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KLOOSTERMAN-FOURIER INVERSION FOR
SYMMETRIC MATRICES

BY OMER OFFEN

ABSTRACT. — We formulate a Kloosterman transform on the space of generalized
Kloosterman integrals on symmetric matrices, and obtain an inversion formula. The
formula is a step towards a fundamental lemma of the Jacquet type. At the same
time it hints towards a conjectural relative trace formula identity, associated with the
metaplectic correspondence.

RESUME (Inversion de Kloosterman-Fourier pour les matrices symétriques)

Nous définissons une transformation de Kloosterman sur ’espace des intégrales de
Kloosterman généralisées sur les matrices symétriques et nous obtenons une formule
d’inversion. Cette formule est une étape vers un lemme fondamental de type de Jacquet.
En méme temps, elle indique une identité conjecturale de la formule des traces relative
associée a la correspondance métaplectique.

1. Introduction

Let F' be a non-archimedean local field, O the ring of integers in F' and p
the maximal ideal of Op. Let |- | denote the normalized absolute value on F
so that for a uniformizer @ of F we have |w|™! = #(OF/p) is the size of the
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residual field. Let ¢ be a non-trivial additive character of F. We recall the
formula

1) [ Fapitas®)de =20 20.0) [ f@)i-a~a?)da

which we use to define the Weil constant v. Here a € F*, f € C*°(F) is a
Schwartz function on F' and f is the Fourier transform of f defined by

/ fy)y(—2zy)d

The measure dzx is the self dual Haar measure on F' with respect to ¢. Thus,
it satisfies

(2) £(0) = |2 / fla)dz

Let N = N, be the subgroup of upper triangular unipotent matrices in GL,, (F).
Define the non-degenerate character § = 6,, of N by

G(U) = w(g -Ti,i-i-l)

where u = (z;,;) € N. The Haar measure dz on F determines a Haar measure
on N and a self dual Haar measure on any finite dimensional F-vector space.
We will use the measures determined by dz unless otherwise specified. Denote
by My, xn(F) the set of all m X n matrices with entries in F'. Let

M (F) = Myxn(F)
and denote by § = §,, the space of symmetric matrices
S={XeM,(F); X=X}
We consider the action (u, s) — ‘usu of N on S.

DEFINITION 1.1. — An element s € S is called relevant if 0 is trivial on the
stabilizer N, of s in N.

Our objects of interest are the generalized Kloosterman integrals
(3) w[®, ;8] = / O (*usu)d(u?)du
NAN
for a relevant s € S,® € C°(S). Let
Sp =8, NGL,(F).

The orbits in S,, are fully described in [6]. To describe a set of representatives
for all orbits in S,, we view the elements of the Weyl group as permutation
matrices in GLy,(F). Thus a complete set of representatives for the orbits
in S, is the set of all wa, where w is the longest element in the Weyl group of a
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KLOOSTERMAN-FOURIER INVERSION 333

standard Levi subgroup M of GL, (F) and a is in the center of M. All relevant
orbits in §,, with zero determinant contain an element of the form ( *0 ), where
s € Sp—1. This is proved in [3] for Hermitian matrices. The proof for symmetric
matrices is identical and we omit it here. Representatives for the relevant orbits
of zero determinant are therefore given as above in terms of representatives of
orbits in S,,_1. When w = 1 and «a is a diagonal matrix, the stabilizer of a in
N, is trivial.

In this sense the diagonal matrices are representatives of the largest orbits.
In a sense explained in [3] and [2], the Kloosterman integrals for smaller orbits,
i.e. with w # 1 are determined by Kloosterman integrals of the largest orbits.
For this reason, our main concern in this work is the space of Kloosterman
integrals, restricted to the relevant diagonal matrices. These are of the form
a = diag(as,...,a,) where a1,...,ap—1 € F* and a,, € F. We will denote
by w[®,;a1,...,a,] the Kloosterman integral w[®,v; diag(aq, ..., a,)].

