∈ X.
(iii) X is a principal homogeneous space of V (G).

Proof. — We will first assume (i) and prove (ii) and (iii).

(ii) Let ι∗ ∈ X . Choose x ∈ S(G) and let y = ι∗(x). Let h = kH + pH and
H(R) = Hy · P be the Cartan decomposition of h and H(R) associated to θy,
where P = exp(pH). Then every point y′ on S(H) can be expressed as p.y for a
unique p ∈ P . We notice that kH , pH and Hy are F -stable since y is fixed by F .
Since the isomorphism exp : pH → P is F -equivariant, P is also F -stable.
Assume that y′ = p.y is fixed by F . Then for each s ∈ F , we have y′ =

s(y′) = s(p)·s(y) = s(p)·y. Since s(p) ∈ P , we must have s(p) = p. Now observe
that PF = exp(pHF ) is connected. This implies that p ∈ G(R) ⊂ (H(R)F )0.
Thus y′ = ι∗(p · x) is in the image of ι∗.
(iii) It is clear that V (G) acts on X by (v · ι∗)(x) = ι∗(v−1 · x). Let ι∗, ι′∗

be two elements of X . Choose y ∈ S(H)F and let x = ι−1
∗ (y), x′ = (ι′∗)

−1(y).
Then the restriction of θy on G(R) is equal to both θx and θx′ . It follows that
x′ = v · x for some v ∈ V (G). Thus we have shown that V (G) acts transitively
on X . It is clear that the stabilizer of any point ι∗ ∈ X is trivial. Therefore,
X is a principal homogeneous space of V (G).
We now prove (i) when both G and H are complex groups in the sense of

Prop. 13.8. Choose a point x on S(G). Recall that F 	 H(R) acts on S(H)
by isometries. In particular, the compact group F ×Gx acts on S(H). By the
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fixed point lemma [15, 5.28], F × Gx fixes a point y on S(H). By Prop. 13.8,
the map ι∗ : g · x 
→ g · y is an element of X .
Finally, we can now prove (i) in general. Let XC be the set of descent

maps ιC : S(GC) → S(HC) such that ιC(S(GC)) ⊂ S(HC)F . We have shown
that XC is non-empty and is an affine space under V (GC). It is easy to see
that Γ = Gal(C/R) acts on XC by affine transformation. Therefore, we can
find ιC ∈ XC which is Γ-equivariant. It follows that ιC restricts to a map from
S(GC)Γ = S(G) to S(HC)Γ = S(H) by Prop. 13.7. This restriction ι∗ = ιC|S(G)
is then a descent map S(G)→ S(H) by Prop. 13.9. It is clear that ι∗ ∈ X and
hence (i) is proved for arbitrary G and H .

Symmetric space as a space of norms. — in the rest of this section we
give some examples to illustrate Thm. 13.11. Let D be R, C, or H. Let V
be a vector space over D. By a hermitian norm (or simply a norm) on V we
mean a function α : V → R satisfying the following condition: there exists
a (unique) positive definite hermitian form 〈−,−〉 = 〈−,−〉α on V such that
α(v) = 〈v, v〉1/2.
Let G = GLD(V ). It is well-known that S(G) can be identified with the set

N(V ) of hermitian norms α on V
For a general connected reductive group, choose an embedding f : G →

GLD(V ) and a descent map f∗ : S(G) → S(GLD(V )) (whose existence follows
from Thm. 13.1). Then we can identify S(G) with the image of f∗, hence obtain
a model of S(G) as a set of hermitian norms.
As an example, consider the isomorphism f : GLH(V ) → GLH(V ∗). This

gives us a bijection from S(V ) = N(V ) to S(V ) = N(V ∗). In other words, a
hermitian norm α on V determines a unique hermitian form α∗ on V ∗, and
conversely.
Let ε ∈ {±1}, let V be a vector space over D, and let 〈−,−〉 be a non-

degenerate ε-hermitian form on V . Then G = AutD(V, 〈−,−〉)0 is a classical
group, and is the identity component of the fixed points of the involution ι :
g 
→ g∗ on GLD(V ), where g∗ is defined by 〈gv, g∗w〉 = 〈v, w〉 for all v, w ∈ V .
The involution ι acts on S(GLD(V )) = N(V ). It is easy to see that ια = α

if and only if α = α∗ when we identify V with V ∗ via 〈−,−〉. We call such a
norm a self-dual norm. By Thm. 13.11, we may identify S(G) with the set of
self-dual norms on V .
Let F be R or C and let V be an octonion algebra over F . Then V is

