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CHARACTERIZATION OF CYCLE DOMAINS VIA

KOBAYASHI HYPERBOLICITY

by Gregor Fels & Alan Huckleberry

Abstract. — A real form G of a complex semi-simple Lie group GC has only finitely
many orbits in any given GC-flag manifold Z = GC/Q. The complex geometry of these
orbits is of interest, e.g., for the associated representation theory. The open orbits D
generally possess only the constant holomorphic functions, and the relevant associated
geometric objects are certain positive-dimensional compact complex submanifolds of D
which, with very few well-understood exceptions, are parameterized by the Wolf cycle
domains ΩW (D) in GC/KC, where K is a maximal compact subgroup of G. Thus, for the
various domains D in the various ambient spaces Z, it is possible to compare the cycle
spaces ΩW (D).
The main result here is that, with the few exceptions mentioned above, for a fixed real
form G all of the cycle spaces ΩW (D) are the same. They are equal to a universal domain

ΩAG which is natural from the the point of view of group actions and which, in essence,
can be explicitly computed.

The essential technical result is that if bΩ is a G-invariant Stein domain which contains ΩAG

and which is Kobayashi hyperbolic, then bΩ = ΩAG. The equality of the cycle domains
follows from the fact that every ΩW (D) is itself Stein, is hyperbolic, and contains ΩAG.
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122 FELS (G.) & HUCKLEBERRY (A.)

Résumé (Caractérisation de domaines de cycles par l’hyperbolicité au sens de Kobayashi)
Une forme réelle G d’un groupe de Lie semi-simple GC n’admet qu’un nombre fini

d’orbites dans toute GC-variété de drapeaux Z = GC/Q. La géométrie complexe de ces
orbites est intéressante, par exemple pour la théorie de la représentation associée. Les
fonctions holomorphes sur les orbites ouvertes D de G sont constantes en général ; les
objets géométriques importants liés à ces orbites sont des sous-variétés complexes de D
de dimension positives qui, à quelques rares exceptions bien comprises, sont paramétrées
par les domaines de cycles de Wolf ΩW (D) ∈ GC/KC, où K est un sous-groupe maximal
compact de G. Alors, pour les domaines D dans les variétés ambiantes Z, il est possible
de comparer les domaines de cycles ΩW (D).
Le résultat principal de cet article, aux exceptions près mentionnées ci-dessus, est que
pour une forme réelle G fixée, les domaines ΩW (D) sont les mêmes. Ils sont égaux à un
domaine universel ΩAG, qui est canonique du point de vue d’actions de groupe et qui peut
être essentiellement calculé.
Le résultat technique important est que tout domaine de Stein hyperbolique au sens de

Kobayashi bΩ qui contient ΩAG est égal à ΩAG. L’égalité des domaines de cycles s’ensuit
du fait que chaque ΩW (D) est lui-même de Stein, hyperbolique et contient ΩAG.

1. Introduction

Let G be a non-compact real semi-simple Lie group which is embedded in its
complexification GC and consider the associated G-action on a GC-flag manifold
Z = GC/Q. It is known that G has only finitely many orbits in Z; in particular,
there exit open G-orbits D. In each such open orbit every maximal compact
subgroup K of G has exactly one orbit C0 which is a complex submanifold
(see [42]).

Let q := dimC C0, regard C0 as a point in the space Cq(Z) of q-dimensional
compact cycles in Z and let

Ω := GC · C0

be the orbit in Cq(Z). Define the Wolf cycle space ΩW (D) to be the connected
component of Ω ∩ Cq(D) which contains the base cycle C0.

Since the above mentioned basic paper [42], there has been a great deal of
work aimed at describing these cycle spaces. Even in situations where good
matrix models are available this is not a simple matter. Using a variety of
techniques, exact descriptions of ΩW (D) have been given in a number of special
situations (see e.g. [1] [4], [3], [13], [17], [23], [24], [34], [38], [41], [45]).

In [16] it was conjectured that, except in the holomorphic Hermitian case
where ΩW (D) is just the associated bounded symmetric space, the cycle spaces
can be naturally identified with a certain universal domain ΩAG which only
depends on G. This domain, which is precisely defined below, is a certain G-
invariant neighborhood of the Riemannian symmetric space M = G/K in its
complexification Ω = GC/KC.
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CYCLE DOMAINS VIA KOBAYASHI HYPERBOLICITY 123

The inclusion ΩAG ⊂ ΩW (D) was proved in most cases in [17] by analyzing
concrete models and by using a nice general result which reduces this inclusion
to special cases.

In [25], using incidence geometry given by Schubert varieties (see also [23]
and [22]), it was shown that ΩW (D) agrees with the Schubert domain ΩS(D)
which is defined by removing certain algebraic incidence divisors from Ω.

The Schubert domains in turn contain a universal domain ΩI which is known
to agree with ΩAG. The inclusion ΩAG ⊂ ΩI was proved by complex analytic
methods (see [22]), but now there is an algebraic proof (see [33]) which may be
more appropriate, because the situation would apriori seem to be algebraic in
nature. The inclusion ΩI ⊂ ΩAG was shown in [2]. Thus,

ΩAG ⊂ ΩI ⊂ ΩS(D) = ΩW (D).

In particular ΩAG ⊂ ΩW (D), has now been proved in complete generality.
Therefore, to prove the above mentioned conjecture it is necessary to prove the
opposite inclusion ΩW (D) ⊂ ΩAG.

This is a consequence of the following complex geometric characterization of
ΩAG which is the main result of the present paper (see Theorem3.4.5).

Theorem 1.0.1. — If Ω̂ is a G-invariant domain which contains ΩAG in Ω

and which is in addition Stein and Kobayashi hyperbolic, then Ω̂ = Ω.

Obviously Ω̂ = ΩW (D) is G-invariant. It follows directly from the definitions
that Schubert domains are Stein (see [25]). Thus ΩW (D) = ΩS(D) implies that
the cycle spaces are Stein, a fact that has been known in the measurable case
for some time (see [43]).

Using a slight refinement of the results in [22], we show here that, with
the exception of the holomorphic Hermitian case where ΩW (D) is just the
associated bounded symmetric space, ΩW (D) is naturally embedded in Ω as a
Kobayashi hyperbolic domain.

Consequently, with this well-understood exception, the above theorem to-
gether with the inclusion ΩAG ⊂ ΩW (D) shows that ΩW (D) = ΩAG.

Before going to the main body of our work, let us set the notation.

Let M = G/K be the associated Riemannian symmetric space of non-
positive curvature embedded in MC = GC/KC as an orbit of the same base
point x0 as was chosen above in the discussion of cycle spaces.

Denote by θ a Cartan involution on gC which restricts to a Cartan involution
on g such that Fix(θ g) = k is the Lie algebra of the given maximal compact

subgroup K. The anti-holomorphic involution σ : gC → gC which defines g

commutes with θ as well as with the holomorphic extension τ of θ g to gC.

Let u be the fixed point set of θ in gC, U be the associated maximal compact
subgroup of GC and define Σ to be the connected component containing x0 of
{x ∈ U · x0 : Gx is compact}. Set ΩAG := G · Σ.
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124 FELS (G.) & HUCKLEBERRY (A.)

To cut down on the size of Σ, one considers a maximal Abelian subalgebra a

in p (where g = k ⊕ p is the Cartan decomposition of g) and notes that
G · (exp(ia) ∩ Σ) · x0 = ΩAG.

In fact there is an explicitly defined neighborhood ωAG of 0 ∈ a such that
iωAG is mapped diffeomorphically onto its images exp(iωAG) and exp(iωAG)·x0

and ΩAG = G · exp(iωAG) · x0.
The set ωAG is defined by the set of roots Φ(a) of the adjoint representation

of a on g: It is the connected component containing 0 ∈ a of the set which is
obtained from a by removing the root hyperplanes {µ = 1

2π} for all µ ∈ Φ.
It is convex and is invariant under the action of the Weyl group W(a) of the
symmetric space G/K.

