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Abstract. — We consider a large class of non compact hyperbolic manifolds M =
Hn/Γ with cusps and we prove that the winding process (Yt) generated by a closed
1-form supported on a neighborhood of a cusp C, satisfies a limit theorem, with an
asymptotic stable law and a renormalising factor depending only on the rank of the
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Résumé (Lois stables et flot géodésique sur des variétés non compactes à courbure

négative)
Nous considérons une large classe de variétés hyperboliques non-compactes M =

Hn/Γ possédant des cusps et nous démontrons que le processus (Yt) engendré par
une forme fermée portée par un voisinage d’un cusp C converge en loi vers une loi
stable ; la loi limite et le facteur de renormalisation dépendent de la nature du cusp et
de l’exposant de Poincaré δ du groupe Γ. Aucune restriction sur la valeur de δ n’est
imposée et cet article généralise ainsi toute une série de résultats dus à Y. Guivarc’h,
Y. Le Jan, J. Franchi et N. Enriquez.

I. Introduction.

Sinai’s observation that “dynamical systems generated by geodesic flows of
negatively curved manifolds have a structure analogous to that off dynamical
systems generated by stochastic processes” lead him to the proof of a Cen-
tral Limit Theorem for certain additive functionals of the geodesic flow on a
compact hyperbolic manifold M . A typical example of such a functional, due
to Gel’fand and Pyateckii-Shapiro [15], is the “winding process”, that is the
process generated by a closed 1-form on M .

Consider now a (not necessarily compact) hyperbolic manifold M = H/Γ
where Γ is a torsion-free group acting isometrically and properly discontinu-
ously on the n-dimensional hyperbolic space H. When Γ is geometrically finite,
the manifold M is the union of a compact core and finitely many ends, some of
which are funnels, and the other ones are cusps. If a geodesic enters a funnel, it
goes to infinity without ever returning to the compact core. On the contrary, a
typical geodesic entering a cusp does come back in the compact core infinitely
often and thus belongs to the non-wandering set of the geodesic flow. These
excursions in the cusps are related to diophantine approximation in number
theory when Γ is arithmetic (see [29], [36]), and in general, they describe how
well can be approximated boundary points by parabolic ones (see [35]).

From the dynamical point of view, these excursions are now responsible for
the non-uniform hyperbolicity of the geodesic flow, and it is therefore unclear
which stochastic properties still hold. In this paper, we shall study the winding
process around a cusp C of the manifold. More precisely, we fix a 1-form ω
supported and closed on a neighborhood of C. For a vector v in the unit
tangent bundle T 1M of M , denote by [v0, vt] the geodesic path of length t on
the geodesic starting at v. We get an additive functional of the geodesic flow
by considering the process

Yt(v) =

∫

[v0,vt]
ω
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ASYMPTOTIC LAWS ON HYPERBOLIC MANIFOLDS WITH CUSPS 121

and we are interested in the stochastic behavior of (Yt) with respect to some
invariant measure m of the geodesic flow. In particular, we shall say that
(Yt, m) satisfies a limit theorem with renormalising factor d(t) if there exists a
probability measure π on R such that for every real number a

m
{
v ∈ T 1M ;

1

d(t)
Yt(v) ≥ a

}
converges to π(a, +∞) as t → ∞.

One gets the classical Central Limit Theorem when d(t) =
√

t and π
is the Gauss distribution. Otherwise, one looks either for d(t) =

√
t log t and

π the Gauss distribution, or for d(t) of the form t1/α for some α ∈ ]0, 2[,
and π a stable law of index α.

For finite volume hyperbolic manifolds, the process (Yt) is known to sat-
isfy a limit theorem with respect to the Liouville measure m. The case of the
modular surface M = H2/ SL(2, Z) has been worked out by Y. Guivarc’h and
Y. Le Jan [18]: the winding of a typical geodesic satisfies a limit theorem with
renormalisation factor t and a Cauchy limit law (α = 1 in this case). Fur-
ther works rely on the comparaison between Brownian paths and geodesics, a
method introduced by Le Jan [25]. This was used by Enriquez & Le Jan [13] to
extend the previous result to any hyperbolic surface and by Franchi [14] for 3-
dimensional manifolds; in this last case, the normalising factor becomes

√
t log t,

with a normal limit law. In higher dimension, the Central Limit Theorem holds
since in this case the form ω is square integrable with respect to the Liouville
measure.

For hyperbolic manifolds with infinite volume, the asymptotic behavior
of (Yt) is still quite open. In this context, the natural probability measure to
look at is the Patterson-Sullivan measure m on T 1M when it is finite, since
in this case it is the unique measure of maximal entropy; in particular, it
gives 0-measure to the wandering set of the geodesic flow, and coincides with
the Liouville measure when M has finite volume. Let us call a cusp neutral
if (Yt, m) satisfies the Central Limit Theorem, and influential if (Yt, m) satisfies
a limit theorem with renormalising factor d(t) &

√
t as t → +∞. From the

series of work mentioned above, we see that for finite volume manifolds, all
cusps are influential in dimension 2 and 3, and become neutral in higher
dimension.

Our main observation here will be that this dichotomy on the dimension
does not hold anymore for general hyperbolic manifolds. For a specific class of
manifolds, we discover that the main role is played by the rank of the cusp C,
that is the rank of a maximal free abelian subgroup contained in its fundamental
group P = π1(C).

Our main result concerns a restrictive class of Kleinian groups. Let us first
introduce a definition: we say that finitely many Kleinian groups Γ1, . . . ,ΓL are
in Schottky position if there exist non-empty disjoint closed sets F1, . . . , FL in
the boundary Sn−1 of Hn such that Γ∗

i (Sn−1 − Fi) ⊂ Fi for any i ∈ {1, . . . , L}
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122 BABILLOT (M.) & PEIGNÉ (M.)

(where the notation Γ∗
i stands for Γi − {Id}). The group Γ generated by P

and G is called the Schottky product of P and G, and P is called a Schottky
factor of Γ.

We will say that a Schottky product group Γ satisfies the critical gap hypo-
thesis if its Poincaré exponant δ is strictly greater than the one of each sub-
group Γi. For such a group Γ, the Patterson Sullivan measure m on T 1(Hn/Γ) is
finite (see [30]), and it is the unique measure of maximal entropy for the geodesic
flow restricted to its non wandering set (see [27]); it will thus be the initial dis-
tribution for the processes we will consider since, roughly speaking, it caries
most of the information about the stochastic behavior of the geodesic flow.

Note that classical Schottky groups (see for instance [26] for a definition)
are Schottky products, with each Γi ) Z and that the critical gap hypothesis
is automatically satisfied in this case [3].

We can now state the

Main Theorem. — Let Γ be a Schottky product of subgroups Γ1, . . . ,ΓL of
Iso(Hn), satisfying the critical gap hypothesis. Assume that one of the Schottky
factors of Γ is a parabolic group P of rank k and denote by C the cusp of Hn/Γ
associated with P . Let m be the Patterson-Sullivan measure on T 1(Hn/Γ).

For a closed 1-form ω supported on a neighbourhood of C, the corresponding
process (Yt, m) satisfies a limit theorem. The renormalising factor and the limit
law depend on the values of the parameter α := 2δ − k as follows:

• if α < 2, d(t) = t1/α and the limit law is a stable law of index α;
• if α = 2, d(t) =

√
t log t and the limit law is a normal law;

• if α > 2, d(t) =
√

t and the limit law is a normal law.

Thus, we see that a cusp becomes influential if its rank is sufficiently big
with respect to the Hausdorff dimension of the limit set (k ≥ 2δ−2). It should
be noted that this condition extends the previous dichotomy for finite volume
manifolds. Indeed, in this case, all cusps have maximal rank k = n − 1 and
the limit set is the whole sphere Sn−1; thus, writing n − 1 ≥ 2(n − 1) − 2, we
recover the previous condition n ≤ 3.

Observe that if k is the maximal rank of the cusps in M , only cusps of
rank k and k − 1 may become influential since, by Beardon’s result [3], one
knows that δ always satisfies the inequality 2δ > k.

We believe that this result might be true in particular for all hyperbolic
manifolds whose Patterson-Sullivan measure is finite and in particular for all
geometrically finite manifolds; this is partly confirmed by a recent result of
Enriquez, Franchi & Le Jan [12] who study the case of a manifold with a cusp
of rank n − 1 under the additional assumption that 2δ − (n − 1) > 1.
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ASYMPTOTIC LAWS ON HYPERBOLIC MANIFOLDS WITH CUSPS 123

To prove the Main Theorem, we first have to establish a classical Central
Limit Therorem for this class of manifolds. This result can be stated in fact in
the case of variable pinched curvature, we have the:

Theorem III.5. — Let X be a Hadamard manifold of pinched strictly negative
curvature and Γ = Γ1 ∗ · · · ∗ΓL be a Schottky product of Kleinian groups acting
on X and satisfying the critical gap hypothesis. Let M = X/Γ be the quotient
manifold and m the Patterson-Sullivan probability measure on T 1M . For any
bounded and Hölder function Φ : T 1M → R, the quantity

∫

T 1M

1

t

(∫ t

0

(
Φ(gsv) − m(Φ)

)
ds

)2
m(dv)

converges to a constant σ2
Φ. One has σ2

Φ = 0 if and only if Φ is a coboundary,
i.e. if Φ is the derivate in the direction of the flow of some Borel function
defined on T 1M .

• When σ2
Φ ,= 0, the process Xt(v) =

∫ t
0 Φ(gsv)ds satisfies the Central Limit

Theorem: for any a ∈ R

m
{

v :
Xt(v) − tm(Φ)

σΦ
√

t
> a

}
−→ π

(
[a, +∞[

)

when t → +∞, where π is a standard Gaussian law N (0, 1) on R.

• When σ2
Φ = 0, the process ((Xt − tm(Φ))/

√
t)t tends to 0 in probability.

This theorem extends many previous results; let us cite for instance [34]
(without the precise normalisation in

√
t ), [32] (for compact manifolds in the

variable curvature case), [25] (for hyperbolic manifolds of finite volume) and
more recently [7] (with a martingale argument which can be applied in weakly
hyperbolic situations [24]). Let us emphasize that the above simple expression
of the asymptotic variance σ2

Φ is obtained in a very elegant way in [7]; never-
theless, the proof given here simplifies Ratner’s argument and does not require
any speed of mixing of the geodesic flow, as in [7].

We can extend the Main Theorem in some others directions. First, one
can fix a family {ω1, . . . , ωκ} of 1-forms with support on a neighborhood of C
which represents a basis of H1(C; R). Note that the homological rank κ of the
parabolic group P may be smaller than its rank k if P is not abelian. We
get therefore a multi-dimensional process Yt = (Y 1

t , . . . , Y κ
t ) as above. This

process has a limiting behavior and that the limit law is κ-dimensional stable,
or Gaussian according to α < 2 or α ≥ 2.

We shall also see that the processes Xt and Yt becomes asymptotically in-
dependent when the cusp C is influential, i.e. α < 2. An extension of this
property is the following: one might consider all the cusps C1, . . . Cp of the
manifold simultaneously, and prove that the different processes built over the
different cusps become asymptotically independent under m.
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Our approach to this problem, like in the original papers by M. Ratner [32]
and Y. Guivarc’h & Y. Le Jan [18], goes through a representation of the geodesic
flow as a special flow over a dynamical system (Λ, T ) with a ceiling function '
(see for instance [2] for a very close set-up). The map T , called sometime the
Nielsen map, is expanding on the subset Λ of the limit set of Γ which allows
us to use transfer operator methods. The first main difficulty here is that the
alphabet we use is not finite, but countable. Thus, our transformation T can
be thought as a distant cousin of the Gauss map which appears in the coding
of the geodesic flow on the modular surface via continued fraction expansions
(see [1], [6], [33]). Another difficulty relies on the fact that the ceiling function is
unbounded; the approximation of the processes Xt and Yt and the expression of
the variance in term of the geodesic flow is thus technically much more difficult
than in M. Ratner’s original work.

II. Schottky products and their limit sets

When Γ is a classical Schottky group generated by hyperbolic isometries,
Bowen’s [5] important work leads to a symbolic model for the geodesic flow on
the (infinite volume) hyperbolic manifold M with fundamental group Γ. This
flow is bi-Lipschitz equivalent to a special flow over a subshift of finite type,
whose expanding factor is conjugated with a geometric map T on the limit set
of Γ: the Nielsen map. Thus, it was possible to study the flow using symbolic
dynamics and thermodynamical formalism (see [23], [28]). When the group Γ
is a Schottky group containing parabolic transformations, and therefore when
the manifold M has cusps, this construction can be extended almost verbatim,
but presents two major problems: the equivalence between the Nielsen map T
and the symbolic shift is neither onto, nor Lipschitz, and the map T is no
longer strictly expanding. Hence, the methods of symbolic dynamics could not
be applied directly. After Series’ work [33], a construction was proposed in [9]
which lead to a coding (up to a set of 0-measure for the relevant measure),
of the geodesic flow as a suspension over a subshift with countable alphabet.
This construction was applied to count closed geodesics (see [2], [9]).

This section is devoted to an extension of the previous construction in the
variable curvature case. After fixing some notation, we consider what we call
the“Schottky product”of simpler groups Γi. If one assumes that the critical gap
hypothesis holds (which occurs in particular when the groups Γi are divergent,
see [30]), then the resulting group Γ is also divergent, and “most” of the limit
set of Γ is bi-Lipschitz equivalent with a subshift of finite type in the symbolic
space Σ = AZ with countable alphabet A =

⋃
Γ#i . This construction will be

used in the next section to code the geodesic flow on T 1M .

II-a. Notations. — We refer to [4] and [22] for the differents tools which are
explained here and for further references. Let X be a Hadamard manifold of
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pinched negative curvature K ≤ −1 endowed with a distance d. Its boundary
at infinity ∂X is the set of equivalence classes of asymptotic geodesic rays.

For a boundary point x and two points x,y in X , the limit Bx(x,y) of

d(x, z) − d(y, z)

as z goes to x is called the Busemann cocycle; it represents the algebraic dis-
tance between the two horospheres centered at x and passing through x and y
respectively. If x, y ∈ ∂X and o is a fixed “origin” in X , the “Gromov product”
of x and y seen from o is defined by

(x | y)o = 1
2

(
Bx(o, z) + By(o, z)

)

and does not depend on the point z on the geodesic (xy); the curvature being
bounded from above by −1, the quantity exp(−(x | y)o) is a distance on ∂X ,
it coincides with the euclidean distance on Sn−1 when X is the n-dimensional
hyperbolic space, and will thus be denoted by |x − y|.

