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EXPONENTIALS FORM A BASIS OF DISCRETE
HOLOMORPHIC FUNCTIONS ON A COMPACT

BY CHRISTIAN MERCAT

ABSTRACT. — We show that discrete exponentials form a basis of discrete holomor-
phic functions on a finite critical map. On a combinatorially convex set, the discrete
polynomials form a basis as well.

RESUME (Les exponentielles forment une base des fonctions holomorphes discrétes sur
un compact)

Nous montrons que les exponentielles forment une base des fonctions holomorphes
discrétes sur une carte critique compacte. Sur un convexe, les polynémes discrets
forment également une base.

1. Introduction

The notion of discrete Riemann surfaces has been defined in [13]. A good
basis for the associated space of holomorphic functions was still missing. This
article discuss an interesting one in the simply connected critical case.
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F1GURE 1. The discrete Cauchy-Riemann equation takes place on each rhombus.

We are interested in a cellular decomposition <) of the complex plane or
a simply connected portion U of it, by rhombi (equilateral quadrilaterals,
or lozenges). In other words, our cellular complex is made of quadrilaterals
(a quad-graph) and we have a map from the set of vertices {¢ to the complex
plane Z : $o — C such that for each oriented face (x,y,2’,y') € o, its im-
age is a positively oriented rhombus (Z(z), Z(y), Z(z'), Z(y')) of side length
6 > 0. It defines a straightforward Cauchy-Riemann equation for a function
f € C°($) of the vertices, and similarly for 1-forms:

(1.1) fW)—fly) _ f@') — f(2)

Z(y") = Z(y)  Z(@) - Z(x)

We call such a data a critical map of U. The relevance of this kind of maps
in the context of discrete holomorphy was first pointed out and put to use by
Duffin [8]. The rhombi can be split in four, yielding a finer critical map ', Z’
with ¢/ = 6. In [13], [12] we proved that a converging sequence of discrete
holomorphic functions on a refining sequence of critical maps converges to a
continuous holomorphic function and any holomorphic function on U can be
approximated by a converging sequence of discrete holomorphic functions. The
proof was based on discrete polynomials and series. In the present article we
are going to show that the vector space spanned by discrete polynomials is the
same as the one spanned by discrete exponentials and the main result is the
following

THEOREM 1. — On a combinatorially convex finite critical map, the discrete
exponentials form a basis of discrete holomorphic functions.

On a non combinatorially convex map we define some special exponentials
which supplement this basis.

The article is organized as follows. After recalling some basic features of
discrete Riemann surfaces at criticality in Section 2, we define discrete expo-
nentials in Section 3 and show some of their basic properties, related to polyno-
mials and series. We give in particular a formula for the expression of a generic
exponential in a basis of exponentials. In Section 4, we introduce the notion
of convexity, related to a geometrical construction called train-tracks, and we
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DISCRETE EXPONENTIALS 307

prove the main result. Finally we study the general case in Section5 where
we define special exponentials and show they form a basis. The appendix lists
some other interesting properties of the discrete exponentials which are not
needed in the proof.

We note that it is possible to use the wonderful machinery defined in [10] to
prove that discrete exponentials form a basis of discrete holomorphic functions
on a critical compact. Indeed, Richard Kenyon gives an expression of the
discrete Green’s function (the discrete logarithm) as an integral over a loop in
the space of discrete exponentials:

(1.2) G(O,z) = —

log 16X
7{ exp(:\: x) 2829% 1\
c A

1
824
where the integration contour C' contains all the points in P (the possible
poles of exp(:A: z)) but avoids the half line through —z. It is real (negative)
on half of the vertices and imaginary on the others. Because of the logarithm,
this imaginary part is multivalued, it has a (discrete) logarithmic singularity
at the origin: the Laplacian of G(O,e) is 1 there, and null elsewhere. On a
compact, considering points on the boundary as origins, these functions can be
single valued and can be formed into a basis of discrete holomorphic functions.
They clearly belong in the space of discrete exponentials.

The approach we will present here is much more pedestrian and simplistic.

In a forthcoming paper in collaboration with A.Bobenko, B. Springborn
and Y. Suris, the theory will be generalized to a much broader setup, based
on a quadratic notion of discrete holomorphicity: cross-ratio preserving maps.
Given a base function F' defined on a quad-graph, a function G is cross-ratio
holomorphic [3], [2], [4] if, for every quadrilateral (z,y,z’,y") € o,
ny  C@-CW) G)-CW) _ Fa)-F@) Fu)-F)

Gly) -G') G)—-Gx) Fly)-F@) Fy)-F(z)
The circle packings of a given combinatorics and intersection angles form a very
interesting example of such cross-ratio preserving maps.

Infinitesimal deformations of a function F with given cross-ratios, that pre-
serve these cross-ratios, are parametrized by the vector space Q(F) of discrete
linear holomorphic functions g defined by the fact that their ratios along the
diagonals of the quadrilaterals are the same as the base function: g is linear
holomorphic at F' if

g(x) —g(@') F(z) - F(@')
9(y) —9ly')  Fly) - Fy)
An analytic vector field of linear holomorphic functions can be integrated into

cross-ratio preserving maps. For example, the vector field given by the Green
function is integrated into the 1-parameter line Z7 [1].