equipped with a natural quadratic form q. Let G be the automorphism group
of the octonion algebra V (as an algebraic group over R). Then G is of type G2

and there are natural embeddings G ↪→ SO(V, q) and G ↪→ Spin(V, q).
It is easy to see that the centralizer of G in SO(V, q) (resp. in Spin(V, q))

is the center of SO(V, q) (resp. of Spin(V, q)). By Thm. 13.1, there is a unique
descent map S(G) ↪→ S(SO(V, q)) = S(Spin(V, q)).
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As in §11, there is a natural action of Z/3Z on Spin(V, q) such that G =
Spin(V, q)Z/3Z. By Thm. 13.11, the image of S(G) in S(Spin(V, q)) is precisely
S(Spin(V, q))Z/3Z.

14. Appendix: The Symmetric Space of G2(R) and G2(C)

In this appendix, we will show a real version of Thm. 7.2, i.e. that S(G2) is
the space of self-dual algebra hermitian norms.

Definition 14.1. — Again F is either R or C. By a normed octonion algebra
over F , we mean a pair (V, α) where V is an octonion algebra over F , and
α : V → R is a hermitian norm on V satisfying the following two conditions
(AN): α is an algebra norm in the sense that α(x) · α(y) ≥ α(x · y) for all

x, y ∈ V ;
(SD): 〈−,−〉α is self-dual with respect to the symmetric bilinear form

B(−,−) : V × V → F defined by B(x, y) = Tr(x · y).
An isomorphism between normed octonions (V, α) and (V ′, α′) is an algebra

isomorphism f : V → V ′ such that α′ ◦ f = α.

Proposition 14.2. — (i) Let (V, α) and (V ′, α′) be two normed octonion al-
gebras over F . Then (V, α) is isomorphic (V ′, α′) if and only if V is isomorphic
to V ′ as algebras over F .
(ii) Let V be a fixed octonion algebra over F . Let N be the set of α : V → R

such that (V, α) is a normed octonion. Then Aut(V ) acts on N by g ·α = α◦g−1

and the action is transitive.

Proof. — Let N′ be the set of hermitian norms α satisfying (SD). Since B(x, y)
= B(g · x, g · y) for all g ∈ Aut(V ), it is clear that Aut(V ) acts on N′ by
g · α = α ◦ g−1 and N is stable under this action.
It is also clear that (i) is equivalent to (ii). Therefore, it suffices to prove the

transitivity statement in (ii). We shall first find a nice set representing every
orbit in Aut(V )\N′ and then show that there is at most one orbit which may
consists of hermitian norms satisfying (AN).
If F = R and V is non-split, then B(−,−) is positive definite. In this case,

α : x 
→
(
1
2B(x, x)

)1/2 is the only norm which satisfies condition (SD). It is
clear that it also satisfies (AN). Therefore, the proposition is trivial in this case.
From now on, we assume that V is a split octonion (F can be R or C). We

may further assume that V is the so-called Zorn’s model. The notation here is
the same as that in §5.
It is known (see [10, Cor. 33.21]) that G2(F ) = Aut(V ) acts transitively on

the set
S =

{
v ∈ V : Tr(v) = 1 and B(v, v) = 0

}
.
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Choose v0 ∈ S such that α(v0) = inf {α(v) : v ∈ S}, and then choose g ∈ G2(F )
such that g.v0 = e4 ∈ S. By replacing α by α ◦ g−1, we may assume that
α(e4) = inf {α(v) : v ∈ S}.
Observe that for i ∈ {−3,−2,−1, 1, 2, 3}, e4 + tei ∈ S for all t ∈ F . There-

fore, α(e4 + tei) ≥ α(e4). This implies immediately that e4 ⊥ ei with respect
to 〈−,−〉α.
Let Q = (〈ei, ej〉α) and J =

(
B(ei, ej)

)
be the matrices of 〈−,−〉α and

B(−,−) with respect to the basis (e4, e−4, e1, e2, e3, e−1, e−2, e−3). Then the
condition (SD) is simply that QtJ

−1
Q = J . It is easy to see that

J =


0 1 0 0
1 0 0 0
0 0 0 I3
0 0 I3 0

 ,
where I3 is the 3×3 identity matrix. An easy computation shows that we have
e−4 ⊥ ei for i ∈ {−3,−2,−1, 1, 2, 3} and e4 ⊥ e−4. Therefore, we can write

Q =


r 0 0 0
0 s 0 0
0 0 A Bt

0 0 B C

 .
The condition (SD) implies

Bt · A+At ·B = 0,
Ct ·A+B ·B = I,

Ct · Bt +B · C = 0.