Modulo W(a), the set exp(iωAG) · x0 is a geometric slice for the G-action
on ΩAG. From this root point of view, Σ can be seen to be the set of points
which are at most half way from x0 to the cut-point locus in the compact
Riemannian symmetric space U/K (see [11]).

2. Spectral properties of ΩAG

2.1. Linearization. — The map

η : GC −→ AutR(gC), x 7−→ σ ◦ Ad(x) ◦ τ ◦ Ad(x−1),

provides a suitable linearization of the setting at hand. The idea of using this
linearization in the context of double coset spaces is due to T. Masuki. Some of
the results in this and the following section on the Jordan decomposition can
be found in §4 of [32]. In particular, in §3.2 for the sake of completeness we
give proofs of his Proposition 3 and Proposition 4. In this section elementary
properties of η are summarized.

Let GC act on AutR(gC) by h · ϕ := Ad(h) ◦ ϕ ◦ Ad(h−1).

Lemma 2.1.1 (G-equivariance). — For h ∈ G it follows that η(h ·x) = h ·η(x)
for all x ∈ GC.

Proof. — By definition η(h · x) = σ Ad(h)Ad(x)τ Ad(x−1)Ad(h−1). Since h
belongs to G, it follows that σ and Ad(h) commute and the desired result
is immediate.

The normalizer of KC in GC is denoted by N C := NGC(KC). It is indeed
the complexification of N := NU (K).

Lemma 2.1.2 (N C-invariance). — The map η factors through a G-equivariant
embedding of GC/N C:

η(x) = η(y) ⇐⇒ y = xg−1 for some g ∈ N C.
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Proof. — We may write y = xg−1 for some g ∈ GC. Thus it must be shown
that η(x) = η(xg−1) if and only if g ∈ N C. But η(x) = η(xg−1) is equivalent to
Ad(g)τ = τ Ad(g), which, in turn, is equivalent to the fact that Ad(g) stabilizes
the complexified Cartan decomposition gC = (gC)τ ⊕ (gC)−τ = kC ⊕ pC.

Now, if Ad(g) stabilizes kC ⊕ pC, then Ad(g)(kC) = kC, i.e., g ∈ N C. On
the other hand, given any g ∈ N C, it follows Ad(g)(pC) = pC, because pC is
the orthogonal complement of kC with respect to the Killing form of gC.

Note that N C/KC is a finite Abelian group (see [15] for a classification).
Consequently, up to finite covers, η is an embedding of the basic space GC/KC.

The involutions σ and τ are regarded as acting on AutR(gC) by conjugation.
On Im(η) their behavior is particularly simple.

Lemma 2.1.3 (Action of the basic involutions). — For all x ∈ GC it follows
that

1) η(τ(x)) = τ(η(x)),

2) σ(η(x)) = η(x)−1,

In particular Im(η) is both σ- and τ-invariant.

Proof. — Let ϕ∗ : gC → gC denote the differential of ϕ : GC → GC and
Int(x) : GC → GC be defined by Int(x)(z) := xzx−1. The first statement
follows directly from the facts that σ and τ commute and

τ Ad(x)τ =
(
τ Int(x)τ

)
∗

= Int
(
τ(x)

)
∗

= Ad
(
τ(x)

)
.

For the second statement note that ση(x) = Ad(x)τ Ad(x−1), and thus
η(x)ση(x) = σ.

We have seen that η is a G-equivariant map which induces a finite equivariant
map η : GC/KC → AutR(gC). We will shortly see that the image η(GC/KC) is
also closed in AutR(gC). Hence, for a characterization of G-orbits in GC/KC and
their topological properties we may identify GC/KC with its image in AutR(gC)
on which G acts by conjugation.

The following special case of a general result on conjugacy classes (see [26,
p. 117] and [7]) is of basic use.

Lemma 2.1.4. — Let V be a finite-dimensional R-vector space, H a closed
reductive algebraic subgroup of GLR(V ) and s ∈ GLR(V ) an element which
normalizes H. Regard H as acting on GLR(V ) by conjugation. Then, for a
semi-simple s the orbit H · s is closed.

Corollary 2.1.5. — The image Im(η) is closed in AutR(gC).

Proof. — It is enough to show that GC.τ = {Ad(g)τ Ad(g−1) : g ∈ GC} is
closed in AutC(gC). Since τ is semi-simple and normalizes GC in this represen-
tation, this follows from Lemma 2.1.4.
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126 FELS (G.) & HUCKLEBERRY (A.)

Using a bit of invariant theory over R, we are able to carry over the standard
result on orbits in the complex case (see [32, Prop. 4]).

Proposition 2.1.6. — If η(x) = s is semi-simple, then G · x is closed.

Proof. — It is enough to show that G·s is closed. By Lemma 2.1.4 the complex
orbit GC · s is closed. Define σ̂ : AutR(gC) → AutR(gC) by σ̂(ϕ) = (σ(ϕ))−1.
Here σ acts by conjugation as usual.

Now Im(η) belongs to the fixed point set Fix(σ̂) and since GC · s ∩ Fix(σ̂)
consists of only finitely many G-orbits (see [9]), it follows that G·s is closed.

2.2. Jordan Decomposition. — Here x denotes an arbitrary element of GC

and su = us = η(x) is its Jordan decomposition in GLR(gC). Since AutR(gC) is
algebraic, s, u ∈ AutR(gC) as well. If η(x) = us is not semi-simple, i.e., u 6= 1,
consider ξ = log(u) ∈ EndR(gC). Since ξ is nilpotent, t 7→ exp(tξ) is an algebraic
map and exp(Zξ) ⊂ AutR(gC). It follows that exp(tξ) ∈ AutR(gC) for all t ∈ R.
In particular, u is in the connected component AutR(gC)0, and ξ is a derivation:
ξ = ad(N) for some nilpotent N ∈ gC. Finally, u = Ad(exp(N)) = exp(adN).

Given an element z ∈ AutR(gC), let (gC)z = {X ∈ gC : z(X) = X} denote
the subalgebra of fixed points. Observe also that if ν : gC → gC is any involution
such that ν(z) = z or ν(z) = z−1, then the subalgebra (gC)z is ν-stable. For z
semi-simple the subalgebra (gC)z is reductive.

Proposition 2.2.1 (Lifting of the Jordan decomposition)
For x ∈ GC with Jordan decomposition η(x) = u · s there exists a nilpotent

element N ∈ (gC)s ∩ ig such that

1) u = Ad(exp(N)),

2) η(exp(1
2N) · x) = s.

Proof. — Let N ∈ gC be the element with u = Ad(exp(N)) as explained
above. First we show that N ∈ (gC)s ∩ ig. From Lemma 2.1.3(2) it follows
that σ(η(x)) = σ(us) = s−1u−1. This implies σ(u) = u−1 or, equivalently,
σ(N) = −N , i.e., N ∈ ig. Secondly, the statement that Ad(exp(N)) commutes
with s is equivalent to sead(N)s−1 = ead(N) which is the same as s(N) = N
in the semi-simple case. Thus N ∈ (gC)s ∩ ig.