(1.4)
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An important classical ingredient in the theory of cross-ratio preserving maps
is the Bdicklund transformation [4], [5], [9]. It is a two complex parameters
(u, A) family of (cross-ratio) holomorphic functions BY(F'), that is to say with
the same cross-ratios as F'. The parameter u is a starting value at a given
origin, B{(F')(O) = u. This transformation verifies

(1.5) BF O (ByF)) =F
for any (u,\), and the identity transformation corresponds to (u,A) =

(F(0),0), Bg(o) (F) = F. It is an anlytic transformation in all the parameters
therefore its derivative is a linear map between the tangent spaces,

(1.6) dBY(F) : Q(F) — Q(BY(F)).

It is not injective and I define the discrete exponential at F' as being the direc-
tion of this 1-dimensional kernel. It can be characterized as a derivative with
respect to the initial value at the origin:

a v u U
(1.7) exp, (N F) := %Bﬂ\(BA (F))|v=r(0) € ker(dB(F))
because BY(B",(G)) = G for all A\, G and v. We use them to derive Kenyon’s
formula in a more general setup and cover the subject of an infinite critical

map with finitely many slopes, extending the results of the present article.

FIGURE 2. The discrete exponential exp, (:A\:F') is the kernel of the
linear transformation dBY(F) (here u = F(0)).

2. Integration and Derivation at criticality

2.1. Integration. — Given an isometric local map Z : U N < — C, where
the image of the quadrilaterals are lozenges in C, any holomorphic function
1 € Q($) gives rise to an holomorphic 1-form fdZ defined by the formula,

(21) fdz = M(Z@) - Z(@)),

(z,y)
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where (z,y) € {1 is an edge of a lozenge. It fulfills the Cauchy-Riemann equa-
tion for forms which is, in the same conditions as Eq. (1.1):

1
(2.2) 7/ +/ +/ +/ raz
Z(y’)—Z(?J)( ) Jwy) Ja) <m'7y'>)
o L]
= + + + fdz.
Z(a') — Z(x) (my) ozt () <yaz'>)

Once an origin O is chosen, it provides a way to integrate a function
Int (f)(z) := [5fdZ. We proved in [12] that the integrals of converging
discrete holomorphic functions (f*), on a refining sequence ({¥) of critical
maps of a compact converge to the integral of the limit. If the original
limit was of order f(z) = f*(z) + O(0?), it stays this way for the integrals,
J5 fw)ydu = [5 f*dZ +O(67), where the left hand side is the usual continuous
integral and the right hand side the discrete ones.

Following Duffin [7], [8], we define by inductive integration the discrete ana-
logues of the integer power monomials z*, that we denote Z*:

(2.3) Z0% =1,
(2.4) zZh = k/ zhtdz.
O

The discrete polynomials of degree less than three agree point-wise with
their continuous counterpart, Z?'(x) = Z(z)? so that by repeated integration,
the discrete polynomials in a refining sequence of a compact converge to the
continuous ones and the limit is of order O(4%). We will see (Eq. (3.6)) that a
closed formula can be obtained for these monomials.

2.2. Derivation. — The combinatorial surface being simply connected and
the graph < having only quadrilateral faces, it is bi-colorable. Let I" and T'*
the two sets of vertices and e be the biconstant (') = +1, ¢(T'"*) = —1.
For a holomorphic function f, the equality fdZ = 0 is equivalent to f = Ae
for some A € C.

Following Duffin [7], [8], we introduce the

DEFINITION 2.1. — For a holomorphic function f, define on a flat simply con-
nected map U the holomorphic functions fT, the dual of f, and f’, the derivative
of f, by the formulae

(2.5) fi(z) =e(2) f(2),
where f denotes the complex conjugate, € = +1 is the biconstant, and
4 ? T
/ — T
(2.6) @)= (/O f dz) + e,

defined up to ¢.
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We proved in [13] the following

PROPOSITION 2.2. — The deriative f’ fulfills
(2.7) df = f'dz.

3. Exponential

3.1. Definition

DEFINITION 3.1. — The discrete exponential exp(:\: Z) is the solution of
(3.1) exp(:A:0) =1, dexp(:A:Z) = dexp(:A: Z)dZ.

We define its derivatives with respect to the continuous parameter A:

ak
ke ). — )
(3.2) ZWexp(:\i Z) = I exp(:\: 7).