To state our main theorem it will be convenient to introduce a normalization.
We introduce the normalizing factors

Jn(a> = a?71a372' ©r -1, Fn(a’a 1/’) = ’Y(a’la w)nil/y(a’Qv ’l/))n72 e 7(0’7171; 1/}>

The normalized Kloosterman integral is

(4) GU[®, i ar, .. an] = Do(—a,1)|0n(0)|*w[®, ¥5a1,. . ., an).

The purpose of the notation @¥ is to emphasize the dependence of the normal-
ization on the character 1. Let Q2 ,, be the space of functions w on (F*)"~! x F
of the form
wlay,...,ap) =&Y [®,9;a1,...,a,]

for some ® € C°(S). Denote by [-,] : F* x F* — {£1} the quadratic
Hilbert symbol. It is defined by the condition [a, b] = 1 iff a is representable by
the quadratic form a = 2% — by?. We define the Kloosterman transform K ,,
on y » by

n n—1
(5) Kypnw(a,...,an) :/W(Pl, e »pn)w( - Zpian—i-l—i + Z ! )
i=1

' — i1 Piln—i
n—1n—i
X ( H H[aiapj])dpndpn—l - dpr
i=1 j=1

where the integral over p; € F';i = 1,...,n is only iterated. Although the inte-
grand is a priori only defined for p1,...,pr,—1 € F* and p, € F we make sense
of (5) in the proof of theorem 1.2. Denote by w, € GL,(F) the permutation
matrix with a unit anti-diagonal. For any matrix X € M, (F) we will denote
by Tr(X) the trace of X. For a function ® € C°(S) let

(6) @ﬁzL@@MfﬁWWh
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be the standard Fourier transform of ®. We will consider the Fourier transform
(7) B(s) = D(wpswy)

of ®. Our main theorem is

THEOREM 1.2. — The integral (5) defining the Kloosterman transform
on Qy p s a convergent iterated integral. Moreover, let ® € C°(S) then,
(8) (K@’ [®,95.]) (a1, ..., an)

= 227 Dy(1,9) VG, s ay, - an)

The theorem shows in particular that Ky , is a transform from Qy , to Q..
Combining the theorem with Fourier inversion on & we obtain the inversion of
the Kloosterman transform.

COROLLARY 1.3. — The Kloosterman transform satisfies
KjpoKyn=2"""1d
where 1d is the identity map on Qy .

The motivation to the problem lies in a conjectural trace formula identity
of the Jacquet type. The identity is concerned with the metaplectic corre-
spondence of [1]. It is a lifting of genuine automorphic representations of the
metaplectic double cover éin of GL,, to automorphic representations of GL,,.
Jacquet suggests the following characterization for the image of this lift: A cus-
pidal automorphic representation of GL,, with trivial central character is a lift-
ing from GL,, iff it is (H, x)-distinguished for some subgroup H of orthogonal
similitudes of GL,, and some idéle class quadratic character x.

For more detail and definitions we refer to [6]. This characterization of the
image of metaplectic correspondence will follow from the relative trace formula
identity

9) /K¢(u)9(u2)du = /Kf(u1,u2)9(u1u2)du1du2.

Here k is a global field. The integration is over u, u1, us € N, (k)\ N, (Ag), where
on the right hand side N, is viewed as its splitting in @in, K¢ and Kg are kernel
functions depending on the quadratic character x, of operators corresponding
to the smooth functions of compact support f on GL,(Ag) and ® on S, (Ag).
Again for more details we refer to [6]. The fundamental lemma for this situation
is a matching of Kloosterman integrals. If @ is the characteristic function of
SNK where K = GL,,(Op) is the standard maximal compact of GLy,(F'), then
w[®Pg, 1; a] matches in an appropriate way, an integral of the form

(10) / \Ifo(tU1GUQ)9(U1UQ)dU1dU2
NXxN
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where Uy is the unit element of the genuine spherical Hecke algebra of C/}\in(F ).
In [6], Mao proved the fundamental lemma for the case n = 3 by brute force
computation. In [4], Jacquet developed a method to prove Kloosterman inte-
gral identities of the above type. The method requires in both sides an inversion
formula for a Fourier-Kloosterman transform on the space of Kloosterman inte-
grals. For the case of a quadratic extension the inversion formulas are obtained
in [3] and the method is carried out in [4] to prove the identity of Kloosterman
integrals which serves as a fundamental lemma for a relative trace formula. In
this work we provide a step towards the fundamental lemma associated with
the trace formula (9 ) At the same time, the formula (5) and mainly the os-
cillating factor []}_; H =1 [al, p;] in it, hint to a relation with the metaplectic
group. If o is the 2-cocycle that defines multiplication in GL, (F) as defined in