Finally, since N ∈ (gC)s, it follows that Ad(exp(tN)) commutes with s for
all t ∈ R. Having also in mind that σ(N) = −N , it follows that

η(exp 1
2N · x) = σ Ad(exp 1

2N)Ad(x)τ Ad(x−1)Ad(exp− 1
2N)

= Ad(exp− 1
2N) · σ Ad(x)τ Ad(x−1) · Ad(exp− 1

2N)

= Ad(exp− 1
2N) · su · Ad(exp− 1

2N)

= s · Ad(exp− 1
2N) · u · Ad(exp− 1

2N) = s.
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Observe now that since σ(s) = s−1, (gC)s is a σ-stable reductive subalge-
bra. Let (gC)s = h ⊕ q be its σ-eigenspace decomposition. We now build an
appropriate sl2-triple (E, H, F ) around N = E in (gC)s.

Lemma 2.2.2. — Let E ∈ (gC)s ∩ ig be an arbitrary non-trivial nilpotent ele-
ment. There exists an sl2-triple (E, H, F ) in (gC)s, i.e.,

[E, F ] = H, [H, E] = 2E and [H, F ] = −2F

such that E, F ∈ q and H ∈ h.

Proof. — Since (gC)s is reductive, there exists a sl2-triple (E, H, F ) in (gC)s

by the theorem of Jacobson-Morozov. It can be chosen to be σ-compatible.
To see this, split H = Hσ + H−σ with respect to the σ-eigenspace decom-

position of (gC)s. Since [H, E] = 2E and σ(E) = −E, it follows that

[H−σ, E] = 0.

Hence, we may assume that H = Hσ (see [8, Chap. VIII, §11, Lemme 6]).
Observe further that in this case one has [E, F ] = [E, (F )−σ] = H and
[H, (F )−σ] = (F )−σ. The desired result follows then from the uniqueness of
the third element F in a sl2-triple.

Now we have all the ingredients which are needed to give a complete char-
acterization of the closed orbits in Im(η) (see [32, Prop. 3]):

Proposition 2.2.3 (Closed orbits). — If η(x) = us is the Jordan decompo-
sition, then the orbit G · η(x) = G · (su) contains the closed orbit G · s in its

closure G · η(x). In particular, G · η(x) is closed if and only if η(x) is semi-
simple and s ∈ Im(η).

Proof. — Let u = Ad(expN) with N as in Proposition 2.2.1. Hence, by
Lemma 2.2.2 there is a sl2-triple (N, H, F ) (E = N) such that [tH, N ] = 2tN ,
i.e., Ad(exp tH)(N) = e2tN for every t ∈ R. Note also that exp(RH) ⊂
G ∩ exp(gC)s by construction of the sl2-triple. It follows that

η(exp tH · x) = exp tH · (us) = Ad(exp tH) · us · Ad(exp−tH)

= Ad(exp tH) · u · Ad(exp−tH) · s

= Ad(exp tH)Ad(expN)Ad(exp−tH) · s

= Ad(exp e2tN) · s.

For t → −∞ it follows lim exp tH · (us) = Ad(exp e2tN) · s = s. Hence, the
closed orbit G·s lies in the closure of G·(us). In particular G·(us) is non-closed
if u 6= 1, i.e., if η(x) is not semi-simple. This, together with Proposition 2.1.6
implies that G · η(x) is closed if and only if η(x) is semi-simple. Recall that the
image Im(η) is closed. This forces s ∈ Im(η) and the proof is now complete.
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2.3. Elliptic elements and closed orbits. — Every non-zero complex
number z has the unique decomposition r · eiφ into the hyperbolic part r > 0
and elliptic part eiφ. This generalizes for an arbitrary semi-simple element
s ∈ GL(gC): By decomposing its eigenvalues one obtains the unique decompo-
sition s = sell · shyp = shyp · sell. An element x ∈ GC is said to be elliptic if
η(x) = s is semi-simple with eigenvalues lying in the unit circle. It should be
remarked that x itself may in such a case not be a semi-simple element of the
group GC, e.g., KC contains unipotent elements.

Let Ωell ⊂ GC be the set of elliptic elements. This set is invariant by the
right-action of KC, and therefore by choosing the same base point x0 as in the
case of ΩAG, by abuse of notation we also regard Ωell as a subset of GC/KC.
We reiterate that, since the map η is not a group morphism, the classical notion
of an elliptic element in GC differs from the above definition.

Lemma 2.3.1. — For U the maximal compact subgroup of GC defined by θ it
follows that U ⊂ Ωell.

Proof. — For θ the Cartan involution defining u, observe that

Û :=
{
ϕ ∈ AutR(gC) : ϕθ = θϕ

}

is a maximal compact subgroup of AutR(gC) (with identity component Ad(U)).
Now θ commutes with every term in the definition of η(u)for every u ∈ U .

It follows that θη(u) = η(u)θ. Therefore η(U) is contained in the compact

group Û and consequently U ⊂ Ωell.

Proposition 2.3.2 (Elliptic elements). — In the homogeneous space GC/KC

the set of elliptic elements is described as Ωell = G · exp(ia) · x0.

Proof. — Observe that Ωell is G-invariant. Hence, the above lemma implies
that G · exp(ia) · x0 ⊂ Ωell.

Conversely, suppose x is elliptic, i.e., η(x) is contained in some maximal com-
pact subgroup of AutR(gC). Hence, there is a Cartan involution θ′′ : gC → gC

which commutes with η(x). We now make the usual adjustments so that, after
replacing x by an appropriate G-translate, η(x) will commute with the given
Cartan involution θ.

For this, if θ′′ does not commute with σ, define the semi-simple element ρ :=
σθ′′σθ′′ which is diagonalizable with all positive eigenvalues over R. It follows

that ρt is defined for all t ∈ R, and θ′ := ρ
1
4 θ′′ρ−

1
4 commutes with σ (see [21,

Chap. III, §7]). By direct calculation one verifies that ρ, hence ρt commutes
with η(x). Thus it follows that θ′ and η(x) commute.

Finally, since θ′ and our original θ both commute with σ, there exists h ∈ G
such that Ad(h)θ′ Ad(h−1) = θ. Consequently, if x is replaced by h−1 · x, then
we may assume that η(x) and θ commute.
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Now we will adjust x so that it lies in U . With respect to the global Car-
tan decomposition of GC defined by θ write x = u exp(Z), i.e., u ∈ U and
θ(Z) = −Z. We now show that in fact exp(Z) ∈ KC.

Since θ commutes with σ, τ and u and anti-commutes with Z, we have

θη(x) = θ ·
(
σ Ad(u)Ad(exp(Z)

)
τ Ad

(
exp(−Z)Ad(u−1)

)

= σ Ad(u)Ad
(
exp(−Z)

)
τ Ad

(
exp(Z)

)
Ad(u−1) · θ.

On the other hand

θη(x) = η(x)θ = σ Ad(u)Ad
(
exp(Z)

)
τ Ad

(
exp(−Z)

)
Ad(u−1) · θ.

Combining these two equations, we obtain

Ad
(
exp(Z)

)
τ Ad

(
exp(−Z)

)
= Ad

(
exp(−Z)

)
τ Ad

(
exp(Z)

)

and consequently Ad(exp(2Z)) commutes with τ . Since the restriction
Ad : exp(iu) → Aut(gC) is injective, it follows that τ(exp(Z)) = exp(Z), i.e.,
exp(Z) ∈ KC. Replacing x by x exp(−Z), it follows that x·x0 = x exp(−Z)·x0;
hence, we may assume that x ∈ U .

Since U = K · exp(ia) · K, we may assume that x ∈ K exp(ia) and then
translate it by left multiplication by an element of K to reach the following
conclusion: If x ∈ GC is elliptic, then there exists h ∈ G and ` ∈ KC with hx`
in exp ia or, equivalently, there is h ∈ G with hx ·x0 ∈ exp(ia) ·x0. This proves
the inclusion Ωell ⊂ G · exp(ia) · x0.

The following is a key ingredient for understanding the G-orbit structure
in bd(ΩAG).