The discrete exponential was first defined in [11] and put to a very interesting
use in [10]. For |A|# 2/4§, an immediate check shows that it is a rational fraction
in \ at every point: For the vertex z = > de? %
1+ Lhseif
3.3 exp(:A:x) = -2
( ) p( ) 1;[ 1_ % ool Or
where (6;,) are the angles defining (de??*), the set of (Z-images of) {>-edges
between z and the origin. Because the map is critical, Eq. (3.3) only depends
on the end points (O, z). It is a generalization of a well known formula, in a
slightly better version,

Az\n A2 22 1+ Az/2n\" A3 a3
) o0 = (14 55) +0(5) = (g m) +0(5)
to the case when the path from the origin to the point z = Y7 2/n = > Je?%
is not restricted to straight equal segments but to a general path of O(|z|/d)
segments of any directions.

The integration with respect to A gives an interesting analogue of
Zi7k exp(:\: Z). Tt is defined up to a globally defined discrete holomor-
phic map. One way to fix it is to integrate from a given Ay of modulus 2/4,
which is not a pole of the rational fraction, along a path that doesn’t cross the
circle of radius 2/4 again.

PROPOSITION 3.2. — For point-wise multiplication, at every point x € {q,
(3.5) exp(:A:x) -exp(: — Aiz) = 1.
The specialization at A = 0 gives back the monomials:

(3.6) 7% = 7% exp(:\: Z)| x—o-
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The anti-linear duality t maps exponentials to exponentials:

(3.7) exp(:A:)T = exp (%)

In particular, exp(:00:) = 1T = ¢ is the biconstant.

Proof. — The first assertion is immediate. The derivation of (3.1) with respect
to A yields

ok ok ok—1
(3.8) dw exp(:\: Z) = ()\ IE exp(:\: Z) + k =T exp(:: Z)) dz

which implies (3.6). Derivation of exp(:\:)T gives,

(3.9) (eXp(:)\:)T)I = ;—2(/; exp(:)\:)dZ)T +pe

4 rexp(:A:) — I\T 4 t
ﬁ(f) +pe= ﬁexp(:)\:) +ve
with p, v some constants, so that the initial condition e)fp(:)\:O)T =1 at the
origin and the difference equation dexp(:\:)T = 4/(5%2)\) exp(:\:)TdZ yields
the result. O

Note that it is natural to define exp(:A: (x — 2)) := exp(:\: z) /exp(: A: 2g) as
a function of = with zg a fixed vertex. It is simply a change of origin. But apart
on a lattice where addition of vertices or multiplication by an integer can be
given a meaning as maps of the lattice, there is no easy way to generalize this
construction to other discrete holomorphic functions such as exp(:A: (z + ny))
with z,y € $g and n € Z.

3.2. Series. — The series Y ;o  A¥ Z*¥ /k!, wherever it is absolutely conver-
gent, coincide with the rational fraction (3.3): Its value at the origin is 1 and it
fulfills the defining difference equation (3.1). Using Eq. (3.6), a Taylor expan-
sion of exp(:A: ) at A = 0 gives back the same result. We are now interested
in the rate of growth of the monomials.

Because Z% /k! are the iterations of the integration operator Int on the
constant function 1, their norm can not grow faster than the powers of its
largest eigenvalue Apmayx, which implies absolute convergence for |A\|< 1/|Amax|-
We have some information on these eigenvalues, summarized in the appendix,
through the minimal polynomial of Z.

Direct analysis gives an estimate of Z::

PROPOSITION 3.3. — For x € {, at a combinatorial distance d(x,O) of the
origin, and any k € N,

. 2 ) )
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for any o > 1 arbitrarily close to 1.

COROLLARY 3.4. — The series Y pooA¥Z* /Kl is absolutely convergent
for |A|< 2/6.

Proof of Proposition 3.3. — It is proved by double induction, on the degree k
and on the combinatorial distance to the origin. For k = 0, it is valid for any z
since (a+1)/(a—1)=1+2/(a— 1) > 1, with equality only at the origin.

Consider z € ¢ a neighbor of the origin, Z(x) = de’?, then an immediate
induction gives for k > 1,

Z* () Jetf\k

(3.11) K 2( 2 )
which fulfills the condition Eq. (3.10) for any k > 1 because (a+1)/(a—1)a® > 2.
This was done merely for illustration purposes since it is sufficient to check
that the condition holds at the origin, which it obviously does.

Suppose the condition is satisfied for a vertex x up to degree k, and for its
neighbor y, one edge further from the origin, up to degree k — 1. Then,

Z:k: Z:k: T Z:kflz T +Z:k71: 7 — Z(x
(3.12) k!@): k'< ) . ((k?_l)! (v) <y>2 ()

in absolute value fulfills

s 52 < ()7 02) 7 {(0) - (- 22D)3)
() ()

(aJrl)d(y,O)( 5)k
= o — s
a—1 2

thus proving the condition for y at degree k. It follows by induction that the

condition holds at any point and any degree. o
3.3. Basis
THEOREM 2. — The vector spaces of discrete exponentials and of discrete poly-

nomials coincide. A basis is given by any set of exponentials {exp(:Xe1)};<o<p,
of the right dimension n = dim Vect (Z:k’), with A\ # Ag, distinct complex
values of norm different from 2/6. In such a basis, if for a fized Ao,

