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INNER AND OUTER HAMILTONIAN CAPACITIES

by David Hermann

Abstract. — The aim of this paper is to compare two symplectic capacities in Cn

related with periodic orbits of Hamiltonian systems: the Floer-Hofer capacity arising
from symplectic homology, and the Viterbo capacity based on generating functions.
It is shown here that the inner Floer-Hofer capacity is not larger than the Viterbo
capacity and that they are equal for open sets with restricted contact type boundary.
As an application, we prove that the Viterbo capacity of any compact Lagrangian
submanifold is nonzero.

Résumé (Capacités hamiltoniennes intérieure et extérieure). — Nous nous propo-
sons de comparer deux capacités dans Cn définies par les orbites périodiques de sys-
tèmes hamiltoniens. La première est la capacité de Floer-Hofer, issue de l’homologie
symplectique ; la seconde est la capacité de Viterbo basée sur des fonctions généra-
trices. Nous montrons que la capacité intérieure de Floer-Hofer n’est pas plus grande
que celle de Viterbo et qu’elles cöıncident sur les ouverts dont le bord est une variété de
contact restreinte. Nous montrons enfin que la capacité de Viterbo d’une sous-variété
lagrangienne compacte n’est jamais nulle.
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1. Introduction and main results

Throughout this paper, we consider the symplectic space (Cn, ω = dλ0),
where n ! 2 and λ0 = 1

2 Im(z · dz). To each (time-dependent) Hamiltonian
function H ∈ Ht = C∞(S1 × Cn) we associate a Hamiltonian vector field XH

given by ω(XH , .) = −dH(t, .). We shall always assume that XH is complete:
its flow φH

t is called the Hamiltonian flow of H . We denote the group of
compactly supported Hamiltonian diffeomorphisms by D:

D =
{
φH

1 /H ∈ C∞
0 (S1 × Cn)

}
.

The symplectic size of subsets of Cn is measured by symplectic capacities in-
troduced by Gromov in [6] and developed by Ekeland and Hofer in [3].

Definition 1.1. — A (relative) symplectic capacity on (Cn, ω) is a map which
associates a number c(U) ∈ [0, +∞] to each subset U of Cn and which satisfies:

1) U ⊂ V ⇒ c(U) " c(V ) (monotonicity);
2) c(φ(U)) = c(U) for any φ ∈ D (symplectic invariance);
3) c(αU) = α2c(U) for any real number α > 0 (homogeneity);
4) c(B2n(1)) = c(B2(1) × Cn−1) = π, where B2n(1) is the unit open ball

(normalization).

Given any capacity c, define the associated inner capacity c∨ and outer ca-
pacity c∧ by

(1.1)
{ c∨(U) = sup

{
c(K) /K is compact and K ⊂ U

}
,

c∧(U) = inf
{
c(V ) /V is open and U ⊂ V

}
.

The capacity c is said to be inner regular if c∨ = c and outer regular if c∧ = c
(see [8]).

We will consider Hamiltonian capacities in Cn, as introduced in [3]. Given
any bounded connected open set U ⊂ Cn, let Had(U) ⊂ Ht be some class of
“admissible” Hamiltonian functions. Consider the action functional

AH(γ) =
∫

S1
γ∗λ0 −

∫ 1

0
H

(
t, γ(t)

)
dt for γ ∈ Λ = C∞(S1, Cn)
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whose critical points are the 1-periodic orbits of XH . By a universal variational
process, select a positive critical value c(H) of AH for each H ∈ Had(U). De-
pending on the functorial properties of Had (see Section 2), define the capacity
of U by one of the following formulae

(1.2)
{

c(U) = sup
{
c(H) / H ∈ Had(U)

}
or

c(U) = inf
{
c(H) / H ∈ Had(U)

}
.

Then extend this capacity to all subsets of Cn by standard processes: the
capacity of any open set U is given by

(1.3) c(U) = sup
{
c(V ) / V open, bounded and connected with V ⊂ U

}

and the capacity of any subset E in Cn is given by

(1.4) c(E) = inf
{
c(U) / U is open and E ⊂ U

}
.

These capacities have a geometric representation in the following situation.

Definition 1.2. — A hypersurface Σ has restricted contact type (or RCT) if
there exists a vector field η satisfying η # Σ and Lηω = ω on Cn, where L
denotes the Lie derivative. A bounded connected open set with RCT boundary
will be called a RCT open set.

The vector field η is called a Liouville vector field. Each Hamiltonian capacity
satisfies the Representation Theorem: the capacity of any RCT open set U is
the area of some closed characteristic of ∂U .

We will focus here on two of these Hamiltonian capacities. The first one
was first defined in [5] using symplectic homology (see [4]). This capacity can
be viewed as a variant of the Ekeland-Hofer capacity in [3]. The admissible
class HFH(U) is the set of those Hamiltonian functions which are negative
near S1 × U and quadratic at infinity, and the critical value cFH(H) is ob-
tained by considering the Floer homology groups associated to H . We will also
consider the generating function capacity defined by Viterbo in [14]. The ad-
missible class HV(U) is the set of compactly supported Hamiltonian functions
with support in S1 × U , and the critical value cV(H) is defined as a minmax
critical value for a generating function of the graph of φH

1 . It should be noticed
that the capacity c in [14] is defined a priori for disconnected open sets. Thus
the capacity cV defined by (1.3) could be smaller than c: if U1 and U2 are dis-
joint open sets, (1.3) shows that cV(U1 ∪ U2) = max(cV(U1), cV(U2)), whereas
this property is known for the capacity c only if U1 and U2 can be separated
by an hyperplane (see [12]). However, this does not affect the results in this
paper. A simple observation proves the following regularity result.

Proposition 1.3. — For any subset U in Cn, we have

cV(U) = c∨V(U) and cFH(U) = c∧FH(U).
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Several properties of cFH and cV make the interest of comparing them. Be-
cause of Proposition 1.3, it is easy to find open sets U with cFH(U) = 1
and cV(U) arbitrarily small. But this occurs only because the periodic orbits
defining cFH(U) stay away from U , whereas those defining cV(U) lie in U . This
phenomenon is somehow artificial and it disappears if we compare capacities
with the same regularity: our main result is the following inequality.

Theorem 1.4. — For any subset U in Cn, we have c∨FH(U) " cV(U).

The main feature in Theorem 1.4 is that c∨FH measures a set from inside,
whereas cV measures it from outside, which heuristically explains the inequality.
Moreover, by the homogeneity property, any symplectic capacity c satisfies

(1.5) c∨(U) = c∧(U) = c(U) for any RCT open set U

(see Section 2). This leads to cFH(U) " cV(U), and we will also prove the
opposite inequality.

Theorem 1.5. — For any RCT open set U in Cn, we have cFH(U) = cV(U).

Our main application of Theorem 1.4 deals with the so-called Lagrangian
camel problem. Set

E− =
{
z ∈ Cn / Re (z1) < 0

}
, E+ =

{
z ∈ Cn /Re (z1) > 0

}
,

E(ε) = E− ∪E+ ∪B2n(ε)
and consider some compact set L ⊂ E−. The camel problem is formulated as
follows:

Does there exist H ∈ Ht with support in S1×E(ε) satisfying φH
1 (L) ⊂ E+?

By the symplectic reduction properties of the capacity cV , a positive answer
implies cV (L) " πε2 (see [14]). In [10], Théret proved that compact hyperbolic
Lagrangian submanifolds and Lagrangian tori have nonzero Viterbo capacity.
In other terms, such a submanifold cannot pass through an arbitrarily small
hole made in a hyperplane. On the other hand, we can deduce from results
by Viterbo in [16] that the Floer-Hofer capacity of any compact Lagrangian
submanifold L in Cn is nonzero. More precisely, let J be the set of almost
complex structures J on Cn satisfying J = i at infinity and calibrated by ω,
which means that ω(. , J.) is a Riemannian metric. For each J ∈ J , consider the
set CJ of J-holomorphic curves with boundary in L. The Gromov Compactness
Theorem shows that

(1.6) w̃(L) = sup
J∈J

(
inf

C∈CJ

∫

C
ω
)

> 0,

and the following inequality holds (compare [16], Theorem 6.10).

Theorem 1.6. — For any compact Lagrangian submanifold L, we have

cFH(L) ! w̃(L).
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Since we have c∨FH(L) = cFH(L) for any compact set L (see Section 2),
Theorems 1.4 and 1.6 imply the following generalization of [10].

Corollary 1.7. — If L is a compact Lagrangian submanifold, we have

cV(L) ! cFH(L) > 0.

Let [λ0] ∈ H1(L) be the Liouville class of L and let P(L) = [λ0] ·π1(L) be its
periods group: by the Gromov Compactness Theorem, we have w̃(L) ∈ P(L).
When L is rational, that is, P(L) = aZ for some real number a > 0, Theo-
rem 1.6 implies that L cannot be moved by a Hamiltonian isotopy into an open
set with capacity smaller than a, and Theorem 1.7 implies that L cannot pass
through a hole of radius less than

√
a/π.

In Section 2 we will recall the common features of Hamiltonian capacities,
and establish some very elementary results about them, in particular Proposi-
tion 1.3 and (1.5). In Section 3 we recall the definitions of symplectic homology
and of the Floer-Hofer capacity in [4], [1], [5], [16], [7]. In Section 4 we recall
the definition of the Viterbo capacity in [14] and the uniqueness of symplectic
homology proved in [15], which is the main tool in the proof of Theorem 1.4.
We also give our strategy, explaining how cV and c∨FH can be viewed as differ-
ences of critical levels of the same Hamiltonian function. In Section 5 we prove
Theorems 1.4, 1.5 and 1.6. The proof of Theorem 1.5 involves the intrinsic
description of the capacity cFH given in [16] and [7], followed by a deformation
argument. In the proof of Theorem 1.6, we adapt the arguments in [16] to
our settings.