Proposition 2.3.3. — One has exp(ia) · x0 ∩ c`(ΩAG) = c`(exp(iωAG) · x0)

Proof. — If x ∈ c`(exp(iωAG) · x0), then it is elliptic and therefore its orbit
G · x is closed. In other words exp(ia) · x0 ∩ c`(ΩAG) ⊃ c`(exp(iωAG) · x0).

For the opposite inclusion, observe that if s, s′ ∈ exp(ia) · x0 and s′ ∈ G · s,
then s′ = k(s) for some element k of the Weyl group. Thus, if s belongs
to c`(exp(iωAG) · x0), then s′ belongs to c`(exp(iωAG) · x0) as well. There-
fore, in order to prove the opposite inclusion it is enough to show that, given
s′ ∈ exp(ia · x0) ∩ c`(ΩAG), there exists s ∈ c`(exp(iωAG) · x0) with s′ ∈ G · s.

Given s′ as above, there exist sequences {sn} ⊂ exp(iωAG) · x0 and {s′n} ⊂
ΩAG such that s′n ∈ G · sn, s′n → s′ and sn → s ∈ c`(exp(iωAG) · x0). Con-
sider the (real) categorical quotient map π : AutR(gC) → AutR(gC)//G. It is
continuous, the base is Hausdorff and in every fiber there is exactly one closed
G-orbit. Since π(sn) = π(s′n), it follows that G · s = G · s′.

Corollary 2.3.4. — Let Ωc` denote {x ∈ Ω : G · x is closed }. Then

Ωc` ∩ c`(ΩAG) = G · c`(exp(iωAG) · x0) = Ωell ∩ c`(ΩAG).
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Proof. — From Proposition 2.3.2, ΩAG ⊂ Ωell. By continuity, the semi-simple
part of η(x) is elliptic for every x ∈ c`(ΩAG). Thus Ωc` ∩ c`(ΩAG) ⊂ Ωell ∩
c`(ΩAG), because elements of closed orbits are semi-simple. Proposition 2.3.2
gives Ωc` ∩ c`(ΩAG) ⊂ G · c`(exp(iωAG) · x0), and from Proposition 2.3.3 it
follows that G·c`(exp(iωAG)·x0) ⊂ Ωc`∩c`(ΩAG). So we have Ωc`∩c`(ΩAG) ⊂
G · c`(exp(iωAG) · x0) = Ωell ∩ c`(ΩAG). Finally, if x ∈ Ωell, then in particular
it is semi-simple and G · x is closed. This proves the remaining inclusion.

3. Q2-slices

At a generic point y ∈ bd(ΩAG) we determine a 3-dimensional, σ-invariant,
semi-simple subgroup SC such that S = (SC)σ = Fix(σ : SC → SC) is a non-
compact real form and such that the isotropy group SC

y is either a maximal

complex torus or its normalizer. Geometrically speaking, Q2 = SC · y is either
the 2-dimensional affine quadric, which can be realized by the diagonal action
as the complement of the diagonal in P1(C) × P1(C), or its (2-1)-quotient,
which is defined by exchanging the factors and which can be realized as the
complement of the (closed) 1-dimensional orbit of SO3(C) in P2(C). By abuse
of notation, we refer in both cases to SC · y as a 2-dimensional affine quadric.

The key property is that, up to the above mentioned possibility of a (2-1)-
cover, the intersection Q2 ∩ ΩAG is the Akhiezer-Gindikin domain in SC/KC

S

for the unit disk S/KS.

For the sake of brevity we say that the orbit SC ·y is a Q2-slice at y whenever
it has all of the above properties.

3.1. Existence. — Given a non-closed G-orbit G · y in bd(ΩAG), we may
apply Proposition 2.2.1 to obtain a lifting of the semi-simple (elliptic)
part of the Jordan decomposition of η(x). For an appropriate base
point z this lifting can be chosen in bd(exp(iωAG)). Recall that the ac-
tion GC × AutR(gC) → AutR(gC) is given by conjugation (see §3.1). Note that
the isotropy Lie algebra at ϕ ∈ AutR(gC) is the totally real subalgebra of fixed
points (gC)ϕ = {Z ∈ gC : ϕ(Z) = Z}.

Lemma 3.1.1 (Optimal base point). — Every non-closed G-orbit G · y in
bd(ΩAG) contains a point z = exp E ·exp iA ·x0 such that E ∈ (gC)η(exp iA) ∩ ig
is a non-trivial nilpotent element.

Proof. — Let η(y) = su be the Jordan decomposition and let N ∈ (gC)s ∩ ig
be as in Proposition 2.2.1. We then have

η(exp y) = η
(
exp

(
−

1

2
N

)
exp

(1

2
N

)
·y

)
= Ad(expN)◦η

(
exp

(1

2
N

)
·y

)
= u·s.
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By Proposition 2.2.3 and Corollary 2.3.4 the semi-simple element η(exp(1
2N) · y)

is elliptic. Hence, Proposition 2.3.2 implies the existence of g ∈ G and
A ∈ bd(ωAG) such that exp 1

2N · y = g−1 exp iA · x0.

Define now E := Ad(g)(− 1
2N) and observe that g · y = exp E exp iA · x0.

Finally, E ∈ (gC)g.s = (gC)η(exp iA), and the lemma is proved.

Recall that (gC)η(exp iA) is a σ-stable real reductive algebra. Let

(gC)η(exp iA) = h ⊕ q

be the decomposition into σ-eigenspaces. In this notation, the nilpotent ele-
ment E as in the above lemma belongs to q.

Let now an arbitrary non-closed orbit G exp E exp iA · x0 be given. Fix a
sl2-triple (E, H, F ) as in Lemma 2.2.2. Let SC be the complex subgroup of GC

defined by this triple. Set e := iE, f := −iF and let S be the σ-invariant real
form in SC. The Lie algebra of S is then the subalgebra generated by the sl2
triple (e, H, f). Finally, let x1 = exp(iA) ·x0 be the base point chosen as above
in the closure of a given G-orbit.

Lemma 3.1.2. — The connected component (SC
x1

)0 of the SC-isotropy at x1 is
the 1-parameter subgroup {exp(zH) : z ∈ C} ∼= C

∗.

Proof. — Since the action SC ×GC/KC → GC/KC is affine-algebraic, the orbit
SC · exp iA · x0 = SC · x1 is an affine variety. Then the isotropy at exp iA · x0

is 1-dimensional or SC. Note that SC · x1 cannot be a point, because by con-
struction expE · x1 6= x1; therefore SC

x1
is 1-dimensional.

We now show that exp RH ·x1 = x1, or equivalently, exp tH · η(x1) = η(x1).
Define ϕ := Ad(exp(iA))τ Ad(exp(−iA)) and note that H ∈ (gC)σ ∩ (gC)ϕ = h

yields

exp tH · η(x1) = Ad(exp tH) ◦ σϕ ◦ Ad(exp−tH)

= Ad(exp tH)Ad(exp−tH) ◦ σϕ = η(x1).

It follows that exp CH ·x1 = x1. Since SC
x1

is 1-dimensional and H semi-simple,

we deduce (SC
x1

)0 = exp CH ∼= C
∗.

3.2. Genericity. — Without going into a technical analysis of bd(ΩAG), we
will construct Q2-slices only at its generic points. The purpose of this section
is to introduce the appropriate notion of “generic” and prove that the set of
such points is open and dense. The set of generic points is defined to be the
complement of the union of small semi-algebraic sets C and E in bd(ΩAG).
We begin with the definition of C.