(3.14) exp(:Ag:) = Z,ug(/\o) exp(:Ae:),
(=1

then exp(:\:) is expressed as

T Ao — A
(3.15)  exp(: (Z - )\ Me )) )f’_)\; pe(Xo) exp(:Ae:).
£=1
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Proof of Theorem 2. — An exponential being equal to a series belongs to the
space of polynomials. Equation (3.6) proves the reciprocal. Another way to
express it is the direct limit
/\Z Z:é:
i)

Let {exp(:Ar1)}g<p<p @ set of non trivial linear dependent exponentials,
A¢ # A,. It can be reduced by iteration of deletions to a single linear com-
bination dependence

k—

ki s 1~k - _
(3.16) 2% = lim kA (exp(.)\.Z >

=

k
(3.17) exp(:Ag:) = Z,U,g()\o) exp(: ),
=1

with {exp(:A¢:)}; <p<p @ free set of at least two elements. We are going to show
that it then provides a basis.

We show Eq. (3.15) first for A = 0. The integral of exp(:\g:) is equal to

- ‘A0 — k exp(:Ag:) —
(3.18) /exp(:Ao:):M:ZM(AO) p(:Ae) — 1

o Ao — A

so that
k k A
(3.19) Z — e(Xo) exp(:Ae:) = exp(ihg:) — 1+ é_zl /\—j (o).

One gets as well that 1 — 2521 Ao/ e 1te(Xo) # 0 because, using the fact that
the left hand side exponentials form a free set, the contrary would imply that
Ao/ A pe(Ao) = pe(Xo) for all 1 < £ < k, which is contradictory. The right hand
side of Eq. (3.15) for A =0 is

k -1k _
20 (X2 m00) 3 2 o) exphe)

-1 k k
= (17 20 M@()\())) (72 2o te(Ao) exp(:Ae:) +Z/Lg()\o) exp(:)\g:))
=1

k _ k
= (1721—2#2(/\0)) 1( exp(:Ao:) Z)\—O (Ao) +exp(:Ao: )) =L
=1 =1

So that the assertion is proved for A = 0 and the constants belong to the vector
space spanned by our exponentials. The integration operator on exponentials,
Int(exp(:Xo:)) = exp(:Ao:) — 1/Ao preserves this space therefore, successive in-
tegration shows that polynomials belong to this space as well. We conclude
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that the free set of exponentials is in fact a basis of polynomials, hence of ex-
ponentials. So there exists k = n complex valued functions ps(X) such that, for
all A € C of norm different from 2/4,

(3.21) exp(:A:) = ZM(/\) exp(:As:).
(=1

Therefore the previous considerations can be done for a generic A. This shows
in particular that pue(\) # 0 for all £ at a generic permissible point. Identifying
the expansion of the constant 1 on the basis, induced by a generic A and by Ag,
one gets, for all 1 <m < mn,

" A=\ 1A= Ap
(322) (XS me) (N
=1 m
"o — Ao -1 \g — A
= (X m0) = (o),
=1 )\Z )\m

so that (A — Ap) pm (M) for 1 < m < n are all proportional to the same rational
fraction. Solving at the origin yields the result Eq. (3.15).

It implies that the value 0 among the distinct parameters (A¢)o<e<n is per-
missible as well. By duality Prop 3.2, the value oo yields a well defined limit
as well and in particular

n

(323) o= (D00 A m00)) (o — M) (o) exp(Aee).

=1 {=1

As a conclusion, any set of n distinct complex parameters {\}, of modulus
different from 2/§ yields a basis of exponentials. By duality Eq. (3.7), the
argument co can be included as well. o

REMARK 3.5. — The previous theorem can be restated using as a basis
(Z* exp(:\:))o<k<n for any A & Py, since the vector space spanned by this
set is the same as the limit space spanned by (Exp(:Ax:))1<k<n when Ay all
converge to A, staying all distinct.

4. Convexity

4.1. Train-tracks. — We are interested only in the compact simply con-
nected case.

DEFINITION 4.1. — Two opposite sides in a rhombus are parallel. We will
call a train-track a class of oriented edges of {» induced by pairing the parallel
opposite sides of rhombi. Let © this set of classes, each element ¢ € © is labelled
by an angle 6(t) € R (mod 27) defined through any representative e € ¢ by
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Z(e) = dexpif(t). The poles of the rational fraction Eq. (3.3) are contained in
the set

(4.1) Py = % exp —i 0(0O).

There is no problem to define the exponential exp(:A:) for A € P, and the
previous results extend to them. In particular, a basis of discrete exponential
is given by any set of exponentials {exp(:A\¢:)}; .y, of the right dimension
with A, # A, distinct complex (or infinite) values not in P.

Proposition 3.2 implies that these exponentials are real on one color and
pure imaginary on the other color, exp(:A:) € C2(T') +4 CR(I'*), which can be
shown by direct inspection as well.