Acknowledgments. — I wish to thank Claude Viterbo for many helpful discus-
sions, and the participants at the Geometry and Analysis seminar in Jussieu,
especially Marc Chaperon, for their patient audience of my “marathon talks”
on these subjects. Special thanks to Laurent Lazzarini for his help in correcting
this paper.

2. Axiomatic properties

Consider some functor Had which associates a class of Hamiltonian functions
Had(U) ⊂ Ht to each bounded connected open set U in Cn. Set

Had =
⋃

U⊂Cn

Had(U),

and consider a positive section c of the action spectrum, that is, a map c :
Had → R such that c(H) = AH(γH) is a positive critical value of AH . Assume
that the selector c is invariant by Hamiltonian isotopies, which means that
H ◦ φ ∈ Had and c(H ◦ φ) = c(H) for each H ∈ Had and each φ ∈ D. Given
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any real number r > 0 and any Hamiltonian function H ∈ Ht, define

(r2 * H)(t, z) = r2H(t, r−1z),

and assume that c is homogeneous, which means that

r2 * H ∈ Had and c(r2 * H) = r2c(H)

for each H ∈ Had and each r > 0. Assume additionally that the functor Had

is monotone with respect to inclusion, which means that U ⊂ V implies either

Had(U) ⊂ Had(V ) or Had(V ) ⊂ Had(U).

Define the capacity of U by

c(U) =
{

sup{c(H) / H ∈ Had(U)} in the first case,
inf{c(H) / H ∈ Had(U)} in the last case.

Obviously, our above assumptions on the selector c imply the symplectic invari-
ance, the homogeneity, and the monotonicity of the capacity c. In order to get
the normalization, we should compute the capacity of ellipsoids. This can be
done when the selector c is monotone with respect to some partial ordering ≺
which makes Had(U) a directed set. A cofinal family in Had(U) is an increasing
1-parameter family Hλ ∈ Had(U) satisfying

∀H ∈ Had(U), ∃A ∈ R such that λ > A ⇒ H ≺ Hλ,

and for such a family, we have c(U) = limλ→+∞ c(Hλ).
If H1 " H2 on S1 × Cn, we have AH1 ! AH2 on Λ. Since the selector c is

obtained by a universal variational process, it is monotone with respect to the
partial orderings ≺ and - given by

H1 ≺ H2 ⇐⇒ H2 - H1 ⇐⇒ H1 " H2 on S1 × Cn.

At this stage, we can distinguish two cases which fit into this general framework.

Case (CS). — Let HCS be the class of compactly supported Hamiltonian
functions and set

HCS(U) =
{
H ∈ Ht such that Supp(H) ⊂ S1 × U

}
.

In this case, U ⊂ V implies HCS(U) ⊂ HCS(V ) and we define

cCS(U) = sup
{
c(H) / H ∈ Had(U)

}
.

The selector c is increasing with respect -, and the “cofinal Hamiltonians” are
very negative inside U :

(2.1) ∀H ∈ HCS(U), ∃A ∈ R such that λ > A⇒ Hλ " H on S1 × Cn.
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Hλ

∂U

∂U R

Kλ

τ0

γHλ

γKλ

Figure 1. Cofinal families Hλ in case (CS), Kλ in case (QI)

Case (QI). — Let HQI be the class of those Hamiltonian function which are
quadratic at infinity and somewhere negative and set

HQI(U) =
{

H ∈ Ht such that H(t, z) < 0 for any (t, z) ∈ S1 × U and
H(t, z) = µ · τ0(z) + c off a compact set for some µ, c ∈ R

}
,

where τ0(z1, . . . , zn) = |z1|2+· · ·+|zn|2. Here, U ⊂ V implies HQI(V ) ⊂ HQI(U)
and we define

cQI(U) = inf
{
c(H) /H ∈ Had(U)

}
.

The selector c is decreasing with respect to ≺ and the “cofinal Hamiltonians”
Kλ are very small in U and very large off U (see Figure 1):

(2.2) ∀K ∈ HQI(U), ∃A ∈ R such that λ > A ⇒ Kλ ! K on S1 × Cn.

Now consider the case of the unit open ball B = B2n(1). We take Hamiltonian
functions of the form H = h ◦ τ0. Their action spectrum is given by

AH = sh′(s)− h(s)

where h′(s) ∈ πZ (see Section 3.1).
• In case (QI), we perturb the ideal function given by

h(s) =
{

0 if s < 1,

h(s) = µ(s− 1) if s ! 1

(compare Figure 1), whose ideal action spectrum is πZ∩ ]0, µ]. The additional
computation of the Conley-Zehnder index of the critical orbits shows that the
capacity of the unit ball equals π.

• Similarly, in case (CS), we perturb the ideal function given by

h(s) =
{

λ(s− 1) if s < 1,

0 if s ! 1,

and this leads to the same conclusion and explains our choices of signs. Similar
methods allow to compute the capacity of any ellipsoid, implying the normal-
ization.
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The regularity of Hamiltonian capacities is a direct consequence of their
definitions. Indeed, for any bounded connected open set U , we have

HCS(U) =
⋃

V ⊂U

HCS(V ), and HQI(U) =
⋂

U⊂V

HCS(V ),

which implies

cCS(U) = sup
{
cCS(V ) / V ⊂ U

}
= c∨CS(U) in case (CS),

cQI(U) = inf
{
cQI(V ) /U ⊂ V

}
= c∧QI(U) in case (QI).

This proves Proposition 1.3, since the capacity cFH fits into Case (QI) and
the capacity cV fits into Case (CS) (see Sections 3.2 and 4.1). This difference
of regularity shows that the capacities cFH and cV cannot be equal, even not
equivalent. Indeed, let

T =
{
(z1, . . . , zn) ∈ Cn / |zk| = 1, 1 " k " n

}

be the standard Lagrangian torus: we have (see Section 5.3)

cV(T) = cFH(T) = π.

For every small real number ε > 0, let Uε be the following tubular neighborhood
of T

Uε =
{
(z1, . . . , zn) ∈ Cn /

∣∣|zk|2 − 1
∣∣ < ε, 1 " k " n

}
.

Make some cut in Uε by considering the open set

Vε =
{
z ∈ U / arg(z1) 0= 0

}
.

Since the capacity cFH is outer regular, we have

cFH(Vε) = cFH(Uε) ! π.

On the other hand, we have
Vε =

⋃

δ>0

V δε ,

where V δε =
{
z ∈ Cn /

∣∣arg(z1)
∣∣ > δ and

∣∣|zk|2 − 1
∣∣ < ε, 1 " k " n

}
. Using

polar coordinates, it is easy to find a Hamiltonian isotopy φ ∈ D such that

φ(V δε ) ⊂ B2
(√

2ε
)
× Cn−1.

Since cV is inner regular, we get

cV(Vε) = sup
{
cV(V δε ) / δ > 0

}
" 2πε.

We have thus obtained a family of open sets Vε such that cV(Vε) is arbitrarily
small and cFH(Vε) ! π. Heuristically, this is due to the fact that the periodic
orbits with positive action of a cofinal family in HV(U) lie in U , whereas those
of a cofinal family in HFH(U) stay away from U , as pointed out on Figure 1.
This somehow artificial phenomenon disappears if we replace cFH by c∨FH: in
this case, we can choose cofinal families for each capacity so that all the relevant
orbits lie in U . Notice that this difference of regularity disappears if we consider
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compact sets, because (1.1) and (1.4) imply that any Hamiltonian capacity c
fulfills the condition

(2.3) c∨(L) = c∧(L) = c(L) for any compact subset L in Cn.

Similarly, consider any RCT open set U ⊂ Cn, and choose a Liouville vector
field η transversal to ∂U . By definition, its flow ψt satisfies ψ∗

t ω = etω on Cn

for every t ∈ R, and by homogeneity any symplectic capacity c satisfies

(2.4) c
(
ψt(U)

)
= etc(U) for every t ∈ R.

This implies some continuity property of c near the boundary of U , namely
that we have

c∨(U) = c(U) = c∧(U).
Moreover, by the monotonicity properties of the selector c, we can choose suit-
able cofinal families in Had(U) in order to prove the Representation Theorem
(see Section 5.2).

3. Symplectic homology

Here we recall the definition of the Floer-Hofer capacity (see [5]). We assume
the reader to be familiar with symplectic homology (see [4], [1], [16]), and we
just fix some notations: we point out that our conventions lead to a relative
homology as in [4], whereas those in [16] lead to a cohomology.

3.1. Definitions and functorial properties. — Let (M,ω) be a connected
compact symplectic manifold with RCT boundary Σ = ∂M . Let c1 be the first
Chern class of TM endowed with an almost complex structure J calibrated
by ω: we assume that c1 vanishes on spherical classes. Let η be a Liouville
vector field transversal to ∂M . The 1-form λ = iηω = ω(η, .) satisfies dλ = ω,
thus M is exact, and its restriction α to Σ is a contact form, which means
that α ∧ (dα)n−1 is a volume form. In particular, the restriction of dα to the
contact field Ker(α) is a symplectic form. The Reeb vector field associated
to α is the unique vector field Xα on Σ such that iXαdα = 0 and α(Xα) = 1.
The closed characteristics of Σ are the periodic orbits of Xα, and the action
spectrum S(Σ) is the set of their periods. The symplectization of Σ is the
symplectic manifold

(
Σ̂ = ]0, +∞[× Σ, dλ̂

)
, where λ̂ = τ · π∗α

and τ, π are the projections onto the factors. Observe that we have a symplectic
splitting

T Σ̂ = Ker(α)⊕ (Rη̂ ⊕ RXα), where η̂(s, x) = s ∂/∂s fulfills iη̂ dλ̂ = λ̂.