Let R := bd(exp(iωAG) · x0) and recall that for y ∈ bd(ΩAG) the orbit G · y
is closed if and only if G · y ∩R 6= ∅. In fact R parameterizes the closed orbits
in bd(ΩAG) up to the orbits of a finite group. Recall also that R is naturally
identified with bd(ωAG), which is the boundary of a convex polytope, and is
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132 FELS (G.) & HUCKLEBERRY (A.)

defined by linear inequalities. Let E be the image in R of the lower-dimensional
edges in bd(ωAG), i.e., the set of points which are contained in at least two root
hyperplanes {α = cα}. Finally, let Rgen := R r E.

As we have seen in Corollary 2.3.4, the set of closed orbits in the boundary
of ΩAG can be described as G ·bd(exp(iωAG)x0). This is by definition the set C.

Lemma 3.2.1. — For x ∈ R it follows that dim G · x ≤ codimΩ bd(Ω) − 2.

Proof. — Note that bd(ΩAG) is connected and of codimension 1 in Ω. The
G-isotropy group CK(a) at generic points of exp(iωAG) · x0 fixes this slice
pointwise and therefore is contained in a maximal compact subgroup of the
isotropy subgroup Gx of each of its boundary points. Since by definition Gx is
non-compact, it follows that dimGx is larger than the dimension of the generic
G-isotropy subgroup at points of exp(iωAG) · x0.

Remark. — For x ∈ bd(ΩAG)gen the isotropy subgroup Gx is precisely calcu-
lated in §3.3. This shows that dimG ·x = codimΩ bd(ΩAG)−m, where m is at
least 2. Thus, by semi-continuity we have for all x ∈ bd(ΩAG) the estimate

dimG · x ≤ codimΩ bd(ΩAG) − m.

Now let X := Im(η) ⊂ AutR(gC). It is a connected component of a real
algebraic submanifold in AutR(gC). The complexification XC of X which is
contained in the complexification AutC(gC ×gC) of AutR(gC) is biholomorphic
to GC/N C × GC/N C, where N C denotes the normalizer of KC in GC. The
complexification of the piecewise real analytic variety R is a piecewise complex
analytic subvariety RC of XC defined in a neighborhood of R in XC. Finally,
let π : XC → XC//GC be the complex categorical quotient.

Recall that in every π-fiber there is a unique closed GC-orbit. The closed G-
orbits in X are components of the the real points of the closed GC-orbits which
are defined over R. For a more extensive discussion of the interplay between
the real and complex points in complex varieties defined over R see [39], [40],
[9].

Let k := dimR Ω − dim R − m be the dimension of the generic G-orbits of
points of R and let Sk be the closure in XC of

{
z ∈ XC : GC · z is closed and k-dimensional

}
.

Define Ck := Sk ∩ RC. It follows that Ck is a piecewise complex analytic set of
dimension k + dimC RC.

Proposition 3.2.2. — The set G · R = {x ∈ bd(ΩAG) : G · x is closed}
is contained in a closed semi-algebraic subset C of codimension at least 1 in
bd(ΩAG).

Proof. — The set C is defined to be the intersection of the real points of Ck

with bd(ΩAG). The desired result follows from dimC Ck = k + dimC RC.
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Recall that π denotes the categorical quotient map π : XC → XC//GC.
Define E := η−1(π−1(π(E))) ∩ bd(ΩAG). In particular it is a closed semi-
algebraic subset of bd(ΩAG) which contains the set

{
x ∈ bd(ΩAG) : c`(G · x) ∩ E 6= ∅

}
.

Definition. — A point z ∈ bd(ΩAG) is said to be generic if it is contained in
the complement of C ∪ E .

Let bdgen(ΩAG) denote the set of generic boundary points.

Proposition 3.2.3. — The set of generic points bdgen(ΩAG) is open and
dense in bd(ΩAG).

It has already been noted that C and E are closed. Since C is of codimension
two, the complement of C is dense. Thus this proposition is an immediate
consequence of the following fact.

Proposition 3.2.4. — The saturation E is at least 1-codimensional in
bd(ΩAG).

This in turn follows from a computation of the dimension of the fibers at
points of E of the above mentioned categorical quotient. For this it is convenient
to use the Jordan decomposition η(z) = u ·s for z ∈ Ω such that x = exp(ia)·x0

is in c`(G · z).
As in Lemma 3.1.1 we choose an optimal base point such that η(x) = s and

u = Ad(exp(N)) with N ∈ q, where h ⊕ q is the σ-decomposition of l = (gC)s.
Let Nx be the the cone of nilpotent elements in q and observe that the sat-
uration Ex = {z ∈ bd(ΩAG) : x ∈ c`(G · z)} is an Nx-bundle over the closed
orbit G · x. Thus it is necessary to estimate dimR Nx.

Recall that any two maximal toral Abelian subalgebras of qC are conjugate
and therefore the dimension m of one such is an invariant. Since aC is such an
algebra, the following is quite useful (see [28]).

Lemma 3.2.5. — The complex codimension in qC of every component of the
nilpotent cone in qC is m.

Proof of Proposition 3.2.4. — We prove the estimate codimΩ Ex ≥ dim a. For
this observe that, since G · s is closed in AutR(gC), an application of the Luna
slice theorem for the (closed) complex orbit GC.s in the complexification of
Im(η) yields the bundle structure Im(η) = G×Gs

q locally near s; in particular
codimq Nx = codimΩ(Ex). The result follows from the above Lemma by noting
that codimq Nx is at most the complex codimension of the nilpotent cone in qC

and, as mentioned above, that dim a = m.
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The group SC constructed above for a generic boundary point has the prop-
erty that the intersection of the SC-orbit, i.e., a 2-dimensional affine quadric
Q2

∼= SL2(C)/C
∗ (or ∼= SL2(C)/N(C∗)) with ΩAG contains an Akhiezer-

Gindikin domain ΩSL
AG

∼= D × D of Q2. To see this, we will conjugate SC

by an element of G in order to relate SC to the fixed Abelian Lie algebra a.
This is carried out in the next section.

3.3. The intersection property. — To complete our task we conjugate the
group SC obtained in §3.1 above by an element h in the isotropy group Gx1 so
that it can be easily seen that the resulting orbit Q2 = SC · x1 intersects ΩAG

in the Akhiezer-Gindikin domain of Q2.

The following is a first step in this direction.

Proposition 3.3.1. — Let G · expE · exp iA · x0 = G · x1 be any non-closed
orbit in bd(ΩAG) and (E, H, F ) a sl2-triple in (gC)η(exp iA) as in Lemma 2.2.2.
Given Z := E − F , then there exits h ∈ Gx1 so that Ad(h)(Z) ∈ ia.

This result is an immediate consequence of the following basic fact.

Lemma 3.3.2. — Let l be a real reductive Lie algebra, θ a Cartan involution
and σ a further involution which commutes with θ. Let l = k ⊕ p be the
eigenspace decomposition with respect to θ and l = h ⊕ q with respect to σ.
Then, if a ⊂ p ∩ q is a maximal Abelian subalgebra of q and ξ is a hyperbolic
semi-simple element of q, there exists h ∈ Int(h) such that Ad(h)(ξ) ∈ q.

Proof. — Since ξ is hyperbolic, we may assume that there is a Cartan involu-
tion θ′ : l → l such that θ′(ξ) = −ξ and θ′σ = σθ′. Then there exists h ∈ Int(h)
with Ad(h)θ′ Ad(h−1) = θ (see [31]) and Ad(h)(ξ) ∈ p ∩ q.

To complete the proof, just note that (h ∩ k) ⊕ (p ⊕ q) is a Riemannian
symmetric Lie algebra where any two maximal Abelian algebras in p ∩ q are
conjugate by an element of Int(h ∩ k).