Let W = F · e1+F · e2+F · e3. The group SL(W ) � SL3(F ) acts on Zorn’s
model by

g ·
(
a w
ϕ b

)
=
(

a g · w
ϕ ◦ g−1 b

)
.

Therefore, if we replace α with α ◦ g for g ∈ SL(W ) ↪→ Aut(V ), then Q is
replace by 

r 0 0 0
0 s 0 0
0 0 gt ·A · g gt.Bt · (gt)−1

0 0 g−1 · B · g g−1 · C · (gt)−1

 .
We may thus assume that A = diag(1, 1, u) with u > 0 by applying a suitable g.
The matrix A = diag(1, 1, u) defines a positive definite hermitian form hA on

W � F 3. Let H = Aut(hA)∩SL(W ), so H is isomorphic to SO(3) when F = R

and to SU(3) when F = C. If we replace α by α ◦ g with g ∈ H ↪→ Aut(V ),
then A is unchanged, and B is replaced by A−1 · gt · A ·B · g.
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Let W ′ be the space of 3×3 matrices B over F such that A ·B+Bt ·A = 0.
Then H acts on W ′ by

(g,B) 
−→ A−1 · gt · A ·B · g.

It is easy to see thatW ′ is isomorphic to
∧2

W as an H-module, and that every
element of W ′ is H-conjugate to an element of the form

B =

 0 v 0
−v 0 0
0 0 0

 .
Therefore, we may assume that the sub-matrix B of Q indeed has the above

form by applying a suitable h. After these normalizations, a simple computa-
tion shows that Q has the following form:

Q =



r 0 0 0 0 0 0 0
0 s 0 0 0 0 0 0
0 0 1 0 0 0 −v 0
0 0 0 1 0 v 0 0
0 0 0 0 u 0 0 0
0 0 0 v 0 1 + |v|2 0 0
0 0 −v 0 0 0 1 + |v|2 0
0 0 0 0 0 0 0 u−1


.

We now apply the condition (AN), which has not been used so far. We
have α(e4) =

√
r. Since α(e4) · α(e4) ≥ α(e4 · e4) = α(e4), we have r ≥ 1.

Similarly, from e−4 · e−4 = e−4 we deduce that s ≥ 1. However, the condition
Qt · J−1 ·Q = J implies that rs = 1. Therefore, we have r = s = 1.
Let x = ve1 + e−2. Then α(x) = 1 and x · e−3 = −e1. Therefore, α(x) ·

α(e−3) ≥ α(−e1). That is, 1 · u−1 ≥ 1. So u ≤ 1.
Since e1 · e2 = −e−3, we have α(e1) ·α(e2) ≥ α(−e−3). That is, 1 · 1 ≥ u−1.

So u ≥ 1 and hence u = 1.
Since e2 · e3 = −e−1, we have 1 · 1 ≥ 1 + |v|2. Therefore, v = 0.
We now conclude that Q is the 8 × 8 identity matrix and hence there is at

most one Aut(V )-orbit in N. The proposition is proved completely.

Proposition 14.3. — For any octonion algebra V , there exists α such that
(V, α) is a normed octonion algebra.

Proof. — As we have remarked before, the case when F = R and V is non-split
is obvious.
Now let F be either R or C and let V again be Zorn’s model. It is clear that

α :
∑

1≤|i|≤4

aiei 
−→
√ ∑

1≤|i|≤4

|ai|2
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satisfies (SD). In the preceding proposition, we show that it is the only hermi-
tian norm (up to conjugacy by Aut(V )) that has a chance to satisfy both (AN)
and (SD). We now show that it indeed satisfies (AN).

In fact, let x =
∑
aiei, y =

∑
biei, then we have

α(x)2 · α(y)2 = α(x · y)2 +
8∑
j=1

|fj |2,

where

f1 = +a−4b−1 + a−3b+2 − a−2b+3 + a+1b−4,

f2 = −a−3b+1 + a−4b−2 + a−1b+3 + a+2b−4,

f3 = +a−2b+1 − a−1b+2 + a−4b−3 + a+3b−4,

f4 = +a−1b−1 + a−2b−2 + a−3b−3 − a+4b−4,

f5 = +a+1b+1 + a+2b+2 + a+3b+3 − a−4b+4,

f6 = +a+2b−1 − a+1b−2 + a+4b+3 + a−3b+4,

f7 = −a+3b−1 + a+4b+2 + a+1b−3 + a−2b+4,

f8 = +a+4b+1 + a+3b−2 − a+2b−3 + a−1b+4.

This is done by a direct calculation. We don’t know a good way to explain this
identity.

