UNE REMARQUE SUR LE DEGRÉ FORMEL D'UNE SÉRIE DISCRÈTE D'UN GROUPE LINÉAIRE GÉNÉRAL p-ADIQUE

PAR VOLKER HEIERMANN

RÉSUMÉ. — Nous montrons dans le cas simple du groupe linéaire général, comment on peut déduire de [2] des informations précises sur le degré formel d'une représentation de carré intégrable d'un groupe p-adique.

Abstract (A remark on the formal degree of a general linear p-adic group's discrete series)

We show in the simple case of the general linear group, how one can get from [2] precise information on the formal degree of a square integrable representation of a p-adic group.

Soient F un corps local non archimédien de valeur absolue normalisée $|\cdot| = |\cdot|_F$ et m > 0 un entier. Fixons une représentation cuspidale unitaire σ de $\mathrm{GL}_m(F)$ et un entier $d \geq 1$. Posons n = md, $G = \mathrm{GL}_n(F)$. Notons M l'unique sous-groupe de Levi standard de G qui est isomorphe à $\mathrm{GL}_m(F) \times \cdots \times \mathrm{GL}_m(F)$, det_m le déterminant de $\mathrm{GL}_m(F)$ et π_d l'unique série discrète de $\mathrm{GL}_n(F)$ qui est un sous-quotient de l'induite parabolique (normalisée) de

$$\sigma |\det_m|^{\frac{1}{2}(d-1)} \otimes \cdots \otimes \sigma |\det_m|^{\frac{1}{2}(-d+1)} := \rho_d.$$

On va appliquer les résultats de [2] pour calculer le degré formel de π_d en fonction de celui de σ . On retrouvera à cette occasion le résultat de A.-M. Aubert et

Classification mathématique par sujets (2000). — 22E50, 11F70, 11F85.

Mots clefs. — Degré formel, représentations p-adiques, séries discrètes, formule de Plancherel.

Texte reçu le 30 janvier 2004, accepté le 1er octobre 2004.

R. Plymen [1] dont la preuve utilisait la théorie des types de Bushnell-Kutzko. Remarquons que, si on veut généraliser cette méthode à toute série discrète de tout groupe réductif p-adique, des problèmes supplémentaires apparaissent, venant de la géométrie des pôles de la fonction μ de Harish-Chandra et du fait que plusieures séries discrètes peuvent avoir le même support cuspidal.

1. Les mesures

Notons $\alpha_1, \ldots, \alpha_{d-1}$ les racines simples de G qui ne sont pas des racines de M et identifions-les à des racines du tore déployé maximal de M. Lorsque ℓ est un entier, $1 \leq \ell \leq d$, M_{ℓ} désignera le sous-groupe de Levi standard contenant M, obtenu en adjoignant à M les racines $\alpha_{\ell}, \ldots, \alpha_{d-1}$. Il est isomorphe à

$$\operatorname{GL}_m(F) \times \cdots \times \operatorname{GL}_m(F) \times \operatorname{GL}_{(d-\ell+1)m}(F).$$

En particulier $M_1 = G$ et $M_d = M$. Nous noterons (m_1, \ldots, m_ℓ) un élément général de M_ℓ (où $m_1, \ldots, m_{\ell-1} \in \mathrm{GL}_m(F)$ et $m_\ell \in \mathrm{GL}_{(d-\ell+1)m}(F)$). Le symbole M_ℓ^1 désignera l'intersection des noyaux des caractères non ramifiés de M_ℓ . Le générateur > 1 de l'image de $|\cdot|$ sera noté q. Notons

- $\mathfrak{X}^{nr}(M_{\ell})$ le groupe des caractères non ramifiés de M_{ℓ} et
- $\mathfrak{X}_0^{\mathfrak{nr}}(M_\ell)$ le sous-groupe formé des caractères unitaires.

Identifions le groupe $\mathfrak{X}_0^{\operatorname{nr}}(M_\ell)$ à $(S^1)^\ell$ au moyen de l'isomorphisme qui envoie un élément $(q^{s_1},\ldots,q^{s_\ell})$ de $(S^1)^\ell$ sur le caractère non ramifié $|\det_m|_F^{s_1}\cdots|\det_m|_F^{s_{\ell-1}}$ $|\det_{(d-\ell+1)m}|_F^{s_\ell}$ de M_ℓ .