[5], then for a = diag(a,...,a,) and p = diag(p1,...,pn) we have
n—1ln—1

(11) U(aawnpwn) = H H[azvp]]
i=1 j=1

The rest of this manuscript is organized as follows: The main tool we use
to prove Theorem 1.2 is Weil’s formula. In Chapter 2 we write it in a form
convenient for our needs. We then prove the theorem by induction. Chapter 3
provides an inversion formula for some intermediate integrals designed to use an
inductive argument. In Chapter 4 the inductive step is carried out to finish the
proof of the inversion. Chapter 5 provides a much simpler formula associated
with the smallest orbits. We present it here, since once the analogous results
for the metaplectic case will be obtained, the method of Jacquet requires this
formula in order to prove smooth matching. The proof of the inversion formula
closely follows the guidelines of [3], the new ingredient is the occurrence of the
Hilbert symbol in the Kloosterman transform. The problem was suggested to
me by Jacquet. For the project and for much help and support, I am most
thankful to him. Most of this work was written during my visit at IHES.
I thank the IHES for a very pleasant and productive visit.

2. Weil’s formula

Let
0, X
Vo ={ (ox Om); X € Myxm(F)}.
We view V,, ., as a self-dual space via the pairing
0, X 0, Y 0n X\ /0, Y
w2 ((x5,) (Vo)) == (% 6,)(¥0,)
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where X € My xm(F) and Y € My, «n(F). The Fourier transform of a function
® € C(V,,m) is defined by

W w0 = [ e )elenenar

X € Myxn(F). We recall Weil’s formula for the Fourier transform of a char-
acter of second order for the space V,, ,,. Taking our definition of the Fourier
transform into acount, from [7] we have that for all A € S,,,C' € S, there is a
constant v (A4, C,v) such that for all ® € C°(V,, 1)

(14) /M q>(9)’g ());)w[Tr(CtXAX)]dX

nxm (F)
= [2[2™" . | det A|72"™ - |det C| 2"
n & (0p Z -1 -1
< (A, C, ) /M X (F;P(Z Om)zp[— Te(C'ZAVZ)]dZ.

For P € M, xn(F) the Fourier transform of the function

0, X 0, X
(15) (% om) — (i om)W[Tr(PX)]
X € My xm(F), is the function

0n 7 s 0, YZ-1P)
(16) (Z Om)’—”I)(ZféP O )

Z € Mpxn(F). Applying Weil’s formula (14) to this function, we get after the
change of variables Z — Z + %P that

(17) /IV[W"L(F)@[(%; (fn)W[Tr(PX) + Te(C'X AX)]dX

~ t
— [2/3™7] det A ™ - |det O] 377 (4, C,w)/ (% 7))
My scn (F) m

xip[ = Te(C™H(Z + $P)A™(Z + 5P))]dZ.
We remark that in the case m = n = 1 the Weil constant is the 1-dimen-
sional Weil constant defined in (1)

(18) 1 (4, C,9) = 7(AC, ).
For general m and n we can describe the Weil constant in terms of the 1-dimen-
sional case.

LEMMA 2.1. — Let A =Ygy diag(ay,...,a,)g1 and C = gadiag(cy, ..., cm)g2,
where A € S,,,C € S, g1 € GL,(F) and g2 € GL,,,(F), then

(19) (A, Cp) = T vaics, ).
1<i<n
1<j<m
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Proof. — We start with the case m = 1. Since C°(V,,1) ~ C°(F)®", it is
enough in the definition of v}* to consider functions ® of the form ®(v) =