Proof of Proposition 3.3.1. — Observe that ad(Z) has only imaginary eigen-

values. Replacing (gC)η(exp iA) = h⊕q by the dual l̃ := h⊕iq = h̃⊕q̃ and defining

σ̃ and θ̃ accordingly, we apply the above Lemma to ξ := iZ and the Abelian
Lie algebra a ⊂ q̃ to obtain h ∈ Int(h) with Ad(h)(ξ) ∈ a. Thus Ad(h)(Z) has
the required property Ad(h)(Z) ∈ ia.

We now show that for z ∈ bdgen(ΩAG) the group SC which is associated to
the sl2-triple constructed in the above proposition produces a Q2-slice. For a
precise formulation it is convenient to let bdgen(ωAG) := bd(ωAG)rE, where E
is the union of the lower-dimensional strata as in §3.2.

Proposition 3.3.3. — For z ∈ bdgen(ΩAG) and x1 = exp iA·x0 the associated
point with iA ∈ bdgen(iωAG) it follows that the line R(E − F ) is transversal to
bdgen(iωAG) at iA in ia.
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The proof requires a more explicit description of (gC)η(exp iA) =: l = h ⊕ q.
For this, recall the root decompositions of g and gC with respect to a or aC, re-
spectively: gC = CkC(aC)⊕aC ⊕

⊕
Φ(a) gC

λ . The behavior of this decomposition

with respect to our involutions is the following: θ(gC

λ ) = gC

−λ and τ(gC

λ ) = gC

−λ;

furthermore, the root decomposition is σ-stable, i.e., σ(gC

λ ) = gC

λ . Fix a τ -stable
basis of root covectors, i.e., select any basis L1

λ, . . . , Lk
λ of gλ = (gC

λ )σand de-

fine Lj
−λ := τ(Lj

λ). Define g[λ] := gλ ⊕ g−λ, gC[λ] := g[λ] ⊕ ig[λ] and no-

tice that g[λ] = (g[λ])τ ⊕ (g[λ])−τ . Finally, set

Xj

[λ] := Lj
λ + Lj

−λ, Y j

[λ] := Lj
λ − Lj

−λ

and observe that Xj

[λ] ∈ (g[λ])τ , Y j

[λ] ∈ (g[λ])−τ . The reason for introducing

such a basis is that the complex subspaces ((Xj

[λ], Y
j

[λ]))C are Ad(t)-stable for

any t := exp iA, A ∈ a.

Express Ad(t) as a matrix with respect to the basis Xj

[λ], Y
j

[λ]:

Ad(t) ((X[λ],Y[λ])) =
(

coshλ(iA) sinhλ(iA)
sinhλ(iA) coshλ(iA)

)
.

Let gC = kC ⊕ pC be the complexification of the Cartan decomposition of g. A
simple calculation yields for t = exp iA:

h = g ∩ Ad(t)(kC) = Ck(a) ⊕
⊕

λ(A)=Zπ

g[λ]τ ⊕
⊕

λ(A)= 1
2π+Zπ

g[λ]−τ ,

q = ig ∩ Ad(t)(pC) = ia ⊕
⊕

λ(A)=Zπ

ig[λ]−τ ⊕
⊕

λ(A)= 1
2π+Zπ

ig[λ]τ .

Let A ∈ bdgen(ωAG) be boundary-generic, i.e., there is a single λ ∈ Φ(a) with

λ(A) = ±
π

2
, µ(A) 6∈

1

2
πZ for all µ ∈ Φ(a) r {±λ}.

The above general formulas imply that the centralizer subalgebra (gC)η(exp iA)

for such a boundary-generic point as above is given by

(gC)η(exp iA) = m ⊕ g[λ]−τ ⊕ ia ⊕ ig[λ]τ .

To complete the proof of the proposition it is then enough to show that for
the selected sl2-triple (E, H, F ) ∈ (gC)η(exp iA) it follows that E − F ∈ Rihλ,
where hλ ∈ a is the coroot determined by the root λ ∈ Φ(a). This is the content
of the following

Lemma 3.3.4. — Let A ∈ {λ = 1
2π} ∩ bdgen(ωAG) be boundary-generic as

above. Then E − F ∈ Rihλ.
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Proof. — Let l := (gC)η(exp iA) = h ⊕ q. Since ((E, H, F ))R is semi-simple,
it follows that ((E, H, F ))R ⊂ [l : l]. Hence, since B([gλ : g−λ], {λ = 0}) = 0
(B denotes the Killing form) we have

[l : l] = [m ⊕ g[λ]−τ ⊕ ia ⊕ ig[λ]τ : m ⊕ g[λ]−τ ⊕ ia ⊕ ig[λ]τ ]

= m ⊕ Rihλ ⊕ g[λ]−τ ⊕ ig[λ]τ .

By Proposition 3.3.1 we have E−F ∈ ia. Finally, E−F ∈ ia∩[l : l] = Rihλ.

Recall that the set bdgen(ΩAG) = bd(ΩAG) r (C ∪ E) consists of certain
non-closed orbits in the boundary of ΩAG.

Theorem 3.3.5. — On every G-orbit in bdgen(ΩAG) there exists a point of the
form z := expE ·exp iA ·x0, A ∈ bdgen(ωAG), E nilpotent, and a corresponding
3-dimensional simple subgroup SC ⊂ GC such that

1) the 2-dimensional affine quadric SC · exp iA · x0 =: SC · x1 contains z;

2) the intersection ΩAG ∩ SC · x1 contains an Akhiezer-Gindikin domain
ΩAG(S) of SC · x1, i.e., the orbit SC · x1 is a Q2-slice.

Proof. — Given a non-closed G-orbit in bdgen(ΩAG) let z = expE ·exp iA·x0 be
an optimal base point as in Lemma 3.1.1. By Proposition 3.3.1 we may choose
an sl2-triple (E, H, F ) in (gC)η(exp iA) such that E − F ∈ ia. Let SC ⊂ GC

be the complex subgroup with Lie algebra sC := ((E, H, F ))C. By construction
SC · x1 contains z.

For a boundary-generic point x1 with λ(A) = 1
2π and µ(A) 6= 1

2πZ for all
µ 6= ±λ we already know by 3.3.4 that E − F ∈ Rihλ. Assume that hλ ∈ a

is the normalized coroot of λ, i.e., λ(hλ) = 2. Since ωAG is invariant under
the Weyl group, the image A′ of A under the reflection on {λ = 0} is also
boundary-generic, and the intersection of A − Rhλ with ωAG is the segment
{A − thλ : t ∈ (0, 1

2π)} with boundary points A and A′.

Recall that (e, H, f) with E = ie and F = −if is an sl2-triple in sC

such that s := g ∩ sC = ((e, H, f))R. Let S denote the corresponding sub-
group in SC (isomorphic to SL2(R) or PSL2(R)). The S-isotropy at all points
exp((− 1

2π, 0)ihλ + iA) · x0 is compact and it is non-compact at exp iA · x0 and

exp iA′ ·x0. Hence, S ·exp((− 1
2π, 0)ihλ+iA)·x0 is an Akhiezer-Gindikin domain

in SC · x1 which is contained in ΩAG.

3.4. Domains of holomorphy. — Let SC = SL2(C), S = SL2(R) be em-
bedded in SC as the subgroup of matrices which have real entries and let
KS = SO2(R). To fix the notation, let D0 and D∞ be the open S-orbits
in P1(C). Further, choose C ⊂ CP1 = C ∪ {∞} in such a way that 0 ∈ D0

and ∞ ∈ D∞ are the KS-fixed points.
Now let SC act diagonally on Z = CP1 × CP1 and note that the open

orbit Ω, which is the complement of the diagonal diag(CP1) in Z, is the com-
plex symmetric space SC/KC

S . Note that in CP1 × CP1 there are four open
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SL2(R) × SL2(R)-orbits: the bi-disks Dα×Dβ for any pair (α, β) from {0,∞}.
As S-spaces, the domains D0×D∞ and D∞×D0 are equivariantly biholomor-
phic; further, they are actually subsets of Ω,and the Riemannian symmetric
space S/KS sits in each of them as the totally real S-orbit S·(0,∞) (or S·(∞, 0),
respectively). Depending on which of these points is chosen as a reference point
in Ω, both domains can be considered as the Akhiezer-Gindikin domain

ΩAG = D0 × D∞ = S · exp iωAG · (0,∞), D∞ × D0 = S · exp iωAG · (∞, 0)

with ωAG = (− 1
4π, 1

4π)hα and hα ∈ a is the normalized coroot (i.e., α(hα) = 2).