Choose an almost complex structure J0 calibrated by dα on the symplectic
vector bundle (Ker(α), dα) → Σ, and extend it to T Σ̂ by J0 · η̂ = Xα and
J0 · Xα = −η̂. The almost complex structure J0 is calibrated by dλ̂, and the
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function τ is plurisubharmonic with respect to J0. Let ψt be the flow of η,
and observe that the formula

(3.1) Ψ(et, x) = ψt(x)

defines an embedding of the manifold ]0, 1] × Σ into M satisfying Ψ∗λ = λ̂,
thus we obtain an exact symplectic manifold by setting

(M̂, ω̂) = (M,ω = dλ)
⋃

∂M=Ψ({1}×Σ)

(
[1, +∞[× Σ, dλ̂

)
.

Since we have Ψ∗η = η̂, the flow ψt extends to M̂ and ∂M has RCT in M̂ .
For any real number ρ > 0, set M ρ = ψln(ρ)(M): we have ∂Mρ = τ−1(ρ).
Observe that the Hamiltonian vector field of the function τ on Σ̂ is given
by Xτ = Xα. Consequently, if h is a smooth function, the 1-periodic orbits of
the autonomous Hamiltonian function H = h◦τ on Σ̂ are closed characteristics
of {s} × Σ with period |h′(s)| and action

AH(γ) =
∫

S1
γ∗λ−

∫ 1

0
H

(
t, γ(t)

)
dt = sh′(s)− h(s).

Definition 3.1. — Let HFH be the class of those smooth functions H in
C∞(S1 × M̂) such that

• H = µτ + c off a compact set, where c, µ ∈ R fulfill µ ! 0 and µ 0∈ S(Σ);
• there exists some nonempty open set U ⊂ M such that H < 0 on S1 ×U ;
• all 1-periodic orbits of H are nondegenerate.

Given H ∈ HFH, observe that all 1-periodic orbits of H stay in a compact set.
Let iCZ denote the Conley-Zehnder index, normalized for contractible orbits by
the formula

(3.2) iCZ(H ; x) = n− iM(H ; x),

where H is any C2-small autonomous Hamiltonian function, x is any nonde-
generate critical point of H , and iM denotes the Morse index (see [9]). For non-
contractible orbits, some additional normalizing data must be chosen, see [2].
On the other hand, let Jt be the space of time-dependent almost complex
structures J on M̂ calibrated by ω̂ such that J(t, .) = J0 off a compact set (the
time-dependence of J is needed here for transversality reasons). The gradient
lines of AH for the metric induced by J are solutions of

∂u

∂s
+ J(t, u)

∂u

∂t
= J(t, u)XH(t, u) for u ∈ C∞(R× S1, M̂)

and are called Floer trajectories. Moreover, for a generic J ∈ Jt and for any
1-periodic orbits x− and x+ of H , the set of Floer trajectories such that

lim
s→−∞

u(s, .) = x− and lim
s→+∞

u(s, .) = x+

tome 132 – 2004 – no 4
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is a manifold of dimension iCZ(H ; x+)−iCZ(H ; x−) endowed with a free R-action
u 4→ u(.+ s0, .), and we call M(x−, x+) the quotient manifold. Remember that
the difference of action between the ends of a Floer trajectory is its energy:

EJ (u) =
∫

R×S1


∂u

∂s


2

J
dtds = AH(x+)−AH(x−),

where | . |J is the metric associated to J. Observe that, in any region where
the Hamiltonian function H is constant and the almost complex structure J is
time-independent (which will be allowed later on), any Floer trajectory is a J-
holomorphic curve, and its energy equals its symplectic area. In [7] we proved
the existence of a constant C(J0) > 0 such that if H is constant and J = J0

in MB \ MA, we have

(3.3) EJ (u) ! (B −A)C(J0) for any Floer trajectory u crossing MB \MA.

Remember from [16] that the Floer trajectories for the Hamiltonian function
H = h ◦ τ and the almost complex structure J0 satisfy the maximum princi-
ple, which means that the function τ ◦ u has no local maximum. This shows
that all trajectories which connect orbits of H ∈ HFH stay in a compact set.
Since M̂ contains no holomorphic sphere, the non-compactness of the mani-
folds M(x−, x+) is only due to the breaking of trajectories. In particular,
if M(x−, x+) is 0-dimensional, it is compact, and we denote its cardinal mod-
ulo 2 by δ(x−, x+). Given any integer k and any number a ∈ R∪{+∞}, let Pa

k
be the set of 1-periodic orbits γ of H such that AH(γ) < a and iCZ(H ; γ) = k,
and consider the Z2-vector space they span

Ca
k (H) =

⊕

x∈Pa
k

Z2 · x.

For any numbers a, b ∈ R∪ {+∞} such that a " b, consider the quotient space

C [a,b[
k (H) = Cb

k(H)/Ca
k (H).

Define the boundary operator

∂[a,b[
k : C [a,b[

k −→ C [a,b[
k−1 by ∂kx =

∑

y∈Ca
k−1(H)

δ(y, x) · y for x ∈ Ca
k (H).

We have ∂[a,b[
k ◦ ∂[a,b[

k+1 = 0, and the Floer homology groups associated to H are
given by

S[a,b[
k (H) = Ker ∂[a,b[

k / Im ∂[a,b[
k+1

and are independent of J. Notice that in order to define these groups, we
only need that all 1-periodic orbits of H with action in the interval [a, b[ are
nondegenerate. Moreover, in order to get a regular almost complex structure,
it is enough to perturb a given J ∈ Jt in in an open set containing these orbits,
since all the relevant trajectories must cross such an open set (see [7]). This
way we can define the Floer homology of pairs (H, J) satisfying (3.3). Given
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520 HERMANN (D.)

two Hamiltonian functions H−, H+ ∈ HFH such that H− " H+ on S1 × M̂ ,
the monotonicity morphism

(3.4) m(H−, H+) : S[a,b[
k (H−) −→ S[a,b[

k (H+)

is obtained as before by counting the number of solutions of the equation
∂u

∂s
+ Js(t, u)

∂u

∂t
= Js(t, u)XHs(t, u) for u ∈ C∞(R× S1, M̂),

where (Hs, Js) is a monotone homotopy connecting (H+, J+) to (H−, J−). The
above properties of Floer trajectories also apply to these monotonicity trajec-
tories, except that the maximum principle has to be refined (see [1]). This way
we get a directed system: if U ⊂ M̂ is a relatively compact connected open set,
define

S[a,b[
k (M̂, U) = lim−→ S[a,b[

k (H),
where the direct limit includes all Hamiltonian functions H in the class

HFH(U) =
{
H ∈ HFH / H < 0 on S1 × U

}
.

Let us recall some of the functorial properties of symplectic homology.
If U ⊂ V , the inclusion HFH(V ) ⊂ HFH(U) and the monotonicity morphisms
in HFH(U) define an inclusion morphism

i∗U : S[a,b[
k (M̂, V ) −→ S[a,b[

k (M̂, U)

which behaves functorially. Next, given any numbers a, b, a′, b′ such that a " a′

and b " b′, we have a map C [a,b[
k (H) → C [a′,b′[

k (H) given by inclusions, which
defines a natural map

S[a,b[
k (M̂, U) −→ S[a′,b′[

k (M̂, U).

Given any numbers a, b, c such that −∞ < a " b " c " +∞, we have an exact
sequence

0 → C [a,b[
k (H) −→ C [a,c[

k (H) −→ C [b,c[
k (H) → 0

which gives rise to an exact triangle

S[a,b[
k (M̂, U) −→ S[a,c[

k (M̂, U) −→ S[b,c[
k (M̂, U) −→ S[a,b[

k−1 (M̂, U).

This exact triangle is denoted by ∆a,b,c(U): it commutes with the inclusion
morphisms. On the other hand, given any compactly supported Hamiltonian
isotopy φ on M̂ , the pullback H 4→ H ◦ φ defines an isomorphism

φ# : S[a,b[
k

(
M̂, φ(U)

) ∼−→ S[a,b[
k (M̂, U).

If φ(U) ⊂ V , the composition of φ# with the inclusion morphism defines a
pullback morphism

φ∗ : S[a,b[
k (M̂, V ) −→ S[a,b[

k (M̂, U)
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which is compatible with all previous arrows. The Isotopy Invariance Theorem
(see [4]) implies that if φt(U) ⊂ V for all t ∈ [0, 1], then we have φ∗

1 = φ∗
0. Since

the flow ψs of η fulfills ψ∗
sω = esω, the computation of the Floer homology

of esH(t, ψ−s(z)) shows that

(3.5) S[esa,esb[
k

(
M̂, ψs(U)

)
= S[a,b[

k (M̂, U) for any s ∈ R.

Define the intrinsic symplectic homology groups of M by

IS[a,b[
k (M) = S[a,b[

k (M̂, M).

In order to compute these groups, we can use a natural cofinal family Kλ in
HFH(M) defined as follows. Choose real numbers δ > 0 and λ such that δ is
small enough and λ 0∈ S(Σ), and set Kλ = −δ in M and Kλ = −δ + λ(τ − 1)
off M . Smooth the corner and perturb Kλ in M , so that Kλ = f in M ,
where f is some C2-small Morse function having a unique local minimum x0

satisfying f(x0) = −δ. If Σ has a nondegenerate action spectrum, we can
perturb explicitly the resulting Hamiltonian function near ∂M , so that all 1-
periodic orbits of Kλ are nondegenerate (see [2]). Then we have

IS[a,b[
k (M) = lim

λ→+∞
S[a,b[

k (Kλ),

and each non-constant orbit of Kλ has action near the period of a closed char-
acteristic of ∂M . Moreover, the monotonicity morphism

S[a,b[
k (Kλ1) −→ S[a,b[

k (Kλ2)

is an isomorphism if a " b < λ1 " λ2, because under the deformation
Kλ1 $ Kλ2 , no 1-periodic orbit appears below the level λ1. This shows that
the inductive limit morphism

(3.6) S[a,b[
k (Kλ0) −→ IS[a,b[

k (M) is an isomorphism if b < λ0.