The group Iso(X) of orientation-preserving isometries of X acts continuously
on ∂X by conformal transformations. The conformal factor of an isometry γ
at the point x ∈ ∂X is given by the formula

∣∣γ′(x)
∣∣ = e−Bx(γ−1·o,o).

In particular, the function

b(γ, x) := − log
∣∣γ′(x)

∣∣ = Bx(γ−1 · o,o)

satisfies the cocycle relation b(γ1γ2, x) = b(γ1, γ2 · x) + b(γ2, x)

Notation. — If E is a subset of the boundary, E
∆

×E denotes the comple-
ment of the diagonal in E × E.

For a unit vector v in the unit tangent bundle of the space X , let vt be the
point at distance t on the geodesic starting at v. Hence, v0 is the base point
of v, whereas v−∞ and v+∞ are the endpoints on the boundary of the geodesic.
Associating to a vector v the triplet (v−∞, v+∞, r) where r = Bv+∞(v0,o) gives

an identification of T 1X with the set ∂X
∆

×∂X × R. With these coordinates,
the geodesic flow (g̃t) of the hyperbolic space acts by

g̃t(y, x, r) = (y, x, r − t).

The action of an isometry γ on T 1X in these coordinates is given by

(1) γ · (y, x, r) = (γ · y, γ · x, r − b(γ, x)).

A Kleinian group Γ is a discrete torsion free subgroup of Iso(X). The limit
set Λ(Γ) is the smallest Γ-invariant closed subset of X = X ∪ ∂X . It is also
the closure in the boundary of the set of fixed points of Γ − {Id} and can be
obtained as the set of accumulation points in X of any Γ-orbit. A point x
in Λ(Γ) is called radial if the geodesic ray [ox] stays at a bounded distance of
the orbit Γ · o. For instance, fixed points of hyperbolic isometries of Γ belong
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126 BABILLOT (M.) & PEIGNÉ (M.)

to the radial limit set whereas parabolic points, i.e. fixed points of parabolic
isometries of Γ, do not. A parabolic point x ∈ Λ(Γ) is said to be bounded if its
stabilizer in Γ acts on Λ(Γ) − {x} with compact fundamental domain.

A conformal measure of dimension α ≥ 0 for Γ is a family σ = (σx)x∈X of
finite measures supported on the limit set of Γ and such that, for any x,x′ ∈ X
and any γ ∈ Γ, one has

d(γ∗σx′)

dσx
(x) = e−αBx(x′, x) and γ∗σx = σγ·x

(where γ∗σ(A) = σ(γA) for any Borel subset of ∂X).

By a result of Patterson [29], there always exists a conformal measure of
dimension δ, where δ is the critical exponent of Γ, that is the critical exponent
of the Poincaré series of Γ

PΓ(s) =
∑

γ∈Γ

e−sd(o,γ·o).

In this paper, we shall mainly consider divergent Kleinian groups i.e. groups
for which PΓ diverges at s = δ . In this case, there exists a unique conformal
measure for Γ of dimension δ. It gives full measure to the radial limit set and
is called the Patterson measure of Γ.

Quotienting the space X by Γ leads to a negatively curved manifold
M = X/Γ, whose unit tangent bundle is T 1M = T 1X/Γ. Since the geodesic
flow (g̃t) commutes with the action of Γ on T 1Xn, it induces on T 1M the
geodesic flow (gt) of M . The non-wandering set Ω of (gt) identifies with the

projection on T 1M of the Γ-invariant subset Ω̃ := Λ(Γ)
∆

×Λ(Γ) × R of T 1X
(see [11]).

As observed by Sullivan [36], the Patterson measure of Γ can be used to
construct an invariant measure for the geodesic flow with support Ω. The
measure m̃ on Ω̃ given by

dm̃(y, x, t) =
dσ(y)dσ(x)

|y − x|2δ dt

is clearly (g̃t) invariant, but it is also Γ-invariant according to the “mean value
relation” (see [36]):

(2)
∣∣γ · y − γ · x|2 =

∣∣γ′(y)
∣∣ ·

∣∣γ′(x)
∣∣ · |y − x|2.

Hence, it induces on Ω an invariant measure m that we call the Patterson-
Sullivan measure.

II-b. Schottky products. — In this subsection, we introduce Schottky
products and give their main properties. These Schottky products will be
typical examples of groups satisfying the following property:

tome 134 – 2006 – no 1



ASYMPTOTIC LAWS ON HYPERBOLIC MANIFOLDS WITH CUSPS 127

Property C. — There exist a closed and proper subset F in the boundary of
the hyperbolic space such that any element of Γ different from the identity maps
∂X − F into F .

We now consider a group Γ satisfying Property C. We have the two following
facts:

Fact 1. — The group Γ is discrete and its limit set is contained in F .

Fact 2. — For any compact set K of the boundary and disjoint from F , there
exists C > 0 such that, for any x ∈ K and γ ∈ Γ one has

d(o, γ · o) − C ≤ Bx(γ · o,o) ≤ d(o, γ · o).

Proof of Fact 1. — If Γ was not discrete, one would get in Γ a sequence
of elements acting on ∂X and converging to the identity so that any point
outside F would be the limit of a sequence of points in F . That the limit
set of Γ is contained in F follows from the fact that fixed points of isometries
in Γ∗ = Γ− {Id} belong to F .

Proof of Fact 2. — To check this, recall that the orbit Γ · o accumulates in F .
Thus, if x ∈ X is close to K, the angle at o of the triangle (γ ·o,o,x) is bounded
away from 0; Fact 2 now follows from an argument of comparation of triangles
and a classical fact in hyperbolic geometry.

We can now state the definition of a Schottky product:

Definition II.1. — Let Γi, i = 1, . . . L, be a family of torsion-free subgroups
of Iso(X). These groups are said to be in a Schottky position if there exist
disjoint closed sets Fi in ∂X such that

Γ∗
i (∂X − Fi) ⊂ Fi

The group Γ generated by the groups Γi is called the Schottky product of the Γi’s
and denoted Γ = Γ1 ∗ Γ2 ∗ · · · ∗ ΓL or else by Γ = ∗iΓi.

Since any element in Γ∗ maps the complement of the closed set F =
⋃

Fi

into F , the group Γ is discrete by Fact 1. Moreover, by the Klein’s tennis
table criteria, it is the free product of the groups Γi: any element in Γ can be
uniquely written as the product

γ = a1 · · · ak

for some aj ∈
⋃
Γ∗

i with the property that no two consecutive elements aj

belong to the same group. The set A =
⋃
Γ∗

i is called the alphabet of Γ, and
a1, . . . , ak the letters of γ. The number k of letters is the symbolic length of γ.
The last letter of γ will play a special role, and the index of the group it belongs
to will be denoted by i(γ). Applying Fact 2 one gets
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Fact 3. — There exists a constant C > 0 such that

d(o, γ · o) − C ≤ Bx(γ−1 · o,o) ≤ d(o, γ · o)

for any γ ∈ Γ = ∗iΓi and any x ∈
⋃

i&=i(γ) Fi.

This fact implies in particular the following crucial contraction property:

Proposition II.2. — There exist a real number r ∈ ]0, 1[ and C > 0 such
that for any γ with symbolic length n ≥ 1 and any x belonging to the closed
set

⋃
i&=i(γ) Fi one has

∣∣γ′(x)
∣∣ ≤ Crn.

Proof. — Recall that the conformal factor of γ is |γ′(x)| = e−Bx(γ−1o,o). By
Fact 3 and the discreteness of Γ, we get |γ′(x)| ≤ 1

2 for all but finitely many
γ ∈ Γ and all x ∈

⋃
i&=i(γ) Fi; this inequality holds in particular for any isom-

etry γ of symbolic length ≥ N where N is large enough. The proposition
follows with C = sup

{
|γ′(x)| ; γ ∈ Γ, x ∈

⋃
i&=i(γ) Fi

}
and r = 1/ N

√
2.

II-c. The limit set of Γ = ∗iΓi and the Patterson measure. — Let Γ
be a Schottky product as above. The following proposition gives a description
of a large part of its limit set Λ(Γ) (see [30]).

Proposition II.3. — Denote by Σ+ the set of sequences (an)n≥0 for which
each letter an belongs to the alphabet A =

⋃
Γ∗

i and such that no two consecutive
letters belong to the same group (these sequences are called admissible). Fix a
point x0 in ∂X − F . Then

a) For any a = (an) ∈ Σ+, the sequence a0 · · · an · x0 converges to a point
π(a) in the limit set of Γ, independent on the choice of x0.

b) The map π : Σ+ → Λ(Γ) is one-to-one and π(Σ+) is contained in the
radial limit set of Γ.

c) The complement of π(Σ+) in the limit set of Γ consists of the Γ-orbit of
the union of the limits sets Λ(Γi)

The limit sets Λ(Γi) are proper subsets of Λ(Γ); furthermore the critical
exponent δi of each subgroup Γi, 1 ≤ i ≤ L, is less or equal to the one of Γ
since the Γi are subgroups of Γ. Recall that Γ satisfies the critical gap property
when δ > δΓi for any i ∈ {1, . . . , L}. One has the

Theorem II.4. — (See [30]) Let Γi, i = 1, . . . L be a finite collection of
Kleinian groups in a Schottky position. Then if Γi is divergent for any
i = 1, . . . , L, the group Γ = ∗iΓi is also divergent. Moreover

• δ > maxi δΓi ;
• the Patterson measure of Γ gives measure 0 to the limit sets Λ(Γi);
• the Patterson-Sullivan measure is finite.
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Remarks.

a) If the groups Γi are elementary Kleinian groups, their limit sets is reduced
to one point or two points, and the above result shows that σ has no atoms.

b) The conclusions of this theorem still hold when one only assume that one
of the groups Γi of maximal exponent is divergent (see [30]).

c) If the groups Γi are geometrically finite, it can be checked that the product
is also geometrically finite (see [26]).

III. Symbolic dynamic and stochastic behavior of the geodesic flow

From now on, we consider a Schottky product group Γ. Thus, up to a set of
measure 0, the limit set of Γ coincides with Λ := π(Σ+). Let Λi be the subset
of Λ of those limit points with first letter in Γi (not to be confused with the
limit set of Γi). The following description of Λ will be useful:

a) Λ is the finite union of the sets Λi, with disjoint closures Λ(Γ) ∩ Fi.

b) Each of these sets is partitioned into a countable number of subsets with
disjoint closures:

Λi =
⋃

a∈Γ∗
i

⋃

j &=i

a · Λj .

III-a. Coding the geodesic flow. — In this set-up, the non-wandering

set Ω of the geodesic flow contains Ω′ = Λ
∆

×Λ × R/Γ as a subset of full mea-
sure with respect to the Patterson-Sullivan measure, and we can therefore re-
strict (gt) to Ω′. We shall now produce a coding of the geodesic flow on Ω′

by first conjugating the action of Γ on Λ
∆

×Λ × R with the action of a single

transformation. Observe that the subset Λ =
⋃

i&=j Λi × Λj of Λ
∆

×Λ is in a
one-to-one correspondence with the symbolic space Σ of bi-infinite admissible
sequences in AZ, and that the shift of Σ induces a transformation T on this set
Λ given by

T (y, x) = (a−1
0 y, a−1

0 x) if x = π(a)

Lemma III.1. — The action of Γ on Λ
∆

×Λ is orbit equivalent with the action
of T on Λ.

Proof. — Let x = π(a) and y = π(b) two distinct points in Λ, and denote
by n the first index for which an ,= bn. Let γ = a0 · · ·an−1 = b0 · · · bn−1.
Then, γ−1(y, x) belongs to Λ. Therefore, the Γ-orbit of (y, x) meets Λ which
means that Λ is a section for the action of Γ. Furthermore, when (y, x) belongs
to π(Σ), it is easily checked that γ(y, x) ∈ Λ if and only if γ = (a0 · · · ak−1)−1

or γ = b0 · · · bk−1 for some k ≥ 0. In the first case, γ(y, x) = T k(y, x), and in
the second case, γ(y, x) = T −k(y, x), which proves the lemma.
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130 BABILLOT (M.) & PEIGNÉ (M.)

It is now a consequence of Lemma III.1 that the action of Γ on the space

Λ
∆

×Λ× R is orbit-equivalent with the transformation T & on Λ × R given by

T &(y, x, r) = a−1
0 (y, x, r) =

(
T (y, x), r + '(x)

)

where, according to (1), the function ' is defined by

'(x) = −b(a−1
0 , x) = −Bx(a0o,o) when x = π(a)

It follows that the geodesic flow (gt) of M (restricted to Ω′) can be presented
as the special flow on the space Λ×R/T &. When the function ' is non negative
on Λ, the set

D& =
{
(y, x, s) ; (y, x) ∈ Λ, s ∈ [0, '(x)[

}

is a fundamental domain for the action of T& on Λ × R. In the general
case one only knows by Fact 3 in the previous section that ' is bounded
from below and SN ' = ' + ' ◦ T + · · · + ' ◦ T N−1 is non negative on Λ for
some N ≥ 1; the function ' is thus cohomologous to a strictly positive func-
tion '+ (e.g. ' = '+ + h − h ◦ T for some measurable function h) and the set{
(y, x, s) ; (y, x) ∈ Λ, h(x) ≤ s < h(x) + '+(x)

}
is a fundamental domain for

the action of T& on Λ × R.

In order to simplify the notations, we will assume in the sequel that '
is non negative on Λ and identifies Λ × R/T & with D& defined above.

Note that restricting the measure dσ(y)dσ(x)/|y − x|2δ to Λ and normalis-
ing it gives an invariant probability measure for T , that we shall denote by ν .
The measure ν(dydx)dt on Λ × R is thus T&-invariant, it induces an invariant
measure for the special flow on the space Λ×R/T & which corresponds with the
Patterson-Sullivan measure on Ω.

III-b. The factor (Λ, T, ν). — We have constructed a dynamical system
(Λ, T , ν ), isomorphic to a symbolic space of bi-infinite sequences such that the
geodesic flow restricted to Ω′ is a suspension of it. By using the projection
p : Λ → Λ on the second coordinate, we get a factor (Λ, T, ν) of the dynamical
system (Λ, T , ν ) that we now describe.