[T, fi(z;) where v € V,, 1 is of the form v = (?; )0()’ X =4z1,...,2,) € F"
and f; € C°(F). Note that in this case (i)(’l}) = [T, fi(;), therefore if
A = diag(aq,. .., a,) the factorization of v]*(A, 1, ¢) is straightforward from (1)

and (2). Indeed

Jo(t o )elmax]ax - 1_1 [ iaivtas s

=TT (lalHa(a0) [ Fiwo(-a;'a?)d)

=1
= |2|%”|detA|*%(ﬁv<ai,¢>) / 3 (" ’f o[- Tx(za"17)]az,
=1

therefore in this case indeed we get

n

(20) ’7{1(‘4’ 1, lﬂ) = HW(%W-

i=1
Let g € GL,(F) be such that A = ‘gag with a = diag(a,...,ay), for any
A € 5,,. Note that the Fourier transform of the function

(o) o))

tx 0y tth—l 0
is the function
0, 7 ~ 70, Y9 Z
(7 om) — |det9|'¢(zg o)

and therefore using the changes of variables X + ¢~ !X, Z +— Zg~! and
applying (20) for a we get

/@(g? )0()1/;[Tr(tXAX)] dX = |det g|*1/q>(tX0tg_1 gisX)q/)[Tr(tXaX)} dx

_ |2|%"|deta|_%(ﬂ7(ai,w)) /é(g’; t (;Z)zp[— Te(Za~"2)]dZ
=1

— [2]2"| det g - |deta|*%(ﬂ7(ai,¢)) /c%(OZ” tg)qp[f Te(ZA~12)]dZ.
1=1

Since det A = det g?deta we get (20) for any A € S,. For a general m, if
C = diag(cy, . .., cm) is diagonal then

Tr(C'XAX) = Tr(X¢;AX).

Jj=1
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Therefore, as in the case m = 1 the fact that C°(V;,,,) 2 C°(Vy,,1)®™ implies
that

m

(21) (A, C0) = [ (e A 1, )

j=1

and (19) then follows from the case m = 1. For any A and C as in the statement
of the lemma, since

Tr(C'X AX) = Tr(XC'X A)
we may compute as before, denoting ¢ = diag(cy, .. ., ¢,) and using the changes
of variables X + Xg; ' and Z + g5 ' Z that

/@(?)? )O()w[Tr(CtXAXﬂ dx

n On  Xgy'
= | det ga| /q’(tg;“X v );/;[Tr(ctXAX)}dX

= [2]>™" - |det A[72™ - |dete| 2" -y (A, ¢, 0)

A7 0, Zi _ _
/(I)(QQZ 02)1/1[—Tr(c 'ZA )] dz

= |212™" . | det go| ™" - |det A| 7™ | det ¢| " - 4 (A, ¢, 1)

/@(OZ" tg)zp[— Te(C~' ZAYZ)]dZ.

We then have
T (A, C, ) = 1 (A, ¢,1)
and the lemma follows from the case when C' is diagonal. (]

The symmetry on the right hand side of (19) implies that

(22) (A, C ) = 9, (C, A, ).

From (1) it is easy to see that the one-dimensional Weil constant satisfies
(23) Ya, ) = y(=a, ).

Applying Weil’s formula twice we get that

(24) 7(0’5 1/’)7(*‘1717 ’l/)) =1

We also recall that ~ satisfies

(25) Y(ac, ) =v(1,9) " y(a,v)v(c,9)la, ]

for a,c € F*. Therefore, for A and C as in Lemma 2.1
(26) 7 (A4, C.0) =L 0) ™ (T (e )™ ) (TT (e )" ) (TTloss ).
i=1 j=1 i,j
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In particular

(27) V(A Ly ) = [ [ (@i, )™ = 45 (1, A, )
and =
(28) ’Yn 1717 C 1/} H C]v = 777111(07 ln; 1/})

The expression H ‘@i, ;] is thus only dependent on A and C and we can and
will denote

(29) 4.0] = [Tlasc;)

0J
We finish this chapter, with an identity we will need later.
LEMMA 2.2. — One has
(30) Vo (= A, Lo, ) (AT, C ) = 4(1,9) ™ [A, Cly (= C, 1, ).
Proof. — From (26), (27) and (28) we get that