Observe that Floer trajectories can only connect orbits in the same homotopy
class. We have therefore a splitting

(3.7) IS[a,b[
k (M) = FH [a,b[

k (M)⊕NC [a,b[
k (M),

where FH [a,b[
k (H) is generated by the contractible 1-periodic orbits of the

Hamiltonian function H ∈ HFH. If ε > 0 is small enough, we have

(3.8) IS[0,ε[
k (M) = FH [0,ε[

k (M) = H2n−k(M,∂M) = Hk(M)

and in particular for any λ > ε we have

S[0,ε[
n (Kλ) = FH [0,ε[

n (Kλ) = Z2 · x0

because the only orbits of Kλ with small action are the constant orbits, which
are contractible, and the Floer Homology of the Hamiltonian function Kλ can
be identified with the Morse homology of the function −f on M .
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3.2. The Floer-Hofer capacity. — A symplectic capacity issued from sym-
plectic homology is defined in [5] as follows. Observe that if B is the unit ball
in Cn, we have B̂ = Cn and the almost complex structure J0 = i fulfills
the above assumptions. This means that Jt is the space of calibrated time-
dependent almost complex structures J on Cn satisfying J = i at infinity. The
Liouville vector field associated to λ0 is η0(z) = 1

2z, which leads to τ0(z) = |z|2.
The action spectrum of the unit sphere is {kπ / k = 1, 2, . . .}: it is degenerate,
but we remove the degeneracy if we replace the ball by a nearby irrational
ellipsoid. For any bounded connected open set U ⊂ Cn, set

S[a,b[
k (U) = S[a,b[

k (Cn, U)

and observe that HFH(U) is a cofinal set in HQI(U). As above, we denote the
open ball with radius √ρ by Bρ and we have (see [5])

S[a,b[
n (Bρ) = Z2 if a " 0 < b " πρ, S [a,b[

n (Bρ) = 0 else;

S[a,b[
n+1(Bρ) = Z2 if 0 < a " πρ < b, S [a,b[

n+1(Bρ) = 0 else;

S[a,b[
k (Bρ) = 0 if k < n or n < k < 3n.

Moreover, given any real numbers r and R such that R > r > 0, the morphism
S[a,b[

k (BR) → S[a,b[
k (Br) induced by the inclusion Br ⊂ BR equals the identity

as soon as both groups are isomorphic to Z2. Choose some open ball Br such
that Br ⊂ U and let ε be any real number satisfying 0 < ε < πr. For any real
number b > πr, consider the inclusion morphism

σb
U : S[ε,b[

n+1(U) −→ S[ε,b[
n+1(B

r) = Z2,

and define the capacity of U by cFHW(U) = inf{b /σb
U is onto}.

We will also consider another symplectic capacity issued from symplectic ho-
mology, which was already used in [7], and which is defined as follows. Observe
that the ball satisfies the strong algebraic Weinstein conjecture in [16], which
means that the natural map

(3.9) Z2 = S[0,ε[
n (B) −→ S[0,b[

n (B) vanishes for large enough b.

If R is large enough, we have Br ⊂ U ⊂ BR, which defines inclusion morphisms

Z2 = S[0,ε[
n (BR)

iR

−−→ S[0,ε[
n (U)

ir

−−→ S[0,ε[
n (Br) = Z2.

Since ir ◦ iR is an isomorphism, we have αU = iR(1) 0= 0. Consider the natural
map

ibU : S[0,ε[
n (U) −→ S[0,b[

n (U),

and set cFH(U) = inf{b / ibU (αU ) = 0}. In some sense, the capacity cFHW mea-
sures a set from inside, whereas cFH measures it from outside.
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Proposition 3.2. — The maps cFHW and cFH are symplectic capacities and
we have

cFHW " cFH.

Moreover, if U is a RCT open set, then we have cFHW(U) = cFH(U).

Proof. — It is proved in [5] that cFHW is a capacity, and the same proof works
in the case of cFH: the independence of the choices involved and the invariance
by D are due to the Isotopy Invariance Theorem, the monotonicity comes from
the functoriality of the inclusion morphisms, the homogeneity results from (3.5),
and the normalization comes from the computation of the symplectic homology
groups of ellipsoids. Consider now the following commutative diagram

S[0,b[
n+1(B

R) −−−−−→ S[ε,b[
n+1(B

R) −−−−−→ S[0,ε[
n (BR) = Z2 −−−→ S[0,b[

n (BR)
4

4
4iR

4

S[0,b[
n+1(U) −−−−−−−→ S [ε,b[

n+1(U) ∂U−−−−−−−−→ S [0,ε[
n (U)

ib
U−−−−−−→ S[0,b[

n (U)
4

4σb
U

4ir

4

S[0,b[
n+1(B

r) = 0 −−−→ S[ε,b[
n+1(B

r) = Z2
∂r−−−→ S[0,ε[

n (Br) = Z2 −−−→ S[0,b[
n (Br)

where the horizontal arrows are the exact triangles ∆0,ε,b, and the vertical
arrows are the inclusion morphisms. Notice that ir(αU ) = 1 and that ∂r is an
isomorphism. If we assume that ibU (αU ) = 0, the exactness of the lines shows
that there exists some β ∈ S [ε,b[

n+1(U) satisfying αU = ∂U (β), which leads to
∂r(σb

U (β)) = 1, and σb
U is onto. This proves that cFHW(U) " cFH(U). Moreover,

if U is a RCT open set, the computations in [7] show that S [0,ε[
n (U) = Z2 · αU

for small enough ε (see Section 5.2), and ir is an isomorphism. This shows that
the map σb

U is onto if and only if ibU (αU ) = 0, which implies the equality.

The above capacities can also be defined in the general framework of Hamil-
tonian capacities from Section 2: we will deal with the capacity cFH, the case
of cFHW being very similar. The main point is to make sure that the orbit we
are looking for exists. Consider the class Hc

FH of those Hamiltonian functions
H ∈ HFH satisfying H > −πr on S1 × Cn and H < 0 near some open ball Br

with radius
√

r and moreover H = µτ0 + c at infinity, where µ > π. Observe
that Hc

FH(U) = HFH(U) ∩ Hc
FH is a cofinal set in HQI(U). Given H ∈ HFH,

choose any real number δ satisfying −minH < δ < πr and consider the func-
tion f = −δ + ντ0, where ν > 0. If ν is small enough, we have f ∈ HFH(Br)
and H(t, ·) ! f on Cn (see Figure 2). Choose any real number ε such that
δ < ε < πr and consider the monotonicity morphism

σf : Z2 · x0 = S[0,ε[
n (f) −→ S[0,ε[

n (H)
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R

τ0τ0

r

Fr,λ
H

FR,µ

−πr
−ε

f

Figure 2. The Floer-Hofer selector: f ≺ FR,µ ≺ H ≺ Fr,λ

where x0 is the center of the ball Br, and set αH = σf (x0). Consider the
natural map

ibH : S[0,ε[
n (H) −→ S[0,b[

n (H),

and define the energy of H by cFH(H) = inf{b / ibH(αH) = 0}.

Proposition 3.3. — The energy cFH satisfies:

(i) for each H ∈ Hc
FH, the number cFH(H) is a critical value of AH ;

(ii) c(α * H ◦ φ) = αc(H) for any φ ∈ D and any α > 0;
(iii) if H1 " H2 on S1 × Cn, then cFH(H1) ! cFH(H2);
(iv) cFH(U) = inf{cFH(H) /H ∈ Hc

FH(U)}.

Proof. — As above, the definition of the energy cFH(H) does not depend of the
choice of f . The main point is to prove that αH is nonzero and that ibH(αH) = 0
for large enough b. As in (3.6), consider the autonomous function Fr,λ, where

Fr,λ =
{
−δ1 + ν1(τ0 − r) in Br,

−δ1 + λ(τ0 − r) off Br,

for small enough positive numbers δ1, ν1 and large enough λ. After perturba-
tion, we get a Hamiltonian function Fr,λ ∈ HFH(Br), whose Floer homology
coincides with the symplectic homology of Br below the level λr, up to a shift
of δ1. Similarly, choose a real number R > r such that H = µτ0 + c off BR,
and perturb the autonomous function given by

FR,µ =
{
−δ2 + ν2(τ0 −R) in BR,

−δ2 + µ(τ0 −R) off BR,
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into FR,µ ∈ HFH(BR). We can choose the parameters so that f " FR,µ " H "
Fr,λ on S1 × Cn (see Figure 2). Then we have a commutative diagram

S[0,ε[
n (f) −−→ S[0,ε[

n (FR,µ) −−→ S[0,ε[
n (H) −−→ S[0,ε[

n (Fr,λ)∣∣∣
∣∣∣

4
4ib

H

∣∣∣
∣∣∣

Z2 · x0 S[0,b[
n (FR,µ) −−→ S[0,b[

n (H) Z2 · x0

and the monotonicity morphism S [0,ε[
n (f)→ S[0,ε[

n (Fr,λ) factorizes by σf . Since
this map is an isomorphism, this shows that αH = σf (x0) is nonzero. Moreover,
since µ > π, we have

S[0,b[
n (FR,µ) = 0 for large enough b,

which proves that ibH(αH) = 0. The rest of the proof of Proposition 3.3 is
straightforward.

4. Generating functions

Here we recall the definition of the Viterbo capacity (see [14]) and the unique-
ness of symplectic homology proved in [15], which is the main tool in the proof
of our results. We warn the reader that our signs conventions are not the one
in [14], because we are looking for critical values of AH instead of −AH .