The transformation T is induced by the unilateral shift and is simply given
by

Tx = a−1
0 · x if x = π(a).

This transformation is uniformly expanding by Proposition II.2.

The probability measure ν = ν ◦ p−1 on Λ is invariant for T and has a den-
sity h with respect to the Patterson measure σ on Λ given up to a normalization
constant by the formula

for x ∈ Λi, h(x) =

∫

S
j %=i Λj

dσ(y)

|x − y|2δ ·
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III-c. The transfer operator. — Classically, the stochastic behavior of a
special flow over a subshift of finite type (Σ, σ) with ceiling function ' is stud-
ied using the factor system (Σ+, σ+) of one-sided sequences and the family of
transfer operators (Lz)z defined by

Lzϕ(x) =
∑

σy=x

e−z&(y)ϕ(y).

In this section, we study the family of transfer operators associated with the
dynamical system (Λ, T, ν) and the ceiling function ' defined above, taking
into account that our alphabet is countable; these operators Lz will be defined
formally by

Lzϕ(x) =
∑

Ty=x

e−zf(y)ϕ(y).

for any function ϕ from Λ to C.

If x belongs to Λi, its pre-images by T are the points y = a·x for a ∈
⋃

j &=i Γ
∗
j

and then '(y) = −b(a−1, a · x) = b(a, x); one may then set

Lzϕ(x) =
∑

i&=j

∑

a∈Γ∗
j

1x∈Λi e
−zb(a,x)ϕ(ax).

if x ∈ Λi. Assume that ϕ is bounded. By Fact 3, the series above converges
as soon as 1(z) is strictly greater than the critical exponent of each group Γi,
1 ≤ i ≤ '; this occurs in particular if z = δ in our set-up by the critical gap
property given in Theorem II.4.

According to the next proposition, the operator Lδ can be seen as a dual op-
erator of the transformation T acting on L∞(Λ(Γ)) endowed with the Patterson
measure σ.

Proposition III.2. — For any φ and ψ in L∞(Λ(Γ)), one has

(3)

∫

Λ
ϕ(x)ψ(Tx)σ(dx) =

∫

Λ
Lδϕ(x)ψ(x)σ(dx).

In particular, the Patterson measure σ is an invariant measure for Lδ and the
density h defined in Section III-b is an invariant function:

σLδ = σ and Lδh = h.

Proof. — Recall from Section 3 that Λ coincides with Λ(Γ) up to a subset
of Patterson’s measure 0 and can be partitioned into a countable number of
subsets with disjoint closures

Λ =
⋃

i&=j

⋃

a∈Γ∗
j

aΛi.
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The restriction of the transformation T on aΛi is the action of a−1; the δ-
conformality of the Patterson’s measure σ thus implies that, for any ϕ, ψ
in L∞(Λ(Γ)),

∫

Λ(Γ)
ϕ(x)ψ(Tx)σ(dx) =

∑

i&=j

∑

a∈Γ∗
j

∫

aΛi

ϕ(x)ψ(Tx)σ(dx)

=
∑

i&=j

∑

a∈Γ∗
j

∫

Λi

ϕ(a · x)ψ(x)
∣∣a′(x)

∣∣δσ(dx).

Recalling that |a′(x)| = e−b(a,x), we get (3). For ψ = 1Λ(Γ) one obtains in
particular σLδ = σ. Furthermore since ν = hσ is T -invariant one gets Lδh = h.

In order to control more precisely the spectrum of the transfer operators,
we will study their restriction the space Lα = Lα(Λ(Γ)) of Hölder continuous
functions from Λ(Γ) to C defined by

Lα =
{
ϕ ∈ C(Λ(Γ)) ; ‖ϕ‖α = |ϕ|∞ + [ϕ]α < +∞

}

where [ϕ]α is the α-Hölder coefficient of ϕ defined by

[ϕ]α = sup
i

sup
x,y∈Λi

x &=y

|ϕ(x) − ϕ(y)|
|x − y|α

(the set Λi denotes here the set Λ(Γ) ∩ Fi, that is the closure of Λi). The
space (Lα, ‖.‖α) is a Banach space and by Ascoli’s theorem the identity map
from (Lα, ‖.‖α) into (C(Λ(Γ)), |.|∞) is compact.

For any z ∈ C and γ in Γ∗, let wz(γ, .) be the weight function defined on
Λ(Γ) by

wz(γ, x) =

{
0 if x ∈ Λi(γ)

e−zb(γ,x) if x ∈ Λi, i ,= i(γ).

Observe that these weights satisfy the following cocycle relation: if a1, a2 ∈ A
do not belong to the same group Γi, then

wz(a1a2, x) = wz(a1, a2 · x)wz(a2, x).(4)

Lemma III.3. — Each weight wz(γ, .) belongs to Lα for any 0 < α ≤ 1. More-
over, for any z ∈ C there exists C = C(z) > 0 such that for any γ in Γ∗,

‖wz(γ, .)‖α ≤ Ce−((z)d(o,γ·o)

Proof. — Fact 3 implies that the family {e((z)d(o,γ·o)wz(γ, .) ; γ ∈ Γ} is
bounded for |.|∞. The control of the Lipschitz-coefficient of wz(γ, .) is more
delicate.
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We first recall briefly the proof in the constant curvature case. To es-
timate wz(γ, x) − wz(γ, y) for any points x, y belonging to the same sub-
set Λi with i ,= i(γ), note that there exists a constant A > 0 such that
|b(γ, x) − b(γ, y)| ≤ A|x − y|. The inequality |eZ − 1| ≤ 2|Z|e|((Z)| readily
implies

|e−zb(γ,x) − e−zb(γ,y)| ≤ A|z|e2A|((z)|−((z)b(γ,x)|x − y|.
So, the Hölder coefficient of wz(γ, .) satisfies [wz(γ, .)]α ≤ Ce−((z)d(o,γ·o)

for some constant C = C(z).

In the variable curvature case, we same argument holds using the following
fact which extends a result due to M. Bourdon [4].

Fact 4. — Let E ⊂ ∂X and F ⊂ X two sets whose closure E and F in X∪∂X
are disjoint. Then the functions x 3→ Bx(o,p), with p ∈ F , are equi-Lipschitz
continuous on E with respect to |.|.

Proof. — For any points p ∈ X and x, y ∈ ∂X , the quantity

(x | y)p = 1
2

(
Bx(p,q) + By(p,q)

)

does not depend on the point q on the geodesic (xy); furthermore the function
∆p defined by ∆p(x, x) = 0 and ∆p(x, y) = exp(−(x | y)p) for x ,= y is a
distance on ∂X which satisfies the well known visibility property:

There exists C > 0, such that, for any couple (x, y) of distinc points in ∂X

C−1 exp
(
−d(p, (xy)

)
≤ ∆p(x, y) ≤ C exp

(
−d(p, (xy)

)
.

Note that the distance ∆o(x, y) is nothing else than the distance |x − y|
introduced above; furthermore, the constant C is a universal constant which
depends only on the dimension of X and the upper bound on the cur-
vature (see [16]). The distances ∆p,p ∈ X, are equivalent on ∂X since
∆p(x, y) = ∆o(x, y) exp 1

2 (Bx(o,p) + By(o,p)). This readily implies

Bx(o,p) = −2 log∆o(x, y) + 2 log∆p(x, y) − By(o,p).

We will use the two following properties, whose proof is developed a bit
latter:

i) There exists ε > 0 such that for any p ∈ F one can choose xp ∈ ∂X such
that ∆o(xp, E) ≥ ε and ∆p(xp, E) ≥ ε.

ii) The set {d(p, (xx′)) − d(o, (xx′))} is bounded from below, uniformly in
p ∈ F and x, x′ ∈ E, x ,= x′.

Fix p in F . The quantity Bxp
(o,p) does not depend on x. On the other

hand, the function x 3→ ∆o(x, xp) is Lipschitz continuous (with coefficient 1)
with respect to ∆o; since it is bounded from below by ε, the function x 3→
log∆o(x, xp) is also Lipschitz continuous with respect to ∆o and its Lips-
chitz coefficient is uniformly bounded in p. In the same way, the function
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x 3→ log∆p(x, xp) is Lipschitz continuous with respect to ∆p, with a Lips-
chitz coefficient uniformly bounded in p. Fact 4 will be proved if one shows
that ∆p(x, x′) ≤ C∆o(x, x′) for some constant C > 0 which does not depend
on p ∈ F ; this is the property ii).

It remains to prove assertions i) and ii).

Proof of i). — If F is relatively compact in X , one fixes x0 in ∂X outside E
and one set xp = x0 for any p ∈ F . In the sequel we will assume that F is not
bounded in X , we set ε0 = 1

2∆o(E, F∩∂X) > 0 and we choose a compact subset
K0 of ∂X such that, if x, y are two distinct points in ∂X with ∆o(x, y) ≥ ε0
then the geodesic (xy) meets the set K0. Fix e0 ∈ E and x0 ∈ ∂X with
∆o(x0, E) ≥ ε0. When p ∈ F lies inside K0 set xp = x0; otherwise let xp be
the point in ∂X such that the geodesic (e0xp) contains p. One can enlarge K0

in such a way that ∆o(xp, E) ≥ ε0 as soon as p /∈ K0.
• If p ∈ K0, one has xp = x0 and so ∆o(xp, E) ≥ ε0; it follows that, for any

e ∈ E, the geodesic (exp) cuts the set K0 and so d(p, (exp)) ≤ diam(K0).
• If p /∈ K0, one has ∆o(xp, E) ≥ ε0 and for any e ∈ E, one can thus choose

a point qe on the geodesic (xpe) which belongs to K0 . In particular the point p
is on the geodesic ray [qe0

, xp), which readily implies

d
(
p, (exp)

)
≤ d(qe0

qe) ≤ 2diam(K0).

In the two cases, one concludes with the visibility property.

Proof of ii). — Assume that there exists sequences (pn) in F and (xn),
(x′

n) in E, with xn ,= x′
n, such that d(pn, (xnx′

n)) − d(o, (xnx′
n)) → −∞ as

n → +∞. Let qn be the point on the geodesic (xnx′
n) such that d(pn, (xnx′

n)) =
d(pn,qn); one has d(pn,qn) − d(o,qn) → −∞. Taking if necessary a subse-
quence, one may assume that (pn)n and (qn)n converge respectively to some
points p and q. Since d(pn,qn)−d(o,qn) → −∞, one has d(o,qn) → +∞ and
so p ∈ E; one also has d(o,pn) → +∞ because |d(pn,qn)−d(o,qn)| ≤ d(o,pn),
which implies that q ∈ F ∩ ∂X . The angle at o in the triangle (o p q) is
bounded from below by θ0 > 0; for n large enough the angle between the
two geodesic segments [o,pn] and [o,qn] is thus ≥ 1

2θ0 which implies that
d(pn,qn) − d(o,pn) − d(o,qn) is bounded from below. This contradicts the
fact that d(pn,qn) − d(o,qn) tends to −∞.

Lemma III.3 thus proves that Lz is bounded on Lα when 1(z) > δi for all
1 ≤ i ≤ L and in particular for z = δ by the critical gap property. The following
proposition gives a precise description of the spectrum of Lδ on Lα.

Proposition III.4. — For any 0 < α ≤ 1, the spectral radius of Lδ on Lα is
equal to 1. Furthermore

• if L ≥ 3, the eigenvalue 1 is simple and the rest of the spectrum of Lδ is
contained in a disc of radius strictly less than 1;
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• if L = 2 (i.e. if Γ = Γ1∗Γ2), the function h(1Λ1
−1Λ2

) is an eigenfunction
of Lδ for the value −1, the eigenvalues 1 and −1 are simple and the rest of the
spectrum of Lδ is contained in a disc of radius strictly less than 1.

Proof. — The study of the spectrum of Lz was already done in [9] and [2] when
the Schottky factors of Γ are elementary subgroups of Iso(Hn). The proof in
this more general case is similar, and we recall it for the sake of completeness.
It is decomposed into four steps.

Step 1. The essential spectral radius of Lz. — We first obtain a contraction
property for the iterated operators Lk

z . Due to the cocycle property (4) of the
weights, we may write

Lk
zϕ(x) =

∑

γ∈Γ(k)

wz(γ, x)ϕ(γ · x)

where Γ(k) is the set of elements of symbolic length k in Γ. Therefore
∣∣Lk

zϕ(x) − Lk
zϕ(y)

∣∣ ≤
∑

γ∈Γ(k)

∣∣wz(γ, x)
∣∣ ·

∣∣ϕ(γ · x) − ϕ(γ · y)
∣∣

+
∑

γ∈Γ(k)

[
wz(γ, .)

]
α
· |ϕ|∞ · |x − y|α.

By Proposition II.2 and the mean value relation (2), there exist C > 0 and
r < 1 such that |γ · x − γ · y| ≤ Crk|x − y| whenever x, y ∈ Λi, i ,= i(γ). This
leads to the inequality

(5) [Lk
zϕ]α ≤ rk[ϕ]α + Rk|ϕ|∞

where rk = (Crk)α|Lk
((z)1|∞ and Rk =

∑
γ∈Γ(k)[wz(γ, .)]α. Observe that

lim sup
k

r1/k
k = rα lim sup

k
|Lk

((z)1|1/k
∞ = rαρ∞

(
1(z)

)

where ρ∞(1(z)) is the spectral radius of the positive operatorL((z) on C(Λ(Γ)).
Inequality (5) is crucial in the Ionescu-Tulcea-Marinescu theorem for quasi-

compact operators and appeared first in [10]. By Hennion’s work [20], it implies
that the essential spectral radius of Lz on Lα is less than rαρ∞(1(z)); in other
words any spectral value of Lz with modulus strictly larger than rαρ∞(1(z))
is an eigenvalue with finite multiplicity and isolated in the spectrum of Lz .

It follows in particular that the spectral radius of Lz on Lα is less than
ρ∞(1(z)). Otherwise there would exist a spectral value λ of modulus bigger
than ρ∞(1(z)) which would be an eigenvalue by the previous result; if ϕ ∈ Lα

was a corresponding eigenfunction, one would thus obtain |λ| · |ϕ| ≤ L((z)|ϕ|
and so |λ| ≤ ρ∞(1(z)), a contradiction.