(31) (= A, L, )y (A7, C )
=71 ) T (= A, L, )7 (AT L, )90 (C 1, ) [A, C.
Using (24) and (27) we get that
/7'::1(_‘4’ I, w)W%(A_la I, lﬂ) =1

From (23) and (28 We have 7' (C, 1,,%) = ' (=C, 1,,%) and from (23)
and (24) that v(1,4)~" = 7(1,¢). Therefore, the right hand side of (31) is
now equal to y(1,4)™" [A Cly(—=C,1,,%) and the lemma follows. O

3. Intermediate orbital integrals

For n,m > 1 and a function ® € C°(S4n) we define the intermediate
orbital integral

) oo (M, )]
(20 TG TG | R (G g 1

- /Mnxmm @[(t)?;;n B, f?f((AnX)Mp Tr(eX)]dX
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where A, € Sy, By, € S and € = €, = (043 5),(1,n)) € Mmxn(F). We also
define a normalized intermediate integral

o o ()
= 721(*Ana 1m,1/)) . |detAn|%m 'Wgz [q)’w; (An Bm):|.

PROPOSITION 3.1. — Let Cy, € Sy, Dy, € Sy, and © € CX(Spqn). The
function mapping A, to

(34)  [An, Ot [Tr(wm Cp wimer, A el

X/sm oY [@,w; (A" Bm)}zp[_Tr(Bmwmcmwm)]dBm

originally defined for A, € Sy, extends to a smooth function of compact support
on Sy,. The iterated integral

(35)/S {/S ww[qw;(A” Bm)}w{—Tr(Bmwmcmwm)}dBm}-
"’ X ELAn, C )Y [Tr(wmcrzlwme”mA;”eZ)} ¥ [ Tr(Apw, Drwy)] dA,

is therefore convergent. It is equal to
(36) 21 1,y [, (O )]

Proof. — First we remark that from the right hand side of (32) it is easily
observed that for a fixed A,, € S,, the function

B — o (M)

is smooth and of compact support on S,,. Therefore, for a fixed C,, € S;, the
function © defined by

_ imn Tymn | ~m, |:V . (wmc’mwm ):|
BT)  O(Dy) = (1,8 5 [8,4 wDn )
is in C¢°(S,,). Consider the partial Fourier transform with respect to B,
~n (A
(38) /S e (T g, ) o[- Cn ) B,

Expanding along (32) it becomes after a change of variables By, — B, —'X A, X
(39) Y (— A L, ) - | det Ay |5 -

Jells e e,
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and after another change of variables X +— A~1X it becomes
(40) 2 (—Apy Lo, )| det A, |72

ol pmesenngixean,

Applying Weil’s formula (17) with P = 2€” A1, we see that this is equal to

(41) 121277 (A5, oy )i (— Ay L, 9)| et Crn| 757
A, Y
x /q)(ty Bm)“/’[* 2 Tr(XY)]dY
W[ = Te(CM (X + en AL DAL (X + At er )] dX
[~ Te(BiCin)] dBo.
We now use Lemma 2.2. After expanding (41) it becomes:

(42) 212 (1, ) ™ A (~Cony 1y ) - | det Oy | 727
o[ = Te(C e AL e )] [An, Con)

m

X /@(fl; BY )w[ —2Tr(XY) — Tr(C; X A, X)
—2Tr(C, Xtep)]dY dX - o[~ Tr(BCry) | d By,
We showed so far that for a fixed C,, € S,,, the function ¥ on S,, defined by

(43) U(A,) = [An, O] -0 [Tx(C e A e ] -

moTmTn n

x/s miiodd [@,w;(A" Bm)}w[— Tt( By Crn)] d B

is equal to
(44) 2P (1L, )™ A (= Con, 1, ) - | det G| 727
A, Y _
/@( Y 5. )¢[—2 TH(XY) — Te(CL X At X)

—2Tr(C,,' X elh) — Tr(Cyn Byn)| dY dX dBy,.
Changing variables X — C;, X we get
(45)  W(Ap) = 2127 - (1, 47 (=Comy 1, ) - | det Crp |27

A, Y

X /@( . Bm) [ = 2Te(Cu XY) — Tr(X A, X Cl)
—2Tr(X'e?) — Tr(ByCyn)| dY dX d B,
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Next we expand ©(D),,):