4.1. The Viterbo capacity. — Let HV ⊂ Ht be the class of those com-
pactly supported Hamiltonian functions. Given any H ∈ HV, consider the
Lagrangian graph of φ = φH

1 given by

Γφ =
{
(z, φ(z)) / z ∈ Cn

}
⊂ (Cn,−ω)× (Cn, ω) 5 T ∗∆,

where ∆ is the diagonal and the last identification is given by the symplecto-
morphism

(z, Z) 4−→
(1

2
(z + Z), i(Z − z)

)
.

Since Γφ coincides with ∆ off a compact set, we can add a point at infinity
and get a compact Lagrangian submanifold Γ in T ∗S2n which is Hamiltonian
isotopic to the zero section. By a theorem of Sikorav, Γ has a generating
function S : S2n × RN → R which is quadratic at infinity. This means that 0
is a regular value of the fiber derivative ∂ξS of S, that we have

Γ =
{
(q, ∂qS(q, ξ)) / (q, ξ) ∈ S2n × RN satisfies ∂ξS(q, ξ) = 0

}
,

and that we have S(q, ξ) = Q(ξ) off a compact set, where Q is some nonde-
generate quadratic form on RN . If we fix the critical value of S at infinity
by setting S(∞, ξ∞) = 0, the function S can be seen as a finite-dimensional
reduction of the action functional AH . More precisely, the critical points (q, ξ)
for S are in 1-1 correspondence with the 1-periodic orbits γ for H and we have
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AH(γ) = S(q, ξ). If (q, ξ) is a Morse critical point of S, then γ is a nondegen-
erate orbit of H , and its Conley-Zehnder index satisfies

(4.1) iCZ(H ; γ) = iM (S; q, ξ)− n− i,

where i denotes the index of Q (see [14], [10] and compare (3.2)). Set

Sλ =
{
(q, ξ) ∈ S2n × RN /S(q, ξ) < λ

}
.

It is proved in [14] and in [11] that the relative homology groups H∗+i(Sβ, Sα)
depend only on Γ. These groups have been used in [12] as a substitute of
symplectic homology. By the Thom isomorphism, we have H∗(Sα, S−α) =
H∗(S2n)⊗H∗(Di, Si−1) for large enough α. Consider the map

jλS : H∗+i(Sα, S−α) −→ H∗+i(Sα, Sλ)

induced by inclusion, where ∗ = 0, 2n. Using Lusternik-Schnirelman theory, we
obtain critical values of S by setting

(4.2) c+(φ) = inf
{
λ / jλS(µ) = 0

}
and c−(φ) = inf

{
λ / jλS(1) = 0

}
,

where we identify α with α⊗ 1 and where µ is a generator of H2n(S2n). Then
we have

c−(φ) " 0 " c+(φ) and c−(φ) = c+(φ) = 0 ⇐⇒ φ = id.

In particular, if H is C2-small and autonomous, then Γ has a generating func-
tion on S2n having the same critical points as the function −H on Cn. We get
in this case

c+(φ) = −min
z∈C

H(z) and c−(φ) = −max
z∈C

H(z).

Notice that we can recover the signs in [14] as follows. Consider the function
S = −S and the natural maps

iλ
S

: H∗+ı̄(Sα, S−α)→ H∗+ı̄(Sλ, S−α),

where ı̄ is the index of S. The original invariants c± in [14] are defined by

c+(φ) = sup
{
λ / iλ

S
(µ) = 0

}
and c−(φ) = sup

{
λ / iλ

S
(1) = 0

}

where 1, µ generate H0(S2n) and H2n(S2n). Since Sλ is the complement of Sλ

in S2n × Ri+ı̄, we get by Alexander duality

c+(φ) = −c−(φ) = c+(φ−1) and c−(φ) = −c+(φ) = c−(φ−1).

Moreover, if H1 " H2 on S1×Cn, then c±(φ1) ! c±(φ2). In particular, if H is
nonpositive, then c−(φ) = 0, and if H is nonnegative, then c+(φ) = 0. However,
we will be particularly interested in the following slightly different situation.
Define a partial ordering % on HV by (see [12])

H % K ⇐⇒ φK
1 ◦ (φH

1 )−1 is the time 1 flow of L ! 0 on S1 × Cn.
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If H1 % H2, there exists two gfqi S1 of Γ1 and S2 of Γ2 having the same
quadratic form at infinity satisfying S2 " S1 on S2n × RN . The inclusion
Sλ1 ⊂ Sλ2 defines a map

(4.3) i(S1, S2) : Hk(Sβ1 , Sα1 ) −→ Hk(Sβ2 , Sα2 ).

We obtain this way a commutative diagram, which implies that we have
c+(φ2) " c+(φ1) and c−(φ2) " c−(φ1). It is important to notice that, even
if % is not the natural partial ordering ≺ in Section 2, the cofinal sequences
are the same for both partial orderings (see [12], Remark 5.7). In other terms,
in the direct limit process, we can forget the difference between % and ≺. The
Viterbo capacity of U is defined by

cV(U) = sup
{
c+(φH

1 ) / Supp(H) ⊂ S1 × U
}
.

It fits into case (CS) of the settings in Section 2: the admissible class HV(U) is
the set of Hamiltonian functions with support in S1×U , and the critical value
is cV(H) = c+(φH

1 ). For any cofinal family Hλ in HV(U) satisfying

∀H ∈ HV(U), ∃A ∈ R such that λ > A⇒ Hλ " H on S1 × Cn

(which is cofinal for & by the above remark), we have cV(U) = limλ→+∞ cV(Hλ).
The homogeneity of cV is due to the fact that r2 * S is a generating function
for the graph of the time 1 flow of r2 *H , and the symplectic invariance results
from the identity c±(φ−1ψφ) = c±(ψ) (see [14]). It is important to notice that
the proof of this identity shows that the map H 4→ cV(H) is continuous with
respect to the C0-topology on HV.

For later purpose, it will be useful to characterize cV(H) in terms of rela-
tive homology of finite positive sublevels of S. In this aim, consider the class
Hc

V ⊂ HV of those compactly supported Hamiltonian functions satisfying

H " 0 on S1 × Cn and H < 0 in S1 ×Br

where B is some nonempty open ball with radius
√

r, and observe that Hc
V(U)

is a cofinal set in HV(U). Given H ∈ Hc
V, let f0 be some C2-small autonomous

Hamiltonian function having a unique minimum satisfying

(4.4) H % f0, H(t, .) " f0 " 0 on Cn and f0 < 0 in Br

(see Figure 3). Let S and S0 be generating functions associated to H and f0

having the same quadratic form at infinity and satisfying S0 " S on S2n×RN ,
and choose 0 < η < −min(f0). We get the following characterization of cV(H).

Proposition 4.1. — If H is an element of Hc
V and if η " a < cV(H) < b " c,

then H2n+i(Sb, Sη) contains an element γH with the following properties:

(i) σb
S(γH) 0= 0, where σb

S : H2n+i(Sb, Sη) → H2n+i(Sb
0, S

η
0 ) is the natural

map;
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R

τ0

H−πr

r

−η f0

Figure 3. The Viterbo selector: H ! f0 ! 0

(ii) if ja
b : H2n+i(Sb, Sη) → H2n+i(Sb, Sa) is the natural map, then γa =

ja
b (γH) satisfies icS(γa) 0= 0, where icS is the natural map

H2n+i(Sb, Sa) −→ H2n+i(Sc, Sa).

Proof. — Remark first that cV(H) ! cV(f0) = −min(f0) > η, and consider
the diagram

H2n+i(Sα, S−α)
jη
S−−−−→ H2n+i(Sα, Sη)

jb
S−−−−→ H2n+i(Sα, Sb)∣∣∣

∣∣∣
4ση

S

4

H2n+i(Sα0 , S−α
0 )

jη
0−−−−→ H2n+i(Sα0 , Sη0 ) −−−−→ H2n+i(Sα0 , Sb

0)

where all the arrows are natural and where α is large enough. We see that
γ = jηS(µ) 0= 0 and σηS(γ) = jη0 (µ) 0= 0. Moreover, we know that jb

S(γ) = 0
for b > cV(H). Consider now the commutative diagram

H2n+i(Sb, Sη)
iα
S−−−−→ H2n+i(Sα, Sη)

jb
S−−−−→ H2n+i(Sα, Sb)

4σb
S

4ση
S

4
H2n+i(Sb

0, S
η
0 )

iα
0−−−−→ H2n+i(Sα0 , Sη0 ) −−−−→ H2n+i(Sα0 , Sb

0)

where the lines are exact sequences. There exists γH ∈ H2n+i(Sb, Sη) satisfying
iαS(γH) = γ. We infer iα0 (σb

S(γH)) = σηS(γ) 0= 0, which proves (i).
In the commutative diagram

H2n+i(Sb, Sη)
ja
b−−−−→ H2n+i(Sb, Sa)

ic
S−−−−→ H2n+i(Sc, Sa)

iα
S

4
4

H2n+i(Sα, Sη)
ja
S−−−−−−−−−−−−−−−−−−−−−→ H2n+i(Sα, Sa)

we know that ja
S(iαS(γH)) = ja

S(γ) 0= 0, because we assume a < cV(H). This
proves that icS(γa) = icS(ja

b (γH)) is nonzero, which proves (ii).
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Remark 4.2. — The above functorial properties allow to define several other
symplectic capacities. First, with the notations of Proposition 4.1, define

cI(H) = inf
{
b /σb

S is onto
}

and cI(U) = sup
{
cI(H) / Supp(H) ⊂ S1 × U

}
.

On the other hand, consider the inclusion morphism

τb
U : Z2 = S[b,+∞[

n+1 (BR)→ S[b,+∞[
n+1 (U)

and set cO(U) = inf{b / τ b
U (1) = 0}. Our proof shows that we have

c∨FHW " c∨FH " c∨O " cI " cV

and that all these capacities are equal for RCT open sets.