Step 2. The peripherical spectrum of Lδ. — Recall from Proposition III.2
that Lδh = h, and that h belongs to C(Λ(Γ)). Since h is strictly greater
than 0 on Λ(Γ), the spectral radius on C(Λ(Γ)) of the positive operator Lδ is

ρ∞(Lδ) = lim sup+∞ |Lk
δ1|

1/k
∞ = 1.
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By the first step it follows that the spectral radius of Lδ in Lα is less that 1,
and since h belongs to Lα, is equal to 1. Moreover, we know that, except for
finitely many eigenvalues of modulus 1, the spectrum of Lδ is included in a disc
of radius < 1. We now describe the peripherical spectrum of Lδ.

Assume first that L ≥ 3 and let us consider a function ϕ ∈ Lα such that
Lδϕ = eiθϕ for some θ ∈ R. It follows that |ϕ| ≤ Lδ|ϕ| and so |ϕ(x)| =
Lδ|ϕ|(x)σ(dx)−a.s. since σLδ = σ. The equality holds in fact for all x ∈ Λ(Γ)
since |ϕ| and Lδ|ϕ| are continuous and the support of σ is Λ(Γ). Now, let x0

in Λ(Γ) such that |ϕ(x0)|/h(x0) = supx∈Λ(Γ) |ϕ(x)|/h(x) and denote by i0 the
index such that x0 belongs to the closure of Λi0 ; the equalities Lδ|ϕ| = |ϕ|
and Lδh = h imply by convexity

∀j ,= i0, ∀a ∈ Γ∗
j ,

|ϕ(a · x0)|
h(a · x0)

=
|ϕ(x0)|
h(x0)

·

In the same way, if x1 ∈ Λ(Γ) satisfies |ϕ(x1)|/h(x1) = infx∈Λ(Γ) |ϕ(x)|/h(x)
and if x1 belongs to the closure of Λi1 , one has

∀j ,= i1, ∀a ∈ Γ∗
j ,

|ϕ(a · x1)|
h(a · x1)

=
|ϕ(x1)|
h(x1)

·

Since L ≥ 3 there exists an index j which is distinct from i0 and i1. Let
a ∈ Γ∗

j ; the sequences (an · x0)n≥1 and (an · x1)n≥1 converge to the attractive
fixed point of a and by continuity it follows that |ϕ(x0)|/h(x0) = |ϕ(x1)|/h(x1);
the function |ϕ|/h is thus constant on Λ(Γ).

Let us come back to the equality Lδ(ϕ) = eiθϕ; since the modulus of ϕ/h
is constant on Λ(Γ) one obtains by convexity ϕ(a · x)/h(a · x) = eiθϕ(x)/h(x)
for any a ∈ Γ∗

j and any x ∈ Λi, i ,= j. Fix a ∈ Γ∗
j ; for any pair of points x, x′

in Λ(Γ) − Λj , the sequences an · x and an · x′ converge to the attractive fixed
point of a and by continuity once again, we get

eiθ ϕ(x)

h(x)
= eiθ ϕ(x′)

h(x′)
·

The function ϕ is thus proportional to h and eiθ = 1; in other words, 1
is the unique eigenfunction of Lδ with modulus 1 and the corresponding
eigenspace is C · h.

When L = 2, setting Λi = Λ(γ) ∩ Fi for i = 1, 2, one gets Lδ(h1Λ1
) = h1Λ̄2

,
Lδ(h1Λ̄2

) = h1Λ̄1
and the operator L2

δ acts on each space Lα(Λ̄1) and Lα(Λ̄2).
If ϕ ∈ Lα satisfies the equality Lδϕ = eiθϕ, then Lδ(ϕ1Λ̄j

) = e2iθϕ1Λ̄j
for

j = 1, 2; the same argument than above leads to e2iθ = 1 and ϕ1Λ̄j
= h1Λ̄j

.

Consequently, either eiθ = 1 and ϕ ∈ C ·h or eiθ = −1 and ϕ ∈ C ·h(1Λ̄1
−1Λ̄2

).
This achieves the proof of Proposition III.4.
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III-d. The Central Limit Theorem for the geodesic flow. — We will
now use the preceding formalism to show a Central Limit Theorem for ( regular)
additive functionals of the geodesic flow.

Theorem III.5. — Let X be a Hadamard manifold of pinched strictly negative
curvature and Γ = Γ1 ∗ · · · ∗ΓL be a Schottky product of Kleinian groups acting
on X and satisfying the critical gap hypothesis. Let M = X/Γ be the quotient
manifold and m the Patterson-Sullivan probability measure on T 1M . For any
bounded and Hölder function Φ : T 1M → R, the quantity

∫

T 1M

1

t

(∫ t

0
(Φ(gsv) − m(Φ))ds

)2
m(dv)

converges to a constant σ2
Φ. One has σ2

Φ = 0 if and only if Φ is a coboundary,
i.e. if Φ is the derivate in the direction of the flow of some Borel function
defined on T 1M .

• When σ2
Φ ,= 0, the process Xt(v) =

∫ t
0 Φ(gsv)ds satisfies the Central Limit

Theorem: for any a ∈ R

m
{

v :
Xt(v) − tm(Φ)

σΦ
√

t
> a

}
−→ π

(
[a, +∞[

)

when t → +∞, where π is a standard Gaussian law N (0, 1) on R.
• When σ2

Φ = 0, the process ((Xt − tm(Φ))/
√

t)t tends to 0 in probability.

Remark. — We cannot show that the CLT holds when Φ is only assumed
to be in L2(m) (and Hölder continuous). In the course of the proof, we shall see
that the boundedness condition can be relaxed up to a certain point. Analogous
results in different set-ups have been obtained by various authors. The proof
given here is simpler than Ratner’s [32] original one, and is inspired by the
works of Guivarc’h & Hardy [17] and Guivarc’h & Le Jan [18].

Proof. — For any vector v in the subset Ω′ of full measure in the non-wandering
set Ω, there exist a unique lift (y, x, r) of v ∈ T 1M which belongs to the
domain D& (see Section III-a); we will set v = (y, x, r). The geodesic segment
{(y, x, r − s) ; 0 ≤ s ≤ t} will be cut into pieces, according to the values of the
Birkhoff sums

Sn'(x) = '(x) + '(Tx) + · · · + '(T n−1x).

For a given t, we then define the process Nt(v) by

Nt(v) = max
{
n ≥ 0 ; Sn'(x) < t + r

}
.

When the context is clear (i.e. when t and v are fixed) we shall often denote
SNt(v)'(x) simply by SN . We shall decompose the proof into four steps. In the
first one, we reduce the study of the process Xt to the study of random Birkhoff
sums over the dynamical system (Λ, T, ν). The second step gives the CLT for
Birkhoff sums on this system. In the third one, we give a limit theorem for the
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process Nt(v) and prove the above theorem in the non degenerated case. In
the last step, we analyse the asymptotic variance σ2

Φ.
Without loss of generality, we will assume that Φ is m-centered, i.e.

m(Φ) = 0.

Step 1. Reduction to the dynamical system (Λ, T, ν). — We first establish
the following

Proposition III.6. — If t > 0, let Nt : Λ → N be the process defined for
v = (y, x, r) ∈ D& by

Nt(v) = max
{
n ≥ 0 ; Sn'(x) ≤ r + t

}
.

If the function Φ is Hölder continuous on T 1M with exponent β ≤ 1, there exists
a Borel function A : T 1M → R and a Hölder continuous function φ : Λ → R

such that for any v = (y, x, r) ∈ Λ one has, up to a uniformly bounded term:

Yt(v) = A(vt) − A(v) +

Nt(v)−1∑

k=0

φ(T kx).

Moreover, there exists a constant C > 0 such that

i) |φ(x)| ≤ C '(x) + C,

ii) |φ(γ·x)−φ(γ·x′)| ≤ C|x−x′| 12β for any x, x′ ∈ Λ(Γ)∩Fi and γ ∈ Γj , j ,= i.

Proof. — Let Φ̃ be the Γ-invariant lift of Φ to T 1X . For a vector v = (y, x, r)
in D&, one has

Xt(v) =

∫ t

0
Φ̃(y, x, r − s)ds

= −
∫ r

0
Φ̃(y, x,−s)ds +

∫ SN

0
Φ̃(y, x,−s)ds +

∫ t+r

SN

Φ̃(y, x,−s)ds.

Let A(v) be the function defined by A(v) =
∫ r
0 Φ̃(y, x,−s)ds. Since Φ̃ is T&-

invariant,
∫ t+r

SN

Φ̃(y, x,−s)ds = A(gtv)

On the other hand, we have

∫ SN

0
Φ̃(y, x,−s)ds =

Nt(v)−1∑

k=0

∫ &(T kx)

0
Φ̃

(
y, x,−s − Sk'(x)

)
ds

=

Nt(v)−1∑

k=0

∫ &(T kx)

0
Φ̃

(
T &(y, x),−s

)
ds =

Nt(v)−1∑

k=0

φ
(
T &(y, x)

)
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where we have set φ(y, x) =
∫ &(x)
0 Φ̃(y, x, s)ds. The function φ is Borel regular

and satisfies the inequality |φ(y, x)| ≤ ‖Φ‖∞'(x) by the boundedness of Φ̃; it is
thus integrable with respect to ν on Λ. Moreover, since the Patterson-Sullivan
measure m on T 1M identifies with the measure ν ⊗ ds on the domain D&,
we have ∫

Λ
φ(y, x)dν (y, x) =

∫

Λ!

Φ̃(y, x, s)dm(y, x, s) = 0.

One achieves the proof of Proposition III.6 using the following lemma which
brings the study to the factor system (Λ, T, ν) and relies on standard arguments
(see [5] and also [2, lemme 4.3]) for a precise statement developed in a very close
set-up):

Lemma III.7. — Assume that Φ is Hölder continuous on T 1M with expo-
nent β. There exist Borel functions φ : Λ → C and ψ : Λ → C such that
for any (y, x) ∈ Λ,

φ(y, x) = φ(x) + ψ(y, x) − ψ ◦ T (y, x).

Moreover, there exists a constant C > 0 such that

i) |φ(x)| ≤ C'(x) + C;

ii) |φ(γ·x)−φ(γ·x′)| ≤ C|x−x′| 12β for any x, x′ ∈ Λ(Γ)∩Fi and γ ∈ Γj , j ,= i;

iii) the function ψ is bounded.

One can finally decompose the process Xt(v) as

Xt(v) =
Nt(v)∑

k=1

φ(T kx) + Rt(v)

where φ satisfies the conclusions of the above lemma and
∫
Λ φdν = 0, and the

remainder term Rt(v) is of the form A(gtv)−A(v)+ψ(y, x)−ψ(T N (y, x)) with
N = Nt(v). Since A is integrable with respect to m and ψ bounded, (Rt/

√
t )t

converges almost surely to 0, so that it now suffices to study the behavior in

distribution of the random sum
∑Nt(v)−1

k=0 φ(T kx).

Step 2. The Central Limit Theorem for Birkhoff sums on (Λ, T, ν). — We
prove the following statement:

Proposition III.8. — Let f be a Borel function from Λ(Γ) to C such that

i) |f(x)| ≤ C '(x) + C for all x ∈ Λ;

ii) |f(γ · x) − f(γ · y)| ≤ C|x − y|α for any x, y ∈ ΛΓ ∩ Fi and γ ∈ Γj, j ,= i.

Then, one has ν(f2) < +∞ and the sequence (ν((Snf − nν(f))2)/n)n converges
to a constant σ2

f ; furthermore, σ2
f = 0 if and only if f is a T -coboundary in Lα,

i.e. if there exists a function f ∈ Lα such that f = ν(f) + f ◦ T − f .
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• When σ2
f > 0 one has

1

σf

√
n

(
Snf(x) − nν(f)

) L−→ N (0, 1),

the point x being distributed among the probability measure ν.

• Otherwise, anSnf
L→ 0 for any sequence (an)n which tends to 0.

Sketch of the proof. — This is a well-known result (see [17], [21]); we just recall
here the idea of the proof with some complements which will be of interest in
the Step 4. Under hypothesis i), one has ν(|f |k) < +∞ for any k ≥ 0; without
loss of generality, we will assume ν(f) = 0.

Using the duality between Lδ and the transformation T , we have for all
u ∈ R

∫

Λ
exp

(
iu

Snf(x)√
n

)
dν(x) =

∫

Λ
Lδ

[
eiufLδ

[
eiuf [· · · Lδe

iufh] · · ·
]]

(x)σ(dx).

This leads us to introduce the Fourier operator Lδ,u acting on Lα by

Lδ,uψ = Lδ(e
iufψ)

so that we get
∫

Λ
exp

(
iu

Snf(x)√
n

)
ν(dx) =

∫

Λ
Ln
δ,u/

√
n h(x)σ(dx).

Note that Lδ,0 coincides with Lδ and that, by hypothesis ii), the operator Lδ,u

acts on Lα for any u ∈ R; furthermore the function u 3→ Lδ,u is C∞ regular
from R into the space L(Lα) of linear operators on Lα.

Assume now L > 2, i.e. Γ contains at least three Schottky factors; the
case L = 2 is a little more delicate since Lδ,u has two dominant eigenvalues
whose regularity in u has to be controlled, we refer to [21] for a complete proof.
By Proposition III.4, there exists a linear operator R on Lα with spectral
radius < 1 such that

Lδ(.) = σ(.)h + R(.).

By perturbation theory, there exists an open neigbourhood U of 0 and C2-
functions u 3→ λu from U to C, u 3→ hu from U to Lα, u 3→ σu(.) from U to
the dual space L′

α of Lα and u 3→ Ru from U to L(Lα) such that

Lδ,u(.) = λuσu(.)hu + Ru(.)

with λ0 = 1, h0 = h and R0 = R. The functions u 3→ hu and u 3→ σu(.) are
determined up to a multiplicative constant, one may thus normalize hu and σu

in such a way that σ(hu) = 1 and σu(hu) = 1. One has

Ln
δ,uh(x) = λn

uσu(h)hu(x) + Rn
uh(x).
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The function u 3→ σ(Rn
uh) is C2 and vanishes at 0; furthermore, σu(h) = 1+o(u)

and there exists η > 0 and C > 0 such that ‖Rn
u‖α ≤ C(1− η)n for any u in U ;

so
σ(Ln

δ,uh) = λn
u + uεn(u) with

∣∣εn(u)
∣∣ ≤ C

(
|λu|n + (1 − η)n

)
.