Le tore déployé maximal dans le centre de M_{ℓ} sera noté $T_{M_{\ell}}$. Il est isomorphe à $(F^{\times})^{\ell}$. Le groupe $\mathfrak{X}_{0}^{\operatorname{nr}}(T_{M_{\ell}})$ est isomorphe à $(S^{1})^{\ell}$ au moyen de l'isomorphisme qui envoie un élément $(q^{s_{1}},\ldots,q^{s_{\ell}})$ de $(S^{1})^{\ell}$ sur le caractère non ramifié de $(F^{\times})^{\ell}$ donné par $|\det_{F}|_{F}^{s_{\ell}}\cdots|\det_{F}|_{F}^{s_{\ell}}$.

Suivant [2] on munit le groupe $\mathfrak{X}_0^{\operatorname{nr}}(T_{M_\ell})$ de l'unique mesure de Haar de mesure totale égale à 1. La mesure sur $\mathfrak{X}_0^{\operatorname{nr}}(M_\ell)$ est l'unique mesure de Haar telle que la restriction $\mathfrak{X}_0^{\operatorname{nr}}(M_\ell) \to \mathfrak{X}_0^{\operatorname{nr}}(T_{M_\ell})$ préserve localement les mesures. En identifiant les deux groupes avec le tore $(S^1)^\ell$, cette restriction correspond à l'application de $(S^1)^\ell$ dans $(S^1)^\ell$ qui envoie (z_1,\ldots,z_ℓ) sur $(z_1^m,\ldots,z_{\ell-1}^m,z_{\ell}^{(d-\ell+1)m})$. Il en résulte que $\mathfrak{X}_0^{\operatorname{nr}}(M_\ell)$ a la mesure $(d-\ell+1)m^\ell$.

Notons

- \mathcal{O}_{ℓ} l'orbite inertielle de $\rho := \sigma \otimes \sigma \otimes \cdots \otimes \sigma$ par $\mathfrak{X}^{nr}(M_{\ell})$,
- $\mathcal{O}_{\ell,0}$ l'orbite unitaire de ρ par $\mathfrak{X}_0^{\mathfrak{nr}}(M_{\ell})$ et
- t l'ordre du stabilisateur de σ dans $\mathfrak{X}_0^{\mathfrak{nr}}(M_\ell)$.

La mesure sur $\mathcal{O}_{\ell,0}$ est l'unique mesure de Haar telle que l'application $\mathfrak{X}_0^{\operatorname{nr}}(M_\ell) \to \mathcal{O}_{\ell,0}$ qui envoie un caractère unitaire non ramifié χ sur (la classe d'équivalence de) $\sigma \otimes \chi$ préserve localement les mesures. Comme les fibres de cette application ont toutes même cardinalité t^ℓ , la mesure de $\mathcal{O}_{\ell,0}$ est $(d-\ell+1)(m/t)^\ell$.

Tout sous-groupe fermé H de G sera muni de l'unique mesure de Haar telle que son intersection avec $K = GL_n(O_F)$ a la mesure 1, O_F désignant l'anneau des entiers de F.

2. La racine $\tilde{\alpha}_{\ell-1}$

Considérons $\alpha_{\ell-1}$ comme racine de T_{M_ℓ} . Fixons un générateur $\widetilde{\omega}$ de l'idéal maximal de O_F . Un générateur $h_{\ell-1}$ du \mathbb{Z} -module $M^1_{\ell-1} \cap M_\ell/M^1_\ell$ est donné par la classe modulo M^1_ℓ d'une matrice diagonale diag (x_1,\ldots,x_n) avec

$$x_{m(\ell-1)} = \widetilde{\omega}, \quad x_{m(\ell-1)+1} = \widetilde{\omega}^{-1}$$
 et $x_i = 1$ sinon.

Notons $\operatorname{Rat}(M_\ell)$ le groupe des caractères algébriques de M_ℓ définis sur F.