4.2. Uniqueness of symplectic homology. — Given H ∈ Hc
V, consider a

generating function S of Γ as above: we have on one hand the relative homol-
ogy groups H∗(Sβ , Sα). On the other hand, if we assume that all 1-periodic
orbits in the support of H are nondegenerate and that 0 0∈ [a, b[, we have
well-defined Floer homology groups S [a,b[

∗ (H). The uniqueness of symplectic
homology proved in in [15] can be expressed as the following theorem.

Theorem 4.3. — We have S [a,b[
k (H) = Hk+n+i(Sb, Sa) if 0 0∈ [a, b[.

The difference in indices is explained by (4.1). Moreover, the proof in [15]
is based on the Floer homology of the Hamiltonian function S, which is some
kind of interpolation between its Morse homology and the Floer homology
of H . This shows that all the above maps in symplectic homology identify with
natural maps in the homology of generating functions. In particular, given two
Hamiltonians H1 and H2 with H1 % H2 and H1 ≺ H2, we have on one hand
the natural map (4.3), and on the other hand the monotonicity morphism given
by (3.4), and the proof of Theorem 4.3 shows that these maps are the same.

Theorem 4.4. — If 0 0∈ [a, b[, there is a commutative diagram

S[a,b[
k (H1)

m(H1,H2)−−−−−−−−−−→ S [a,b[
k (H2)4

4
Hk+n+i(Sb

1, S
a
1 )

i(S1,S2)−−−−−−→ Hk+n+i(Sb
2, S

a
2 )

where the vertical arrows are the isomorphisms in Theorem 4.3.

We can now rephrase Proposition 4.1 as follows.

Proposition 4.5. — Given H ∈ Hc
V and f0 as in (4.4), if 0 < η < −min f0

and η " a < cV(H) < b, then S[η,b[
n (H) contains an element γH satisfying

(i) σb
H(γH) 0= 0, where σb

H : S[η,b[
n (H)→ S[η,b[

n (f0) is the monotonicity mor-
phism.
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R

τ0−η

− ε

− Cλ

FR,µ
0

HR,µ
λ

∂V

KR,µ
λ

R0

µ

∂U

Figure 4. HR,0
λ = Hλ ≺ f0 = F R,0

0 ≺ F R,µ
0 ≺ KR,µ

λ = HR,µ
λ + Cλ

(ii) Set γa = ja(γH), where ja : S[η,b[
n (H) → S[a,b[

n (H) is the natural map.
For any c > b, we have ic(γa) 0= 0, where ic is the natural map

S[a,b[
n (H) −→ S[a,c[

n (H).
If we had considered the same type of Hamiltonian functions, Theorems 4.3

and 4.4 would mean that, after excision of a neighborhood of the point at
infinity, the generating functions homology in [12] coincides with symplectic
homology, and the capacities cV and c∨FH would be equal. However, we have
first to turn a compactly supported Hamiltonian function H into a function
which is quadratic at infinity. For this, choose large enough real numbers R
and µ satisfying H ∈ HV(BR), µ > 0 and µ 0∈ πZ, and deform HR,0 = H
into HR,µ satisfying

(4.5) HR,µ =
{

H on S1 × BR,

µ(τ0 −R) off BR+ν ,

where ν is small enough and all 1-periodic orbits of HR,µ with nonzero action
are nondegenerate (see Figure 4). This creates periodic orbits with action at
least πR. As a consequence, we get the following lemma.

Lemma 4.6. — If we have 0 < a " b < πR, then the monotonicity morphism

m(H, HR,µ) : S[a,b[
k (H) −→ S[a,b[

k (HR,µ) is an isomorphism.
This allows to see the difference between symplectic homology and generat-

ing functions homology in the following way. Start with a cofinal family Hλ
in HV(U) such that Hλ ≈ −Cλ inside S1×U , where Cλ is some large constant,
and deform each Hλ into HR,µ

λ as in (4.5), where R and µ go to infinity with λ.
By the above results, the generating functions homology of U identifies with

GF [a,b[
n+k (U) = lim

←−
Hk+n+i(Sb

λ, S
a
λ)(4.6)

= lim
λ→+∞

S[a,b[
k (HR,µ

λ ) if 0 < a " b < +∞,
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and it can be seen as a symplectic homology with compact support. On the
other hand, if V ⊂ U , we can choose the parameters so that Kλ = HR,µ

λ + Cλ
is a cofinal family in HFH(V ), and we get

(4.7) S[a,b[
k (V ) = lim

λ→+∞
S[a,b[

k (HR,µ
λ + Cλ) = lim

λ→+∞
S[a+Cλ,b+Cλ[

k (HR,µ
λ ).

This difference between compactly supported and quadratic at infinity Hamil-
tonian functions is the main object of this paper, and will be studied in the
next section.

5. Proofs of the main results

5.1. Comparison of the capacities. — Let U and V be two bounded
connected open sets in Cn such that V ⊂ U . Assume that U and V are isotopic
to each other: we will prove that cFH(V ) " cV(U), which implies Theorem 1.4.
Fix some real numbers R0 and r > 0 such that Br ⊂ V and U ⊂ BR0 , and
consider a cofinal family of Hamiltonian functions Hλ ∈ Hc

V(U) satisfying

−Cλ − 2δ < Hλ < −Cλ − δ in S1 × V and Supp(Hλ) ⊂ S1 × U,

where the constant δ = δλ goes to zero and Cλ goes to infinity with λ. We
know that

cV(U) = lim
λ→+∞

cV(Hλ).

Moreover, we can assume that all 1-periodic orbits of Hλ with nonzero action
are nondegenerate. Consider now a C2-small compactly supported function f0

on Cn such that

−3δ < f0 < −2δ in V and Supp(f0) ⊂ U,

which coincides inside Supp(f0) with a Morse function having a unique local
minimum x0 (this is the reason for assuming that U and V are isotopic to
each other). Choose now real numbers R > R0 and µ 0∈ πZ going to infinity
with λ, and deform Hλ = HR,0

λ into HR,µ
λ and f0 = FR,0

0 into FR,µ
0 as in (4.5).

We have
HR,µ
λ " FR,µ

0 " KR,µ
λ = HR,µ

λ + Cλ on S1 × Cn

(see Figure 4). If we choose R and µ such that µR " 1
2Cλ, then KR,µ

λ is a
cofinal family in HFH(V ). Indeed, we have KR,µ

λ ! Cλ off U and Cλ/R ! 2µ

goes to infinity with λ, and moreover the only degenerate orbits of KR,µ
λ have

action −Cλ, which goes to −∞, and we only consider orbits whose action is
bounded from below, that is, we always require a > −∞. Choose now any
level b such that cV(U) < b < πR0, and consider the monotonicity morphisms

S[η,b[
n (HR,µ

λ )
Ib

λ

−−−→ S[η,b[
n (FR,µ

0 ) = Z2 · x0

Jb
λ

−−−→ S[η,b[
n (KR,µ

λ )
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where 0 < η < δ. We know by Proposition 4.5 and Lemma 4.6 that Ib
λ is onto.

On the other hand, we have KR,µ
λ = HR,µ

λ + Cλ, which gives an identification

S[η,b[
n (KR,µ

λ ) = S[η+Cλ,b+Cλ[
n (HR,µ

λ ).

Using a result in [7], we can identify J b
λ ◦ Ib

λ with the natural map

S[η,b[
n (HR,µ

λ ) −→ S[η+Cλ,b+Cλ[
n (HR,µ

λ ).

This map vanishes as soon as Cλ+η > b, which is true if λ is large enough. We
just proved that Jb

λ(x0) = 0 for large enough λ. Consider now the Hamiltonian
functions Fµ = FR,µ

0 + η and Kλ = KR,µ
λ + η, and notice that Kλ is still a

cofinal family in HFH(V ). As before, we can identify J b
λ with the monotonicity

map
jb−η
λ : Z2 · x0 = S[0,b−η[

n (Fµ) −→ S[0,b−η[
n (Kλ),

and we know that if b = cV(U), then jb
λ(x0) = 0 for large enough λ. On

the other hand, set f = −3δ + ντ0 for small enough ν > 0, and consider the
commutative diagram

S[0,ε[
n (f) = Z2 · x0

if−−−−→ S[0,ε[
n (Fµ) = Z2 · x0

jε
λ−−−−→ S[0,ε[

n (Kλ)

ib
0

4
4ib

λ

S[0,b[
n (Fµ) = Z2 · x0

jb
λ−−−−→ S[0,b[

n (Kλ)

where 3δ < ε " πr: we have σf = jελ ◦ if . As in Proposition 3.3, we see
that if(x0) = x0, and that jελ(x0) = σf (x0) = αλ is nonzero. Moreover,
we see that ibλ(αλ) = jb

λ(ib0(x0)) = 0, which implies b ! cFH(Kλ). Applying
Proposition 3.3, we infer:

cFH(V ) = lim
λ→+∞

cFH(Kλ) " b = cV(U),

which finishes the proof of Theorem 1.4.

5.2. The case of RCT open sets. — Let U be a RCT open set: we know
that cFH(U) " cV(U). We will use the intrinsic description of the capacity cFH

given in [7] in order to prove the opposite inequality. In view of (1.5), it suffices
to deal with the case where ∂U has a nondegenerate action spectrum, because
this property is C∞-generic among hypersurfaces. We proved in [7] that we
have an isomorphism

(5.1) S[a,b[
k (U) ∼−→ IS[a,b[

k (U) for any k ∈ Z, −∞ < a " b " +∞.