Each color set I and I'* can be given a structure of cellular decomposition of
(a subset of) the domain U, their edges are the diagonals of the lozenges. They
are Poincaré dual to each other. The Dirichlet theorem allows to solve for a
harmonic real function on the graph I' given some real boundary values. When
the weights defining the discrete Laplacian are given by the aspect ratios of the
lozenges (see Eq. (A.3) and [13]), each harmonic function on one graph can be
paired with a dual harmonic function on its dual into a discrete holomorphic
function, uniquely up to an additive constant. Therefore the dimension of the
space of holomorphic functions is equal to half the number of points on the
boundary, plus one [13]. And the number of points on the boundary is also
the number of train-tracks, which makes the set of unoriented train-tracks (and
another index) a likely label set for a basis of discrete holomorphic functions.
The construction of this basis is the subject of Section 5.

4.2. Convexity. — Because the rhombi are all positively oriented, a train-
track can not backtrack, does not self-intersect and two train-tracks can in-
tersect at most once, or are opposite. A train-track ¢ € © disconnects the
rest of the cellular decomposition into an initial side and a terminal side.
Their role is exchanged for the opposite train-track —t. These sides have
two parallel boundaries facing each other, say C;(¢t) and Cy(t), such that
Z(Cy(t)) = dexp(i0(©)) + Z(Ci(t)). A train-track t € © identify pair-wise op-
posite edges on the positively oriented boundary, e;", e, € 9 with e;", —e; € t.
If two train-tracks ¢,¢' € © share the same direction, 6(t) = 6(t'), the edges
el e ef e, € 0O, with Z(ef) = —Z(e; ) = Z(e)) = —Z(e;), can occur
cyclically in essentially two ways: Since the train-tracks can not cross, these
two pairs are not interlaced but in the order

(4.2) (e, ov€y sy, ) oOr
(4.3) (6 ooy sy €y)
DEFINITION 4.2. — A map < is conver if the situation (4.3) only occurs.
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(4.2) (4.3)

FIGURE 3. Non convex and convex situations.

FIGURE 4. An example of a convex.

Be careful that this notion of convexity, while connected to the usual one is
nevertheless different, in particular if no two train-tracks share the same slope
then it is always convex, see for example Fig. 4. This notion is closely related
to the spirit of [6].

PROPOSITION 4.3. — When < C <’ is a portion of a larger convexr compact
flat critical map, convexity is equivalent to the fact that if a train-track has two
rhombi in {, then the whole portion in between is in > as well.

Proof. — Necessity is clear, if a train-track has two disconnected portions in
the connected <>, then the latter is not convex. Conversely, if every train-
track intersects { in a connected line, the fact that train-tracks with equal
angles don’t intersect allows to continue them until the boundary of ', without
changing the cyclic order. o

For future use, we setup the following

DEFINITION 4.4. — Let t € O a train-track, ¢ = 0(¢) its slope angle, A(t) =
(2/6)e~"¢ the corresponding element in P. Let (¢, OZ), ..., ¢F the connected
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((/Asw
S

FIGURE 5. The level associated with an angle.

components of ¢ minus the rhombi in 671(¢), having the same slope as t.
These components are ordered into a chain of initial and terminal sides, form-
ing an oriented tree(!). Each component has a given level dg counting the
algebraic number of times these train-tracks were crossed from the origin. To
each train-track ¢, we associate the connected component on its terminal side
and denote it {f. We define likewise d(t).

REMARK 4.5. — The rational fraction exp(:u:z), for x € ! has a pole of
order dg(t) at 1 = A(t) and a zero of same order at pu = —A(t) if dy(t) > 0,
or a zero of order —dy at pu = A(t) and a pole of same order at p = —A(t)
if dy(t) < 0.

The level associated with an angle ¢ is opposite to the level associated with
—¢, d_y = —dy: A zero at u = Ao for exp(:u: x) is equivalent to a pole of the
same order at u = —Ag. The two connected components which are separated
by a given train-track ¢ are {* and {~t. See Fig. 5 for an example.

4.3. Proof of the main result

Proof of Theorem 1. — Consider a point z € {¢ and a path « form the origin
to . This path can be so chosen that the train-tracks it crosses are crossed
only once. Its length is the combinatorial distance d(x,O) between x and the
origin. The point z is uniquely determined by the set ©, of train-tracks the
path crosses. Indeed,

(4.4) =Y bl

tEO,

(1) Which is not a total ordering if <> is not convex.
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where we have written z in place of its Z-image Z(z). Given a basis
{exp(:Ae:) }1<e<n of discrete exponentials such as in Prop.2, the rational
fraction Eq. (3.3) in A, equals the basis expansion Eq. (3.15),

1+ IAgett®

1 — $Adeif()

(l);?)\ )Z

(4.5) exp(hz) = H

pe(Xo) exp(:Ae: ).

The dependency in x of the basis expansion is solely through the complex
numbers exp(:\s: x). It is immediate to see that the poles in front of them are
canceled by zeros of the prefactor so that

Pr(M)
QM)

with P, and @ are polynomials, both of degree n — 1, the former depending
on z but not the latter. Some zeros of P, cancel some of the zeros of @,
leaving d(z, O) poles, counted with multiplicities. Each pole is of the form
A = (2/6)e %M and corresponds to one of the train-tracks ¢ between z and
the origin.