L'élément de $\operatorname{Rat}(M_\ell)$ qui correspond à $(d-\ell+1)m\alpha_{\ell-1}$ envoie (m_1,\ldots,m_ℓ) sur $\det_m(m_{\ell-1})^{d-\ell+1}\det_{(d-\ell+1)m}(m_\ell)^{-1}$. L'élément

$$\alpha_{\ell-1}^* := \left(\frac{d-\ell+1}{d-\ell+2}\right) m\alpha_{\ell-1}$$

vérifie donc

$$\langle \alpha_{\ell-1}^*, H_M(h_{\ell-1}) \rangle = 1.$$

La puissance $h_{\ell-1}^t$ de $h_{\ell-1}$ est minimale telle que $\chi \in \mathfrak{X}(M_\ell)$ vérifie $\chi(h_{\ell-1}^t) = 1$, si et seulement si $\chi \in \mathfrak{X}^{\mathfrak{nr}}(M_{\ell-1})$ Stab (ρ) . On trouve donc

$$\widetilde{\alpha}_{\ell-1} = \frac{d-\ell+1}{d-\ell+2} \left(\frac{m}{t}\right) \alpha_{\ell-1}$$

dans les notations de [2, 3.2].

Notons α_ℓ^{\vee} la coracine associée à α_ℓ . Un calcul élémentaire donne

$$t\left\langle\alpha_{\ell}^{\vee},z_{1}\widetilde{\alpha}_{1}+z_{2}\widetilde{\alpha}_{2}+\cdots+z_{d-1}\widetilde{\alpha}_{d-1}\right\rangle=z_{\ell}-\frac{d-\ell-1}{d-\ell}z_{\ell+1}$$

(où $z_d := 0$). Posons

$$a_{M_{\ell}}^* = \operatorname{Rat}(M_{\ell}) \otimes_{\mathbb{Z}} \mathbb{R}.$$

Considérons la surjection canonique $a_{M_\ell,\mathbb{C}}^* \to \mathfrak{X}^{n\mathfrak{r}}(M_\ell), \ \lambda \mapsto \chi_\lambda$ (cf. [2, 1.2]). En posant $r_\ell = t\frac{1}{2}(d-\ell+1)$, on en déduit

$$\rho_d = \rho \otimes \chi_{r_1 \widetilde{\alpha}_1 + r_2 \widetilde{\alpha}_2 + \dots + r_{d-1} \widetilde{\alpha}_{d-1}}.$$

3. La fonction μ

Notons $a = n(\sigma \times \sigma^{\vee})$ le conducteur d'Artin de paires (cf. [3, p. 291]) et $\mu^{M_{\ell}}$ la fonction μ de Harish-Chandra définie sur $\mathcal{O} := \mathcal{O}_d$ relative à M_{ℓ} comme produit

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

des opérateurs d'entrelacement (cf. [2, 1.5]), $\mu := \mu^G$. Le résultat suivant est une conséquence immédiate de la formule de produit pour μ^{M_ℓ} , utilisant la formule explicite pour μ dans le cas d'un sous-groupe de Levi maximal (cf. [1, Thm. 3.3]).

PROPOSITION 3.1. — Posons $\alpha_{i,j}^{\vee} = \alpha_i^{\vee} + \cdots + \alpha_j^{\vee}$ pour $i \leq j$. La fonction $\lambda \mapsto \mu(\rho \otimes \chi_{\lambda})$ est régulière et non nulle en dehors de la réunion des hyperplans affines de a_M^{\vee} de la forme $\langle \alpha_{i,j}^{\vee}, \lambda \rangle = 0, \pm 1$ avec $1 \leq i < j \leq d-1$.

La fonction $(\mu^{M_{\ell-1}}/\mu^{M_{\ell}})(\rho_0 \otimes \chi_{z\widetilde{\alpha}_{\ell-1}+r_{\ell}\widetilde{\alpha}_{\ell}+\cdots+r_{d-1}\widetilde{\alpha}_{d-1}})$ vaut

$$q^{(d-\ell+1)a} \frac{(1-q^{t\frac{1}{2}(d-\ell)-z})(1-q^{t\frac{1}{2}(d-\ell)+z})}{(1-q^{-t\frac{1}{2}(d-\ell)-t-z})(1-q^{-t\frac{1}{2}(d-\ell)-t+z})}.$$