(46) O(Dy) = [2]2™" - 4(1,4)™" - A (=Ciny L, ©) - | det Crp | 2™

A

« @{ ( W, CrnWin, Wy, Cop Wi X ) }
Mo (F) Wmtn X W, Con Wi, Wr Dy Way, 4 X Wiy Oy W, X Wmtn

Y[-2Tr(er X)]dX
= (2|7 (1,)™" - 4 (~Cony L, 9) - | det G |27

/ 2T/ Dy 4 W' X W Conwm X Wy, Wi X W Cn,
x ?|( )]
Mo (F) Crwm X w, Cm

P[—2Tr(e)' X)]dX.
After a change of variables X +— w,, Xwy, ©(D,,) becomes
(47) 2P (1, )™ AR (= Cony L, ) - | det Cr 27

* /MM(F) B[(" Efpf et t)(cim )¢ [-2Tx(xtep,)]ax

where we use the fact that
Tr(eMwp, Xwy) = X1, = Tr(X ).
Expanding further we have
(48) ©(Dn) = [2/5™" - y(1, )™ - A (~Cimy 1, ) - | det Cr "
Sn Y Sn Y D, +XC,X XC,,
X/q)[(ty Bm)}l/’[*Tr((tYBm)( O X o ))}
dYds,dBp [ —2Tr(X e )| dX
= 27" (L, )™ 4 (~Con, L, ) - | det G 2"
Sn Y
x /@[(ty Bm)}q/;[fTr(sntXCmX) — Tr(s,Dp)] ds,
U] = Tr(BmCp) — 2Tr(Cr, XY) | dY d By, ¢ [-2 Tr(X e ) | d X
Using Fourier inversion we then see that
49) &(-4,) = [ B(D)[T(4,D,)]d4,
Sn
= 227" y(1, )" (—=Cm, 1n, ¥)] det Cr |27

% ‘I)KtYB )} { Tr(4,XC X)}
()

[ — Tx( —2Tr(Cpp XY)]dY dBp,
P[—2Tr(Xe™)]dX.
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KLOOSTERMAN-FOURIER INVERSION 343

Comparing with (45) we get that
(50) O(—4n) = ¥(An)

for all A,, € S,,. This proves the first part of the proposition. Furthermore,
regarding ¥ now as its extension to &, and writing explicitly the equality
U (D,) = O(D,,) we have for all C,, € Sy, D, €Sy,

(51) Ln[[gmwzgw[ w,( Bm)}w[—Tr(BmCm)}dBm}

[An, Co 0 [Tr(C e A e ) [0 — Tr(AnDy) | dA,

mmn

_ 1mn . Tymn ~m,p |:V T, (wmcmwm ):|

2137 (1, )™ - 5 8, oD )]
Observing that [A,,, Cin] = [An, Wi Crws,] we get the proposition by replacing
(Cny Dy) With (W, Crpwi, Wy Dypwy,). O

We end this chapter with a reduction formula that we will need for the proof
of the main theorem. Let ® € C°(S,,+y) and define on S,, X S, the function

(52) =(Ap, By) = W™ [¢,¢; (A” Bm)}'

Associated with the action of NV,, x N, on .S, X S,,,, we consider the generalized
Kloosterman integral

(53)  w[2 0 (n B)| = [ ECun A ua i) 1)61 () s

For a relevant element x € S, of the form x = (z" T ), where z,, € S, and
Tm € Sy, are relevant, we have

(54) W[q)v"/);x] :W[vav(xnyxm)]'

4. Proof of the main theorem

We prove the functional equation by induction on n, the case n = 1 being
simply the definition of the Fourier transform. For a fixed a; € F'*, let

(55) U(An—1) = [a1, An— ]w[Tr(al €A " ! . )]
x/&" 11/;{ w,( pn)}l/][—Pnaﬂdpna

(56)  O(Da1) = 20V B [& (M )]