If the train-tracks angles are all different, considering all the paths starting
at the origin, we see that each train-track such that the origin is on its initial
side contributes to a zero of (). Therefore its degree is at least the number of
such train-tracks. This number is equal to the unoriented train-tracks, that is
to say half the number of vertices on the boundary. Therefore

09
> 1
Z 5 +

(4.6) exp(:h:x) =

(4.7)

The right hand side is the dimension of the space of discrete holomorphic func-
tions, which is an upper bound for n, yielding the result in that case.

If some train-tracks share the same angle, they don’t contribute to different
zeros of ) but possibly to a higher order for the same zero.

It is a matter of definition to check that when a point x is in a connected com-
ponent Oé at a level dy, > 0, the train-tracks of angle ¢ encountered from the
origin, contribute to a zero at A = (2/8)e "% of order dy in Q(\). When d, < 0,
the zero is at A = —(2/8)e 9.

Convexity is equivalent to the fact that there is, for each possible slope, only
one connected component at a given level. Therefore, in that case as well, each
(unoriented) train-track contributes to exactly one zero of the numerator @,
counting multiplicities. The same counting yields the result. O
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5. Special Exponentials

We are going to define the special exponentials exp,(:Ao:x) for A\g € Py,
one for every train-track t of slope 2/\g = de*?() that is to say one for every
possible pole (and multiplicity) in A of the exponential exp(:\: z) at a given
vertex © € <. Richard Kenyon’s contour integral 1.2 comes from a sum
of residues over the poles. In the same fashion, a contour integral of any
holomorphic measure in the A space can be concentrated as a weighted sum
over these special exponentials.

5.1. Definition. — Let t € O a train-track, ¢ = 0(t) its slope angle, A\g =
A(t) € Py, and Og, OZ), el <>f¢ the associated connected components of <.

Consider the rational fraction exp(:\: z), at a point x € Oé on a connected
component at level dg(¢) > 0. Choose an origin Of; € Oé for each connected
component ¢. It defines exp,(:\: ) := exp(:\: (xz — Oé))wé, free of zeros and
poles at A = +)\g for every point = € Oé. We extend it by zero to other
connected components. The exponential exp(:A: (z — Of)) has a well defined
limit on the components of level lower than dy(¢), it is the null function because
on each component it contains a factor of the form (A — Xg), therefore the

Cauchy-Riemann equation is fulfilled across the train-track to the previous
components. On the next components however, exp(:\: (z — Og)) diverges

since it contains the factor (A — Xg)~!. Continuing it by zero yields exp,(:\: x)
which is no longer a discrete holomorphic function because it fails to fulfill the
Cauchy-Riemann equation across the train-track to the next components.

PROPOSITION 5.1. — For every connected component Oé, there exists a
unique set of complex numbers (,um), one for each connected component <>$
such that the following piece-wise discrete holomorphic function

gl (m)=ds(0)

1s a well defined discrete holomorphic function for A = \g, on the whole map <,
with

1) we=1 and

2) pm =0 for every component which can not be reached from Of;) by a path
staying above level dy(0).

DEFINITION 5.2. — We call the previous discrete holomorphic function a

special exponential and denote it exp,(:Ag:x) for the train-track ¢ such
that & = O,

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



320 MERCAT (CH.)

FIGURE 6. A special exponential exp(:1:) on the standard triangular/hexagonal
lattice with § = 2. The base point for each component is marked by a solid dot
and the value at these points is 0.

Equation (3.6) defines Z* exp(:\: Z) as the successive derivatives of the
discrete exponential with respect to A. It would be confusing to note the
special exponential > i, e (M =dsD:exp  (\: ).

ExaMPLE 5.3. — The special exponential corresponding to the central zone
at level 1 in Fig. 5 will be null on the components at levels 0 and —1 but also
on the components at level 1 corresponding to the lower leg of the figure. It
is equal to the special exponential corresponding to the other component at
level 1 on the upper leg, up to a global multiplicative factor (and provided the
origins in the various components are kept the same).

The lattices have few different slopes so that the connected components
appearing above are reduced to thin areas, see Fig. 6 for an explicit example
on the triangular/hexagonal lattice. The extreme case is the standard square
lattice where they are reduced to lines.