4. La donnée de résidu Res_A^P

Posons $A_{\ell} = \rho_d \otimes \mathfrak{X}^{nr}(M_{\ell})$, notons $r(A_{\ell})$ « l'origine » de A_{ℓ} (cf. [2, 1.4]), $A_{\ell,0}$ le sous-espace de A_{ℓ} , formé des points de partie réelle $r(A_{\ell})$, et \mathcal{S}_{A_1} l'ensemble formé des hyperplans affines $\{\rho \otimes \chi_{\lambda} \mid \langle \alpha_{\ell}^{\vee}, \lambda \rangle = 1\}$, $\ell = 1, \ldots, d-1$, de $\mathcal{O} := \mathcal{O}_d$. Désignons par $\mathcal{R}(\mathcal{S}_{A_1})$ l'espace des fonctions rationnelles sur \mathcal{O}_d , régulières en dehors des hyperplans affines dans \mathcal{S}_{A_1} . Remarquons que la partie réelle $\Re(\rho \otimes \chi_{\lambda}) := \Re(\lambda)$ est bien définie. Le symbole $\int_{\Re(\rho')=R} \psi(\rho') d_{A_d} \Im(\rho')$ désignera la mesure sur $\chi_R \mathcal{O}_0$, déduite de celle sur $\mathcal{O}_0 = A_{d,0}$. De façon analogue pour $\int_{A_{\ell,0}} d_{A_{\ell}} \Im(\rho')$. L'ordre sur a_M^* induit par le sous-groupe parabolique standard P de Levi M sera noté $>_P$.

PROPOSITION 4.1. — Soit $\psi \in \mathcal{R}(\mathcal{S}_{A_1})$ invariante par $\mathfrak{X}^{nr}(G)$. Pour $\chi \in \mathfrak{X}^{nr}(G)$ et $z_1, \ldots, z_{d-1} \in \mathbb{C}$, posons

$$f(z_1, \cdots, z_{d-1}) = \psi(\rho \otimes \chi \chi_{z_1 \widetilde{\alpha}_1 + \cdots + z_{d-1} \widetilde{\alpha}_{d-1}}).$$

On a

$$\int_{\Re(\rho')=R\gg_P 0} \psi(\rho') \,\mathrm{d}_{A_d} \Im(\rho') = \sum_{\ell=1}^d \int_{A_{\ell,0}} (\mathrm{Res}_{A_\ell} \,\psi)(\rho') \,\mathrm{d}_{A_\ell} \Im(\rho'),$$

 $avec \operatorname{Res}_{A_{\ell}} \psi(\rho \otimes \chi \chi_{z_1 \widetilde{\alpha}_1 + \dots + z_{\ell-1} \widetilde{\alpha}_{\ell-1}}) \ \acute{e}gal \ \grave{a}$

$$\left(\frac{m\log q}{t}\right)^{d-\ell} \frac{1}{d-\ell+1} \operatorname{Res}_{z_{\ell}=r_{\ell}} \left(\cdots \left(\operatorname{Res}_{z_{d-1}=r_{d-1}} f\right)\right) (z_1, \dots, z_{\ell-1}).$$

Tome $134 - 2006 - N^{O}$ 2

Démonstration. — Écrivons $R = R_1 \widetilde{\alpha}_1 + R_2 \widetilde{\alpha}_2 + \cdots + R_{d-1} \widetilde{\alpha}_{d-1}$. Par la suite exacte dans [2, 1.2] et notre choix des mesures, on a

$$\frac{\log q}{2\pi} \int_{\Re(\rho')=R} \psi(\rho') d_{A_d} \Im(\rho') = \left(\frac{\log q}{2\pi}\right)^d \left(\frac{m}{t}\right)^d \\
\times \int_0^{2\pi/\log q} \cdots \int_0^{2\pi/\log q} f(R_1 + it_1, \dots, R_{d-1} + it_{d-1}) dt_{d-1} \cdots dt_1.$$