Applying Proposition 3.1, with (1,n — 1) in the role of (m,n), we get that

~

U extends to S,_1. In fact ¥,0 € C®(S,_1) and © = U. Let a(V) =
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diag(as,...,ay) be relevant in S,,_;. By induction applied to ¥ we have
(57)  (Kpn@’[9,45-]) (V)
— |2|%(n*1)(n*2) .7(171[,)%(71*1)(”*2) oY [@,Jj;a(l)]
By (54) and (19) we have
(58) w[©,v;aM] =27 (1,9 (a1 1/_)) a7
b;-], 95 (a1, M)

= 2P0 (1,9 y(—an, ) e [P w[@, s, an)

therefore the right hand side of (57) satisfies

xwlwy, [

(59) 22 (1, D) 5T, ol

:|2|%”("*1).7(1,Jj)%"(n*1).Fn H(—aW .‘Un_l(au)),%
X,Y(ialall/;> |a1| (n 1) [ /l/_};alv"'aan]
= 237Dy (1, 9) 3D V(S P an, . an).

Next we treat the left hand side of (57). We start with the computation of the
Kloosterman integral of ¥ at « = diag(p1, ..., pn—1). Note that

n—1

1
[a1, ‘uzu] -w[Tr(afleu_lx_ltu_lte)} = ( H[al,pj])w[a » }
. 1Pn—1
Jj=1
for all u € N,,_1 is constant on the orbit of x. So
(60) a}d}[\ll, 1/1§P1a s ,pn—l] = Fn—l(_pl, ceey TPn—1, 1/1)
N n—1 1
X|on—1(p1s- - Pn-1)|? ( H[al’pj])w{alp 1}

j=1

X //qu_l’w [d),z/}; (tuxu pn)}w[—pnal]dpnﬂu)du.

Since @ is smooth and of compact support, it is easy to see from the right hand
side of (32), that for ¢ € C2°(F*) the function

(61) (Ap—1,pn) — ¢(det Ap—1) - @?‘Lw [(I), v (Anfl . ):|

is smooth of compact support on GL(n — 1, F) x F. Since the orbit ‘uzu,
u € Np_; has fixed determinant, the double integral in (60) is absolutely
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convergent and we may switch order of integration. From (54) we get

1

(62) Fn—l(_P(n)ﬂ/J) : ’Un—l(pla"'apn—l)‘§

x/&" 1”"{ w,(tuxupn)}e(u)du

:anl(ip(n)a/l/})"o-nfl(plv"'apnfl)‘ ’Y{L 1( xvlaw)
><|detx|%/w? 1[¢’w;(tuzupn)}9(u)du

=GY[®,4;p1, -, Pl
By switching order of integration in the right hand side of (60) we get that

(63) @w[\ljvw7pla "apnfl]

n—1

= (Tlavpi))w|
j=1
Finally, we seie that

(64) (Kpna1@Y[¥, ;1) (aM)

}/@“’ [‘P,w;ph---,pn}w[—pnal]dpn-

a1Pn—1

/(nHl[a Nolim—] [@e.v J¢l-pnarld
— o 1,Pj a1Pn_1 yWiP1y- -3 Pn PnQ1|APn
Xw{ szan—i-l z+zpa }(ﬁﬁ[alap]])dpn—ldpl
iUn—iq =2 j=1

= (Kypno"[® ,w;~])(a1,...,an),
The theorem now follows from (57), (59) and (64).
Corollary 1.3 is now immediate since y(1,v) - y(1,%) = 1. O

5. A formula for the smallest orbits
Let k(n) = in(n+1) —

PROPOSITION 5.1. — For ® € C°(S,), the function ¢(a) = w[®,,wpal is
a smooth function of compact support on F*. Furthermore, it satisfies the
functional equation

-1
Kk(n) | _ x 7 (~Wp-10a

©9) a0l wad = [ o[, )] .