Let us recall how this isomorphism is defined. The map Ψ given by (3.1) de-
fines an exact symplectic embedding of Û into Cn. Let JU be the special almost
complex structure on ∂̂U defined in Section 3.1, and let A, B be real numbers
such that B > 2A > 2. Let J be a calibrated almost complex structure on Cn
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R

τ0

,µ
Kλ

µCλ = λ(A − 1)

1

λ

A B

τ

KA,0
λ

HR
λ,A

HR,0
λ,A

Figure 5. “Intrinsic functions” KA,0
λ ≺ Kλ and “relative functions” HR,0

λ,A ≺ HR,µ
λ,A

satisfying J = Ψ∗JU in UB \UA and J = i at infinity. On the other hand, con-
sider the cofinal family Kλ : Û → R in (3.6), and deform Kλ into KA,0

λ : Û → R
by setting

KA,0
λ =

{
Kλ in UA,

Cλ off UA,

where Cλ = λ(A−1). Extend the function HR,0
λ,A = Ψ∗K

A,0
λ to Cn by HR,0

λ,A = Cλ
of UA. Finally, choose a real number R > BR0, which implies UB ⊂ BR, and
deform HR,0

λ,A into HR,µ
λ,A by setting

HR,µ
λ,A =

{
HR,0
λ,A inside BR,

Cλ + µ(τ0 −R) off BR

(see Figure 5). Then perform the same perturbations as in Section 3.1, that is,
smooth the corners, introduce a C2-small Morse perturbation inside U , then a
time-dependent perturbation of both HR,µ

λ,A and J near U . Given a, b ∈ R such
that a < b, we can choose the parameters so that

• HR,µ
λ,A is a cofinal family in HQI(U) and S[a,b[

k (HR,µ
λ,A ) is well defined

• all orbits of HR,µ
λ,A with action in [a, b[ stay in U1+ν and all Floer trajectories

connecting them stay in UA (see below).

Thus we can identify S [a,b[
k (HR,µ

λ,A ) with S[a,b[
k (Kλ) and get the isomorphism

in (5.1). In the language of [16], if U ⊂ V are RCT open sets, the resulting
map

IS[a,b[
k (V ) = S[a,b[

k (V ) −→ S[a,b[
k (U) = IS[a,b[

k (U)

is the transfer morphism. In particular, if ε is small enough, then S [0,ε[
n (U) is

one-dimensional in view of (3.8). As a result, the class αU in Section 3.2 is its
generator x0, and we have

cFH(U) = inf
{
b / ib

Û
(x0) = 0

}
,
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534 HERMANN (D.)

1

λ

A

τ

−C = −Cλ0

− Cλ = −λ(A − 1)
Hλ

Hλ0 = HR,µ
λ0,A − C

Hλ1

Figure 6. Compactly supported cofinal family Hλ where λ1 " λ0 < λ

where ib
Û

: IS[0,ε[
n (U)→ IS[0,b[

n (U) is the natural map. Moreover, Property (3.6)
allows us to characterize cFH(U) in the following way: choose any real numbers ε
and b such that δ < ε < T0 " cFH(U) < b, where T0 is the least period of a
closed characteristic of ∂U . If λ0 > b and λ0 0∈ S(∂U), we infer that the map

(5.2) Z2 · x0 = S[0,ε[
n (Kλ0) −→ S[0,b[

n (Kλ0)

sends the class of x0 to zero. In other terms, we see cFH(U) as the first
slope where cFH(Kλ) is finite. Now consider the function KA,0

λ0
defined above,

whose only degenerate orbits are the constants off UA, at level −C = −Cλ0 .
Since S(∂U) is nondegenerate, there exists a real number η0 > 0 such that
S(∂U) ∩ [λ0 − η0, λ0] = ∅. This implies that under the deformation

KA,0
λ0

$ KA,λ0
λ0

= Kλ0 ,

new 1-periodic orbits can appear only below the level−λ0(A−1)+(λ0 − η0)A =
λ0 − η0A, which is negative for large enough A. This shows that the mono-
tonicity morphism

S[a,b[
k (KA,0

λ0
) −→ S[a,b[

k (Kλ0) is an isomorphism if a > λ0 − η0A.

Moreover, since J = Ψ∗JU in UB \ UA, if a Floer trajectory associated to J
and HR,0

λ0,A exits UA, it must exit UB in view of the maximum principle, and its
energy is at least (B −A)C(JU ) in view of (3.3), which is impossible for large
enough B. Thus we have

S[a,b[
k (HR,0

λ0,A) = S[a,b[
k (KA,0

λ0
) if a > −C.

This shows that if A is large enough, the natural map

Z2 · x0 = S[0,ε[
n (HR,0

λ0,A) −→ S[0,b[
n (HR,0

λ0,A)

sends x0 to zero. Now consider the function Hλ0 = HR,0
λ0,A − C: it has support

in S1 × UA, and we just proved that the natural map
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AH λA

cV(Hλ)
AT3

AT2

AT1

AT0

T0 T1 T2 T3 λc λ

Cλ = λ(A − 1)

Figure 7. Bifurcation diagram of the family Hλ

(5.3) jC+b
λ0

: Z2 · x0 = S[C,C+ε[
n (Hλ0)→ S[C,C+b[

n (Hλ0) fulfills jC+b
λ0

(x0) = 0.

This shows that x0 is not the element γλ0 in Proposition 4.5, because otherwise
we would have jC+b

λ0
(x0) 0= 0. On the other hand, define a cofinal family in

HCS(UA) as follows (see Figure 6). Given any real number λ > 0, set

Hλ =






λ(1−A) in U,

λ(τ −A) in UA \ U,

0 off UA.

After the same perturbations as above, we get a cofinal family Hλ ∈ HV(UA),
equal to the above Hλ0 for λ = λ0. Its 1-periodic orbits are (see Figure 7):

• constants in U with action near Cλ = λ(A− 1) and constants off UA with
zero action;

• periodic orbits near ∂UA with action near TkA, where Tk ∈ S(∂U)
and Tk " λ;

• periodic orbits near ∂U with action near Cλ + Tk, where Tk is as above.

We know that cV(Hλ) = AHλ(γλ) is a critical value of AHλ , that it is con-
tinuous with respect to λ, and that it is bounded above by cV(UA). We also
know that if λ is small enough, then cV(Hλ) = −minHλ. This implies that
there exists a slope λc such that

• if λ < λc then γλ is the constant orbit x0;
• if λ > λc then γλ is a periodic orbit near ∂UA with action near TkA,

for some fixed Tk ∈ S(∂U) satisfying Tk < λc.
Since Hλ is a cofinal family in HV(UA), we get cV(UA) = TkA, which implies

that we have cV(U) = Tk < λc. Thus we have seen cV(U) as the first bifurca-
tion slope for cV(Hλ). Since γλ0 is not the constant x0 (see above), we have
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necessarily λ0 ! λc, thus λ0 > cV(U). Since this holds for any λ0 > cFH(U),
we infer cFH(U) ! cV(U), which is the desired inequality.

5.3. The Lagrangian camel. — Let L ⊂ Cn be any compact Lagrangian
submanifold and choose any (time-independent) almost complex struc-
ture J ∈ J . We will now prove Theorem 1.6, that is, there exists some
J-holomorphic curve C with boundary in L satisfying

∫

C
ω " cFH(L).

This theorem is contained in [16] (see Theorem 6.10), but its proof can not be
translated verbatim to our language, so we write it down for the convenience of
the reader: the rescaling process does not allow us to construct suitable cofinal
families (see below), and we must take into account non-contractible orbits.
Consider the cotangent bundle T ∗L, with canonical symplectic form ω = dλ,
where λ = pdq. Fix a Riemannian metric on L and endow T ∗L with the
associated metric: the unit disk bundle

D =
{
(q, p) ∈ T ∗L / |p| " 1

}

has RCT boundary, and we have D̂ = T ∗L and τ(q, p) = |p|2. The action
spectrum S of D is the set of lengths of closed geodesics on L, and it is nonde-
generate if the metric on L is generic (the Conley-Zehnder index of the periodic
orbit depends on the Morse index of the closed geodesic, see [13]). Remember
from (3.8) in Section 3.1 that for small enough ε we have

IS[0,ε[
k (D) = FH [0,ε[

k (D) = H2n−k(D, ∂D) = Hk(L).

The crucial fact, which is proved in [15], is the following theorem.

Theorem 5.1. — For any b ! ε, the natural map jb
D : IS[0,ε[

k (D)→ IS[0,b[
k (D)

is injective.

Indeed, IS[0,+∞[
∗ (D) is isomorphic to the homology of the free loop space

on L, and the natural map j∞D is induced by the inclusion of constant loops.
According to Weinstein’s Theorem, we have a symplectic embedding

Ψ : Dσ −→ Cn

for some σ > 0. By homogeneity, we can rescale the metrics so that σ = 3
and Ψ(D) contains a unit ball B centered on L, and we fix R > 0 satisfying
Ψ(D3) ⊂ BR. The main point is the following: Theorem 5.1 and the definition
of cFH(L) imply that if b > cFH(L) and if σ is small enough, then S [0,b[

n (Ψ(Dσ))
is not isomorphic to IS [0,b[

n (Dσ). For a well chosen family of Hamiltonian
functions, this will imply the existence of a family of Floer trajectories which
converges as a family of current to a J-holomorphic curve with boundary in L.
Since L is not exact, Ψ(D) is not a RCT open set in Cn and we cannot make the
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R

τ0 τ0

µ

C

f

τ

−ε
− πθ

θ ρ ρ δ σ

Qσ

GR,µ
θ,κ,ρ HR,µ

ρ,λ,δ 2

1

Figure 8. Functions H = HR,µ
ρ,λ,δ ≺ GR,µ

θ,κ,ρ = G and Hδ = HR,0
ρ,λ,δ ≺ GR,0

θ,κ,ρ = Gρ

same constructions as in Section 5.2 for two reasons. The first one is that Ψ does
not extend to the whole T ∗L, thus we must rescale the Hamiltonian functions
of Section 5.2. The other problem, which explains the positivity of cFH(L), is
that Ψ∗λ does not extend to Cn as a primitive of ω. As a consequence, the
canonical action in T ∗L equals the action in Cn only for those orbits which are
contractible in D, and we must take care of the splitting

IS[a,b[
k (D) = FH [a,b[

k (D)⊕NC [a,b[
k (D).