Our main point here is to understand S-invariant Stein domains in Ω which
properly contain ΩAG. By symmetry we may assume that such has non-empty
intersection with D0×D0. Observe that (D0 ×D0)∩Ω = D0×D0 rdiag(D0).
Furthermore, other than diag(D0), all S-orbits in D0 × D0 are closed real hy-
persurfaces. For D0 ×D0 r diag(D0) let Ω(p) be the domain bounded by S · p
and diag(D0). We shall show that a function which is holomorphic in a neigh-
borhood of S · p extends holomorphically to Ω(p).

For this, define Σ := {(−s, s) : 0 ≤ s < 1} ⊂ D0 ×D0. It is a geometric slice
for the S-action. We say that a (1-dimensional) complex curve C ⊂ C

2 ⊂ Z
is a supporting curve for bd(Ω(p)) at p if C ∩ c`(Ω(p)) = {p}. Here, c`(Ω(p))
denotes the topological closure in D0 × D0.

Proposition 3.4.1. — For every p ∈ D0 ×D0 r diag(D0) there exists a sup-
porting curve for bd(Ω(p)) at p.

Proof. — Recall that we consider D0 embedded in C as the unit disc. It is
enough to construct such a curve C ⊂ C

2 at each point ps = (−s, s) ∈ Σ, s 6= 0.
For this we define Cs := {(−s+z, s+z) : z ∈ C}. To prove Cs∩c`(Ω(ps)) = {ps}
let d be the Poincare metric of the unit disc D0, considered as the function
d : D0×D0 → R≥0. Note that it is an S-invariant function on D0×D0. In fact
the values of d parameterize the S-orbits.

We now claim that d(−s + z, s + z) ≥ d(−s, s) = d(ps) for z ∈ C and
(−s+z, s+z) ∈ D0×D0, with equality only for z = 0, i.e., Cs touches c`(Ω(ps))
only at ps. To prove the above inequality, it is convenient to compare the
Poincaré length of the Euclidean segment seg(z−s, z+s) in D0 with the length
of seg(−s, s). Writing the corresponding integral for the length, it is clear,
without explicit calculation, that d(−s+x, s+x) > d(−s, s) for z = x ∈ Rr0.
The same argument shows also that d(−s+x+ iy, s+x+ iy) > d(−s+x, s+x)
for all non-zero y ∈ R and the proposition is proved.

From the above construction it follows that the boundary hypersurfaces S(p)
are strongly pseudoconvex. Since then the smallest Stein domain containing a
S-invariant neighborhood of S(p) is Ω(p)rdiag(D0), the following is immediate.
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Corollary 3.4.2. — For p ∈ D0 × D0 r diag(D0) every function f which is
holomorphic on some neighborhood of the orbit S ·p extends holomorphically to
Ω(p)rdiag(D0). An analogous statement is valid for p ∈ D∞×D∞rdiag(D∞).

Observe that the set bdgen(D0 × D∞) of generic boundary points, which
was introduced in section 4.2, consists of the two S-orbits bd(D0) × D∞ ∪
D0 × bd(D∞). Let z ∈ bd(D0)×D∞ (or z ∈ D0×bd(D∞) be such a boundary
point.

Corollary 3.4.3. — Let Ω̂ ⊂ Q2 ⊂ CP1× CP1 be an S-invariant Stein do-

main which contains D0×D∞ and the boundary point z. Then Ω̂ also contains
D0 × CP1 r diag(CP1) (or CP1 × D∞ r diag(CP1), respectively).

Proof. — Let B be a ball around z which is contained in Ω̂. For p in

B(z) ∩ D∞ × D∞ sufficiently close to z it follows that S · q ⊂ Ω̂ for all q
in B(z) ∩ (D∞× D∞). The result then follows from the previous corollary.

If Ω̂ is as in the above corollary, the fibers of the projection of Ω̂ ⊂ CP1× CP1

→ P1 can be regarded as non-constant holomorphic curves f : C → Ω̂. One
says that a complex manifold X is Brody hyperbolic if there are no such curves.

Corollary 3.4.4. — If Ω̂ is as above, then Ω̂ is not Brody hyperbolic.

A complex manifold X is said to be Kobayashi hyperbolic whenever the
Kobayashi pseudo-metric is in fact a metric (see [27]). The pseudo-metric is
defined in such a way that, if there exists a non-constant holomorphic curve
f : C → X , then X is not hyperbolic, i.e., Kobayashi hyperbolicity is a stronger
condition than Brody hyperbolic. For an arbitrary semi-simple group G the do-
main ΩAG is indeed Kobayashi hyperbolic (cf. [22], see §5 for stronger results).

The following is our main application of the existence of Q2-slices at generic
points of bd(ΩAG).

Theorem 3.4.5. — A G-invariant, Stein and Brody hyperbolic domain Ω̂
in GC/KC which contains ΩAG is equal to ΩAG.

Proof. — Arguing by contraposition, if ΩAG is strictly contained in a G-

invariant Stein domain Ω̂, then by Theorem 3.3.5 there exists a Q2-slice at a

generic boundary point z ∈ bd(ΩAG) ∩ Ω̂ with Q2 ∩ Ω̂ an S-invariant Stein
domain properly containing the Akhiezer-Gindikin domain of Q2. However,
by Corollary 3.4.4, such a domain in Q2 is not Brody hyperbolic.

4. Hyperbolicity and the characterization of cycle domains

In this section it is shown the Wolf cycle domains ΩW (D) are Kobayashi
hyperbolic. The above theorem then yields their characterization (see 4.2.5).
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4.1. Families of hyperplanes. — We start by proving a general result con-
cerning families of hyperplanes in projective space and their intersections with
locally closed subvarieties. Since such a subvariety is usually regarded as being
embedded by sections of some line bundle, it is natural to regard the projective
space as the projectivization P(V ∗) of the dual space and a hyperplane in P(V ∗)
as a point in P(V ).

We will think of a subset S ∈ P(V ) as parameterizing a family of hyperplanes
in P(V ∗). A non-empty subset S ⊂ P(V ) is said to have the normal crossing
property if for every k ∈ N there exist H1, . . .Hk ∈ S so that for every subset
I ⊂ {1, . . . , k} the intersection

⋂
i∈I Hi is |I|-codimensional. If |I| ≥ dimC V ,

this means that the intersection is empty.

In the sequel 〈S〉 denotes the complex linear span of S in P(V ), i.e., the
smallest plane in P(V ) containing S.

Proposition 4.1.1. — A locally closed, irreducible real analytic subset S
with 〈S〉 = P(V ) has the normal crossing property.

Proof. — We proceed by induction over k. For k = 1 there is nothing to prove.
Given a set {Hs1 , . . . , Hsk

} of hyperplanes with the normal crossing property
and a subset I ⊂ {s1, . . . , sk}, define

∆I :=
⋂

s∈I

Hs, H(I) :=
{
s ∈ S : Hs ⊃ ∆I

}
, C`k :=

⋃

J⊂{s1,...,sk}
∆J 6= ∅

H(J).