The control of the dominant term λn
u relies on the following

Lemma III.9. — One has λ′
0 = 0 and λ′′

0 = −ν(f2) + 2iν(fh′
0). Furthermore

λ′′
0 ∈ R− and the equality λ′′

0 = 0 holds if and only if f is a coboundary in Lα.
At last, the sequence (nλ′′

0 + ν((Snf)2))n≥1 is bounded.

Proof. — Differentiating the two sides of the equality λu = σ(eiufhu) yields to

(6) λ′
u = iσ(eiuf fhu) + σ(eiufh′

u).

Letting u = 0 one gets λ′
0 = iσ(fh) + σ(h′

0); the normalisation condition
σ(hu) = 1 implies σ(h′

0) = 0 and so λ′
0 = iν(f) = 0. Differentiating again

the two sides of the equality (6) and letting u = 0 we get

λ′′
0 = −ν(f2) + 2iσ(fh′

0).

Conjugating the two sides in the equality Lδ,uhu = λuhu, one gets Lδ,−uhu =
λuhu and so λ−u = λu and h−u = hu; the derivate at 0 of the function
u 3→ hu is thus purely imaginary valued, which implies that h′

0 = ihf for some
real valued function f in Lα. Differentiating the equality Lδ,uhu = λuhu and
letting u = 0, one gets Lδ((f −f)h) = hf and so ν(ff ◦T ) = ν(f2)−ν(f ·f ◦T );
this readily implies

λ′′
0 = −

(
ν(f2) + 2ν(ff)

)
= −ν

(
(f + f − f ◦ T )2

)
.

Set σf =
√

ν((f + f − f ◦ T )2) and remark that σf = 0 if and only if f is a
coboundary in Lα. To prove the last assertion of Lemma III.9, let us remark
that σ(Ln

δ,uh) = ν(eiuSnf ) and so σ((Ln
δ,uh)′′|u=0) = −ν((Snf)2). On the other

hand, Ln
δ,uh = λn

uσu(h)hu + Rn
uh; an elementary calculus leads to

σ
(
(Ln

δ,uh)′′|u=0

)
= nλ′′

0 + σ
( d2

du2
(σu(h)hu + Rn

uh)
)

u=0

the last term being bounded in n. This achieves the proof of Lemma III.9.

Let us now achieve the proof of Proposition III.8. If f is not a coboundary,
one gets

σ(Ln
δ,uh) =

(
1 − 1

2σ
2
f u2 + u2o(u)

)n
+ uεn(u);

it follows immediately

lim
n→+∞

σ
(
Ln
δ,u/

√
nh

)
= exp

(
− 1

2σ
2
f u

2
)
.

This is the expected result when f is not a coboundary. The second assertion
of the proposition is obvious.
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Remark. — Conditions i) and ii) of Proposition III.8 may be obviously
relaxed. In fact we only need that the function u 3→ Lδ,u is C2-regular. It seems
to be not possible (neither natural) to express this condition directly in term of
the function f . In Subsection IV-d, we will apply Proposition III.8 to another
class of functions f than the one considered here.

In the sequel, we will apply Proposition III.8 to the function φ associated
with Φ (see Lemma III.7); the fact that the sequence (nλ′′

0 + ν((Snφ)2))n≥1 is
bounded will be important to express the variance σ2

φ in terms of the function Φ.
In fact we will need more than this estimation; we have the

Lemma III.10. — Assume that hypotheses of Proposition III.8 hold and that
ν(f) = 0. Then, for any k ≥ 1 there exists a constant Ck > 0, such that

∀n ≥ 1, ν
(
(Snf)2k

)
≤ Cknk.

Proof. — This lemma is close to Lemma 3.2 in [32]; the proof proposed here is
new and quite simpler. For any n, k ≥ 1, one has

∣∣σ
(
(Ln

δ,uh)(2k)
|u=0

)∣∣ = ν
(
(Snf)2k

)
.

Since Ln
δ,uh = λn

uσu(h)hu +Rn
uh and the spectral radius of Ru is < 1 for u small

enough, it suffices to prove that the sequence |(λn
u)(2k)|u=0|/nk is bounded in n.

Recall that λu admits the local expansion λu = a0 + a1u + a2u2 + · · · with
a0 = 1 and a1 = 0; in particular, the term (λn

u)(2k)|u=0, which is also the 2k-th
coefficient of the local expansion of λn

u, is equal to

a(2k)
n =

∑

&1,...&n≥0P
i &i=2k

(2k)!

'1! . . . 'n!
a&1 · · ·a&n .

Note that none of the 'i is equal to 1 in the previous sum since a1 = 0; the

term |a(2k)
n | is thus less than (2k)! A2k

k 4In,k with Ak = sup0≤i≤2k |ai| and

In,k =
{
('1, . . . , 'n) ; 0 ≤ 'i ≤ 2k,

∑
i 'i = 2k, 'i ,= 1

}
.

A simple inductive argument show that there exists a universal constant C > 0
such that 4In,k ≤ Cnk for any n, k ≥ 1. This achieves the proof of the lemma.

Step 3. Proof of the Central Limit Theorem for the process (Xt). — One
may apply Proposition III.8 to the function ' itself. Note that σ2

& > 0; oth-
erwise ' − ν(') should be a coboundary in Lα and so ' should be bounded.
Contradiction.

Using thus classical techniques coming from the probability theory, one ob-
tains the following
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Corollary III.11. — One has limt→+∞ Nt(v) = +∞ for m-almost all v and
the process

(√
t
(Nt(.)

t
− 1

ν(')

))

t>0

converges in law to a Gaussian law N (0, σ2
&/ν(')3).

Proof. — To deduce this corollary from Proposition III.8, fix a ∈ R and set
at =

[
a
√

t + t/ν(')
]
; one has

m
{
v ;

√
t
(
Nt/t − 1/ν(')

)
≤ a

}
= m

{
v = (y, x, r) ; Sat > t + r

}

=
{
v ;

Sat − atν(')

σ&
√

at
>

t + r − atν(')

σ&
√

at

}
.

Since (t + r − atν('))/σ&
√

at = −aν(')3/σ&(1 + O(1/
√

t)) and r/
√

at → 0 in
probability, one has finally

lim
t→+∞

m
{
v ;

√
t
(
Nt/t − 1/ν(')

)
≤ a

}
=

1√
2π

∫ aν(&)3/σ!

−∞
e−

1
2
x2

dx

which is the expected convergence.

We now prove Theorem III.5. For any v = (y, x, r) ∈ D&, one has Xt(v) =
∑Nt(v)−1

k=0 φ(T kx) + Rt(v), the function φ satisfying the hypotheses of Proposi-
tion III.8. Set σ2

Φ = σ2
φ/ν(') where σ2

φ = limn→+∞ ν((Snφ − nν(φ))2)/n is the
variance associated with φ.

Assume first σ2
φ ,= 0. The term (1/

√
t )Rt(v) is not relevant since it tends to 0

in probability. To control (1/
√

t )SNt(v)φ(x) we write Nt(v) = nt +(Nt(v)−nt)

with nt =
[
t/ν(')

]
; by Proposition III.8, the sequence

(
(1/

√
t )Sntφ

)
t

con-
verges in distribution to a Gaussian law N (ν(φ), σ2

φ). On the other hand, for

any non negative constants K and ε, one may decompose the set
{
v ∈ D&;

|SNt(v)φ(x) − Sntφ(x)| ≥ ε
√

t
}

into At + Bt where

At =
{
v ∈ D& ; |SNt(v)φ(x) − Sntφ(x)| ≥ ε

√
t, |Nt(v) − nt| ≥ K

√
t
}
,

Bt =
{
v ∈ D& ; |SNt(v)φ(x) − Sntφ(x)| ≥ ε

√
t, |Nt(v) − nt| < K

√
t
}
.

One has obviously At ⊂ {v ∈ D& ; |Nt(v) − nt| ≥ K
√

t}; the tightness of
the process

(
Nt−nt√

t

)
t
(which is a direct consequence of corollary III.11) implies

lim supK→+∞ lim supt→+∞ m(At) = 0. On the other hand

Bt =
{
v ∈ D& ; |SNt(v)φ(x) − Sntφ(x)| ≥ ε

√
t, |Nt(v) − nt| < K

√
t
}

⊂
{
v ∈ D& ; 1/

√
t sup
0≤k≤K

√
t

|Skφ(x)| ≥ ε
}
.
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To conclude one uses the following lemma which extends a previous result due
to Y. Guivar’ch and Y. Le Jan [19]:

Lemma III.12. — For any Borel function φ : Λ → C, set

Mnφ = sup
0≤k≤n

|Skφ|.

Assume that φ satisfies the hypotheses of Proposition III.8 and ν(φ) = 0. Then

i) the sequence (n−1Mnφ)n converges to 0 in probability.

ii) for any s > 0, one has

ν
(( 1

n
sup

0≤k≤n
|Skφ|

)s)
≤ 1 + 2ν

(∣∣∣
Snφ

n

∣∣∣
s)

< +∞.

Proof. — It relies on some techniques developed in probability theory. Remark
that the operator Q : ϕ 3→ h−1Lδ(hϕ) is a Markov operator. We may thus
introduce a Markov chain (Xn)n≥0 on Λ with transition operator Q and we de-
note by (Λ⊗N,B(Λ)⊗N, (Px)x∈Λ) the canonical probability space associated with
(Xn)n≥0; in particular, for any probability measure m on Λ one denotes by Pm

the probability measure on Λ⊗N so that the law of X0 equals m, and by Em the
associated expectation. In this context, the duality between Lδ and T readily
implies that for any bounded Borel function Ψ on Λn, one has

∫

Λ
Ψ(x, Tx, . . . , T n−1x) ν(dx) = Eν

[
Ψ(Xn−1, . . . , X0)

]
.

In particular, for any n ≥ 1, the functions Snφ and n−1 sup0≤k≤n |Skφ|
can be considered as random variables on the probability space (Λ,B(Λ), ν)
whose law is respectively the same as the one of the random variables Sn =
φ(X0) + · · · + φ(Xn−1) and Mn = sup0≤k≤n |Sk| defined on (Λ⊗N,B(Λ)⊗N, Pν).
Recall that Lδ acts on Lα, that it is quasi-compact on this space with 1 as a
simple and isolated dominant eigenvalue when L > 2 (when L = 2, L2

δ acts
on Lα(Λ1) and on Lα(Λ2), and the same conclusion holds on each of these two
spaces). By the argument developed in the proof of Proposition III.8, one may
proves that, for any t ∈ R, the sequence

(
Ln
δ,u/

√
n
h)(x)

)
converges, uniformly

in x in Λ, either to exp(− 1
2σφt2) with σ2

φ > 0 when φ is not a coboundary,
or to 0 otherwise. By a standard argument in probability theory, that proves
that the sequence of random variables (Sn/

√
n )n converges in law according

to the probability Px, uniformly in x ∈ Λ, which implies in particular that
limn→+∞ supx∈Λ Px[ |Sn| ≥ nηε] = 0 for any η > 1

2 and ε > 0.

To prove the lemma, we will check that for such η ∈ ] 12 , 1[ and any c > 0,
there exists n1 ≥ 1 depending only on η such that for any n ≥ n1 and x ∈ Λ
one has

Px

[
|Sn| ≥ nc − nη

]
≥ 1

2Px[Mn ≥ nc].(7)
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The first assertion of Lemma III.12 is a direct consequence of this inequality.
The second one follows from the fact that for n1−η ≥ 2 one has

Ex

[(Mn

n

)s]
≤ 1 +

∑

k≥1

Px

[(Mn

n

)s
≥ k

]

≤ 1 + 2
∑

k≥1

Px

[(
2
|Sn|
n

)s
≥ k

]
≤ 1 + 2Ex

[(
2
|Sn|
n

)s]
.

the last term being finite by Lemma III.10.

To prove inequality (7), we fix a, b ∈ R∗ and, for any 0 ≤ k ≤ n − 1 we
consider the event Ak = [|S0| < a + b, . . . , |Sk−1| < a + b, |Sk| ≥ a + b]; these
sets are pairwise disjoint, and, setting Sn

k = φ(Xk) + · · · + φ(Xn−1) one may
write

Px

[
|Sn| ≥ a

]
≥

n−1∑

k=0

Px

[
Ak ∩ [ |Sn

k | ≤ b]
]

≥
n−1∑

k=0

∫

Ak

PXk(ω)

[
|Sn

k | ≤ b
]
Px(dω)

≥
n−1∑

k=0

Px(Ak) inf
y∈Λ

Py

[
|Sn−k| ≤ b

]
.

We will set a = nc − nη and b = nη. Since Px[|Sn| ≤ nη] → 1 uniformly in
x ∈ Λ, there exists n0 such that for n − k ≥ n0,

inf
y∈Λ

Py

[
|Sn−k| ≤ nη

]
≥ inf

y∈Λ
Py

[
|Sn−k| ≤ (n − k)η

]
≥ 1

2 ·

On the other hand, for n − k < n0 one has

Py

[
|Sn−k| ≤ nη

]
≥ Py

[
Mn0

≤ nη
]
−→ 1,

uniformly in y ∈ Λ as n → +∞. There thus exists n1 such that

Py

[
|Sn−k| ≤ nη

]
≥ 1

2

for any y ∈ Λ, n ≥ n1 and 1 ≤ k ≤ n. This gives the expected result since
[Mn ≥ nc] is the disjoint union of the Ak, 0 ≤ k ≤ n − 1.