Start with any real number 0 < δ " 1, and choose a (time-independent) almost
complex structure J1 ∈ J satisfying

J1 = Ψ∗JD in Ψ
(
D2δ \ Dδ

)
and J1 = J off Ψ

(
D3δ

)
,

where JD is the special almost complex structure on ∂̂D defined in Section 3.1.
Given real numbers ρ and λ satisfying 0 < ρ < δ, λ > 0 and λ 0∈ S, consider
the functions given by

Kρ,λ =
{

0 in Dρ,

λ(τ − ρ) off Dρ,
Kδ,0ρ,λ =

{
Kρ,λ in Dδ,

C off Dδ,
where C = λ(δ − ρ).

Extend the function HR,0
ρ,λ,δ = Ψ∗K

δ,0
ρ,λ to Cn, then deform HR,0

ρ,λ,δ into
H = HR,µ

ρ,λ,δ, where

HR,µ
ρ,λ,δ =

{
HR,0
ρ,λ,δ inside BR,

C + µ(τ0 −R) off BR

(see Figure 8). Perform the same perturbations as above, that is, smooth the
corners, replace the constant 0 by a small Morse function, and introduce a
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time-dependent perturbation of both H and J1 in a neighborhood of the orbits
with positive action. Let η > 0 be a real number satisfying [λ− η, λ] ∩ S = ∅:
aside the orbits of Kρ,λ, the Hamiltonian function H has the following orbits

• constants in BR \Dδ and orbits near ∂BR: we call them orbits of type 1,
and their action is at most −C + µR, where C = λ(δ − ρ);

• orbits near ∂Dδ, which we call orbits of type 2. Let orbits of type 2c denote
those orbits of type 2 which are contractible in D: their action is at most λρ−ηδ.

Now we will choose the parameters: choose any real number µ > π, and
assume that ρ < 1

2δ. Then the orbits of type 1 have action at most µR− 1
2δλ.

Choose any number λ > 2µR/δ such that λ 0∈ S, which ensures that all
these orbits have negative action. Next, we get a number η > 0 satisfying
[λ− η, λ] ∩ S = ∅, and we choose any real number ρ such that 0 < ρ < ηδ/λ:
this ensures that the orbits of type 2c have negative action. Observe that the
only parameters we are free to choose are δ and µ: since we require λρ < ηδ, we
do not get a cofinal family in HQI(Ψ(Dρ)) for a given ρ > 0. However, we know
that H ∈ Hc

FH (see Section 3.2), and we have H ! C > µR off Dδ, where R is
fixed. Let b be any number such that

b > cFH(L) = lim
σ→0

cFH

(
Ψ(Dσ)

)

and let σ be a real number such that cFH(Ψ(Dσ)) < b. By definition, there
exists some Qσ ∈ Hc

FH(Ψ(Dσ)) satisfying cFH(Qσ) < b. If we have δ < σ and
if µ is large enough, then we have H ! Qσ on S1 × Cn, and Proposition 3.3
implies that cFH(H) " cFH(Qσ). We have just proved that

(5.4) cFH(H) = cFH(HR,µ
ρ,λ,δ) < b for small enough δ and large enough µ.

In order to use this result, we will now build a family of Hamiltonian functions
representing a small ball as in Section 3.2. Observe that we have Bρ ⊂ Dρ.
Given real numbers θ and κ such that 0 < θ < ρ, κ > 0 and κ 0∈ πZ, consider
the functions given by

Fθ,κ =
{

0 in Bθ,

κ(τ0 − θ) off Bθ,
F ρ,0θ,κ =

{
Fθ,κ in Bρ,

κ(ρ− θ) off Bρ,

and deform GR,0
θ,κ,ρ = F ρ,0θ,κ into G = GR,µ

θ,κ,ρ as above. Perform the same
perturbations as before: we can choose the parameters so that θ > 1

2ρ and
κ(ρ− θ) = C, which implies

GR,µ
θ,κ,ρ ! HR,µ

ρ,λ,δ on S1 × Cn and GR,µ
θ,κ,ρ = HR,µ

ρ,λ,δ off Dδ.

As in Proposition 3.3, consider the function f = ντ0−β where β > 0 and ν > 0
are small enough, so that f " H on S1 × Cn. If β < ε < πθ, we have a
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commutative diagram

S[0,ε[
n (f)

σf−−−→ S[0,ε[
n (HR,µ

ρ,λ,δ)
σε

−−−→ S[0,ε[
n (GR,µ

θ,κ,ρ) −−−→ S[0,ε[
n (Fθ,κ)∣∣∣

∣∣∣
4ib

4
∣∣∣
∣∣∣

Z2 · x0 S[0,b[
n (HR,µ

ρ,λ,δ) −−−→ S[0,b[
n (GR,µ

θ,κ,ρ) Z2 · x0

where x0 is the center of the ball, and α = σf (x0) satisfies ib(α) = 0 in
view of (5.4). Since the map S [0,ε[

n (f) → S[0,ε[
n (Fθ,κ) is an isomorphism, we

infer σε(α) 0= 0. Moreover, for any real number c > 0 we have a commutative
diagram

S[0,c[
n (HR,0

ρ,λ,δ) −−−→ S[0,c[
n (GR,0

θ,κ,ρ)4jc

4
S[0,c[

n (HR,µ
ρ,λ,δ) −−−→ S[0,c[

n (GR,µ
θ,κ,ρ)

where the vertical arrows are isomorphisms. Indeed, during the deformation
0 $ µ, the only orbits that appear have type 1, and they have negative action.
Set α0 = j−1

ε (α): the commutative diagram

S[0,ε[
n (Hδ) σε

−−−−→ S[0,ε[
n (Gρ)4ib

4

S[0,b[
n (Hδ) σb

−−−−→ S[0,b[
n (Gρ),

where
{ Hδ = HR,0

ρ,λ,δ,

Gρ = GR,0
θ,κ,ρ,

shows that we have ib(α0) = 0 and σε(α0) 0= 0. On the other hand, consider
the natural map

jb
D : Z2 · x0 = S[0,ε[

n (Kρ,λ) −→ S[0,b[
n (Kρ,λ),

where x0 is the minimum of Kρ,λ. In view of Theorem 5.1 and (3.6), we have
jb
D(x0) 0= 0. As above, since orbits of type 2c have negative action, we infer

that the map

ibD : Z2 · x0 = S[0,ε[
n (Kδ) −→ S[0,b[

n (Kδ), where Kδ = Kδ,0ρ,λ

fulfills ibD(x0) 0= 0. Since x0 is the only orbit of Hδ with action near 0 which is
contractible in D, we have two possibilities for arbitrarily small δ > 0: either α0

is not contractible in D, or α0 = x0. In the first case, since σε(α0) 0= 0 we have
a monotonicity trajectory connecting α0 to an orbit of Gρ: this orbit is not
of type 1, because it has positive action, thus it is contractible in Bρ ⊂ Dρ.
Since α0 is not contractible, the monotonicity trajectory must exit D. Since
we have Gρ = Hδ and J1 = Ψ∗JD in ψ(D2δ \ Dδ), the corresponding part of
this trajectory is a holomorphic curve with area at most ε and at least δC(JD).
This is impossible for small enough δ, because we have ε < πθ and θ is much
smaller than δ.
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Thus we have α0 = x0 and we can use the arguments in [16]: since ib(x0) = 0,
there exists an odd number of Floer trajectories for Hδ which connect x0 to
orbits with action less than b. One of these trajectories must exit D3δ, because
otherwise they would be Floer trajectories for Kδ, which would contradict
ibD(x0) 0= 0. Let u be the part of this trajectory located off D3δ. Since Hδ

is constant and J1 = J off D3δ, the map u is a J-holomorphic curve with
area at most b. When δ goes to zero, the J-holomorphic curve u converges
as a current to a J-holomorphic curve with boundary in L and with area at
most b. This shows that w̃(L) " b. Since this holds for any b > cFH(L), we
have proved Theorem 1.6.

6. Some open questions

The main idea in the search for comparisons of symplectic capacities is that
the various known symplectic capacities have different properties, which makes
the interest of their classification. This is illustrated by Corollary 1.7: the
Floer-Hofer capacity is nonzero for compact Lagrangian submanifolds, and the
Viterbo capacity is an obstruction to the camel problem, thus we solved the
Lagrangian camel problem by proving the inequality cV(L) ! cFH(L). More
generally, in a manifold with RCT boundary which satisfies the strong alge-
braic Weinstein conjecture, we have on one hand outer regular (QI)-capacities
defined by symplectic homology as in Section 3, and on the other hand inner
regular (CS)-capacities defined by symplectic homology with compact support
(see (4.6) and Remark 4.2). Even for regular domains, the opposite regularity
of these Hamiltonian capacities sounds very hard to prove, and might be wrong.
Notice that the method used in Section 5.1 can only show that (CS)-capacities
are larger than (QI)-capacities, since J b

λ ◦ Ib
λ finally vanishes for any b, and

we do not know whether we have c∨FH = cV in general. However, it is more
reasonable to compare capacities when they have a geometric representation
and interesting applications, that is, for open sets with contact type boundary.
The common guess is that Hamiltonian capacities are all equal in this case, but
we do not know whether we have cFH(L) = cV(L) for any compact Lagrangian
submanifold L ⊂ Cn.
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[9] Salamon (D.) & Zehnder (E.) – Morse theory for periodic solutions
of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math.,
t. 45 (1992), pp. 1303–1360.
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