We wish to prove that S r C`k 6= ∅. For this, note that each H(I) is a real
analytic subvariety of S. Hence, if S = C`k, then S = H(J) for some J
with ∆J 6= ∅. However, {H ∈ P(V ∗) : H ⊃ ∆J} is a proper, linear plane L(J)
of P(V ). Consequently, S ⊂ L(J), and this would contradict 〈S〉 = P(V ).
Therefore, there exists s ∈ S r C`k, or equivalently, {Hs1 , . . . , Hsk

, Hs} has the
normal crossing property.

It is known that if H1, . . . , H2m+1 are hyperplanes having the normal crossing
property, where m = dimC P(V ), then P(V ∗) r

⋃
Hj is Kobayashi hyperbolic

(cf. [12], see also [27, p. 137]).

Corollary 4.1.2. — If S is a locally closed, irreducible and generating real
analytic subset of P(V ), then there exist hyperplanes H1, . . .H2m+1 ∈ S so that
the complement P(V ∗) r

⋃
Hj is Kobayashi hyperbolic.

Our main application of this result arises in the case where S is an orbit of
the real form at hand.

Corollary 4.1.3. — Let GC be a reductive complex Lie group, G a real form,
V ∗ an irreducible GC-representation space and S a G-orbit in P(V ). Then there
exist hyperplanes H1, . . . , H2m+1 ∈ S so that P(V ∗) r

⋃
Hj is Kobayashi hy-

perbolic.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



140 FELS (G.) & HUCKLEBERRY (A.)

Proof. — From the irreducibility of the representation V ∗, it follows that V
is likewise irreducible and this, along with the identity principle, implies that
for 〈S〉 = P(V ).

4.2. Hyperbolic domains in GC/KC. — Hypersurfaces H in Ω = GC/KC

which are invariant under the action of an Iwasawa-Borel group B, i.e., Borel
groups which contain the AN part of some Iwasawa-decomposition G = KAN ,
play a key role in the study of G-invariant domains (see also [22], [23], [24] and
[25]). In the sequel we shall simply refer to such H simply as a B-hypersurface.

Recall that if H1, . . . , Hm are all of the irreducible B-hypersurfaces in GC/KC

and if
⋃

j(
⋃

g∈G g(Hj)) is removed from Ω, then the connected component ΩI

of the resulting domain is the Akhiezer-Gindikin domain ΩAG (see [22], [2]
and [33]). In particular, the ΩI is non-empty.

Now if H is just one (possibly not irreducible) B-hypersurface, then the set⋃
g∈G g(H) =

⋃
g∈K g(H) is closed and its complement in Ω = GC/KC is open.

Let ΩH be the connected component of that open complement, containing the
chosen base point x0. It is likewise a non-empty G-invariant Stein domain
in Ω = GC/KC.

Here we shall prove that, if G is not Hermitian, any such ΩH is Kobayashi
hyperbolic. In the Hermitian case one easily describes the situation where ΩH

is not hyperbolic.
Let H be given as above and let L be the line bundle which it defines. Let σH

be the corresponding section, i.e., {σH = 0} = H .
Note that σH is a B-eigenvector in Γ(Ω, L). Let VH ⊂ Γ(Ω, L) be the

irreducible GC-representation space which contains σH . Define ϕH : Ω →
P(V ∗

H) to be the canonically associated GC-equivariant meromorphic map.

Lemma 4.2.1. — The map ϕH : Ω → P(V ∗
H) is a regular morphism onto a

quasi-projective GC-orbit GC · v∗0 =: Ω̃.

Proof. — By definition ϕH is GC-equivariant; in particular its set E of base
points is GC-invariant. Since Ω is GC-homogeneous, E = ∅.

By definition every section s ∈ VH is the pull-back ϕ∗
H(s̃) of a hy-

perplane section. Thus, there is a uniquely defined B-hypersurface H̃ in

P(V ∗
H) with ϕ−1

H (H̃) = H . Let Ω̃ eH
⊂ P(V ∗

H) be defined analogously to ΩH ,

i.e., Ω̃ eH
= P(V ∗

H) r
⋃

g∈G g(H̃). Applying Corollary 4.1.3 to P(V ∗
H) and

S := G · H̃ ⊂ P(VH), it follows that the domain Ω̃ eH
is Kobayashi hyperbolic.

Further, the connected component of ϕ−1
H (Ω̃ eH

) which contains the base
point x0 is just the original domain ΩH .

If ϕ has positive dimensional fibers, which indeed can happen in the Her-
mitian case, then, since the connected components of its fibers contain many
holomorphic curves f : C → Ω, it follows that ΩH is not Kobayashi hyperbolic.
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In the case of finite fibers, since preimages under locally biholomorphic maps
of hyperbolic manifolds are hyperbolic, the opposite is true.

Theorem 4.2.2. — If the ϕH-fibers are finite, then ΩH is Kobayashi hyper-
bolic.

Corollary 4.2.3. — If G is not of Hermitian type, then ΩH is Kobayashi
hyperbolic.

Proof. — If G is not of Hermitian type, then KC is dimension theoretically
maximal in GC and, since ϕH is non-constant, it follows that it has finite
fibers.

Theorem 4.2.4. — The Wolf cycle domain ΩW (D) of an open orbit D of
an arbitrary real form G of an arbitrary complex semi-simple group GC in an
arbitrary flag manifold Z = GC/Q ist Stein and Kobayashi hyperbolic.

Proof. — It was shown in [25] that every Wolf cycle space ΩW (D) is the in-
tersection of certain of the ΩH . In the notation of [25] such an intersection
is referred to as the associated Schubert domain ΩS(D). Thus the cycle do-
mains ΩW (D) are Stein.

If G is not of Hermitian type, then, since it is contained in ΩH for certain
B-hypersurfaces H , Corollary 4.2.3 implies that it is hyperbolic.

If G is of Hermitian type, then ΩW (D) is either the associated bounded
symmetric domain B, its complex conjugate or, if Ω is non-compact, B × B
(see [43], [45], [46], [25]). Since bounded domains are hyperbolic, this completes
the proof.

We now give a characterization of all Wolf cycle domains, including the
few exceptions mentioned above. For this recall that D is an open G-orbit
in Z = GC/Q, C0 the base cycle in D, and GC · C0 = Ω is the corresponding
orbit in the cycle space Cq(Z).

Theorem 4.2.5. — If Ω is compact, then either ΩW (D) consists of a single
point or G is Hermitian and ΩW (D) is either the associated bounded symmet-
ric domain B or its complex conjugate B̄. If Ω is non-compact, then, regard-
ing ΩW (D) as a domain GC/KC, it follows that

ΩW (D) = ΩAG

for every open G-orbit in every GC-flag manifold Z = GC/Q.

Proof. — The exceptional case where Ω is compact is discussed in detail in the
proof of Theorem 4.2.4 and therefore we restrict here to the non-compact case.

The statement ΩW (D) = ΩS(D) is proved in [25]. In [22] and [33] it is proved
that ΩAG ⊂ ΩI . By definition ΩS(D) ⊃ ΩI = ΩAG. Since ΩW (D) is Stein and
hyperbolic (Theorem 4.2.4), by Theorem 3.4.5 it follows that ΩW (D) = ΩAG,
and all equalities are forced.
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Remark. — The second author’s proof [22] of the inclusion ΩAG ⊂ ΩI only
used the existence of a G-invariant strictly plurisubharmonic function on ΩAG.
It is in fact necessary to use the existence, shown in [10], of such a function
which in addition restricts to and exhaustion of exp(iωAG)·x0. In the meantime
T. Matsuki [33] has given an algebraic proof which holds in greater generality.
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Luminy, 1999), Séminaires & Congrès, vol. 4, Soc. Math. France, 2000,
pp. 201–233.
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