Si on fixe $z_1, \ldots, z_{\ell-1}$ avec $\Re(z_i) = R_i$, la fonction

$$z_{\ell} \longmapsto \psi(z_1 \widetilde{\alpha}_1 + \dots + z_{\ell-1} \widetilde{\alpha}_{\ell-1} + z_{\ell} \widetilde{\alpha}_{\ell} + r_{\ell+1} z_{\ell+1} + \dots r_{d-1} z_{d-1})$$

possède, compte du calcul dans le paragraphe 2 et du fait que ψ est régulière en dehors des hyperplans dans \mathcal{S}_{A_1} , au plus un pôle en $z_\ell = r_\ell$. Par les arguments dans [2, 3.6], l'intégrale vaut

$$\left(\frac{1}{2\pi}\right)^{\ell} \left(\frac{m \log q}{t}\right)^{d} \sum_{\ell=1}^{d} \int_{0}^{2\pi/\log q} \cdots \int_{0}^{2\pi/\log q} \operatorname{Res}_{z_{\ell}=r_{\ell}} \left(\cdots \left(\operatorname{Res}_{z_{d-1}=r_{d-1}} f\right)\right) (it_{1}, \dots, it_{\ell-1}) dt_{\ell-1} \cdots dt_{1}$$

$$= \sum_{\ell=1}^{d} \left(\frac{m \log q}{t}\right)^{d-\ell} \frac{1}{d-\ell+1} (d-\ell+1) \left(\frac{1}{2\pi}\right)^{\ell} \left(\frac{m \log q}{t}\right)^{\ell}$$

$$\times \int_{0}^{2\pi/\log q} \cdots \int_{0}^{2\pi/\log q} \operatorname{Res}_{z_{\ell}=r_{\ell}} \left(\cdots \left(\operatorname{Res}_{z_{d-1}=r_{d-1}} f\right)\right) (it_{1}, \dots, it_{\ell-1})$$

$$dt_{\ell-1} \cdots dt_{1}$$

$$= \frac{\log q}{2\pi} \sum_{\ell=1}^{d} \int_{A_{\ell,0}} (\operatorname{Res}_{A_{\ell}} \psi)(\rho') d_{A_{\ell}} \Im(\rho').$$

COROLLAIRE 4.2. — Notons $\operatorname{Res}_{A_1}^P$ la donnée de résidu défini dans [2, 4.9]. Avec $f(z_1, \ldots, z_{d-1}) = \mu(\rho \otimes \chi_{z_1 \widetilde{\alpha}_1 + \cdots + z_{d-1} \widetilde{\alpha}_{d-1}})$, on a

$$(\operatorname{Res}_{A_1}^P \mu) = \left(\frac{m \log q}{t}\right)^{d-1} \frac{1}{d} \operatorname{Res}_{z_1 = r_1} \left(\cdots \left(\operatorname{Res}_{z_{d-1} = r_{d-1}} f\right)\right).$$

 $D\'{e}monstration$. — Par [2, 3.9], la donnée de résidu $\operatorname{Res}_{A_1}^P$ est déterminée par sa restriction à \mathcal{S}_{A_1} , donc en raison de [2, 3.10] égale à l'expression donnée dans la proposition ci-dessus.

5. Le degré formel

THÉORÈME 5.1. — Le degré formel de l'unique sous-quotient irréductible de carré intégrable π_d de la représentation induite parabolique (normalisée) de la

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

représentation $\sigma \cdot |\det_m|^{\frac{1}{2}(d-1)} \otimes \cdots \otimes \sigma \cdot |\det_m|^{\frac{1}{2}(-d+1)}$ de M est lié à celui de σ par la formule

$$\deg(\pi_d) = \frac{|\operatorname{GL}_n(\mathbb{F}_q)|}{|\operatorname{GL}_m(\mathbb{F}_q)|^d} \ q^{mn-n^2} \ \frac{m^{d-1}}{t^{d-1}d} \ q^{\frac{1}{2}ad(d-1)} \ q^{\frac{1}{2}td(d-1)} \ \frac{(q^t-1)^d}{q^{td}-1} \deg(\sigma)^d.$$

Démonstration. — Par la remarque [2, 8.6], on a

$$\deg(\pi_d) = \gamma(G/M) \deg(\rho_d) |\operatorname{Stab}(A_1)|^{-1} (\operatorname{Res}_{A_1}^P \mu)(\rho_d).$$