The demonstration uses the following
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LEMMA 5.4. — For every connected component Of;, and degree d < dg(0),

there exists a unique set of complex numbers (Vk)0<k<d¢(l)fd such that
(3=t d—dy(0)+k dF
(5.2) (A= o) exp(:h:z) — Z ve (A =X0)" O expy(:\: )
k=0

has no poles and no zero at A = (2/8)e "% on Ofb Moreover, it is proportional
to d% =4 exp,(:\: ) /dALe (D)4,

Proof. — Given x € Og, the rational fraction (A — \g)? exp(:\: z) has a pole at
A= (2/8)e™%? of order dy(f) — d while exp,(:\: x) is free of zero or pole there.
A Taylor expansion at A = A\ of the following product gives

(5.3) (A= Xxo)“Wexp(:hiz) = (A — Xo)¥® exp(:\: Oé) exp,(:A\: )
4ol -4 k d* d(0)—d
= Z (A=20)" Fr(N) oF expy(:A:z) + o(A — Xg) ™
k=0
where Fj(\) is a rational fraction with no pole and no zero at A = \g. Defining
v == F,(Ao), which does not depend on z, one gets the result. O

Proof of Proposition 5.1. — We use the lemma on every connected component
with d = dy(¢). Writing as previously the exponential in sums of different
rational fractions with poles at A = )¢ of various orders, shows that each
order independently belongs to the space of usual exponentials and has to
fulfill the Cauchy-Riemann equation when A tends to Ag. It is a matter of
course inside each connected component, but it is also the case across the
gaps made by the train-tracks between these components. In particular the
degree 0 provides a well-defined discrete holomorphic function, which satisfies
the condition 1), uy = 1. Moreover the exponential exp(:)\:(szi)) forz € O™
with dy(m) < dg(£), since it contains the factor (A — Ag), has zero as a limit
when X tends to Mg for z € $™ with dg(m) < dy(¢). Therefore we can discard
all the components at level less than dy(¢) (which correspond to integration
with respect to A). Then every connected subtree of the partial ordering of the
connected components staying above level dg(¢) can be continued by zero on
the rest of the map. Which proves the fact that the second requirement can
be met. O

A by-product of the proof is the following

COROLLARY 5.5. — For each attained level d € dy(O), there exists a linear
combination
(5.4) Z 7 exp; (A ),

t/ dg(t)=d
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unique up to a multiplicative constant, which belongs to the space of usual dis-
crete exponentials.

5.2. Basis. — We have now to show that they form a generating set for
holomorphic functions. As we pointed out in the Example 5.3, the special
exponentials associated with different train-tracks may coincide. In order to
get the right dimension, we have to select half of them. We defined {}* as the
connected component on the terminal side of ¢.

DEFINITION 5.6. — A train-track ¢ is positively oriented if a path of shortest
length from the origin to a point x € {! contains an edge in ¢.

It is equivalent to the fact that a path of shortest length from the origin to a
point z € {~, the previous component in the direction of ¢, contains no edge
in t.

The great interest of such a notion is that when a train-track ¢ is positively
oriented, the associated special exponential exp, (:A: z) is null on the subtree on
the initial side of ¢, which contains the origin. This allows for the construction
of a very natural basis starting from the origin.

THEOREM 3. — The set of all special exponentials for positively oriented train-
tracks and the constant function 1 form a basis of discrete holomorphic func-
tions.

This is done simply by expressing the generic exponential on this basis,
reconstructing its needed poles out of the special exponentials:

LEMMA 5.7. — Let @g the set of positively oriented train-tracks from the ori-
gin O. There exists a unique set of complexr numbers (“t)te(—)g such that
—dgs
(65 el =1+ 3 ke (= AD) O exp, (A1),
teo}

Proof. — The two sides of Eq. (5.5) are both discrete holomorphic functions
for generic u, and at each point are rational fractions of p with the same set
of poles, {A(tr)} associated with train-tracks ¢, between the origin and z, and
orders dg(, ), uniquely defining z = Ztk §e'9(te)  Their value at the origin are
both equal to 1.

Consider @’5 the set of positively oriented train-tracks which can be reached
in k steps from the origin. Let {>* the sub-complex of <) spanned by continuous
paths from the origin whose edges are in @’5 (we will say spanned by @g). Its
vertices are a sup-set of the set of vertices at a combinatorial distance less
than k + 1 from the origin.

Suppose that we have proven Eq. (5.5) for the sub-complex ¢, assigning a
value k; to every t € 4. All the other positively oriented train-tracks are such
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that their special exponential is null on ¢ therefore it makes sense to restrict
Eq. (5.5) to {?. The equality obviously holds for d = 0 where {° = {O}.

A point z € {91\ O is characterized by a new train-track ¢ € @dO“ \ 04,
The equation Eq. (5.5) provides a linear determination for x;:

(5:6) kei= lm (1 — A1) {exp(:,u:) ~1
S eenu (= M) exp, (Aw):) }-

Since exp,(:A(¢):) is null on {4, Eq. (5.5) restricted to {7 is not perturbed by
this assignation. The right hand side of Eq. (5.5) is discrete holomorphic on the
set spanned by ©% U {t}. On the other hand, the Cauchy-Riemann equation
allows to solve uniquely for the value at every other vertex spanned by @do u{t},
therefore Eq. (5.5) holds for all these vertices, showing that the choice of the
vertex x is irrelevant. Another vertex y € {41\ &? defining another train-
track t' defines sy in a similar way. If t N ¢’ € {91, one checks easily that the
order with which k; and k¢ are chosen is irrelevant. It is even more so if their
intersection is empty or if this intersection does not belong to {»@+1.
Proceeding for every train-track in !\ {4 we assign uniquely a
value k, to every train-track u € %"\ ©% and prove Eq.(5.5) for the
sub-complex {41, By induction we prove it for the whole map . O

Proof of Theorem 3. — Uniqueness in the lemma shows that the set of spe-
cial exponentials is a free set. The number of positively oriented train-tracks
plus one (for the constant function 1) is equal to the dimension of discrete
holomorphic functions. o

A. Appendix: additional properties

A.1. Eigenvalues of integration. — The polynomials on { are finite di-
mensional, hence there exists a minimal degree for which Z*™ is linked with
the previous monomials.