Step 4. Analysis of the variance. — We simplify and extend here M. Ratner’s
arguments [32]. Let Φ : T 1M → C a bounded and Hölder continuous function
such that m(Φ) = 0. We denote by φ (resp. φ) the associated Borel function
defined on Λ (resp. on Λ); recall that ν (φ) = ν(φ) = 0. We have σ2

φ = 0 if and
only if φ is a coboundary in Lα: there exists ϕ ∈ Lα such that φ = ϕ−ϕ◦T . By
Lemma III.6, this occurs if and only if φ = F − F ◦ T for some Borel bounded
function F : Λ → C. If such a function F exists then Φ is a coboundary for the
geodesic flow on T 1M : setting Φ∗(y, x, t) = −F (y, x) +

∫ t
0 Φ(y, x, s)ds (with

the usual identification (y, x, '(x)) ∼ (T (y, x), 0)) one has, for any r > 0:

Φr = Φ∗ ◦ gr − Φ∗ where Φr(y, x, t) =

∫ r

0
Φ(y, x, t + s)ds
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(one easily checks that Φ∗(y, x, '(x)) = Φ∗(T (y, x), 0) a.s. and that the
above coboundary equation holds). Conversely, if Φ is a coboundary for
the geodesic flow on T 1M there exists a Borel function Φ∗ : T 1M → C

such that Φr = Φ∗ ◦ gr − Φ∗ m-a.s. for any r > 0, and the continuity of Φ
implies ∂Φ∗/∂t = Φ m-a.s. Setting F (y, x) = −Φ∗(y, x, 0) one thus gets
φ = F − F ◦ T .

Let us now establish the fact that

∫

T 1M

X2
t (v)

t
m(dv) −→ σ2

φ/ν(') = σ2
Φ

as t → +∞. Since the process (Xt)t satisfies the Central Limit Theorem
with variance σ2

φ, it suffices in fact to establish the equi-integrability of the
family (X2

t /t)t>0, i.e. that, for any C > 0, the integral
∫
[X2

t ≥tC] t
−1X2

t (v)m(dv)

tends to 0 as C → +∞, uniformly in t > 0. Since

∫

[X2
t ≥tC]

X2
t (v)

t
m(dv) ≤ 1

C

∫
X4

t (v)

t2
m(dv),

it suffices to prove that supt>0

∫
t−

1
2
sXs

t (v)m(dv) < +∞ for any s > 0. Recall
that Xt may be decomposed into SNtφ(.)+A(gt.)−A(.) up to a bounded term;
so, Xs

t (.) is bounded by (SNtφ(.))s + A(gt.)s + A(.)s + 1, up to a multiplicative
constant and it suffices to check that

sup
t>0

∫
(SNt(v)φ)s(x)

t
1
2
s

m(dv) < +∞.

Denote by Ñt the random variable
√

t
(
Nt/t − 1/ν(')

)
. Fix k ∈ Z, set

kt =
[
t/ν(') + k

√
t
]

and observe that, on the set {Ñt(v) ∈ [k, k + 1[}, the
difference between the sums SNtφ and Sktφ is bounded by M[

√
t+1]φ ◦ T kt .

So, for any s > 0, one has

∫

{Ñt∈[k,k+1[}
(SNtφ)2sm(dv) ≤

∫

{ eNt∈[k,k+1[}

(
(Sktφ)2s + (M[

√
t+1]φ)2s

)
m(dv),

up to a multiplicative constant depending only on s. By Lemmas III.10
and III.12, since kt = O(t) and [

√
t + 1] = O(

√
t), it readily follows that

∫

{ eNt∈[k,k+1[}
(SNtφ)2sm(dv) = O(ts).
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Consequently, one has
∫

(SNtφ)sm(dv) ≤
∑

k∈Z

∫

{ eNt∈[k,k+1[}
(SNtφ)sm(dv)

≤
∑

k∈Z

√
ν(Ñt ∈ [k, k + 1[ )

(∫

{ eNt∈[k,k+1[}
(SNtφ)2sm(dv)

) 1
2

≤ t
1
2
s
∑

k∈Z

√
ν(Ñt ∈ [k, k + 1[ )

up to a multiplicative constant depending only on s. Using the definition of Nt

and Lemma III.10, one easily checks that the variable Ñt has finite and bounded

moments of any orders; so the sum
∑

k∈Z

√
ν(Ñt ∈ [k, k + 1[ ) is also finite and

bounded uniformly in t.

IV. Schottky products with parabolic subgroups and the
associated winding process

From now on, we consider a group Γ which is a Schottky product Γ1∗· · ·∗ΓL

with a parabolic subgroup P as a Schottky factor. We will use the notation of
section II. Note that, if Γ1 = P , the group Γ is the Schottky product of the
two factors Γ1 and Γ2 ∗ · · · ∗ ΓL; so, without loss of generality, we will assume
Γ = P ∗ G with P a parabolic subgroup of Iso(X) and G a discrete subgroup.

In this section, we will assume that the curvature is constant and equal
to −1, i.e. X = Hn. Note that we will only use the fact that there exists a
neigbourhood of the cusp C associated with P which is isometric to the quotient
of some horoball of Hn by P ; the curvature may thus vary outside this cusp
but this level of generalisation is not very important and might be confusing in
the sequel.

IV-a. Parabolic subgroups of Iso(Hn). — We recall here some classical
results about parabolic subgroups P of Iso(Hn) (see [31]) and give a precise
description of their first homology group.

A discrete subgroup P of Iso(Hn) is parabolic if it fixes exactly one point
on the boundary. Let xP be this fixed point. The inversion s : x 3→ xP +
2x − xP /|x − xP |2 sends the point xP to ∞ in the upper half-space model
Hn = {x+x′xP ; x ∈ x⊥

P , x′ > 0} of the hyperbolic space (that we shall identify
with Rn−1 × R+). In this model, any element p of P acts on the boundary
component Rn−1 as an euclidean isometry, the restriction to Sn−1 − {xP }
of each element p in P may thus be decomposed as

p = s−1TpRps
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148 BABILLOT (M.) & PEIGNÉ (M.)

where Rp is a rotation of Rn−1 and Tp a translation of Rn−1. The vector of the
translation will be denoted 5τp. The relation for large p’s between the euclidean
norm |5τp| and the dilatation factor of p is described in the following lemma:

Lemma IV.1. — Let P be a discrete parabolic group of Hn, with fixed point xP .
Then for each point x ∈ Sn−1−{xP}, the product |p′(x)|·|5τp|2 converges towards
4/|x−xP |2 as p goes to infinity in P . This convergence is uniform on compact
subsets of Sn−1 − {xP }.

Proof. — The parabolic element p ∈ P satisfies |p′(xP )| = 1. By the mean-
value relation 2, we get |p′(x)| = |p · x − xP |2/|x − xP |2. Now

|p · x − xP | =
2

|sp · x − xP |
=

2

|Rp(sx) + 5τp − xP |
and |5τp| · |p · x − xP | converges uniformly towards 2 on compact sets in the
hyperplane orthogonal to xP . The lemma follows.

Note that the group P acts on Rn−1 as a Bieberbach’s group; in particular
it contains a finite index and normal subgroup Q which acts on Rn−1 as an
abelian group generated by k independent translations. The integer k is called
the rank of the parabolic group P .

The first homology group H1(P, Z) = P/[P, P ] is the product of a finite
group and the free abelian group Zκ where κ = b1(P ) is the first Betti number
of P .

In dimension n = 2 and n = 3 all (orientation-preserving) Bieberbach
groups of Rn−1 are commutative and thus b1(P ) coincides with the rank of P .
This is not true in higher dimension: the group in R3 generated by x 3→
diag(−1,−1, 1)x + e3 and x 3→ x + e2 is a Bieberbach group with rank 2 and
first Betti number equal to 1. In general, b1(P ) is less than or equal to the rank
of P .

The following lemma, which provides an explicit set of representatives of P
mod Q, will be helpful in order to compute the homology class of an arbitrary
element in P .

Lemma IV.2. — Let k be the rank of P and κ ≤ k its first Betti number.
Then there exists a finite set {q1, . . . , qk} of independent translations of Q,
with qκ+1, . . . , qk ∈ Q ∩ [P, P ] and a finite set P0 in P such that any element
p ∈ P can be uniquely written as

p = qn1

1 · · · qnκ
κ qnκ+1

κ+1 · · · qnk

k α

for some n1, . . . , nk ∈ Z and α ∈ P0.

Proof. — Since the abelian subgroup Q is of finite index in P , its im-
age [Q] by the Hurewicz homomorphism [ . ] : P → H1(P, Z) has finite index
in Zκ. We choose a basis {c1, . . . , cκ} of Zκ and integers d1, . . . dκ such that
{d1c1, . . . , dκcκ} forms a basis of [Q]. This allows us to choose elements
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p1, . . . pκ in P such that [pi] = ci and q1, . . . qκ in Q such that [qi] = dici and
one may complete the family {q1, . . . qκ} with k − κ independent translations
in such a way the abelian group Q0 generated by q1, . . . , qk has finite index
in Q (the elements qκ+1, . . . , qk belong to [P, P ]). The homology class of any p
in P may be written in the form

[p] =
∑

nidici +
∑

mici

for some integers ni ∈ Z and mi ∈ {0, . . . , di − 1}. In particular p has the same
homology class as qn1

1 · · · qnκ
κ pm1

1 · · · pmκ
κ , so there exists p′ ∈ [P, P ] such that

p = qn1

1 · · · qnκ
κ pm1

1 · · · pmκ
κ p′.

Observe now that the subgroup Q0 ∩ [P, P ] has finite index in [P, P ] since
[P, P ]/Q0 ∩ [P, P ] is isomorphic to Q0[P, P ]/Q0. By choosing a set f1, . . . , fd

of representatives of [P, P ] mod Q0 ∩ [P, P ], setting

P0 =
{
pm1

1 · · · pmκ
κ fj ; 0 ≤ mi < di − 1, 1 ≤ j ≤ d

}

and using the fact that Q0 is abelian, we get the lemma.

Note that [Q] is a finite index subgroup of the free abelian part of H1(P, Z).
One may thus modify the decomposition of H1(P, Z) as the product of a finite
group and a free abelian part Zκ in such a way that this free abelian part is equal
to [Q]; consequently if p ∈ P is decomposed as p = qn1

1 · · · qnκ
κ qnκ+1

κ+1 . . . qnk

k α
with ni ∈ Z and α ∈ P0, the free part of its homology classes is equal to [q] =
(n1, . . . , nκ).

Notation. — In the sequel, the translation vector of each generator qi will
be denoted by 5τi and, for any n = (n1, . . . , nκ) ∈ Zκ, one sets

5τn̄ = n15τ1 + · · · + nκ5τκ.

Using the δ-conformality of the Patterson measure σ one may describe pre-
cisely the behavior of the measure ν in the neighbourhood of the fixed point xP .
More precisely, Lemma IV.1 leads to the asymptotic behavior of the sequence
(ν(pΛG))p∈P as p goes to infinity in P . The following lemma gives in fact
precise estimates of ν(Λn̄), n ∈ Zκ, where Λn̄ =

⋃
p/[p]=n p · ΛG.

Lemma IV.3. — For any n = (n1, . . . , nκ) ∈ Zκ, denote by |n| the euclidean
norm of the translation vector 5τn and let 5n = 5τn̄/|n|. One has ν(Λn̄) = ν(Λ−n);
furthermore, there exist a compact subset K0 ⊂ R∗+ and, for any n ∈ Zκ, a
constant C.n in K0 such that

ν(Λn) ∼ C.n

|n|2δ−(k−κ)
as n → +∞ in Zκ.

Proof. — The fact that ν is T -invariant implies

ν(pΛG) = ν(ΛG × pΛG) = ν (p−1ΛG × ΛG);
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it readily follows ν(pΛG) = ν(p−1ΛG) since ν is invariant under the map
(x, y) 3→ (y, x). The first property of the lemma follows, summing over p ∈ P
with [p] = n.

Furthermore, for any p ∈ P one has

ν(pΛG) =

∫

pΛG

h(x)σ(dx)

=

∫

ΛG

h(px)|p′(x)|δσ(dx) =

∫

ΛG×ΛG

|p′(x)|δ

|y − px|2δ σ(dx)σ(dy)

and so |5τp|2δν(pΛG) → C =
(∫

ΛG
2δ/|x − xP |2δσ(dx)

)2
as p → +∞ in P .

Recall that for any p ∈ P , the translation vector of p is denoted by 5τp; if p
admits the decomposition p = qn1

1 · · · qnk

k α, one has

|5τp| =
∣∣∣5τn̄ +

k∑

κ+1

5τi

∣∣∣
(
1 + o(n)

)

uniformly in α since P0 is finite. So, for any n ∈ Zκ, one has

ν(Λn̄) =
∑

α∈P0

∑

nκ+1,...,nk∈Z

C
∣∣5τn̄ +

∑k
i=κ+1 ni5τi

∣∣2δ
(
1 + o(n)

)
.

Denote by |∆| the (k − κ)-volume of the simplex associated with 5τκ+1, . . . , 5τk.
One obtains

ν(Λn̄) ∼ 4P0
1

|∆| · |n|2δ−(k−κ)

∫

V ′′

dx

|5n + x|2δ as n → +∞,

where V ′′ denotes the (k−κ)-dimensional space R5τκ+1 ⊕· · ·⊕R5τk. This proves
the lemma with C.n = (4P0/|∆|)

∫
V ′′ dx/(|5n + x|2δ).

IV-b. The transfer operators Lz,u,v. — We have constructed a dynamical
system (Λ, T , ν ) isomorphic to a symbolic space of bi-infinite sequences such
that the geodesic flow restricted to Ω is a suspension of it with the ceiling
function '. The projection p : Λ → Λ on the second coordinate induces a factor
(Λ, T, ν) of the dynamical system (Λ, T , ν).

In this section we study the family of transfer operators associated with the
dynamical system (Λ, T, ν), a function f defined on Λ and also the fonction HP

defined by

∀n ∈ Z
& − {0}, HP (x) =

{
n if x ∈ Λn̄,

0 otherwise.

The function f is devoted to the process Xt and HP to Yt; we will precise a bit
latter some conditions about the regularity of the function f .

Let C(Λ(Γ)) be the space of continuous functions from ΛΓ to C with the
norm of uniform convergence |.|∞. For any complex number z, any real u and
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any element v of the κ-dimensional torus Tκ, canonically identified with the
dual group of Zκ, we consider the operator Lz,u,v defined formally by

Lz,u,vϕ(x) =
∑

Ty=x

e−z&(y)+iuf(y)+i〈v |HP (y)〉ϕ(y).

Setting [γ] = 0 when γ ∈ G, one may thus write

Lz,u,vϕ(x) =
∑

γ∈P∗∪G∗

e−zb(γ,x)+iuf(γ·x)+i〈v | [γ]〉ϕ(γ · x).

This implies in particular that Lz,u,vϕ(x) is finite as soon as 1(z) >
max(δP , δG) and in particular for 1(z) = δΓ by the critical gap hypothe-
sis.