Proof. — We can write ¢ as follows

66 P nal = [ ®(m’ i nto—i dw; ;

® e = [om)e( L) @ n
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where
0 if i+j5<n,
m;1j= a ifi4+75=n+1,
ar;; ifi+j5>n+2,
and z; ; = x;; if i +j >n+2. Let

n? if n — even,

1
_J1a
mn) = { L(n? —1) if n— odd,

Then k(n) = k1(n) + ka(n). After a change of variables (66) can be writen as

ke(n) =k1(n—1)+n—1.

n
(67)  w[®, ), wna] = |a] "1™ /@(m)w(aﬂ S winsei) @ dmy

P i+j>n+2
where

0 ifi+j<n,
mij; = a ifi+j=n+1,

and z; ; = x;; if i +j > n 4+ 2. The smoothness of ¢ follows from the fact
that @ is smooth. Also ®(m) = 0 for large enough |a| and for all z; ; as above,
since @ is of compact support. Therefore ¢(a) vanishes when |a| is sufficiently
large. Let X be the n x n symmetric matrix with 0 in the (7,j)-th entry
whenever ¢ +j <n+ 1 and z;; in the (7, j)-th entry whenever i +j > n + 2.
Let Z be a similar variable matrix with entries z; j, thus

a 0 0
T2.n o T2n © 22n
(68) m= T x= T z=
@& T2n * Tpn 0 T2n *°° Tpn 0 22n " Znn

Since @ is smooth and of compact support, there are integers ¢ < k such that
®(m) = 0 unless z; ; € p° and ®(m+Z) = ®(m) whenever z; ; € " for all i, j.
Therefore,

p(a) = Z ‘I)(m)/ ¢(G_1Z($i,n+2—i+2i,n+2—i)) ® dz.

ek , i+j>n42
z; jER! /" #i,5 €9 =2

This integral factors, for example, through the integral fpk Y(atze.,)d2o,
which vanishes whenever |a| is small enough. So we get also that ¢(a) = 0 for
|a| sufficiently small. We can write

/w[é,@; (*wnﬂa*l b)}db :/(\I;(pl)w(_iyi7n+1_i) ® dy; ;db
i=1

2n>i+j>n+1
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where
0 ifi+j<n—-1,
pij = _ﬂ:i #i+j%ni
’ —a 'y f2n>i4+j>n41,
b if i 47 =2n,

and y; ; = y;,; if i +j > n+ 1. After a change of variables this becomes

/w{é@; (—wn_la—l b)}db = |a|”2(")/é(P")w(aiyi,nH—i) ®  dyij
i=1

i+j>n+1

where
0 ifi+j<n-1,
pgfj ={¢—at ifit+j=n,
yi,j 1fz+32n+1,
and y; ; = y;,; if 1 +j > n 4+ 1 which is the same as writing
1

09 [o[da (T )

= |a|K2(n)/‘i’(P)w(aZyi,nH—i) ®  dyi;
i=1

i+j<n+1

where
Yi,j ifitj<n+l,
pij=4—a ' ifi+j=n+2,
0 if i4+j>n+3,

and y; ; = y;,; if ¢ +7 <n+1. Next let Y be the n X n symmetric matrix with

o ifi+ji>n+2

Let A’ be defined by p = Y+ A" and let X and Z be matrix variables as defined
in (68). Thus

yll yln yll yln O 0

Yin —a Yin 0 0 _a_l
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Using Fourier inversion formula for the function &)(Y—i—()) in the (4, j)-th entries
for all i + j > n + 2, we obtain from (69) that

o [ufis (]

_ / B(Y + 2)¢p [~ Te(X 2)] dZ ¢ [Tr(X A')] dX¢(aZyi7n+1,i) ® dyi;.

i+j<n+1
Let A = wpa, one easily observes now that Tr(ZA) = Tr(Y X) = 0 and there-
fore Tr(Y + Z)(A— X)) =Tr(YA—ZX)=a i, Yin+1—i — Te(X Z), so we
get by the Fourier inversion formula applied to d that

(70) |a|*“2<">/w[<i>,zz; (*w”*l‘f1 b)}db
- /&)(Y + Z)P[Te((Y + Z)(A - X))]dY dZ ¢ [Tr(X A')] dX

- /@(A—X)zp[ﬂ(XA')} dX = /(I)(A—i—X)w[Tr(—XA’)]dX.

But m = A+ X and Tr(—XA') =a Y1 , % ni2—s, SO comparing with (67),
the right hand side of (70) is equal to |a|** (™ w[®, ¥; w,al. O
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