ProroSITION A.1. — Let Pz = 22:1 arZ* = 0 the minimal polynomial of
the map Z. The eigenvalues of the integration operator are the roots of the
polynomial Q = Y_;_, klay A\,

(A1) Spec(Int) = Q~(0).
Proof. — In the basis (Z%/k!) _, _, where Int(Z* /kl) = Z*+1/(k + 1)1,
up to Z"™/nl = — 22;11 k!(ax/n")a,Z* /k!, the integration operator has the
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following matrix representation

O ... oae. 0 0
1 . —ay/nlay,
.. .. X _9l |
(A.2) me= |0 - 2 az/ntan

; 0 —(n—2)ap—2/nla,
0........ 0 1—-(n—D'ap_1/nla,

and its characteristic polynomial is ). The minimal polynomial Pz can be
normalized so that P (Z) = ¢, that is to say a1 = 1. The eigenvector associated
with 0 is €. O

A.2. Derivation. — Any linear normalization of the degree of freedom \ in
Eq. (2.6) defines a derivation operator d/dZ. For example, if (O, yk, Tk, Yk+1)
in {y are the quadrilaterals adjacent to the origin, with the weights of the
discrete Laplacian p(O,xy) = —i (Z(yr+1) — Z(yx))/(Z(z1) — Z(O)) > 0 con-
trolling their aspect ratio, then the normalization

(A.3) Zp(o’zk)<£gyk+l)f(yk) 7/\) —0,
k

Y1) — Z(yx)

states that the derivative at the origin is the mean value of the nearby face
derivatives.

Because the derivation operator can have only a finite number of different
eigenvalues, the derivatives of exponentials are not always exponentials, so that

(A.4) exp(:X: Z) = Xexp(:\: Z) — fz(N) e
with a non trivial function fz, depending on the normalization.

PROPOSITION A.2. — Let (A1,...,A,) € C" distinct complex values of norm
different from 2/§, which define a basis {exp(:Ar:)} of exponentials on  and
a certain normalization of the derivation operator, that is to say n fixed values
fz(Xe) € C. Then, the normalization function is the following rational fraction:

(A5) F2O) =Y W) (A= Ao + fz(\o))
=1

in terms of the coordinates of exp(:A:) = Y_,_; pe(N) exp(:Ae:) on the basis.

Each coordinate pp(\) is a rational fraction given in Eq. (3.15). By Eq. (A.4),
the zeros of the rational fraction fz, if their norm is different from 2/4, give
all the eigenvectors of the derivation operator. Uniqueness of the exponential
implies that these eigenvalues are always non degenerate.
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In [12], we defined a normalization adapted to polynomials of finite degree.
It is the least interesting in that respect since its only eigenvalue is 0, the unique
eigenvector associated being the constant 1. We define a normalization adapted
to a basis of exponentials:

DEFINITION A.3. — Let (A1,...,A,) € C™ distinct complex values of norm
different from 2/, which define a basis {exp(:A;:)} of exponentials on U. We
normalize the derivation operator Eq. (2.6) such that it is diagonal in this basis.

Because of Eq. (3.16), the normalization adapted to polynomials is associated
with a sequence (A¥)gen of n parameters A¥ > A5 > ... > Ak converging to
zero at different rates with k, for example )\’g =k¢

A.3. Refinement. — In a refining sequence of critical maps, where the
size § goes to zero, the length of the shortest discrete path between two fixed
points O, x on the surface remains of order of their euclidian distance |z|. There-
fore, expanding exp(log(exp(:A: x))) we get

(A.6) exp(:\: x) = exp(Az) + O(X? [z]? 67).
A.4. Change of base point. — The change of base point for a polynomial

is not as simple as the Pascal binomial formula of the continuous case [12].
Nevertheless, for exponentials, if { = a(Z — b):

N = (a Nk .
(A7) > Hg-k-(x) = exp, (:A: b) o 7% (x)
k=0 k=0
A.5. Immersion. — By inspecting the map
1
(A.8) C—C, zr—>1jz

one sees that the quadrilateral

(1 142 142z 142 1+2)

"M—2"1-2 1—-2'1—2

with |z|=|2’|< 1 is mapped to a positively oriented quadrilateral whose diago-
nals cross at a right angle. It shows that the exponential exp(:A:) with |A|< 2/§
maps each rhombus to a convex quadrilateral. Therefore it is a locally injective
map.
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