Theorem 14.4. — Let V be an octonion algebra over F and define G =
Aut(V ). Let N′ be the set of hermitian norms on V satisfying (SD) and let N

be the subset of N′ consisting of those norm satisfying (AN) as well. We iden-
tify N′ with S(SO(V, q)). Then N is the image of the unique descent map
S(G)→ S(SO(V, q)).

Corollary 14.5. — Let G(R) acts on N by g.α = α ◦ g−1. For any α ∈ N,
the stabilizer Kα of α in G(R) is a maximal compact subgroup of G(R). The
correspondence α 
→ Kα is a bijection from N to the set of maximal compact
subgroups of G(R).

Proof. — Again, this is trivial when F = R, V is non-split, and G is compact.
We now assume that V is split. Again we can assume that V is Zorn’s model.
Let α0 be the element of N given in the proof of Prop. 14.3. We claim that Kα0

is a maximal compact subgroup of G(R).
The stabilizer Kα0 is clearly compact. It is easy to see that Kα0 is the set

of real points of a real algebraic group. Therefore, we can compute dimKα0 by
computing dim(LieKα0).
In fact, as a sub-algebra of gl(V ) = End(V ), the Lie algebra of G con-

sists of those endomorphisms of V whose matrix representations for the basis
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{e−4, e−3, e−2, e−1, e1, e2, e3, e4} are of the form

0 a′ b′ c′ c b a 0
a x p′ q′ b′ −c′ 0 −a
b p y r′ −a′ 0 c′ −b
c q r z 0 a′ −b′ −c
c′ b −a 0 −z −r′ −q′ −c′
b′ −c 0 a −r −y −p′ −b′
a′ 0 c −b −q −p −x −a′
0 −a′ −b′ −c′ −c −b −a 0


with x + y + z = 0. When F = R, LieKα0 consists of real matrices of the
above form which are anti-symmetric, so dimKα0 = 6. When F = C, LieKα0

consists of complex matrices of the above form which are anti-hermitian, so
dimKα0 = 14. Because the maximal compact subgroups of G(R) are connected
of dimension 6 when F = R, of dimension 14 when F = C, Kα0 must be a
maximal compact subgroup.
By Prop. 14.2, G(R) acts on the set N transitively. Therefore, by composing

α 
→ Kα with the inverse of θ 
→ Kθ, we get a bijection α 
→ θα between N

and S(G). We identify N with S(G).
It remains to show that under this identification, the inclusion N ⊂ N′ is

the unique descent map S(G) → S(SO(V, q)). When F = C, this follows from
Prop. 13.8.
When F = R, we consider the following commutative diagram

S(GC)
fC

∗−−−−→ S
(
SO(V, q)C

)$ $
S(G)

f∗−−−−→ S
(
SO(V, q)

)
where the horizontal arrows are the unique descent maps, and the vertical
arrows are base change maps. Let y ∈ S(GC) be such that Ky ⊂ GC(R) is the
stabilizer of the norm αC on VC constructed in the proof of Prop. 14.3. It is clear
that Ky is stable under the complex conjugation. By Prop. 13.7, y is the image
of some x ∈ S(G) under the base change map. By definition, Kx = Ky ∩G(R).
It is easy to see that Kx is the stabilizer of α0 = αC|V .
By Prop. 13.8, fC

∗ (y) ∈ S(SO(V, q)C) � N′
C
is simply αC. It is easy to see that

αC is the image of α0 ∈ S(SO(V, q)) � N′ under the base change map. By the
commutativity of the above diagram, we have f∗(x) = α0. This shows that f∗
is indeed the inclusion N→ N′. Now the theorem is proved completely.

We can identify S(SO(V )) = S(Spin(V )) with the set N′ of self-dual norms
on V . Under this identification, Z/3Z acts on N′, and the action can be de-
scribed as follows: let σ be a generator of Z/3Z ⊂ Aut(Spin(V )). Each α ∈ N′

defines a Cartan involution θ'α on gl(V ) which restricts to a Cartan involution
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θα on so(V ). The Cartan involution (Lieσ) ◦ θα ◦ (Lieσ)−1 is θσ·α. Therefore,
the condition σ.α = α can be verified using linear algebra computations.

Corollary 14.6. — Let α ∈ N′ be a self-dual norm on V . Then σ · α = α if
and only if α is also an algebra norm for the octonion V .

Proof. — This is clear from the preceding theorem, and Thm. 13.11.

The corollary is interesting because as we just explained, the condition
σ · α = α is easy to verify using linear algebra. However, unlike the p-adic
case (Lemma 2.1), we do not know a good way of verifying that α is an algebra
norm in general.
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