Comme ρ_d est régulier, $\operatorname{Stab}(A_1)=\{1\}$. Il est immédiate par définition du degré formel que celui d'un produit tensoriel de représentations est égal au produit des degrés formels. La constante $\gamma(G/M)$ est égal à

$$\frac{|\operatorname{GL}_n(\mathbb{F}_q)|}{|\operatorname{GL}_m(\mathbb{F}_q)|^d} q^{mn-n^2},$$

comme on le déduit directement de la formule pour $\gamma(G/M)$ dans [4] en haut de la page 241, en posant $H = I_n + \widetilde{\omega} \operatorname{GL}_n(O_F)$. Il reste à calculer le résidu, en utilisant la proposition 3.1 :

$$(\operatorname{Res}_{A_{1}}^{A}\mu)(\rho_{d}) = \left(\frac{m \log q}{t}\right)^{d-1} \frac{1}{d} \prod_{\ell=2}^{d} q^{a(d-\ell+1)} \frac{(1-q^{\frac{1}{2}t(d-\ell)-r_{\ell-1}})(1-q^{\frac{1}{2}t(d-\ell)+r_{\ell-1}})}{(1-q^{-\frac{1}{2}t(d-\ell)-t-r_{\ell-1}})}$$

$$\operatorname{Res}_{z=r_{\ell-1}} \frac{1}{1-q^{-\frac{1}{2}t(d-\ell)-t+z}}$$

$$= \left(\frac{m \log q}{t}\right)^{d-1} \frac{1}{d} q^{a\frac{1}{2}d(d-1)} \prod_{\ell=2}^{d} \frac{(q^{-t}-1)(q^{t(d-\ell+1)}-1)}{(q^{-t(d-\ell+2)}-1)}$$

$$\operatorname{Res}_{z=r_{\ell-1}} \frac{1}{q^{-\frac{1}{2}t(d-\ell)-t+z}-1}$$

$$= \left(\frac{m \log q}{t}\right)^{d-1} \frac{1}{d} q^{a\frac{1}{2}d(d-1)}(q^{-t}-1)^{d-1} \frac{q^{t}-1}{q^{-dt}-1} \prod_{\ell=2}^{d-1} \frac{q^{t(d-\ell+1)}-1}{q^{-t(d-\ell+1)}-1}$$

$$= \left(\frac{m}{t}\right)^{d-1} \frac{1}{d} q^{\frac{1}{2}ad(d-1)}(q^{-t}-1)^{d-1} \frac{q^{t}-1}{q^{-dt}-1} \prod_{\ell=2}^{d-1} (-q^{t(d-\ell+1)})$$

$$= \left(\frac{m}{t}\right)^{d-1} \frac{1}{d} q^{\frac{1}{2}ad(d-1)} q^{-t(d-1)}(-1)^{d-1}(q^{t}-1)^{d-1}(-q^{td})$$

$$\frac{q^{t}-1}{q^{td}-1}(-1)^{d-2} \prod_{\ell=2}^{d-1} q^{t\ell}$$

$$= \left(\frac{m}{t}\right)^{d-1} \frac{1}{d} q^{\frac{1}{2}ad(d-1)} \frac{(q^{t}-1)^{d}}{q^{td}-1} q^{\frac{1}{2}td(d-1)}.$$

tome $134 - 2006 - n^{o} 2$

L'auteur remercie l'Université Purdue ainsi que F. Shahidi pour leur hospitalité.

BIBLIOGRAPHIE

- [1] Aubert (A.-M.) & Plymen (R.) Plancherel measure for GL(n): explicit formulas and Bernstein decomposition, J. Number Theory, t. **112** (2005), no. 1, pp. 26–66.
- [2] HEIERMANN (V.) Décomposition spectrale d'un groupe réductif p-adique, J. Institut Math. Jussieu, t. **3** (2004), no. 3, pp. 327–395.
- [3] Shahidi (F.) Langlands' conjecture on Plancherel measures for p-adic groups, Progr. Math., vol. 101, Birkhäuser, Boston, 1991, pp. 277–295.
- [4] Waldspurger (J.-L.) La formule de Plancherel pour les groupes p-adiques (d'après Harish-Chandra), J. Institut Math. Jussieu, t. 2 (2003), pp. 235–333.