As in the previous section, we will consider the restriction of Lz,u,v to the
space Lα of α-Hölder continuous functions on Λ(Γ), defined in Subsection III-c.

For any (z, u, v) ∈ C × R × Tκ and γ ∈ P ∗ ∪ G∗, we consider the weight
functions

wz,u,v(γ, .) = e−zb(γ,.)+iuf(γ.)+i〈v | [γ]〉.

Assume now that f satisfies the condition of Proposition III.8; as in
Lemma III.3, one may check that the weights wz,u,v belong to Lα and
that the set

{
e((z)d(o,γo)wz,u,v(γ, .) ; γ ∈ P ∗ ∪ G∗} is bounded in Lα. By the

critical gap property, it follows that the operators Lδ,u,v act continuously
on Lα. The following proposition gives a precise description of the spectrum
of Lδ,u,v on Lα when (u, v) is close to 0; its proof is based on the description
of the spectrum of Lδ (see Proposition III.4) and on the fact that the map
(u, v) 3→ Lδ,u,v is continuous from R × Tκ to the space L(Lα).

Proposition IV.4. — Fix 0 < α ≤ 1 and let ρ(u, v) be the spectral radius of
the transfer operator Lδ,u,v on Lα. Then, one has ρ(0, 0) = 1, the eigenvalues 1
and −1 are simple, with eigenfunctions h and h(1ΛG − 1ΛP ) respectively, and
the rest of the spectrum of Lδ,0,0 is included in a disk of radius < 1.

Furthermore, there exists a neigbourhood U0 of (0, 0) in R×Tκ and ρ0 ∈ ]0, 1[
such that, for any (u, v) ∈ U0,

• ρ(u, v) > ρ0 and Lδ,u,v has two simple eigenvalues λ(u, v) and λ−(u, v)
closed to 1 and −1 respectively,

• the rest of the spectrum of Lδ,u,v is included in a disc of radius ρ0.

In fact, by the theory of perturbation, the functions (u, v) 3→ λ(u, v) and
(u, v) 3→ Lδ,u,v have the same regularity, whose type is described in the following
proposition, which extends previous results (see [2], [18]) settled in a less general
situation. We denote by (5τ∗

1 , . . . , 5τ∗
κ) the dual basis of (5τ1, . . . , 5τκ), by |v| the

euclidean norm of the vector v15τ∗
1 + · · ·+ vκ5τ∗

κ for any v = (vi)1≤i≤κ ∈ Tκ, and
by 5v the unit vector v/|v|, when v ,= 0.
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Proposition IV.5. — The application (u, v) 3→ λ(u, v) is continuous on U0,
and its behavior near (0, 0) is the following one, up to terms of greater order:

λ(u, v) =






1 − 1
2σ

2
f u

2 − K(5v)|v|2δ−k if δ < 1 + 1
2k;

1 − 1
2σ

2
f u

2 + K(5v)|v|2 log |v| if δ = 1 + 1
2k

1 − Q(u, v) if δ > 1 + 1
2k

where
• σ2

f is the asymptotic variance associated with f , which vanishes if and
only if f is a coboundary in Lα;

• K(5v) is a strictly positive real depending only on 5v;
• Q is a positive quadratic form on R1+κ, whose restriction to Rκ is equal
to 2K(5v)|v|2.

Remark 1. — In fact, K lives in a compact subset of R∗+ since the function
5v 3→ K(5v ) is continuous on the unit ball of V ′ = R5τ1 ⊕ · · · ⊕ R5τκ.

Remark 2. — It is of interest to decide whether the quadratic form Q is
degenerated or not, but this question needs further assumptions; in particular
if f coincides with one coordinate of HP , the form Q is trivially degenerated.
Nevertheless, the restriction v 3→ Q(0, v) is positive definite on Rκ. The im-
portant fact in the previous proposition is that the parameters u and v appear
separately in the local expansion of λ(u, v), when δ ≤ 1 + 1

2k since in this case
the functions Hi, 1 ≤ i ≤ κ are not square integrable; this is this phenomenom
which explains the asymptotic independance of Xt and Yt announced in the
introduction.

Proof of Proposition IV.5. — We have different cases to consider.
• First case: δ ≤ 1 + 1

2k.

a) In this case
∑

p∈P |5τp|2‖wδ(p, .)‖α = +∞ and the function (u, v) 3→ Lδ,u,v

is not C2 on Tκ+1. Nevertheless, the function u 3→ Lδ,u,0 is always C∞ and, by a
similar argument than in the previous section, there exists σf ≥ 0 (wich vanishes
if and only if f is a coboundary in Lα) such that λ(u, 0) = 1− 1

2σ
2
f u2(1+ o(u)).

b) We now study the function v 3→ λ(0, v). We have

λ(0, v) = σ(Lδ,0,vh) + σ
(
(Lδ,0,v − Lδ)(h0,v − h)

)
.

Moreover

σ(Lδ,0,vh) − 1 = ν(ei〈v,HP 〉) − 1 =
∑

n̄∈Zκ

ν(Λn̄)(ei〈v,n̄〉 − 1)

= 2
∑

n̄∈Zκ

(
cos〈v, n〉 − 1

)
ν(Λn̄) since ν(Λn̄) = ν(Λ−n̄)

= −2
∑

n̄∈Zκ−{0}

C.n
1 − cos〈v, n〉
|n|2δ−(k−κ)

(
1 + ε(n)

)
.
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Recall that V ′ = R5τ1 ⊕ · · · ⊕ R5τκ and set V ′
t = tZ5τ1 ⊕ · · · ⊕ tZ5τκ, where t = |v|

is the euclidean norm of the vector v15τ∗
1 · · · ⊕ vκ5τ∗

κ . Let |∆| be the volume of
the κ-simplex of V ′ defined by 5τ1, . . . , 5τκ.

When δ < 1 + 1
2k, one has, using the estimates of Lemma IV.3:

∑

n̄∈Zκ−{0}

C.n
1 − cos〈v, n〉
|n|2δ−(k−κ)

=
∑

n̄∈Zκ−{0}

C.n
1 − cos〈

∑κ
i=1 vi5τ∗

i ,
∑κ

i=1 ni5τi〉
|n|2δ−(k−κ)

=
t2δ−k

|∆|
∑

n̄∈Zκ−{0}

C.n
1 − cos〈5v, tn〉
|tn|2δ−(k−κ)

|∆|tκ

=
t2δ−k

|∆|
∑

x∈V ′
t −{0}

C.x
1 − cos〈5v, x〉
|x|2δ−(k−κ)

|∆|tκ ∼ K(5v)t2δ−k

with K(5v) = (1/|∆|)
∫

V ′ C.x1 − cos〈5v, x〉/|x|2δ−(k−κ)dx. Note that one has
0 < K(5v) < +∞ since 2δ − k > 0 and that K(5v) depends continuously on 5v.

When δ = 1 + 1
2k, one has

∑

n̄∈Zκ−{0}

C.n
1 − cos〈v, n〉
|n|2δ−(k−κ)

=
∑

n̄∈Zκ−{0}

C.n
1 − cos〈v, n〉

|n|κ+2

=
t2

|∆|
∑

x∈V ′
t −{0}

C.x
1 − cos〈5v, x〉

|x|κ+2
|∆|tκ

=
t2

|∆|
∑

x∈V ′
t

|x|≥1

C.x
1 − cos〈5v, x〉

|x|κ+2
|∆|tκ

+
t2

|∆|
∑

x∈V ′
t

0<|x|<1

C.x
1 − cos〈5v, x〉 − 1

2 〈5v, x〉2

|x|κ+2
|∆|tκ +

t2

2|∆|
∑

x∈V ′
t

0<|x|<1

C.x
〈5v, x〉2

|x|κ+2
|∆|tκ.

As t → 0, the two first terms of this last sum behave like Ct2 for some con-
stant C > 0 and one has

∑

x∈V ′
t

0<|x|<1

C.x
〈5v, x〉2

|x|κ+2
t& ∼

∫

{x∈M ′/|x|>1/t}
C.x

〈5v, x〉2

|x|κ+2
dx

∼
∫

{x∈V ′/|x|>1/t}
C.x

〈5v, 5x〉2

|x|κ dx ∼ K(5v) log t

where K(5v) > 0 depends continuously on 5v.

Finally σ(Lδ,0,vh) = 1 − Q(v)(1 + o(v)) with Q(v) = −2K(5v)|v|2 log |v|
if δ = 1 + 1

2k and Q(v) = 2K(5v)|v|2δ−k if δ < 1 + 1
2k.
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It remains to control the term σ((Lδ,0,v−Lδ)(h0,v−h)). A classical argument
in perturbation theory implies ‖h0,v − h‖ = O(‖Lδ,0,v − Lδ‖) with

‖Lδ,0,v − Lδ‖ ≤
∑

p∈P∗

|ei〈v,[p]〉 − 1| ·
∥∥wδ(p, .)

∥∥ ≤ C
∑

p∈P∗

|ei〈v,[p]〉 − 1|
|5τp|2δ

·

A similar argument than the one developed above leads to

‖Lδ,0,v − Lδ‖ ≤ CR(v) with R(v) =






+|v|2δ−k if 1
2k < δ < 1

2 (k + 1),

−|v| log |v| if δ = 1
2 (k + 1),

+|v| if δ > 1
2 (k + 1).

Since R(v)2 = o(Q(v)) one gets finally λ(0, v) = 1 + Q(v)(1 + o(v)).

c) In order to control the residual term, one decomposes λ(u, v) − 1 into

λ(0, v) − 1 + λ(u, 0) − 1 + A(u, v)

with A(u, v) = λ(u, v)−λ(0, v)−λ(u, 0)+1; using Lδ,u,v −Lδ,u,0 = Lδ,0,v −Lδ

one gets

A(u, v) = σ
(
(Lδ,u,v − Lδ)(hu,v − hu,0)

)
+ σ

(
(Lδ,u,v − Lδ,u,0)(hu,0 − h)

)

− σ
(
(Lδ,0,v − Lδ)(h0,v − h)

)

and so |A(u, v)| = O(‖Lδ,0,v−Lδ‖2+‖Lδ,u,0−Lδ‖·‖Lδ,v,0−Lδ‖). This achieves
the control of the residual term.

• Second case: δ > 1 + 1
2k.

Under this condition the series
∑

p∈P |. 5τp|2δ · ‖wδ(p, .)‖α is convergent and

the function (u, v) 3→ Lδ,u,v is C2. So is the function (u, v) 3→ λ(u, v) and we
now calculate its derivates of order 1 and 2. Let hu,v be the unique eigenfunc-
tion of Lδ,u,v associated with λ(u, v) and such that σ(hu,v) = 1; the equality

Lδ,−u,−vhu,v = λ(u, v)hu,v implies hu,v = h−u,−v and λ(u, v) = λ(δ,−u,−v).
The derivates at 0 of the function (u, v) 3→ hu,v are thus purely imaginary
valued.

In order to simplify the notation, and only all around the case δ > 1 + 1
2k,

we set H = (Hn)0≤n≤κ with H0 = f and HP = (Hn)1≤n≤κ, and we denote
by ∂0 the partial derivate with respect to u and, for 1 ≤ n ≤ κ, by ∂n the
partial derivate with respect to vn; since the derivates at (0, 0) of the function
(u, v) 3→ hu,v belong to Lα and are purely imaginary complex valued, there
exists real valued functions d0, . . . , dn in Lα such that ∂nhu,v|(u,v)=0 = i dnh;

we set D = (dn)n. Differentiating the two sides of λ(u, v) = σ(ei〈(u,v),H(.)〉hu,v)
yields to

(*) ∂nλ(u, v) = iσ(ei〈(u,v),H(.)〉Hnhu,v) + σ(ei〈(u,v),H(.)〉∂nhu,v)

which gives, letting (u, v) = 0:

∂nλ(0, 0) = iσ(Hnh) + iσ(dnh).
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Since σ(hu,v) is always equal to 1, one has σ(dnh) = 0. On the other hand,
one has σ(H0h) = ν(f) = 0 by hypothesis and

(
σ(Hnh)

)
1≤n≤κ =

∑

p∈P∗

[p]ν(pΛG) = 0

since ν(pΛG) = ν(p−1ΛG) and [p] = −[p−1]. Finally ∂nλ(0, 0) = 0 for all n.

Let us now differentiate the two sides of (*). We get, letting (u, v) = 0:

∂n∂mλ(0, 0) = −σ(HnHmh + Hndmh + dnHmh)

= −ν(HnHm + Hmdm + dnHm).

We have to prove that the quadratic form Q = (−∂n∂mλ(0, 0)) is positive
definite. If one differentiates the equality Lδ,u,vhu,v = λ(u, v)hu,v, one gets
Lδ(Hnh) = dnh − Lδdnh since ∂nλ(0, 0) = 0; so

ν(Hndm ◦T ) = σ(Hnhdm ◦T ) = σ
(
(dnh−Lδ(dnh)

)
dm) = ν

(
dn(dm − dm ◦T )

)

(here, we have used the fact that σ((φ ◦ T )ψ) = σ(φLδψ) for any functions φ
and ψ in L2(Λ, σ)).

Set u = v0; the equality ν(Hndm ◦ T ) = ν(dn(dm − dm ◦ T )) implies

−
∑

0≤n,m≤κ

∂n∂mλ(0, 0)vnvm = ν
(
〈(u, v), H + D − D ◦ T 〉2

)
,

so this quadratic form is positive. The fact that Q(0, v) = 2K(5v)|v|2 follows
from the equality σ(Lδ,0,vh) = 1−2K(5v)|v|2(1+ o(v)), which can be be proved
using a similar argument than the one developed above in the case δ = 1 + 1

2k.
This achieves the proof of Proposition IV.5.

The main consequence of Proposition IV.5 is a kind a homogeneity property
of the quantity λ(δ, u, v)− 1 with respect to the variables u and v, described in
the following

Corollary IV.6. — For any n ≥ 1 denote by kn the transformation of R1+κ

defined by

kn(u, v) =
( u√

n
, v

d(n)

)
with d(n) =






n1/(2δ−k) if δ < 1 + 1
2k√

n logn if δ = 1 + 1
2k

√
n if δ > 1 + 1

2k.

Then, for any (u, v) ∈ R1+κ, one has

lim
n→+∞

(
n(λ(kn(u, v)) − 1

)
=

{
K(5v)|v|2δ−k + 1

2σ
2
f u

2 if δ ≤ 1 + 1
2k,

Q(u, v) if δ > 1 + 1
2k.
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IV-c. The process (Yt(v)) and its decomposition. — In this section, we
explain how the winding process (Yt) associated with a closed 1-form supported
on a neighbourhood of the cusp C can be presented as a Birkhoff sum over the
dynamical system (Λ, T, ν) that we have just constructed. This presentation is
the analogous of Proposition III.6 concerning the process (Xt). We first give a
description of the cusp C.

IV-c.1. The cusp. — Since we know that Γ is geometrically finite, by the
Margulis Lemma (see [31]), there exists a horoball Hh = {(x, x′) ; x′ ≥ h}
centered at xP such that its images under Γ are equal or pairwise disjoint.
The quotient manifold Ch = Hh/P is homeomorphic to the cylinder Rn−1 ×
[h, +∞]/P and imbeds isometrically in M as a submanifold with boundary.
We call Ch the cusp (of height h) associated with P .

For further convenience, we shall also choose the horoball Hh so that closed
geodesics arcs in M represented by elements of G and starting from a suitable
compact neighborhood of some fixed origin in M completely avoid the cusp Ch.

This is possible according to the following lemma:

Lemma IV.7. — For any r > 0, there exist h > 0 only depending on r such
that for any two points x and y in Hn at distance less than r from the origin,
and any element g ∈ G, the geodesic segment [x, g ·y] do not intersect the union
of the horoballs γHh, γ ∈ Γ.

Proof. — Note that the geodesic segment [x, g·y] belongs to the r-neighborhood
of the geodesic arc [o, g · o]. It suffices to prove that there exists a horoball Hh

such that
⋃
γ∈Γ γHh do not intersect

⋃
g∈G[o, g · o], since by shrinking it by an

amount only depending on r, any translate of it will avoid the r-neighborhood
of

⋃
g∈G[o, g · o]. So suppose such a horoball does not exist. This provides

for any integer n two elements gn ∈ G and γn in Γ such that [o, gn · o] ∩
γ−1

n Hn ,= ∅ or equivalently such that [γn · o, γngn · o] ∩ Hn ,= ∅. Write γn as
a product of elements in P and in G. Any horoball being invariant under P ,
we may assume that the first letter of γn belongs to G, so that both γn and
γngn belongs to G ∪ G∗Γ. But for such sequences, any accumulation point at
infinity belongs to the closed set FG. Then, the endpoints of the geodesics arcs
[γn · o, γngn · o] either remain in a compact region of the hyperbolic space or
accumulate in the compact set FG ⊂ Rn−1. This contradicts the fact that these
geodesics arcs can meet arbitrarily small horoballs centered at xP . The lemma
is proved.

Note that D has compact closure in Λ(Γ)
∆

×Λ(Γ), so that the base points of
the unit vectors v = (y, x, 0) with (y, x) ∈ D are at distance less than r from
the origin, for some r. In the following, we shall choose h so that the lemma is
satisfied with this value of r. In particular, if y ∈ ΛP and x ∈ gΛP for some
g ∈ G∗ the base point of (y, x, '(x)) is at a distance less than r from g · o;
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so, the geodesic segment {(y, x, s), 0 ≤ s < l(x)} does not intersect the union⋃
γ∈Γ γHh. If y ∈ ΛG and x ∈ pΛG for some p ∈ P ∗ and if h is large enough the

segment {(y, x, s) ; 0 ≤ s < f(x)} does not intersect the horoballs γHh, γ /∈ P ;
on the other hand, for all but finitely many p ∈ P , it intersects the horoball Hh.

IV-c.2. Decomposition of the process (Yt)t. — Let us precise that we say that
the form ω on M is supported on a neighbourhood of C if ωx = 0 when x ∈ Ch

for h large enough; in the same way, we say that ω is closed on the cusp if ω is
closed on Ch for some sufficiently big h.

Such a form ω induces an element [ω] in the first cohomology group H1(Ch, R).
By De Rham Theorem, there exists a family {ω1, . . . ωκ} of 1-forms on the
manifold C2h whose cohomology classes provide a basis of H1(C2h, R) such
that

∫
[qj ]

ωi = δij (the elements [qj ] are the homology classes of the elements

qj of P given by Lemma IV.1).The decomposition [ω] =
∑κ

i=1 vi[ωi] means
that the form ω restricted to C2h is equal to

∑
viωi plus an exact form on C2h.

By adding this exact term to ω1, we may (and shall) assume that ω −
∑

viωi

vanishes on C2h. The forms ω1, . . . , ωκ can then be extended to M in such a
way they vanish outside Ch. Finally, we can write ω as

ω = ω0 +
κ∑

i=1

viωi

where ω0 has compact support in M , and the ωi are 1-forms supported on Ch

and closed on C2h.

Consider now the process Yt : T 1M → R given by Yt(v) =
∫
[v0,vt]

ω where

for t > 0, [v0, vt] is the geodesic segment of length t starting at v ∈ T 1M .

Proposition IV.8. — For i = 1, . . . , κ, denote by Hi the function from Λ
to R with constant value

∫
[p] ωi on the element pΛG of the partition of Λ and

by H the function H =
∑κ

i=1 viHi. Then there exists a Borel function A :
D& → R and a Hölder continuous function h : Λ → R such that for any
v = (y, x, r) ∈ Λ one has

Yt(v) = A(vt) − A(v) +

Nt(v)−1∑

k=0

h(T kx) +

Nt(v)−1∑

k=0

H(T kx).

Moreover there exists a constant C such that:

i) |h(x)| ≤ C '(x) + C for any x in Λ;

ii) |h(p · x) −h(p · y)| ≤ C|x − y| 12 for any two points x, y in ΛG and p ∈ G;

iii) |h(g · x) −h(g · y)| ≤ C|x − y| 12 for any two points x, y in ΛP and g ∈ G.

The proof is close to the one of Proposition III.6 with some adjustments we
have to precise.
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Observe that the Γ-invariance of the lift ω̃ of ω implies that the function
(y, x, r) 3→ ω̃(y, x, r) is invariant under the transformation Tf . This allows us
to write:

Yt(v) =

∫ t

0
ω̃(y, x, r + s)ds

= −
∫ r

0
ω̃(y, x, s)ds +

∫ Sn&(x)

0
ω̃(y, x, s)ds +

∫ t+r

Sn&(x)
ω̃(y, x, s)ds

= B(vt) − B(v) +
n−1∑

k=0

Ω
(
T k(y, x)

)

where we have set B(v) =
∫ r
0 ω̃(y, x, s)ds and Ω(y, x) =

∫ &(x)
0 ω̃(y, x, s)ds and

n ∈ N is such that Sn'(x) ≤ r + t < Sn+1'(x). Recall now the decomposition
ω = ω0 +

∑κ
i=1 viωi. Since the 1-form ω0 has compact support, the function

Ω0(y, x) =
∫ f(x)
0 ω̃0(y, x, s)ds is bounded and Lispschitz continuous on T 1M .

For such a function, there exists a measurable function b0 : Λ → R and some
function g0 satisfying the properties i), ii), iii) of Proposition IV.8 such that

n−1∑

k=0

Ω0

(
T k(y, x)

)
=

n−1∑

k=0

g0(T
kx) + b0

(
T n(y, x)

)
− b0(y, x).

Let us now look at the integrals Ωi(y, x) =
∫ &(x)
0 ω̃i(y, x, s)ds, for 1 ≤ i ≤ κ,

which give the contribution coming from the excursions in the cusp. Recall
that, by the choice of h,(cf. Lemma IV.7), if y ∈ ΛP and x ∈ gΛP for some
g ∈ G∗, the geodesic segment {(y, x, s) ; 0 ≤ s < '(x)} does not intersect the
union

⋃
γ∈Γ γHh; the above integrals are then equal to 0 in this case. Assume

now that y ∈ ΛG and x ∈ pΛG for some p ∈ P ∗. Since h is large enough, the
segment {(y, x, s) ; 0 ≤ s < '(x)} does not intersect the horoballs γHh ,= H,
but for all but finitely many p ∈ P , this segment intersects the horoball Hh;
let x0 (resp. x1) be the point where this segment enters (resp. leaves) Hh. The
hyperbolic distances between x0 and the base point of (y, x, 0) and between p·x0

and the base point of (y, x, '(x)) are bounded; that means that Ωi(y, x) differs
from the integral

∫
[x0,p·x0]

ω̃i =
∫
[p] ωi by a bounded Lipschitz term Gi(y, x).

This implies that

n−1∑

k=0

Ωi

(
T k(y, x)

)
=

n−1∑

k=0

Hi(T
kx) +

n−1∑

k=0

Gi

(
T k(y, x)

)
.

Since Gi is bounded and Lipschitz, a classical argument similar to the one
developed in Section III-d, step 1, allows us to find measurable functions bi :
Λ → R and functions gi : Λ → R satisfying properties i), ii) and iii) above, and
such that Gi(y, x) = gi(x) + bi(T n(y, x)) − bi(y, x).
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Finally, we obtain the expected decomposition of Yt(v) setting A(y, x, s) =
B(y, x, s) +

∑κ
i=0 bi(y, x) and h =

∑κ
i=0 gi. This achieves the proof of Propo-

sition IV.8.

IV-d. The convergence in law for the process (Yt)t. — We prove the
following

Theorem IV.9. — Let Γ a discrete subgroup in Iso(H) which is a Schottky
product and which satisfies the critical gap property. Assume that the manifold
M = H/Γ contains a cusp C whose fundamental group P = π1(C) is a Schottky
factor of Γ. We denote by δ the Hausdorff dimension of the limit set of Γ and
by k the rank of the parabolic group P .

For a closed 1-form ω supported on C, the corresponding process (Yt, m)
satisfies a limit theorem. The renormalising factor and the limit law depend on
the values of the parameter α := 2δ − k as follows:

• if α < 2, d(t) = t1/α and the limit law is a stable law of index α;
• if α = 2, d(t) =

√
t log t and the limit law is a normal law;

• if α > 2, d(t) =
√

t and the limit law is a normal law.

Furthermore, when α ≤ 2, the two processes (Xt)t and (Yt)t are asymptoti-
cally independent.

Recall the decomposition

Yt(v) =

Nt(v)−1∑

k=0

h(T kx) +

Nt(v)−1∑

k=0

H(T kx) + Rt(v)

where h satisfies the hypotheses of Proposition III.8 and the remainder term Rt

is of the form A(gtv)−A(v) up to an additive uniformly bounded Borel function.

To control the Birkhof sums relative to the function HP , we will use the

Proposition IV.10. — Let d(n) be the sequence defined in Corollary IV.6.
Then, when x is distributed among the law ν, the sequence

( 1

d(n)

n−1∑

k=0

HP (T kx)
)

n

converges in law to a κ-dimensionnal stable law of index α = 2δ − k. More
precisely, for any v ∈ Tκ, one has

lim
n→+∞

∫

Λ
exp

(
i〈v|SnHP (x)

d(n)
〉
)
ν(dx) =

{
e−K(.v)|v|2δ−k

if δ ≤ 1 + 1
2k

e−K(.v)|v|2 if δ > 1 + 1
2k.

where K(5v) is a constant which lies in a compact subset of R∗+ and depends
continuously on 5v. Furthermore, for any Borel function f satisfying hypotheses
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of Proposition III.8 and such that ν(f) = 0 and σ2
f ,= 0, one has, when

δ ≤ 1 + 1
2k

lim
n→+∞

∫

Λ
exp i

(
u

Snf(x)√
n

+
〈
v

∣∣ SnHP (x)

d(n)

〉)
ν(dx) = e−

1
2
σ2
f u2

e−K(.v)|v|2δ−k

.

The proof of this statement is based on the identity
∫

Λ
exp

(
i
〈
v

∣∣ SnHP (x)

d(n)

〉)
ν(dx) =

∫

Λ
Ln
δ,0,v/d(n)h(x)σ(dx).

As in Proposition III.8, one may check that the dominant term of of σ(Ln
δ,0,vh)

is λn
δ,0,v; Corollary IV.6 allows us to conclude. The last assertion of the Propo-

sition is a direct consequence of the Proposition IV.5 and the Remark 2 which
follows.

Corollary IV.11. — Let H =
∑κ

i=1 viHi be the function associated with
the closed form ω and defined in Proposition IV.8. Then the sequence
(1/d(n)SnH(x))n converges in law to a non degenerated 1-dimensionnal stable
law of index α = 2δ − k; in other words, for any t ∈ R, one has

lim
n→+∞

∫

Λ
exp

(
it

SnH(x)

d(n)

)
ν(dx) =

{
e−A|t|2δ−k

if δ ≤ 1 + 1
2k,

e−At2 if δ > 1 + 1
2k

for some constant A > 0 which depends on H.

We now give the main steps of the proof of Theorem IV.9. The term
1/d(t)Rt(v) is not relevant since it tends to 0 in probability. The control of the
others terms is more delicate:

• When δ > 1 + 1
2k, the function h + H is square integrable on (Λ, ν) and

satisfies the conditions ii) and iii) of Proposition IV.8; this is in fact sufficient
to apply Proposition III.8 (the same proof holds since the function u 3→ Lδ,u is
also twice continuously differentiable for f = h+H). The associated variance is
,= 0 since the function h+H is not bounded. Now the fact that the number Nt

of terms in the above sum is a random variable can be treated as in the previous
section.

• Assume now δ ≤ 1 + 1
2k. Since the term

∑Nt(v)−1
k=0 h(T kx) satisfies the

classical Central Limit Theorem and d(t) &
√

t for such values of δ, the pro-

cess (1/d(t)
∑Nt(v)−1

k=0 h(T kx))t converges to 0 in probability. To look at the

last term
∑Nt(v)−1

k=0 H(T kx), set nt = [t/ν(')]. By Corollary IV.6, the pro-

cess 1/d(t)
∑nt−1

k=0 H(T kx) converges to a non degenerated stable law of in-

dex α = 2δ − k; the control of the difference between the two sums
∑Nt(v)−1

k=0

and
∑nt−1

k=0 may be lead as in the previous section, since d(t) &
√

t.

The asymptotic independance of (Xt)t and (Yt)t when δ ≤ 1 + 1
2k follows

from the last assertion of Proposition IV.10.
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